1
|
Ács A, Schmidt J, Németh Z, Fodor I, Farkas A. Elevated temperature increases the susceptibility of D. magna to environmental mixtures of carbamazepine, tramadol and citalopram. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110052. [PMID: 39437871 DOI: 10.1016/j.cbpc.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The joint risks assessment of thermal stress and rising loads of pharmaceuticals (PhACs) in surface waters is a relevant topic in aquatic ecotoxicology. This study investigated the relevance of increased water temperature to alter the acute toxicity of environmentally relevant carbamazepine (CBZ), citalopram (CIT) and tramadol (TRA) concentrations as mixtures (ECs) and delayed outcomes in Daphnia magna. Responses of detoxification and antioxidant pathways in premature daphnids post an acute 24 h (pulsed) exposure to the PhACs mixtures and delayed responses as the reproductive output over 14 days recovery were investigated under 21- and 26 °C incubation. Biphasic modulation in glutathione S-transferase (GST) activity and significant inhibition of superoxide dismutase (SOD) activity were observed in both thermal regimes with significant shift in effective thresholds from 10-fold ECs at 21 °C to ECs at 26 °C incubation. Significant induction in catalase (CAT) activity and oxidative stress development were recorded at elevated temperatures from the 10-fold ECs dose onward. Pulsed exposures at 26 °C also led to significant decrease in the reproduction of daphnids above the 10-fold ECs of PhACs. The Integrated Biomarker Response scoring (IBRv2) approach outlined a 1.8-fold increase in alterations of daphnids exposed to 100-fold ECs of PhACs at 26 °C.
Collapse
Affiliation(s)
- András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary.
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Németh
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
2
|
Liu W, Li Z, Li F, Zhang Y, Ding S. Bioaccumulation and behavioral response patterns of crucian carp (Carassius carassius) after carbamazepine exposure and elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175519. [PMID: 39168342 DOI: 10.1016/j.scitotenv.2024.175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The antiepileptic drug carbamazepine (CBZ) has been widely detected in freshwater, yet its toxic actions in fish at multiple endpoints and the subsequent recovery patterns of the impacted are less discussed. This study investigated the bioaccumulation, physiological and behavioral changes of crucian carp (Carassius carassius) following CBZ exposure (G1 = 6.15 μg/L, G2 = 61.5 μg/L, G3 = 615 μg/L, G4 = 6150 μg/L) and subsequent recovery. Our results showed that CBZ was more likely to accumulate in the liver and brain than in the gills. A concentration-dependent phenomenon was observed; however, the residual CBZ decreased to similar levels after recovery. The behavioral indicators (i.e. feeding, social and spontaneous swimming) were significantly inhibited after 7-days of CBZ exposure, and only recovered at low concentration treatment (G1) after 7-days recovery in CBZ-free water. The acetylcholinesterase (AChE) activity in the brain and superoxide dismutase (SOD) activity in the liver and gills were induced after CBZ exposure and returned to normal levels after 7-days of recovery. In contrast, the inhibition of catalase (CAT) activity caused by CBZ exposure persisted in the high concentration treatment (G4) after recovery. Furthermore, correlation analysis indicated that changes in feeding behavior were closely related to the variation of CBZ concentrations in tissues, and the persistence of abnormal swimming and social behavior was closely related to gill CAT activity. These findings contribute to explore the toxic mechanisms of CBZ and highlight the recovery process and connections between various endpoints.
Collapse
Affiliation(s)
- Wei Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chang Jiang Ecology (Hubei) Technology Development Co. Ltd., Wuhan 430071, China
| | - Zhao Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sen Ding
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Chang J, Wei P, Tian M, Zou Y, Zhang S. The responses and tolerance of photosynthetic system in Chlorella vulgaris to the pharmaceutical pollutant carbamazepine. CHEMOSPHERE 2024; 362:142608. [PMID: 38878981 DOI: 10.1016/j.chemosphere.2024.142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 08/09/2024]
Abstract
Screening for sensitive toxicological indicators and understanding algal tolerance to pharmaceutical contaminants (PhCs) are essential for assessing PhCs risk and their removal by microalgae. Carbamazepine (CBZ) showed adverse effects on microalgae, but the specific toxicity mechanisms on the most sensitive algal photosynthetic system (PS) remain limited. This study delved into the impact of CBZ exposure on the growth, cell viability, pigment content, and PS of Chlorella vulgaris. The findings revealed a notable inhibition of C. vulgaris growth by CBZ, with an IC50 value of 27.2 mg/L at 96 h. CBZ exposure induced algal membrane damage and cell viability. Intriguingly, CBZ drastically diminished intracellular pigment levels, notably showing "low promotion and high inhibition" of chlorophyll b (Chl b) by 72 h. Moreover, the study identified a decreased number of active reaction centers (RCs) within algal PSII alongside inhibited electron transport from QA to QB on the PSII receptor side, leading to PSII disruption. As an adaptive response to CBZ stress, C. vulgaris stimulated its Chl b synthesis, increased non-photochemical quenching (NPQ), and adapted its tolerance to bright light. Additionally, the alga attempted to compensate for the CBZ-induced reduction in electron transfer efficiency at the PSII receptor side and light energy utilization by increasing its electron transfer from downstream. Principal component analysis (PCA) further verified that the parameters on non-photochemical dissipation, electron transport, and integrative performance were the most sensitive algal toxicological indicators for CBZ exposure, and algal PS has energy protection capability through negative feedback regulation. However, prolonged exposure to high doses of CBZ will eventually result in permanent damage to the algal PS. Hence, attention should be paid to the concentration of CBZ in the effluent and the exposure time, while methods to mitigate algal photodamage should be appropriately sought for algal treatment of dense effluents.
Collapse
Affiliation(s)
- Jingjing Chang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Peiling Wei
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Meng Tian
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Ying Zou
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Shenghua Zhang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China.
| |
Collapse
|
4
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Vehniäinen ER, Juan-García A. Daphnia magna model for the study of mycotoxins present in food: Gliotoxin, ochratoxin A and its combination. Food Chem Toxicol 2024; 189:114740. [PMID: 38759715 DOI: 10.1016/j.fct.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Mycotoxins are low molecular weight compounds present in food and feed. Although their effects on human health have been widely described, their mechanisms of action are still undefined. Gliotoxin (GTX) and ochratoxin A (OTA) are among the most dangerous mycotoxins produced by Aspergillus spp. Therefore, their toxicity was studied in the Daphnia magna model, which has high capacity to predict cytotoxicity and assess ecotoxicity, comparable to mammalian models. The study consisted of a series of tests to evaluate the effects of mycotoxins GTX, OTA and their combinations at different dilutions on Daphnia magna that were conducted according to standardized OECD 202 and 211 guidelines. The following assays were carried out: acute toxicity test, heartbeat, delayed toxicity test, reproduction, growth rate test. Reproducibility was determined by observing the offspring after 21 days of GTX exposure. In acute and delayed toxicity transcript levels of genes involved in xenobiotic metabolism (mox, gst, abcb1, and abcc5), and oxidative stress (vtg-SOD) were analyzed by qPCR. GTX showed acute toxicity and decreased heart rate in D. magna compared to OTA. On the other hand, OTA showed a delayed effect as evidenced by the immobility test. Both mycotoxins showed to increase genes involved in xenobiotic metabolism, while only the mycotoxin mixture increased oxidative stress. These results suggest that the mycotoxins tested could have negative impact on the environment and human health.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain; Department of Biological and Environmental Science, PO Box 35, FI-40014, University of Jyväskylä, Jyväskylä, Finland
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, PO Box 35, FI-40014, University of Jyväskylä, Jyväskylä, Finland
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain.
| |
Collapse
|
5
|
Dang W, Zhang JH, Cao ZC, Yang JM, Lu HL. Environmentally Relevant Levels of Antiepileptic Carbamazepine Altered Intestinal Microbial Composition and Metabolites in Amphibian Larvae. Int J Mol Sci 2024; 25:6950. [PMID: 39000059 PMCID: PMC11241184 DOI: 10.3390/ijms25136950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
There is growing concern about the potential ecological risks posed by pharmaceutical residues in the aquatic environment. However, our understanding of the toxic effects of antiepileptic pharmaceuticals, such as carbamazepine (CBZ), on aquatic animal larvae is still limited. In this study, the tadpoles of the black-spotted pond frog (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of CBZ (0.3 and 3.0 μg/L) for 30 days, and their growth, intestinal microbial composition, and metabolites were investigated to assess the potential toxic effects of CBZ in non-targeted aquatic organisms. Some tadpoles died during exposure, but there was no significant among-group difference in the survival and growth rates. CBZ exposure significantly altered the composition of tadpole intestinal microbiota. Relative abundances of some bacterial genera (e.g., Blautia, Prevotella, Bacillus, Microbacterium, etc.) decreased, while others (e.g., Paucibacter, etc.) increased in CBZ-exposed tadpoles. Interestingly, CBZ-induced alterations in some bacteria might not necessarily lead to adverse outcomes for animals. Meanwhile, small molecular intestinal metabolites related to energy metabolism, and antioxidant and anti-inflammatory activities were also altered after exposure. Taken together, environmentally relevant levels of CBZ might alter the metabolic and immune performances of amphibian larvae by modifying the abundance of some specific bacteria and the level of metabolites in their intestines, thereby potentially causing a long-term effect on their fitness.
Collapse
Affiliation(s)
- Wei Dang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Hui Zhang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Chun Cao
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Meng Yang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Chen T, Zeng Q, Cao M, Zhang L, Adyari B, Ma C, Wang K, Gao D, Hu A, Sun Q, Yu CP. Fate of contaminants of emerging concern in two wastewater treatment plants after retrofitting tertiary treatment for reduction of nitrogen discharge. ENVIRONMENTAL RESEARCH 2024; 249:118344. [PMID: 38311200 DOI: 10.1016/j.envres.2024.118344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
More and more previously designed wastewater treatment plants (WWTPs) are upgraded to tertiary treatment to meet the higher effluent discharge standards of conventional pollutants. Contaminants of emerging concern (CECs) can cause adverse effects on organisms and usually flow into WWTPs along with urban sewage. How the retrofitted WWTPs targeting conventional pollutants will influence the treatment efficiency of CECs is seldom discussed. This study investigates the removal of CECs in two full-scale newly retrofitted WWTPs (CD and JM WWTPs), containing high-efficiency sedimentation tank and denitrification deep bed filter for enhancing total nitrogen removal. The overall CEC removal efficiencies in the CD and JM WWTPs were 73.79 % and 93.63 %, respectively. Mass balance results indicated that CD WWTP and JM WWTP release a total of 36.89 and 88.58 g/d of CECs into the environment through effluent and excess sludge, respectively. Analysis of the concentration of CECs along the treatment process revealed most CECs were removed in the biological treatment units. The incorporation of newly constructed tertiary treatment proved beneficial for CEC removal and removed 2.93 % and 2.36 % CECs, corresponding to CEC removal of 2.92 and 27.49 g/d in the CD and JM WWTPs, respectively. The data of this study were further used to evaluate the suitability of the SimpleTreat model for simulating the fate of CECs in WWTPs. The predicted fraction of CECs discharged through the biological treatment effluent were generally within ten-fold difference from the measured results, highlighting its potential for estimating CEC removal in WWTPs.
Collapse
Affiliation(s)
- Tianyuan Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoting Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Cong Ma
- Xiamen Municipal Environmental Technology Co., Ltd., Xiamen, 361001, China
| | - Kai Wang
- Xiamen Municipal Construction Biotechnology Co, Ltd., Xiamen, 361001, China
| | - Deti Gao
- Fujian Lanshen Environmental Technology Co, Ltd., Quanzhou, 362000, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
7
|
Zhao Y, Hu L, Hou Y, Wang Y, Peng Y, Nie X. Toxic effects of environmentally relevant concentrations of naproxen exposure on Daphnia magna including antioxidant system, development, and reproduction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106794. [PMID: 38064890 DOI: 10.1016/j.aquatox.2023.106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Naproxen (NPX) is one of common non-prescription non-steroidal anti-inflammatory drugs (NSAIDs) which is widely detected in aquatic environments worldwide due to its high usage and low degradation. NPX exerts anti-inflammatory and analgesic pharmacological effects through the inhibition of prostaglandin-endoperoxide synthase (PTGS), also known as cyclooxygenase (COX). Given its evolutionarily relatively conserved biological functions, the potential toxic effects of NPX on non-target aquatic organisms deserve more attention. However, the ecotoxicological studies of NPX mainly focused on its acute toxic effects under higher concentrations while the chronic toxic effects under realistic concentrations exposure, especially for the underlying molecular mechanisms still remain unclear. In the present study, Daphnia magna, being widely distributed in freshwater aquatic environments, was selected to investigate the toxic effects of environmentally relevant concentrations of NPX via determining the response of the Nrf2/Keap1 signaling pathway-mediated antioxidant system in acute exposure, as well as the changes in life-history traits, such as growth, reproduction, and behavior in chronic exposure. The results showed that the short-term exposure to NPX (24 h and 48 h) suppressed ptgs2 expression while activating Nrf2/Keap1 signaling pathway and its downstream antioxidant genes (ho-1, sod, cat and trxr). However, with prolonged exposure to 96 h, the opposite performance was observed, the accumulation of malondialdehyde (MDA) indicated that D. magna suffered from severe oxidative stress. To maintain homeostasis, the exposed organism may trigger ferroptosis and apoptosis processes with the help of Silent mating type information regulation 2 homologs (SIRTs). The long-term chronic exposure to NPX (21 days) caused toxic effects on D. magna at the individual and population levels, including growth, reproduction and behavior, which may be closely related to the oxidative stress induced by the drug. The present study suggested that more attention should be paid to the ecological risk assessment of NSAIDs including NPX on aquatic non-target organisms.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Limei Hu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
9
|
Zhang Q, Jiang Q, Sa K, Liang J, Sun D, Li H, Chen L. Research progress of plant-derived natural alkaloids in central nervous system diseases. Phytother Res 2023; 37:4885-4907. [PMID: 37455555 DOI: 10.1002/ptr.7955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/14/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) disease is one of the most important causes of human death. Because of their complex pathogenesis, more and more attention has been paid to them. At present, drug treatment of the CNS is the main means; however, most drugs only relieve symptoms, and some have certain toxicity and side effects. Natural compounds derived from plants can provide safer and more effective alternatives. Alkaloids are common nitrogenous basic organic compounds found in nature, which exist widely in many kinds of plants and have unique application value in modern medicine. For example, Galantamine and Huperzine A from medicinal plants are widely used drugs on the market to treat Alzheimer's disease. Therefore, the main purpose of this review is to provide the available information on natural alkaloids with the activity of treating central nervous system diseases in order to explore the trends and perspectives for the further study of central nervous system drugs. In this paper, 120 alkaloids with the potential effect of treating central nervous system diseases are summarized from the aspects of sources, structure types, mechanism of action and structure-activity relationship.
Collapse
Affiliation(s)
- Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuiru Sa
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Junming Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Yang H, Gu X, Chen H, Zeng Q, Mao Z, Ge Y. Omics techniques reveal the toxicity mechanisms of three antiepileptic drugs to juvenile zebrafish (Danio rerio) brain and liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106668. [PMID: 37659109 DOI: 10.1016/j.aquatox.2023.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Epilepsy, a neurological disorder, is characterized by seizures that are an appearance of excessive brain activity and is symptomatically treated with antiepileptic drugs (AEDs). Oxcarbazepine (OCBZ), lamotrigine (LTG), and carbamazepine (CBZ) are widely used AEDs in clinics and are very often detected in aquatic environments. However, neither the sub-lethal effects nor the specific mechanisms of these AEDs' action on the fish are well understood. In this study, juvenile zebrafish were exposed to a sub-lethal concentration (100 μg/L) of OCBZ, LTG, and CBZ for 28 d, after which indicators of oxidative stress (i.e. superoxide dismutase (SOD) activity, catalase (CAT) activity, and malondialdehyde (MDA) level) and neurotoxicity (i.e. acetylcholinesterase (AChE) activity, γ-aminobutyric acid (GABA) level, and glutamic acid (Glu) level) were measured. Brain SOD activity was significantly increased by three AEDs, while brain CAT activity was significantly inhibited by LTG and CBZ. Liver SOD activity was significantly enhanced by CBZ, and liver CAT activity was significantly induced by OCBZ and LTG. Liver MDA level was significantly increased by three AEDs. Brain AChE activity was significantly increased by LTG and CBZ, and brain GABA level was significantly enhanced by three AEDs. However, there were no significant alterations in the levels of MDA and Glu in zebrafish brain. To ascertain mechanisms of AEDs-induced toxicity, brain transcriptomics and liver metabolomics were conducted in zebrafish. The brain transcriptomics results showed that lots of differentially expressed genes (DEGs) were enriched in the sensory system, the immune system, the digestive system, the metabolic processes, and others in three AEDs treated groups. The metabolomics data indicated dysregulation of glycerophospholipid signaling and lipid homeostasis in zebrafish liver after three AEDs exposure. The overall results of this study improve understanding of the sub-lethal effects and potential molecular mechanisms of action of AEDs in fish.
Collapse
Affiliation(s)
- Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Klanovicz N, Camargo AF, Ramos B, Michelon W, Treichel H, Teixeira ACSC. A review of hybrid enzymatic-chemical treatment for wastewater containing antiepileptic drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27487-z. [PMID: 37184794 DOI: 10.1007/s11356-023-27487-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Epilepsy is one of the most common neurological diseases worldwide and requires treatment with antiepileptic drugs for many years or for life. This fact leads to the need for constant production and use of these compounds, placing them among the four pharmaceutical classes most found in wastewater. Even at low concentrations, antiepileptics pose risks to human and environmental health and are considered organic contaminants of emerging concern. Conventional treatments have shown low removal of these drugs, requiring advanced and innovative approaches. In this context, this review covers the results and perspectives on (1) consumption and occurrence of antiepileptics in water, (2) toxicological effects in aquatic ecosystems, (3) enzymatic and advanced oxidation processes for degrading antiepileptics drugs from a molecular point of view (biochemical and chemical phenomena), (4) improvements in treatment efficiency by hybridization, and (5) technical aspects of the enzymatic-AOP reactors.
Collapse
Affiliation(s)
- Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil.
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil.
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil
- Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bruno Ramos
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses (LAMIBI), Federal University of Fronteira Sul, Erechim, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, 05508080, Brazil
| |
Collapse
|
12
|
Del Carmen Gómez-Regalado M, Martín J, Hidalgo F, Santos JL, Aparicio I, Alonso E, Zafra-Gómez A. Bioconcentration of pharmaceuticals in benthic marine organisms (Holothuria tubulosa, Anemonia sulcata and Actinia equina) exposed to environmental contamination by atenolol and carbamazepine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104147. [PMID: 37182729 DOI: 10.1016/j.etap.2023.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
The present work assess the bioconcentration kinetics of atenolol (ATN) and carbamazepine (CBZ) in common marine organisms including Holothuria tubulosa, Anemonia sulcata and Actinia equina under controlled laboratory conditions. CBZ exhibited higher uptake and excretion rates resulting higher bioconcentration factor (BCF) (41-537L/kg for CBZ vs 7-50L/kg for ATN) although both are below the limits established by the European Union (EU). The measured BCF using kinetic data showed some differences with those predicted using the concentrations measured at the steady-state, probably explained because the steady state was not ready reached. The animal-specific BCF followed the order of Holothuria tubulosa >Actinia equina >Anemonia sulcata for ATN while was the opposite for CBZ. The study highlighted between-tissues differences in the digestive tract and the body wall of the Holothuria tubulosa. The work presented is the first to model bioconcentration of ATN and CBZ in holothurian and anemone animal models.
Collapse
Affiliation(s)
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain.
| | - Felix Hidalgo
- Department of Zoology, Sciences Faculty, University of Granada, E-18071 Granada, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, Sciences Faculty, University of Granada, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, E-18016 Granada, Spain; Institute of Nutrition and Food Technology, INYTA, University of Granada, Spain.
| |
Collapse
|
13
|
Chaves MDJS, Kulzer J, Pujol de Lima PDR, Barbosa SC, Primel EG. Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1982-2008. [PMID: 36124562 DOI: 10.1039/d2em00132b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments has generated increasing public concern. In this review, data on the presence of PPCPs in environmental compartments from the past few years (2014-2022) are summarized by carrying out a critical survey of the partitioning among water, sediment, and aquatic organisms. From the available articles on PPCP occurrence in the environment, in Web of Science and Scopus databases, 185 articles were evaluated. Diclofenac, carbamazepine, caffeine, ibuprofen, ciprofloxacin, and sulfamethoxazole were reported to occur in 85% of the studies in at least one of the mentioned matrices. Risk assessment showed a moderate to high environmental risk for these compounds worldwide. Moreover, bioconcentration factors showed that sulfamethoxazole and trimethoprim can bioaccumulate in aquatic organisms, while ciprofloxacin and triclosan present bioaccumulation potential. Regarding spatial distribution, the Asian and European continents presented most studies on the occurrence and effects of PPCPs on the environment, while Africa and Asia are the most contaminated continents. In addition, the impact of COVID-19 on environmental contamination by PPCPs is discussed.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Jonatas Kulzer
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Paula da Rosa Pujol de Lima
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Sergiane Caldas Barbosa
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Ednei Gilberto Primel
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| |
Collapse
|
14
|
Rodríguez-Serin H, Gamez-Jara A, De La Cruz-Noriega M, Rojas-Flores S, Rodriguez-Yupanqui M, Gallozzo Cardenas M, Cruz-Monzon J. Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013105. [PMID: 36293682 PMCID: PMC9602914 DOI: 10.3390/ijerph192013105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 05/11/2023]
Abstract
There are several techniques for the removal of pharmaceuticals (drugs) from wastewater; however, strengths and weaknesses have been observed in their elimination processes that limit their applicability. Therefore, we aimed to evaluate the best techniques for the removal of pharmaceuticals from municipal and hospital wastewater. For this, a non-experimental, descriptive, qualitative-quantitative design was used, corresponding to a systematic review without meta-analysis. Based on established inclusion and exclusion criteria, 31 open-access articles were selected from the Scopus, ProQuest, EBSCOhost, and ScienceDirect databases. The results showed that high concentrations of analgesics such as naproxen (1.37 mg/L) and antibiotics such as norfloxacin (0.561 mg/L) are frequently found in wastewater and that techniques such as reverse osmosis, ozonation, and activated sludge have the best removal efficiency, achieving values of 99%. It was concluded that reverse osmosis is one of the most efficient techniques for eliminating ofloxacin, sulfamethoxazole, carbamazepine, and diclofenac from municipal wastewater, with removal rates ranging from 96 to 99.9%, while for hospital wastewater the activated sludge technique proved to be efficient, eliminating analgesics and antibiotics in the range of 41-99%.
Collapse
Affiliation(s)
- Henry Rodríguez-Serin
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería, Universidad Cesar Vallejo, Trujillo 13007, Peru
- Correspondence:
| | - Auria Gamez-Jara
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería, Universidad Cesar Vallejo, Trujillo 13007, Peru
| | | | | | - Magda Rodriguez-Yupanqui
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería, Universidad Cesar Vallejo, Trujillo 13007, Peru
| | | | - José Cruz-Monzon
- Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Av. Juan Pablo II, Trujillo 13011, Peru
| |
Collapse
|
15
|
Cho H, Ryu CS, Lee SA, Adeli Z, Meupea BT, Kim Y, Kim YJ. Endocrine-disrupting potential and toxicological effect of para-phenylphenol on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113965. [PMID: 35994907 DOI: 10.1016/j.ecoenv.2022.113965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Several phenol derivatives are suspected endocrine disruptors and have received attention in risk assessment studies for several decades owing to the structural similarity between estrogens and phenolic compounds. We assessed the endocrine disrupting effect of the phenolic compound para-phenylphenol (PPP) through acute tests and evaluating chronic endpoints in an invertebrate model, Daphnia magna. Exposure of D. magna to PPP induced substantial adverse effects, namely, reduced fecundity, slowed growth rate, delayed first brood, and a reduction in neonate size. Furthermore, we investigated the mRNA expression of relevant genes to elucidate the mechanism of endocrine disruption by PPP. Exposure of D. magna to PPP induced the substantial downregulation of genes and markers related to reproduction and development, such as EcR-A, EcR-B, Jhe, and Vtg. Consequently, we demonstrated that PPP has an endocrine disrupting effect on reproduction and development in D. magna.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Sang-Ah Lee
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Zahra Adeli
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Brenda Tenou Meupea
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany
| | - Youngsam Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea.
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, Daejeon 34113, South Korea
| |
Collapse
|
16
|
Nkoom M, Lu G, Liu J. Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: a comparative two-generational study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58963-58979. [PMID: 35378650 DOI: 10.1007/s11356-022-19463-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The chronic toxicity of diclofenac (DCF) and carbamazepine (CBZ) as separate substances and in conjunction with their mixture on Daphnia magna was assessed in the parental (F0) and first filial (F1) generations. The second (F1-B2) and fifth (F1-B5) broods of F1 offspring were investigated and compared. Both drugs and their mixture were exposed to each generation of Daphnia magna for 21 days with life history, behavioural and gene expressions as measured endpoints. After the parental exposure, offspring from these two broods were transferred to a clean medium for a 21-day recovery. Exposure to diclofenac, carbamazepine and their mixture significantly inhibited growth, reproduction, swimming activities, heart rate, thoracic limb activities, reproductive and antioxidant-related genes in the parental as well as the first filial generations. These effects were relatively greater in the F1 generation. This indicates that Daphnia magna's sensitivity improved while its fitness declined over the two generations, which is an indicator of greater energy requirements for maintenance. Besides, the significant inhibition in the antioxidant-related genes implies that oxidative stress occurred in Daphnia magna under the exposure to these drugs. The significant reduction in the reproductive output, moulting frequency and cyp314 gene expression as a result of exposure to CBZ simultaneously obtained herein may indicate that this drug could act as an endocrine disruptor. Most of these significant effects were not recoverable after the 21-day recovery period. The findings reported herein highlight the necessity to include maternal effects in environmental risk assessment processes, considering that pollutant effects are underestimated during single-generational exposure.
Collapse
Affiliation(s)
- Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
- Department of Environment and Sustainability Sciences, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, Ghana
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
17
|
Afsa S, Vieira M, Nogueira AF, Mansour HB, Nunes B. A multi-biomarker approach for the early assessment of the toxicity of hospital wastewater using the freshwater organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19132-19147. [PMID: 34713402 DOI: 10.1007/s11356-021-16977-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater (HWW) contains different hazardous substances resulting from a combination of medical and non-medical activities of hospitals, including pharmaceutical residues. These substances may represent a threat to the aquatic environment if they do not follow specific treatment processes. Therefore, we aimed to investigate the effects of the untreated effluent collected from a general hospital in Mahdia City (Tunisia) on neonatal stages of the freshwater crustacean Daphnia magna. Test organisms were exposed to three proportions (3.12%, 6.25%, and 12.5% v/v) of HWW. After 48 h of exposure, a battery of biomarkers was measured, including the quantification of antioxidant enzymes [catalase (CAT) and total and selenium-dependent glutathione peroxidase (total GPx; Se-GPx)], phase II biotransformation isoenzymes glutathione-S-transferases (GSTs), cyclooxygenases (COX) involved in the regulation of the inflammatory process, and total cholinesterases (ChEs) activities. Lipid peroxidation (LPO) was measured to estimate oxidative damage. The here-obtained results showed significant decreases of CAT and GSTs activities and also on LPO content in daphnids, whereas Se-GPx activity was significantly increased in a dose-dependent manner. Impairment of cholinesterasic and COX activities were also observed, with a significant decrease of ChEs and an increase of COX enzymatic activities. Considering these findings, HWW was capable of inducing an imbalance of the antioxidant defense system, but without resulting in oxidative damage in test organisms, suggesting that peroxidases and alternative detoxifying pathways were able to prevent the oxidant potential of several drugs, which were found in the tested effluents. In general, this study demonstrated the toxicity of hospital effluents, measured in terms of the potential impairment of key pathways, namely neurotransmission, antioxidant defense, and inflammatory homeostasis of crustaceans.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Madalena Vieira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Filipa Nogueira
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000, Monastir, Tunisia
| | - Bruno Nunes
- Centro de Estudos Do Ambiente E Do Mar (CESAM), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Adeola AO, Ore OT, Fapohunda O, Adewole AH, Akerele DD, Akingboye AS, Oloye FF. Psychotropic Drugs of Emerging Concerns in Aquatic Systems: Ecotoxicology and Remediation Approaches. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Baali H, Cosio C. Effects of carbamazepine in aquatic biota. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:209-220. [PMID: 35014660 DOI: 10.1039/d1em00328c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbamazepine (CBZ) is one of the most common pharmaceuticals found in the aquatic environment. Here, we reviewed studies in aquatic animals highlighting that CBZ affected ROS homeostasis but also the neuroendocrine system, cell viability, immunity, reproduction, feeding behavior and growth. Notably, the acetylcholinesterase activity was modified by concentrations of the order of ng L-1 CBZ. At ≥10 μg L-1, data pointed that CBZ triggered the production of ROS, modifying the activity of antioxidant enzymes and produced a significant cellular stress at concentrations ≥100 μg L-1. However, the response appeared species-, organ- and time-dependent, and was impacted by different experimental conditions and the origin of animals. In this context, this review discusses the available data and proposes future research priorities.
Collapse
Affiliation(s)
- Hugo Baali
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France.
| | - Claudia Cosio
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO, 51100 Reims, France.
| |
Collapse
|
20
|
Khan HK, Rehman MYA, Junaid M, Lv M, Yue L, Haq IU, Xu N, Malik RN. Occurrence, source apportionment and potential risks of selected PPCPs in groundwater used as a source of drinking water from key urban-rural settings of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151010. [PMID: 34662624 DOI: 10.1016/j.scitotenv.2021.151010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have been extensively used in present time to improve the living standards. Their persistence in water resources due to various anthropogenic sources such as wastewater treatment plants, pharmaceutical industries, and runoff from agricultural and livestock farms has not only threaten aquatic life but their occurrence in groundwater has also raised concerns related to humans' wellbeing. METHODS Considering this as a neglected area of research in Pakistan, a systematic monitoring study was designed to investigate their occurrence, sources, and potential environmental and human health risks in groundwater from urban-rural areas of six cities. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) was used to analyze the collected samples preceded by solid-phase extraction. RESULTS Overall, 8 out of 11 selected PPCPs were detected in groundwater samples with detection frequency ranging from 5.5-65%. Their concentrations ranged from below limit of detection (<LOD) to 1961 ng/L. The overall mean concentrations of detected PPCPs were found below 100 ng/L. The highest mean concentration was reported for Ibuprofen (154 ng/L) in Rawalpindi/Islamabad. Results of PCA-MLR revealed that domestic wastewater discharge (76.4%) was the dominant source contributing to PPCPs contamination in groundwater. Followed by mixed source (pharmaceutical & hospital waste) 17.8%, and rural discharge/animal husbandry 5.8%. No appreciable risk to human health upon exposure to detected PPCPs via drinking water was anticipated. However, environmental risk assessment indicated moderate risk posed to P. subcapitata (RQ = 0.98) and D. magna (RQ = 0.2) by ibuprofen. CONCLUSION The current study reports the first evidence of PPCPs occurrence in groundwater in Pakistan. Reporting their occurrence in groundwater is a fundamental initial step to inform public-health decisions concerning sewage systems and drinking water quality. Hence, comprehensive monitoring programs are required to further investigate contamination of emerging contaminants in groundwater and their associated risks.
Collapse
Affiliation(s)
- Hudda Khaleeq Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ming Lv
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ihsan-Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
21
|
Wang J, Zhu S, Wu Y, Sheng D, Bu L, Zhou S. Insights into the wavelength-dependent photolysis of chlorite: Elimination of carbamazepine and formation of chlorate. CHEMOSPHERE 2022; 288:132505. [PMID: 34627813 DOI: 10.1016/j.chemosphere.2021.132505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous removal of chlorite (ClO2-) and organic micro-pollutants (OMPs) by the irradiation of UV is a novel process. In this study we used UV light emitting diode (UV-LED) as a new UV source to systematically investigate the effect of UV wavelength (255, 285, 365 nm) on the simultaneous removal of carbamazepine (CBZ) and ClO2-. Removal of both CBZ and ClO2- followed the order of 255, 285, and 365 nm. Formation of hydroxyl radical and reactive chlorine species (RCS) were confirmed during the photolysis of ClO2- using probe compounds. RCS were always the predominant contributor to the degradation of CBZ in UV-LED/ClO2- system. The impacts of ClO2- dosage, pH, bicarbonate/carbonate (HCO3-/CO32-), and the effect of natural organic matter (NOM) on CBZ degradation were also evaluated. This study identified the products produced by CBZ through possible degradation pathways during the transformation process. Further, the amount of ClO2- may affect the amount of chlorate produced in UV/ClO2- system. Overall, our research provides an in-depth analysis of the effects of UV wavelength on the simultaneous removal of ClO2- and OMPs in water.
Collapse
Affiliation(s)
- Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Yangtao Wu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
22
|
Chen G, Dong W, Wang H, Zhao Z, Wang F, Wang F, Nieto-Delgado C. Carbamazepine degradation by visible-light-driven photocatalyst Ag 3PO 4/GO: Mechanism and pathway. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 9:100143. [PMID: 36157857 PMCID: PMC9488069 DOI: 10.1016/j.ese.2021.100143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 05/07/2023]
Abstract
Carbamazepine (CBZ), as one of the most frequently detected pharmaceuticals, is of great concern due to its potential impact on the ecosystem and human health. This study provides an effective approach to remove CBZ by using photocatalyst silver phosphate combined with graphene oxide (Ag3PO4/GO) under visible irradiation. The morphology, composition, and optical properties of Ag3PO4/GO were characterized employing SEM, XRD, and DRS. Graphene oxide could improve the visible-light utilization and promote electron's charge to enhance the photocatalytic performance of Ag3PO4/GO. With the optimal reaction condition of 5.86 mW/cm2 light intensity, 15-25 °C temperature, 5-7 pH, and 0.5 mg/L catalytic dosages, 5 mg/L CBZ could be completely degraded in 30 min, and the apparent rate constant could reach 0.12 min-1. Additionally, the radical trapping experiments indicated •OH and O2-• were the main reactive oxygen species employed to eliminate CBZ. The decay pathways of CBZ had been proposed accordingly, and the main product was the low-molecular products.
Collapse
Affiliation(s)
- Guanhan Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Feng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Feifei Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Cesar Nieto-Delgado
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, IPICyT. Camino a la Presa San Jose 2055. San Luis Potosí, SLP 78216, Mexico
| |
Collapse
|
23
|
Dai C, Li S, Duan Y, Leong KH, Tu Y, Zhou L. Human health risk assessment of selected pharmaceuticals in the five major river basins, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149730. [PMID: 34467938 DOI: 10.1016/j.scitotenv.2021.149730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals in aquatic environment have raised wide attention in recent years due to their potential adverse effects and bioaccumulation in biota. China has been a major producer and consumer of pharmaceuticals, however, the potential human health risk of these chemicals is yet to be determined in China. In this study, we evaluated available exposure data for twenty pharmaceuticals in surface waters from Chinese five major river basins (the Yangtze, Haihe, Pearl, Songliao, and Yellow River Basins), and human health risk assessment was performed. Based on the concentration data and risk data, we conducted research on the source, cause, and control measures of the pharmaceuticals. The twenty pharmaceuticals were found to be ubiquitous in China with median concentrations between 0.09 and 304 ng/L. The estimated daily intake of pharmaceuticals from drinking water and eating fish was calculated. The intake via drinking water was significantly lower than that via eating fish. The risk quotients via water intake and fish consumption ranged from 0 to 17.2, with estrogen and sulfapyridine highest among the twenty pharmaceuticals. High risks of exposure were mainly in North China, including the Haihe and Songliao River Basins. This is the first analysis in Chinese major river basins that has filled the gaps in the research on the human health risks of pharmaceuticals. The results of the study provide basic information of pharmaceutical intake from drinking water and eating fish in China and provide insights into the risk management guidance of pharmaceuticals, and will facilitate the optimization of health advisories and policy making.
Collapse
Affiliation(s)
- Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Si Li
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China.
| | - Kah Hon Leong
- Univ Tunku Abdul Rahman, Fac Engn & Green Technol, Dept Environm Engn, Kampar 31900, Perak, Malaysia
| | - Yaojen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, No. 100 Guilin Rd., Shanghai 200234, PR China; Yangtze Delta Wetland Ecosystem National Filed Scientific Observation and Research Station, PR China
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX 78712, USA
| |
Collapse
|
24
|
Song J, Na J, An D, Jung J. Role of benzophenone-3 additive in chronic toxicity of polyethylene microplastic fragments to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149638. [PMID: 34426313 DOI: 10.1016/j.scitotenv.2021.149638] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Plastic additives may accelerate adverse effects of microplastics (MPs). This study aimed to identify the role of benzophenone-3 (BP-3) additive (10.82 ± 1.20% w/w) in chronic toxicity of polyethylene MP fragments to Daphnia magna (D. magna). MP fragments with and without BP-3 (48.37 ± 6.26 and 44.39 ± 11.16 μm, respectively) were synthesized and 4 d-old D. magna were exposed for 17 d. Daphnids exposed to MP/BP-3 fragments (98%) showed higher survival than those exposed to MP fragments (62%), which can be explained by a significantly low (p < 0.0001) bioconcentration of MP/BP-3 fragments. BP-3 leachate induced significantly low (p < 0.05) phototactic behavior of D. magna, likely leading to the low bioconcentration of MP/BP-3 fragments. Unlike MP fragments, both MP/BP-3 fragments and BP-3 additive inhibited embryonic development and offspring growth in a similar manner. Additionally, only BP-3 additive significantly induced (p < 0.05) higher lipid peroxidation in D. magna. This study suggests the critical role of plastic additives in MPs chronic toxicity to aquatic organisms, which should be further identified for other environmentally relevant plastic additives.
Collapse
Affiliation(s)
- Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dahee An
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
25
|
Albendín MG, Aranda V, Coello MD, González-Gómez C, Rodríguez-Barroso R, Quiroga JM, Arellano JM. Pharmaceutical Products and Pesticides Toxicity Associated with Microplastics (Polyvinyl Chloride) in Artemia salina. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010773. [PMID: 34682526 PMCID: PMC8536102 DOI: 10.3390/ijerph182010773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Pharmaceutical products, as well as insecticides and antimicrobials, have been extensively studied, but knowledge of their effects-especially those caused by their mixtures with microplastics-on aquatic organisms remains limited. However, it should be borne in mind that the state of knowledge on acute and chronic effects in aquatic organisms for pharmaceuticals and pesticides is not similar. In response, this investigation analyzed the presence of microplastics (polyvinyl chloride) and their impacts on the toxicity of chlorpyrifos (an insecticide) and triclosan (an antibacterial) when they coincide in the environment, alongside the two most consumed drugs of their type (hypolipemic and anticonvulsant, respectively), namely simvastatin and carbamazepine, in Artemia salina. LC50 and cholinesterase enzyme activity were calculated to determine the possible neurotoxicity associated with emergent contaminants in the treatments. The LC50 values obtained were 0.006 mg/dm3 for chlorpyrifos, 0.012 mg/dm3 for chlorpyrifos associated with microplastics, 4.979 mg/dm3 for triclosan, 4.957 mg/dm3 for triclosan associated with microplastics, 9.35 mg/dm3 for simvastatin, 10.29 mg/dm3 for simvastatin associated with microplastics, 43.25 mg/dm3 for carbamazepine and 46.50 mg/dm3 for carbamazepine associated with microplastics in acute exposure. These results indicate that the presence of microplastics in the medium reduces toxicity, considering the LC50 values. However, exposure to chlorpyrifos and carbamazepine, both alone and associated with microplastics, showed a decline in cholinesterase activity, confirming their neurotoxic effect. Nevertheless, no significant differences were observed with the biomarker cholinesterase between the toxicant and the toxicant with microplastics.
Collapse
Affiliation(s)
- María Gemma Albendín
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - Vanessa Aranda
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - María Dolores Coello
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
- Correspondence:
| | - Carmen González-Gómez
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - Rocío Rodríguez-Barroso
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
| | - José María Quiroga
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
| | - Juana María Arellano
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| |
Collapse
|
26
|
Guo Q, Zhu W, Yang D, Wang X, Li Y, Gong C, Yan J, Zhai J, Gao X, Luo Y. A green solar photo-Fenton process for the degradation of carbamazepine using natural pyrite and organic acid with in-situ generated H 2O 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147187. [PMID: 33901960 DOI: 10.1016/j.scitotenv.2021.147187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Pyrite is widely used in Fenton reaction for degradation of pollutants and exhibits great potential for environmental remediation, however, its efficiency is greatly compromised by extra H2O2 and pH adjustment. Herein, a pyrite based green solar photo-Fenton system for carbamazepine (CBZ) treatment is constructed, involving the use of simulated sunlight and natural organic acids with in situ-generated H2O2 and without extra pH adjustment. The addition of organic acids including tartaric acid (TA), citric acid (CA), and ascorbic acid (AA) can form complex with iron in pyrite, which promotes the Fe(II) dissolution. Upon irradiation, pyrite could be excited to produce photoelectrons, which would reduce oxygen to produce H2O2 through a two-step route assisted by organic acids. The simulated sunlight and organic acids promoted the in-situ production of H2O2 and Fe(II) species, sustaining an efficient Fenton reaction. This produced massive hydroxyl radical (OH), as demonstrated by the active species capture experiment. Compared with no degradation of CBZ under pure pyrite, the degradation efficiency of CBZ reached to 70%, 60%, and 53% in pyrite/TA, pyrite/CA, pyrite/AA within 30 min under simulated solar light irradiation, respectively. This work reports the first use of natural pyrite, a typical Fe-mineral semiconductor, to produce OH for CBZ degradation through natural additive assisted Fenton reaction excluding the adding extra H2O2 and pH adjustment.
Collapse
Affiliation(s)
- Qian Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| | - Wenjie Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| | - Daoli Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xi Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| | - Yinghao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| | - Chao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| | - Jiali Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| | - Jinli Zhai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| | - Xiaoya Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China.
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming 650500, PR China; The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, PR China
| |
Collapse
|
27
|
Hao J, He Y, Hu X, Yin D, Zhang H, Hu S, Shen G. Bioaccessibility evaluation of pharmaceuticals in market fish with in vitro simulated digestion. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125039. [PMID: 33858081 DOI: 10.1016/j.jhazmat.2021.125039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The consumption of pharmaceuticals-contaminated aquatic products could pose risks to human health, and risk assessments considering bioaccessibility can provide better dietary recommendations. In this study, the bioaccessibility of 6 pharmaceuticals (sulfadiazine (SD), sulfapyridine (SPD), roxithromycin (ROX), tylosin (TYL), diclofenac (DIC) and carbamazepine (CMZP)) in several fish species collected from Shanghai markets was evaluated using in vitro simulated digestion. The total mixed pharmaceuticals concentration in freshwater fish were lower than those in marine fish, and statistics showed that the total concentrations of SD, SPD and CMZP in freshwater fish were significantly lower than those of marine fish (p < 0.05). The bioaccessible concentration of each pharmaceutical accounted for 26.3% (TYL) to 101.5% (CMZP) of the total concentration in market fish (n = 70). The bioaccessibility of 6 pharmaceuticals in species of fish was 18.8% (cutlassfish) to 99.6% (bream), which may be related to the physical-chemical properties of the pharmaceutical and the characteristics of the matrix (e.g. lipid content). According to health risk assessments, the consumption of market fish in Shanghai posed no remarkable risk to human health (hazard quotient < 0.099). Ignoring the bioaccessibility of pharmaceuticals in aquatic products might overestimate the human health risks by dietary exposure.
Collapse
Affiliation(s)
- Jiaoyang Hao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yi He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
28
|
Szabelak A, Bownik A. Behavioral and physiological responses of Daphnia magna to salicylic acid. CHEMOSPHERE 2021; 270:128660. [PMID: 33268096 DOI: 10.1016/j.chemosphere.2020.128660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA), a metabolite of acetylsalicylic acid is a monohydroxybenzoic acid a common non-steroidal analgesic and anti-inflammatory drug (NSAID) frequently detected in various aquatic ecosystems at concentrations up to 19.50 μg L-1 in surface waters near livestock farms and 59.6 μg L-1 in wastewaters. Little is known on the effects of short-term exposure of freshwater crustaceans to salicylic acid. Therefore, the aim of our study was to determine the effects of SA at concentrations of 5 μg L-1, 500 μg L-1, 5 mg L-1, 50 mg L-1 and 500 mg L-1 on the behavior (swimming speed, swimming height, distance travelled) and physiological endpoints (heart rate, mandible movement) of Daphnia magna exposed for 24 h, 48 h and 72 h. The results showed that SA inhibited the swimming speed, swimming height and distance travelled, heart rate and mandible movement at 5 mg L-1, 50 mg L-1 and 500 mg L-1 when compared to the control. On the other hand, SA at 5 μg L-1 and 500 μg L-1 transiently increased swimming speed and distance travelled after 24 h of the exposure, except for swimming height. Behavioral and physiological disturbances were observed much earlier than lethality. Our study showed SA at environmental levels may be an ecotoxicological agent imparing behavior and physiology of freshwater crustaceans.
Collapse
Affiliation(s)
- Aleksandra Szabelak
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| |
Collapse
|
29
|
Adedara IA, Ajayi BO, Afolabi BA, Awogbindin IO, Rocha JBT, Farombi EO. Toxicological outcome of exposure to psychoactive drugs carbamazepine and diazepam on non-target insect Nauphoeta cinerea. CHEMOSPHERE 2021; 264:128449. [PMID: 33032224 DOI: 10.1016/j.chemosphere.2020.128449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 05/27/2023]
Abstract
The continuous detection of human pharmaceuticals during environmental biomonitoring is a global concern because of the menaces they may exert on non-target organisms. Carbamazepine (CBZ) and diazepam (DZP) are commonly prescribed psychotropic drugs which have been reported to coexist in the environment globally. Nauphoeta cinerea is a common insect with high ecological impact. This study elucidated the influence of co-exposure to DZP (0.5 and 1.0 μg kg-1 diet) and CBZ (1.5 and 3.0 μg kg-1 diet) for 42 days on the behavior and biochemical responses in Nauphoeta cinerea. Results showed that DZP alone did not induce adverse effect on the behavior and antioxidant status in the exposed insects. However, exposure to CBZ alone and binary mixtures of DZP and CBZ significantly decreased locomotor and exploratory accomplishments evidenced by decreased mobile episodes, total mobile time, maximum speed, total distance traveled, absolute turn angle, body rotation and path efficiency in comparison with control. The decline observed in the exploratory activities of insects fed with CBZ alone and the mixtures was confirmed by track plots and heat maps. Further, acetylcholinesterase and antioxidant enzyme activities decreased significantly whereas reactive oxygen and nitrogen species, nitric oxide and lipid peroxidation levels increased significantly in the hemolymph, head and midgut of insects exposed to CBZ alone and the mixtures. Collectively, CBZ alone and binary mixtures of CBZ and DZP caused neurotoxicity via induction of inflammatory and oxidative stress in insects. Nauphoeta cinerea may be a potential non-target insect model for monitoring ecotoxicological hazard of pharmaceuticals.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Babajide O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
30
|
Vitale D, Picó Y, Spanò N, Torreblanca A, Del Ramo J. Carbamazepine exposure in the sea anemones Anemonia sulcata and Actinia equina: Metabolite identification and physiological responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140891. [PMID: 32711318 DOI: 10.1016/j.scitotenv.2020.140891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals and other emerging contaminants (EC) have been increasingly detected and measured in coastal waters and large effort has been devoted to knowing the effects these substances have in coastal ecosystems. Anthozoa class is underrepresented in ecotoxicology studies despite some of their species being endangered. Anemonia sulcata and Actinia equina are species widely distributed in the Mediterranean Sea. The objectives of this work have been to evaluate the ability of these species to accumulate carbamazepine (CBZ) from water, to determine the effects of this pharmaceutical on some physiological and biochemical endpoints and to characterize the degradation routes followed by this compound in Anthozoa tissues (biotransformation) and water. Sea anemones were exposed to 1 μg L-1 and 100 μg L-1 of CBZ in artificial sea water in a semi-static system for 8 days. At several times small portions of the tentacles and whole organisms were taken. Ion transport (measured as NKATPase activity), energetic metabolism (measured as glucose and lactate levels) and nitrogen excretion (measured as ammonia concentration in tissues) were determined. CBZ-exposed individuals of A. sulcata and A. equina were analyzed by ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) on a quadrupole-time-of-flight (QqTOF). The structures of nine metabolites have been tentatively identified using HRMS and HRMS/MS data with the aid of the free available Medline database. The current work constitutes the first study on the identification of Cnidarian metabolites of CBZ in species of the Anthozoa class.
Collapse
Affiliation(s)
- Dyana Vitale
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE, UV-CSIC-GV), University of Valencia, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group (SAMA-UV), Desertification Research Centre (CIDE, UV-CSIC-GV), University of Valencia, Spain
| | - Nunziacarla Spanò
- Department of Dental Biomedical Sciences and Morphological and Functional Images, University of Messina, Italy
| | - Amparo Torreblanca
- Departament of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Spain.
| | - Jose Del Ramo
- Departament of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Spain
| |
Collapse
|
31
|
Lee AH, Fraz S, Purohit U, Campos AR, Wilson JY. Chronic exposure of Brown (Hydra oligactis) and green Hydra (Hydra viridissima) to environmentally relevant concentrations of pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139232. [PMID: 32434107 DOI: 10.1016/j.scitotenv.2020.139232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Low concentrations of pharmaceuticals in the environment (ng/L to μg/L) are an environmental concern. We used the invertebrates, Hydra oligactis and Hydra viridissima, as freshwater models for primary toxicity testing to study effects of chronic low concentrations of pharmaceuticals in the environment. H. oligactis were exposed to three concentrations (0.1, 1.0 and 10 μg/L) of either fluoxetine, carbamazepine, or triclosan; H. viridissima were exposed to three concentrations (0.1, 1.0 and 10 μg/L) of triclosan. Ecologically relevant endpoints including morphology, budding rate, feeding behaviour, and regenerative capacity were examined during the 14 days exposure period. The interstitial:epithelial stem cell ratios was also examined in H. oligactis. There were no significant effects on the morphology, budding rate and feeding behaviour of the H. oligactis across all concentrations of fluoxetine, carbamazepine, and triclosan. However, regenerative capacity significantly decreased in comparison to the controls when H. oligactis was exposed to 10 μg/L of triclosan and fluoxetine, although there was no significant difference when exposed to carbamazepine. Neither fluoxetine nor carbamazepine treatment altered stem cell ratios. Exposure to triclosan at any concentration did not impact H. viridissima morphology, budding rate, regeneration or feeding behaviour. These results show there are limited effects in Hydra after exposure to chronic, low concentrations of fluoxetine, carbamazepine, and triclosan, except for regeneration in H. oligactis. These endpoints can be used effectively (and cost effectively) to study the effects of environmentally relevant concentrations of pharmaceuticals in Hydra species.
Collapse
Affiliation(s)
- Abigail H Lee
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Shamaila Fraz
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Ushma Purohit
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Ana R Campos
- School of Interdisciplinary Science, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
32
|
Tunable Synthesis of Ultrathin BiOCl 2D Nanosheets for Efficient Photocatalytic Degradation of Carbamazepine upon Visible-Light Irradiation. J CHEM-NY 2020. [DOI: 10.1155/2020/1950645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of ultrathin BiOCl 2D nanosheet photocatalysts were prepared by the TBAOH-assisted hydrolysis method in water. The effects of tetrabutylammonium hydroxide (TBAOH) dosages, chlorine source, preparation pH value, ultrasonic treatment, and magnetic stirring on the photocatalytic degradation dynamics of carbamazepine were examined under visible-light irradiation to optimize the preparation parameters. It was found that ultrathin BiOCl prepared with TBAOH dosages of 1 mmol and chlorine source of NaCl in the pH of 2 upon magnetic stirring of 6 h displayed the highest photocatalytic degradation rate constant (0.0038 min−1) of carbamazepine, which is 7.6 times higher than that with the ordinary BiOCl (without TBAOH). To clarify the mechanism on the outstanding photocatalytic activity of ultrathin BiOCl, the elemental composition/state, micromorphology, and separation efficiency of photogenerated electron-hole pairs were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and photoluminescence (PL). Results showed that the presence of oxygen vacancy, ultrathin nanosheet structure, and improved separation efficiency of photogenerated electron-hole pairs contributed to the excellent photocatalytic degradation activity of ultrathin BiOCl. The obtained result provides a novel method to fabricate ultrathin BiOCl with excellent photocatalytic degradation activity of carbamazepine under visible-light irradiation.
Collapse
|
33
|
Aguilar CM, Vazquez-Arenas J, Castillo-Araiza OO, Rodríguez JL, Chairez I, Salinas E, Poznyak T. Improving ozonation to remove carbamazepine through ozone-assisted catalysis using different NiO concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22184-22194. [PMID: 32034590 DOI: 10.1007/s11356-020-07883-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The carbamazepine (CBZ) abatement is herein evaluated using catalytic ozonation at different NiO concentrations as catalyst: 100, 300, and 500 mg L-1, revealing its total destruction after 5 min of reaction either by conventional or catalytic ozonation. The NiO incorporation in the reactor does not increase the destruction rate, but the catalyst presence enhances the partial mineralization of the contaminant by conversion into oxalic and formic acids and the removal of total organic carbon (TOC) associated with the formation of oxidant species such as hydroxyl radical. Evidence for this behavior is the accumulation rate of the above acids which rise proportionally to the NiO concentration. The highest NiO concentration (500 mg L-1) reached a maximum TOC removal of 79.2%, which exceeds by 50% the outcome of the conventional treatment. The accumulation-decomposition profiles of oxalic and formic acids suggest the occurrence of simultaneous reaction mechanisms (hydroxyl radicals and complex formations) on the catalyst during CBZ ozonation. According to XPS analysis, the presence of nitrogen species in the NiO-ozonated was attributable to byproducts of CBZ decomposition. The toxicity bioassay based on Lactuca sativa seeds demonstrate that ozonated samples attained similar plant germination than the reference substance (water) after 120 min of treatment. This result is comparable with or without the catalyst presence, indicating the formation of non-toxic accumulated byproducts at the end of the ozonation reaction.
Collapse
Affiliation(s)
- Claudia M Aguilar
- Laboratory of Catalytic Reactor Engineering applied to Chemical and Biological Systems (LCRE). Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Itzapalapa, 09340, Ciudad de Mexico, Mexico
- Departamento de Bioprocesos, UPIBI-Instituto Politécnico Nacional, Ticomán, 07340, Ciudad de Mexico, Mexico
| | - Jorge Vazquez-Arenas
- Conacyt - Departamento de Química, Universidad Autónoma Metropolitana - Iztapala, Av. San Rafael Atlixco No. 186, 09340, Ciudad de Mexico, Mexico
| | - Omar O Castillo-Araiza
- Laboratory of Catalytic Reactor Engineering applied to Chemical and Biological Systems (LCRE). Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Itzapalapa, 09340, Ciudad de Mexico, Mexico
| | - Julia L Rodríguez
- Lab. Ing. Química Ambiental, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, Ciudad de Mexico, Mexico.
| | - Isaac Chairez
- Departamento de Bioprocesos, UPIBI-Instituto Politécnico Nacional, Ticomán, 07340, Ciudad de Mexico, Mexico
| | - Eric Salinas
- Lab. Ing. Química Ambiental, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, Ciudad de Mexico, Mexico
| | - Tatiana Poznyak
- Lab. Ing. Química Ambiental, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, Ciudad de Mexico, Mexico
| |
Collapse
|
34
|
Türkan F, Calimli MH, Kanberoğlu GS, Karaman M. Inhibition effects of isoproterenol, chlorpromazine, carbamazepine, tamoxifen drugs on glutathione S-transferase, cholinesterases enzymes and molecular docking studies. J Biomol Struct Dyn 2020; 39:3277-3284. [PMID: 32362189 DOI: 10.1080/07391102.2020.1763200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nowadays, inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and glutathione S-transferases (GSTs) have been a very crucial issue for pharmacological treatments of several disasters. Herein, we investigated inhibition effects of Tamoxifen (TAM), Isoprenaline (ISO), Chlorpromazines (CPZ) and Carbamazepine (CBZ) on GST, AChE, BChE and then molecular structures and active sides of the tested drugs by molecular docking process. The enzyme activity results showed that nearly the whole tested drugs inhibited GST, BChE, AChE efficiently. Chlorpromazine was found to be the best inhibitor for the GST enzyme and the Ki value of this drug was found to be 42.83 ± 8.52 nM. Besides, Isoproterenol drug with the Ki value of 51.80 ± 9.44 nM was found to be the most effective inhibitor on the AChE enzyme. Molecular docking studies showed that the receptor-binding sites of GST, AChE, and BChE were found to 1.069, 1.090, and 1.15 of Sitecore and 0.992, 1.113, and 1.217 of Dscore, respectively. The method was validated by doing validation studies and these validations revealed that re-docked ligands located a very closed position with co-crystallized ligand into the active site for all receptors. Calculation studies for determining the possible enzyme inhibition mechanism with the used drugs revealed that amino and aromatic ring in the structure of the drugs used are effective in inhibition reactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fikret Türkan
- Health Services Vocational School, Igdir University, Igdir, Turkey
| | | | | | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey
| |
Collapse
|
35
|
Zhang X, Yan S, Chen J, Tyagi R, Li J. Physical, chemical, and biological impact (hazard) of hospital wastewater on environment: presence of pharmaceuticals, pathogens, and antibiotic-resistance genes. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020. [PMCID: PMC7252251 DOI: 10.1016/b978-0-12-819722-6.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hospital wastewater contains various pharmaceuticals and pathogens. Improper management of the wastewater has caused the leakage of these harmful materials to the environment. The presence of pathogens, pharmaceuticals, and their derivatives such as antibiotic resistance genes as the most typical one in the environment leads to physical, chemical, and biological harmful impact. This chapter has reviewed the pharmaceuticals and pathogens in the hospital; discussed the development of antibiotic resistance genes; and revealed the possible impact of these harmful materials in microorganisms, organism, and human being. In addition, the measures that can be taken to prevent the transportation of pharmaceuticals and pathogens into environment have been stated in this chapter.
Collapse
|
36
|
A low cost method for carbamazepine, ciprofloxacin and norfloxacin determination in pharmaceutical formulations based on spot-test and smartphone images. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Tian Y, Xia X, Wang J, Zhu L, Wang J, Zhang F, Ahmad Z. Chronic Toxicological Effects of Carbamazepine on Daphnia magna Straus: Effects on Reproduction Traits, Body Length, and Intrinsic Growth. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:723-728. [PMID: 31520142 DOI: 10.1007/s00128-019-02715-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In recent years, pharmaceuticals and personal care products (PPCPs) that remain in the environment have become increasingly important. Carbamazepine (CBZ) is a widely used antiepileptic drug that has a potential impact on the environment due to its Physico-chemical properties, which are rarely eliminated in conventional water treatment. Daphnia magna Straus (DMS) is a fundamental link of aquatic ecosystem chain. The influence of CBZ toxicity on DMS can effectively reflect the effects of CBZ toxicity on the aquatic environment. In this study, DMS was used as a subject to assess the chronic effects of CBZ exposure. It was found that after 21 days of CBZ exposure, the breeding frequency, the total number of eggs laid, body length, and intrinsic growth rate of DMS decreased with increasing CBZ concentrations. Maximum reductions of 69% in fecundity and 60% in fertility were observed at 0.5 mg/L CBZ, while a maximum reduction of 60% in body length was observed at 0.001 mg/L CBZ concentration. The integrated biomarker response version 2 (IBRv2) analysis suggests that with the increase in CBZ concentration, the overall negative effect of CBZ on DMS was enhanced.
Collapse
Affiliation(s)
- Yu Tian
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Taian, 271000, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Fengzhao Zhang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|