1
|
Sánchez-Fortún A, D'ors A, Fajardo C, Costa G, Sánchez-Fortún S. Influence of polyethylene-type microplastics on long-term exposure to heavy metals in freshwater phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176151. [PMID: 39260488 DOI: 10.1016/j.scitotenv.2024.176151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The use of plastic materials has brought about significant social benefits but has also led to negative consequences, particularly their accumulation in aquatic environments. Studies have shown that small plastic particles, known as microplastics (MPs), can carry various harmful pollutants, such as heavy metals (HMs). Therefore, the aim of this research is to investigate the impact of polyethylene-type MPs on the long-term exposure of different HMs on freshwater microalgae Scenedesmus armatus and cyanobacteria Microcystis aeruginosa, in both isolated cultures and phytoplanktonic community conditions. Over a period of 28 days, the strains were subjected to concentrations of Ag+, Cu+2, and Cr+6 corresponding to their respective 72 h-EC10, with or without the presence of MPs. Throughout this period, the growth cell ratio, photosynthetic activity, and reactive oxygen species (ROS) were monitored. The findings indicated a substantial inhibitory impact on cell growth during the initial 7-14 days of exposure, followed by a reduction until reaching values like the controls after 28 days of exposure. There was a disturbance in photosynthetic activity during the first 72 h of exposure, which gradually returned to control levels, mainly significantly affected the respiration phase. Reactive oxygen species (ROS) activity was also affected during the initial 14 days of exposure. The presence or absence of MPs in the culture medium did not significantly alter the observed effects. However, interspecies competition created a more favorable environment for M. aeruginosa over the freshwater microalgae S. armatus. These findings suggest that the formation of MP-HMs complexes may have a limited impact on reducing the adverse effects of HMs in long-term exposures. However, because the impact depends on the specific HM involved, further studies are needed to gain a better understanding of the interaction between these pollutants.
Collapse
Affiliation(s)
- A Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - A D'ors
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - C Fajardo
- Dpt. of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, Ctra. Madrid-Barcelona km 33.6, 28805 Alcalá de Henares, Spain
| | - G Costa
- Dpt. of Animal Physiology, Faculty of Veterinary Sciences, Complutense University, w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - S Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain.
| |
Collapse
|
2
|
Maja V, Sanja V, Tajana S, Branko K, Jelena MJ, Jasmina A, Aleksandra T. Assessing the interaction between 4-methylbenzylidene camphor and microplastic fibers in aquatic environments: Adsorption kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177383. [PMID: 39505040 DOI: 10.1016/j.scitotenv.2024.177383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Wastewater treatment plants play a crucial role in managing environmental pollutants, but they often release persistent contaminants like synthetic microplastic fibers (MPFs) into ecosystems. These microplastics, mainly from the textile industry and domestic washing of synthetic fabrics, are a major type of microplastic found in aquatic environments. Some harmful chemicals have an affinity for these microplastics, making them vectors for contaminants. This study investigates the adsorption of 4-methylbenzylidene camphor (4-MBC), an organic UV filter, onto microplastic fibers from two different sources. Batch experiments conducted at room temperature (25 °C) under laboratory conditions assessed the adsorption kinetics and mechanisms. Morphological and visual characterization of the microplastic fibers was done using optical microscopy and scanning electron microscopy (SEM), revealing diverse shapes, types, and colors. Physico-chemical properties were confirmed through thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). The data matched well with the PSO kinetic model and Langmuir isotherm, indicating monolayer chemisorption with equilibrium achieved within 24 h. The adsorption mechanisms involved electrostatic attraction, hydrogen bonding, and π-π interactions. Both types of microplastic fibers exhibited a tendency to adsorb 4-MBC, indicating the significance of this research in understanding the interactions between this compound and various fiber types emphasizing the need for further research under the different environmental conditions.
Collapse
Affiliation(s)
- Vujić Maja
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia.
| | - Vasiljević Sanja
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Simetić Tajana
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Kordić Branko
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Molnar Jazić Jelena
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Agbaba Jasmina
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| | - Tubić Aleksandra
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Republic of Serbia
| |
Collapse
|
3
|
Hou X, Li C, Zhao Y, He Y, Li W, Wang X, Liu X. Distinct impacts of microplastics on the carbon sequestration capacity of coastal blue carbon ecosystems: A case of seagrass beds. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106793. [PMID: 39437480 DOI: 10.1016/j.marenvres.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Seagrass beds, as an important coastal blue carbon ecosystem, are excellent at storing organic carbon and mitigating the impacts of global climate change. However, seagrass beds are under threat due to increased human activities and ubiquitous presence of microplastics (MPs) in marine environments. Bibliometric analysis shows that the distribution and accumulation of microplastics in seagrass beds has been widely documented worldwide, but their impacts on seagrass beds, particularly on carbon sequestration capacity, have not been given sufficient attention. This review aims to outline the potential impacts of MPs on the carbon sequestration capacity of seagrass ecosystems across five key aspects: (1) MPs act as sources of organic carbon, contributing to direct pollution in seagrass ecosystems; (2) Impacts of MPs on seagrasses and their epiphytic algae, affecting plant growth and net primary productivity; (3) Impacts of MPs on microorganisms, influencing production of recalcitrant dissolved organic carbon and greenhouse gas; (4) Impacts of MPs on seagrass sediments, altering the quality, structure, properties and decomposition processes of plant litters; (5) Other complex impacts on the seagrass ecosystems, depending on different behaviors of MPs. Latest progress in these fields are summarized and recommendations for future work are discussed. This review can provide valuable insights to facilitate future multidisciplinary investigations and encourage society-wide implementation of effective conservation measures to enhance the carbon sequestration capacity of seagrass beds.
Collapse
Affiliation(s)
- Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China
| | - Changjun Li
- School of Oceanography, Yantai University, Yantai, 265500, China
| | - Yong Zhao
- 3rd Construction Co., Ltd of China Construction 5th Engineering Bureau, Changsha, 410021, China
| | - Yike He
- Marine Geological Resources Survey Center of Hebei Province, Qinhuangdao, 066000, China
| | - Wentao Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266000, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, China.
| |
Collapse
|
4
|
Zhang Y, Ju J, Li M, Ma Z, Lu W, Yang H. Dose-dependent effects of polystyrene nanoplastics on growth, photosynthesis, and astaxanthin synthesis in Haematococcus pluvialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124574. [PMID: 39029865 DOI: 10.1016/j.envpol.2024.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Microalgae play an important role in aquatic ecosystems, but the widespread presence of micro- and nano-plastics (MNPs) poses significant threats to them. Haematococcus pluvialis is well-known for its ability to produce the antioxidant astaxanthin when it experiences stress from environmental conditions. Here we examined the effects of polystyrene nanoplastics (PS-NPs) at concentrations of 0.1, 1, and 10 mg/L on H. pluvialis over an 18-day period. Our results show that PS-NPs caused a significant, dose-dependent inhibition of H. pluvialis growth and a reduction in photosynthesis. Furthermore, PS-NPs severely damaged the morphology of H. pluvialis, leading to cell shrinkage, collapse, content release, and aggregation. Additionally, PS-NPs induced a dose-dependent increase in soluble protein content and a decrease in the production of extracellular polymeric substances. These findings indicate that PS-NPs has the potential to adversely affect both the physiology and morphology of H. pluvialis. An increase in reactive oxygen species and antioxidant enzyme activities was also observed, suggesting an oxidative stress response to PS-NPs exposure. Notably, the synthesis of astaxanthin, which is crucial for H. pluvialis's survival under stress, was significantly inhibited in a dose-dependent manner under strong light conditions, along with the down-regulation of genes involved in the astaxanthin biosynthesis pathway. This suggests that PS-NPs exposure reduces H. pluvialis's ability to survive under adverse conditions. This study enhances our understanding of the toxic effects of PS-NPs on microalgae and underscores the urgent need for measures to mitigate MNP pollution to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Min Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
5
|
Zhao M, Ren Z, Wei Z, Shi H, Wang L, Liang Y. The Effect of Polyethylene Microplastics on Growth and Antioxydant Response of Oscillatoria Princeps and Chlorella Pyrenoidosa. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:53. [PMID: 39400598 DOI: 10.1007/s00128-024-03959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
This study investigated the impacts of polyethylene microplastics (PE-MPs) with varying particle sizes (13 μm and 6.5 μm) on the growth and antioxidant responses of two freshwater algae species, Oscillatoria princeps (O. princeps) and Chlorella pyrenoidosa (C. pyrenoidosa). The results revealed a significant reduction in chlorophyll a content in both algal species upon exposure to PE-MPs, indicating a disruption of photosynthesis. Furthermore, Superoxide Dismutase (SOD) activity decreased in O. princeps, while Catalase (CAT) activity increased in both species, indicating complex physiological responses to microplastic stress. Notably, phycotoxin levels in O. princeps decreased with PE-MP exposure, while those in C. pyrenoidosa increased, particularly with 6.5 μm PE-MPs. These findings underscore the potential toxic effects of PE-MPs on freshwater algal growth and metabolism, as well as their influence on toxin production. This study contributes valuable insights into the ecotoxicological impacts of microplastics in freshwater environments, highlighting the need for further research on their biological effects and environmental health implications.
Collapse
Affiliation(s)
- Mengxin Zhao
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Zimu Ren
- Miami College, Henan University, Kaifeng, 475004, China
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng, 475004, China
| | - Haolin Shi
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Lin Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Henan Key Laboratory of Earth System Observation and Modeling, Kaifeng, 475004, China.
| | - Yixin Liang
- College of Engineering, Zhengzhou Technology and Business University, Zhengzhou, 451400, China.
| |
Collapse
|
6
|
Yang W, Zhang H, Yang S, Xiao Y, Ye K, He R, Liu Y, Hu Z, Guo W, Zhang Q, Qu H, Mao Y. Combined effects of microplastics and pharmaceutical and personal care products on algae: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124478. [PMID: 38950849 DOI: 10.1016/j.envpol.2024.124478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Microplastics (MPs) and pharmaceuticals and personal care products (PPCPs) are ubiquitous in aquatic environments. Algae play an important role in aquatic environments. Thus, it is important to study the response of algae to combined exposure of MPs and PPCPs. Here, we review the effects of MPs and PPCPs on algae. First, the individual effects of MPs and PPCPs on algae were summarized. Second, the combined effects of MPs and PPCPs on algae were systematically analyzed. (1) Antagonism: ① when the MPs are too large to enter the algal cells, the adsorption of PPCPs onto MPs results in decreased the contact of MPs and PPCPs with algae; ② PPCPs and MPs have opposing actions on the same biological target; ③ MPs increase the activity of metabolic enzymes in algae, thus promoting the PPCP degradation. (2) Synergy: ① when the MPs are small enough to enter algal cells, the adsorption of PPCPs on MPs promotes the entry of PPCPs; ② when MPs are negatively charged, the adsorption of positively charged PPCPs by MPs decreases the electrostatic repulsion, increasing the interaction between algae and MPs; ③ complementary modes of action between MPs and PPCPs show combined effects on the same biological target. Third, the relative importance of the factors that impact the combined effects are evaluated using the random forest model decreased in the following order: PPCP types > algal species > MP size > MP concentration > MP types > exposure time. Finally, future directions for the combined effects of MPs and PPCPs are proposed, which will facilitate a better understanding of the environmental fate and risks of both MPs and PPCPs.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hao Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yi Xiao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Zuoyuan Hu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wenshu Guo
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qin Zhang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Han Qu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China; Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China; Lingzhi Environmental Protection Co., Ltd, Wuxi, 214200, China.
| |
Collapse
|
7
|
Du L, Liu Q, Wang L, Lyu H, Tang J. Microplastics enhanced the allelopathy of pyrogallol on toxic Microcystis with additional risks: Microcystins release and greenhouse gases emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173864. [PMID: 38879032 DOI: 10.1016/j.scitotenv.2024.173864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria blooms (CBs) caused by eutrophication pose a global concern, especially Microcystis aeruginosa (M. aeruginosa), which could release harmful microcystins (MCs). The impact of microplastics (MPs) on allelopathy in freshwater environments is not well understood. This study examined the joint effect of adding polystyrene (PS-MPs) as representative MPs and two concentrations (2 and 8 mg/L) of pyrogallol (PYR) on the allelopathy of M. aeruginosa. The results showed that the addition of PS-MPs intensified the inhibitory effect of 8 mg/L PYR on the growth and photosynthesis of M. aeruginosa. After a 7-day incubation period, the cell density decreased to 69.7 %, and the chl-a content decreased to 48 % compared to the condition without PS-MPs (p < 0.05). Although the growth and photosynthesis of toxic Microcystis decreased with the addition of PS-MPs, the addition of PS-MPs significantly resulted in a 3.49-fold increase in intracellular MCs and a 1.10-fold increase in extracellular MCs (p < 0.05). Additionally, the emission rates of greenhouse gases (GHGs) (carbon dioxide, nitrous oxide and methane) increased by 2.66, 2.23 and 2.17-fold, respectively (p < 0.05). In addition, transcriptomic analysis showed that the addition of PS-MPs led to the dysregulation of gene expression related to DNA synthesis, membrane function, enzyme activity, stimulus detection, MCs release and GHGs emissions in M. aeruginosa. PYR and PS-MPs triggered ROS-induced membrane damage and disrupted photosynthesis in algae, leading to increased MCs and GHG emissions. PS-MPs accumulation exacerbated this issue by impeding light absorption and membrane function, further heightening the release of MCs and GHGs emissions. Therefore, PS-MPs exhibited a synergistic effect with PYR in inhibiting the growth and photosynthesis of M. aeruginosa, resulting in additional risks such as MCs release and GHGs emissions. These results provide valuable insights for the ecological risk assessment and control of algae bloom in freshwater ecosystems.
Collapse
Affiliation(s)
- Linqing Du
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Vijayan S, Liu R, George S, Bhaskaran S. Polyethylene terephthalate nanoparticles induce oxidative damage in Chlorella vulgaris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108987. [PMID: 39089045 DOI: 10.1016/j.plaphy.2024.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Polyethylene Terephthalate (PET) is a type of plastic largely used for packing food and beverages. Unfortunately, it includes a major portion of the plastic distributed through aquatic systems wherever systematic collection and recycling are lacking. Although PET is known to be non-toxic, it is not obvious whether the nanoparticles (NPs) formed due to their degradation have any direct/indirect effect on aquatic organisms. In order to study the effects on aquatic environment, fresh water algae Chlorella vulgaris was subjected to incremental concentrations of the NPs. We observed a concentration and duration of exposure dependent decrease in algal growth rate along with reduced total chlorophyll content. Scanning electron microscopy revealed deformities in cell shape and the uptake of Propidium Iodide suggested membrane damage in response to NP exposure. Intracellular Reactive Oxygen Species level was also found significantly higher, evidenced by Dichlorodihydrofluorescein diacetate staining. Activity of antioxidant enzymes Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) were significantly higher in the NP exposed groups suggesting the cellular response to regain homeostasis. Further, expression levels of the genes psaB, psbC, and rbcL associated with photosynthesis increased above two fold with respect to the control inferring the possibility of damage to photosynthesis and the initial molecular responses to circumvent the situation. In short, our studies provide evidence for oxidative stress mediated cellular damages in Chlorella vulgaris exposed to NPs of PET.
Collapse
Affiliation(s)
- Siji Vijayan
- Department of Botany, Fatima Mata National College, Kollam, Kerala, India, 691001
| | - Ruby Liu
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore Ste Anne de Bellevue, Quebec, H9X3V9, Canada
| | - Sinilal Bhaskaran
- Department of Botany, Fatima Mata National College, Kollam, Kerala, India, 691001.
| |
Collapse
|
9
|
Wang S, Cheng X, Shi L, Liu K, Yang Z, Jia Q, Xiang X. Insights into the response mechanisms of Tetradesmus obliquus to aged polylactic acid and tetracycline exposure via transcriptome analysis and physiological evaluations. CHEMOSPHERE 2024; 364:143120. [PMID: 39159767 DOI: 10.1016/j.chemosphere.2024.143120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Microplastics (MPs) and antibiotics, identified as emerging pollutants, are extensively prevalent in aquatic environments and display prolonged durability. Unlike conventional plastics, biodegradable plastics are more susceptible to decomposition in the environment, resulting in the generation of microplastics and posing potential risks to the aquatic ecosystems. In this study, we assessed growth inhibition, chlorophyll a content, malondialdehyde content (MDA), and antioxidant enzyme activities. These measurements were integrated with transcriptome analysis to explore the response mechanisms of virgin and aged polylactic acid (vPLA and aPLA) and tetracycline (TC) following 14-day exposure to Tetradesmus obliquus, either individually or in combination. The findings indicated that exposure to vPLA did not significantly impact the growth of T. obliquus. Conversely, aPLA demonstrated growth-promoting effects on T. obliquus, particularly in the latter incubation stages. Moreover, a 14-day exposure significantly increased the chlorophyll a content and the activities of superoxide dismutase (SOD), catalase glutathione (CAT) and glutathione S-transferase (GST) within the algal cells. Apart from 1 mg L-1, the TC concentrations of 2.5, 5.0, and 10 mg L-1 exhibited significant toxic effects on T. obliquus, including growth inhibition, decreased chlorophyll a content, elevated activities of SOD, CAT, and GST, and increased MDA levels. Exposure to a combination of 300 mg L-1 aPLA and 5.0 mg L-1 TC, compared to solely 5 mg L-1 TC, demonstrated a notable reduction in TC toxicity to T. obliquus in the presence of aPLA. This was indicated by elevated algal cell density and chlorophyll a content, as well as a decrease in MDA content. Transcriptome analysis indicated an enrichment of differentially expressed genes (DEGs) in pathways linked to porphyrin metabolism, photosynthesis, carbon fixation, and metabolism within the aPLA + TC combined exposure. The study aid in expanding our knowledge of the potential ecological risks posed by biodegradable plastics and accompanying pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xinfeng Cheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, Anhui, China; School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Lina Shi
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Kexin Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Zhifu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Qina Jia
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - XianLing Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, Anhui, China; School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
10
|
Pignattelli S, Provenza F, Rampih D, Crisci A, Renzi M. Ecotoxicological assessment, in freshwater environment, of wastewater sludge coupled and uncoupled with micro-polyvinyl chloride on algae and water fleas. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11089. [PMID: 39101386 DOI: 10.1002/wer.11089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 08/06/2024]
Abstract
In the frame of bioeconomy and circular economy, wastewater sludge (WS) could be a good candidate for its use in agriculture as fertilizer, due to its high content of organic matter, N and P, but on the other hand, it is full of toxicants such as heavy metal, microplastics, detergent, antibiotics, and so on that can reach groundwater and water bodies in leachate form. In this study, we have investigated different sludge concentrations in the eluate form, combined and not with PVC on two different freshwater organisms Selenastrum capricornutum and Daphnia magna, using ecotoxicity tests. At the endpoint, we have evaluated inhibition growth rate, oxidative stress, and pigments production for S. capricornutum, while in case of D. magna, we have assessed organism immobilization and development. From our results, it emerged that at the higher WS concentration, there was not inhibition growth rate, while at oxidative stress, it was higher in algae treated with WS and PVC. Higher Chl-a production was shown for algae treated with 0.3 g/L of sludge coupled with PVC, where higher phaeopigments production were recorded for algae treated with 0.3 g/L of WS. D. magna has shown an opposite trend when compared with algae, where at the highest WS concentrations supplied was corresponding to an increased mortality explaned as the highest immobility percentage. PRACTITIONER POINTS: Wastewater sludge is used in agriculture as fertilizer. PVC microplastic presence and associate ecotoxicity was tested. PVC presence increased oxidative stress in S. capricornutum. D. magna was significantly affected by sludge concentrations supplied.
Collapse
Affiliation(s)
- Sara Pignattelli
- Italy CNR-IBBR Institute of Bioscience and Bioresources, Sesto Fiorentino, Italy
| | - Francesca Provenza
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
- Bioscience Research Center, Orbetello, Italy
| | | | - Alfonso Crisci
- Italy CNR-IBE Institute for Bioeconomy, Sesto Fiorentino, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
11
|
Xue H, Wang J, Chen R, Wu W, Dong Y, Yuan X, Li Z, Gao X, Liu J. Physiological and transcriptomic analysis reveals the toxicological mechanisms of polystyrene micro- and nano-plastics in Chlamydomonas reinhardtii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174660. [PMID: 38986693 DOI: 10.1016/j.scitotenv.2024.174660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
With the accumulation of plastic waste in the environment, the toxicity of micro- and nano-plastics (MNPs) to microalgae has attracted increasing attention. However, the underlying toxic mechanisms of MNPs remain to be elucidated. In this study, we synthesized micro- and nano-scale of polystyrene MNPs (PS MNPs) to investigate their toxicity and toxic mechanisms in Chlamydomonas reinhardtii. We found that PS MNPs significantly inhibit the production of photosynthetic pigments and increase soluble protein content. The detailed analysis of results shows that both materials affect photosynthetic efficiency by damaging the donor side, reaction center, and electron transfer of photosystem II. Moreover, compared to PS MPs, PS NPs have a greater negative impact on algal cells. Analyzing the transcriptome of cells suggests that the most sensitive metabolic pathways in response to PS MNPs involve oxidative phosphorylation, biosynthesis of secondary metabolites, and photosynthesis. Especially, genes related to photosynthesis and oxidative phosphorylation showed significant changes in expression after exposure to PS MNPs. This study provided molecular-level insights into the toxic mechanisms of PS MNPs on microalgae.
Collapse
Affiliation(s)
- Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710012, China.
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruifei Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wei Wu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yibei Dong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
12
|
Zhang J, Lin Z, Ai F, Du W, Yin Y, Guo H. Effect of ultraviolet aged polytetrafluoroethylene microplastics on copper bioavailability and Microcystis aeruginosa growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106967. [PMID: 38833998 DOI: 10.1016/j.aquatox.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zihan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Guo Z, Li J, Zhang Z. Meta-analysis for systematic review of global micro/nano-plastics contamination versus various freshwater microalgae: Toxicological effect patterns, taxon-specific response, and potential eco-risks. WATER RESEARCH 2024; 258:121706. [PMID: 38761590 DOI: 10.1016/j.watres.2024.121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Micro/nano-plastics (MNPs), as emerging persistent pollutants, are threatening freshwater ecosystems worldwide. Microalgae are important primary producers at the base of trophic level and susceptible to MNPs contamination, possibly resulting in further contamination in higher trophic levels and water quality. This study conducted a systematic review of 1071 observations from 63 publications, utilizing meta-analysis and subgroup analysis to investigate the toxicological effect patterns of MNPs parameters (size, concentration, and type) on microalgae. We also explored the potential eco-risks of certain specific MNPs parameters and subtle variations in the response of various microalgae taxa to MNPs. Results suggested that microplastics significantly inhibited microalgal photosynthesis, while nano-plastics induced more severe cell membrane damage and promoted toxin-release. Within a certain range of concentrations (0∼50 mg/L), rising MNPs concentration progressively inhibited microalgal growth and chlorophyll-a content, and progressively enhanced toxin-release. Among MNPs types, polyamide caused higher growth inhibition and more severe lipid peroxidation, and polystyrene induced more toxin-release, whereas polyethylene terephthalate and polymethyl methacrylate posed minimal effects on microalgae. Moreover, Bacillariophyta growth was inhibited most significantly, while Chlorophyta displayed strong tolerance and Cyanophyta possessed strong adaptive and exceptional resilience. Particularly, Komvophoron, Microcystis, Nostoc, Scenedesmus, and Gomphonema were more tolerant and might dominate freshwater microalgal communities under MNPs contamination. These results are crucial for acquiring the fate of freshwater microalgae under various MNPs contamination, identifying dominant microalgae, and reasonably assessing and managing involved eco-risks.
Collapse
Affiliation(s)
- Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Ziqing Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Kong D, Ma H, Zhu C, Hao Y, Li C. Unraveling the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) complex on alga Raphidocelis subcapitata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172034. [PMID: 38657806 DOI: 10.1016/j.scitotenv.2024.172034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Due to their assembly properties and variable molecular weights, the potential biological toxicity effects of macromolecular organic ligand heavy metal complexes are more difficult to predict and their mechanisms are more complex. This study unraveled the toxicity response and metabolic compensation mechanism of tannic acid-Cr(III) (TA-Cr(III)) complex on alga Raphidocelis subcapitata using multi-omics approaches. Results showed TA-Cr(III) complex caused oxidative damage and photosystem disruption, destroying the cell morphology and inhibiting algal growth by >80 % at high exposure levels. TA-Cr(III) complex stress down-regulated proteins linked to proliferation, photosynthesis and antioxidation while upregulating carbon fixation, TCA cycle and amino acid metabolism. The increase of fumarate, citrate, isocitrate and semialdehyde succinate was validated by metabolomics analysis, which improved the TCA cycle, amino acid metabolism and carbon fixation. Activation of the above cellular processes somewhat compensated for the inhibition of algal photosynthesis by TA-Cr(III) complex exposure. In conclusion, physiological toxicity coupled with downstream metabolic compensation in response to Cr(III) complex of macromolecular was characterized in Raphidocelis subcapitata, unveiling the adaptive mechanism of algae under the stress of heavy metal complexes with macromolecular organic ligands.
Collapse
Affiliation(s)
- Deyi Kong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China.
| | - Chao Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Yongyong Hao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| | - Chengtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, PR China
| |
Collapse
|
15
|
Yu J, Tian JY, Jiang Y, Wang XD, Song XR, Liu LF, Yang GP. Effects of micro- and nano-plastics on growth, antioxidant system, DMS, and DMSP production in Emiliania huxleyi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124084. [PMID: 38697245 DOI: 10.1016/j.envpol.2024.124084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Due to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 μm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production. The results revealed that high concentrations of MPs and NPs inhibited the growth, carotenoid (Car), and Chl a concentrations of E. huxleyi. However, short-time exposure to low concentrations of PS MPs and NPs stimulated the growth of E. huxleyi. Furthermore, high concentrations of MPs and NPs resulted in an increase in the superoxide anion radical (O2.-) production rate and a decrease in the malondialdehyde (MDA) content compared with the low concentrations. Exposure to MPs and NPs at 5 mg L-1 induced superoxide dismutase (SOD) activity as a response to scavenging ROS. High concentrations of MPs and NPs significantly inhibited the production of DMSP and DMS. The findings of this study support the potential ecotoxicological impacts of MPs and NPs on algal growth, antioxidant system, and dimethylated sulfur compounds production, which maybe potentially impact the global climate.
Collapse
Affiliation(s)
- Juan Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ji-Yuan Tian
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xue-Dan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xin-Ran Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Long-Fei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
16
|
Sang W, Du C, Ni L, Li S, Hamad AAA, Xu C, Shao C. Physiological and molecular mechanisms of the inhibitory effects of artemisinin on Microcystis aeruginosa and Chlorella pyrenoidosa. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134241. [PMID: 38608594 DOI: 10.1016/j.jhazmat.2024.134241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Artemisinin, a novel plant allelochemical, has attracted attention for its potential selective inhibitory effects on algae, yet to be fully explored. This study compares the sensitivity and action targets of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa) to artemisinin algaecide (AMA), highlighting their differences. Results indicate that at high concentrations, AMA displaces the natural PQ at the QB binding site within M. aeruginosa photosynthetic system, impairing the D1 protein repair function. Furthermore, AMA disrupts electron transfer from reduced ferredoxin (Fd) to NADP+ by interfering with the iron-sulfur clusters in the ferredoxin-NADP+ reductases (FNR) domain of Fd. Moreover, significant reactive oxygen species (ROS) accumulation triggers oxidative stress and interrupts the tricarboxylic acid cycle, hindering energy acquisition. Notably, AMA suppresses arginine synthesis in M. aeruginosa, leading to reduced microcystins (MCs) release. Conversely, C. pyrenoidosa counters ROS accumulation via photosynthesis protection, antioxidant defenses, and by regulating intracellular osmotic pressure, accelerating damaged protein degradation, and effectively repairing DNA for cellular detoxification. Additionally, AMA stimulates the expression of DNA replication-related genes, facilitating cell proliferation. Our finding offer a unique approach for selectively eradicating cyanobacteria while preserving beneficial algae, and shed new light on employing eco-friendly algicides with high specificity.
Collapse
Affiliation(s)
- Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Amar Ali Adam Hamad
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chenxi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
17
|
Tang B, Zhang L, Salam M, Yang B, He Q, Yang Y, Li H. Revealing the environmental hazard posed by biodegradable microplastics in aquatic ecosystems: An investigation of polylactic acid's effects on Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123347. [PMID: 38215868 DOI: 10.1016/j.envpol.2024.123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
The influence of petroleum-based microplastics (MPs) on phytoplankton has been extensively studied, while research on the impact of biodegradable MPs, derived from alternative plastics to contest the environmental crisis, remains limited. This study performed a 63 days co-incubation experiment to assess the effect of polylactic acid MPs (PLA-MPs) on the growth, physiology, and carbon utilization of M. aeruginosa and the change in PLA-MPs surface properties. The results showed that despite PLA-MPs induced oxidative stress and caused membrane damage in M. aeruginosa, the presence of PLA-MPs (10, 50, and 200 mg/L) triggered significant increases (p < 0.05) in the density of M. aeruginosa after 63 days. Specifically, the algal densities upon 50 and 200 mg/L PLA-MPs exposure were increased by 20.91% and 36.31% relative to the control, respectively. Meanhwhile, the reduced C/O ratio on PLA-MPs surface and change in PLA-MPs morphological characterization, which is responsible for substantially increase in the aquatic dissolved inorganic carbon concentration during the co-incubation, implying the degradation of PLA-MPs; thus, provided sufficient carbon resources that M. aeruginosa could assimilate. This was in line with the declined intracellular carbonic anhydrase content in M. aeruginosa. This study is the first attempt to uncover the interaction between PLA-MPs and M. aeruginosa, and the finding that their interaction promotes the degrading of PLA-MPs meanwhile favoring M. aeruginosa growth will help elucidate the potential risk of biodegradable MPs in aquatic environment.
Collapse
Affiliation(s)
- Bingran Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Lixue Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Muhammad Salam
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Bing Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Ecological and Environment Monitoring Center of Chongqing, Chongqing, 401147, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Yongchuan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Aquatic Ecosystems in the Three Gorges Reservoir Region of Chongqing Observation and Research Station, Chongqing, 400044, China.
| |
Collapse
|
18
|
Ren X, Mao M, Feng M, Peng T, Long X, Yang F. Fate, abundance and ecological risks of microcystins in aquatic environment: The implication of microplastics. WATER RESEARCH 2024; 251:121121. [PMID: 38277829 DOI: 10.1016/j.watres.2024.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Microcystins are highly toxic cyanotoxins and have been produced worldwide with the global expansion of harmful cyanobacterial blooms (HABs), posing serious threats to human health and ecosystem safety. Yet little knowledge is available on the underlying process occurring in the aquatic environment with microcystins. Microplastics as vectors for pollutants has received growing attention and are widely found co-existing with microcystins. On the one hand, microplastics could react with microcystins by adsorption, altering their environmental behavior and ecological risks. On the other hand, particular attention should be given to microplastics due to their implications on the outbreak of HABs and the generation and release of microcystins. However, limited reviews have been undertaken to link the co-existing microcystins and microplastics in natural water. This study aims to provide a comprehensive understanding on the environmental relevance of microcystins and microplastics and their potential interactions, with particular emphasis on the adsorption, transport, sources, ecotoxicity and environmental transformation of microcystins affected by microplastics. In addition, current knowledge gaps and future research directions on the microcystins and microplastics are presented. Overall, this review will provide novel insights into the ecological risk of microcystins associated with microplastics in real water environment and lay foundation for the effective management of HABs and microplastic pollution.
Collapse
Affiliation(s)
- Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Meiyi Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengqi Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
19
|
Leng P, Yu H, Wang X, Li D, Feng J, Liu J, Xu C. Effects of different concentrations and particle sizes of microplastics on the full life history of freshwater Chlorella. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123349. [PMID: 38219893 DOI: 10.1016/j.envpol.2024.123349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Microplastics (MPs) as pollutants can have adverse effects on aquatic ecosystems; however, their effects on the full life history of microalgae need to be further explored and thoroughly examined. In this study, we investigated influence of polystyrene (PS) plastics with different concentrations (10/50/100 mg/L) and particle sizes (0.1/0.5/1 μm) on the full life history of Chlorella; their potential environmental risks were also analyzed. The results showed that PS(0.1um) had the strongest inhibitory effect on Chlorella growth (Max(inhibition) 68.42%), PS(0.5/1um) can not only promote (Max(promotion) 55.48% and 55.05%) but also prolong cell growth; PS has various effects on photosynthetic efficiency of Chlorella. PS(0.1um) can significantly promote Fv/Fm, inhibit RC/ABS, F0/Fv, DIo/RC, and both inhibit and promote rETRmax, but effect of PS(0.5/1μm) is generally consistent with that of control group; PS affects the morphological structure and interaction of Chlorella significantly, and can squeeze and aggregate cells. Zeta potential fluctuated greatly in the initial stage of experiment, and was stable as Relative conductivity in the later stage. About 65.5% of PS(0.1um) can enter cell, which has potential risk of entering the food chain; Statistics on long and short-term impacts showed significant differences in growth and photosynthesis efficiencies, as well as in interactions; the potential environmental risk index (PERI) indicates that class II (slightly polluted) has the highest percentage (64.72%), and that the concentration and composition of MPs are important influences on potential environmental risk. Overall, the long-term impacts of PS were diverse, but Chlorella also showed good resilience. Meanwhile, we found that most of the previous short-term studies may be one-sided and incomplete, the real impacts of MPs may be overestimated. Our research could provide scientific support for assessing the risks posed by MPs.
Collapse
Affiliation(s)
- Panchuan Leng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Hao Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Xin Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Dan Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jie Feng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jing Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (SEKL-SW), Chengdu University of Technology, Chengdu, 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Chunyang Xu
- College Harbor Coastal & Offshore Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
20
|
Mendonça I, Faria M, Rodrigues F, Cordeiro N. Microalgal-based industry vs. microplastic pollution: Current knowledge and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168414. [PMID: 37963529 DOI: 10.1016/j.scitotenv.2023.168414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023]
Abstract
Microalgae can play a crucial role in the environment due to their efficient capture of CO2 and their potential as a solution for a carbon-negative economy. Water quality is critical for the success and profitability of microalgal-based industries, and understanding their response to emergent pollutants, such as microplastics (MPs), is essential. Despite the published studies investigating the impact of MPs on microalgae, knowledge in this area remains limited. Most studies have mainly focused on microalgal growth, metabolite analysis, and photosynthetic activity, with significant discrepancies in what is known about the impact on biomass yield. Recent studies show that the yield of biomass production depends on the levels of water contamination by MPs, making it necessary to reduce the contamination levels in the water. However, present technologies for extracting and purifying water from MPs are limited, and further research and technological advancements are required. One promising solution is the use of bio-based polymer materials, such as bacterial cellulose, which offer biodegradability, cost-effectiveness, and environmentally friendly detoxifying properties. This review summarises the current knowledge on MPs pollution and its impact on the viability and proliferation of microalgae-based industries, highlights the need for further research, and discusses the potential of bio-solutions for MPs removal in microalgae-based industries.
Collapse
Affiliation(s)
- Ivana Mendonça
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Marisa Faria
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Filipa Rodrigues
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - Nereida Cordeiro
- LB3 - Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
21
|
Meng F, Ni Z, Tan L, Cai P, Wang J. Oxidative stress and energy metabolic response of Isochrysis galbana induced by different types of pristine and aging microplastics and their leachates. CHEMOSPHERE 2024; 348:140755. [PMID: 37995978 DOI: 10.1016/j.chemosphere.2023.140755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The aging process and leachate composition of different types of MPs (PS, PS-NH2, PS-COOH and PMMA) with a particle size of 1.0 μm were characterized, and marine microalgae Isochrysis galbana OA3011(I. galbana) was used as test organism to investigate the 96 h toxic effects of MPs before and after aging as well as leachate exposure. Except for polymethyl methacrylate (PMMA), all other tested microplastics showed significant aggregation in seawater, which increased with the presence of surface amino and carboxyl groups, in addition, the increase in polymer dispersibility index (PDI) values after aging reflected more severe aggregation. Fourier transform infrared spectrometer (FTIR) showed that the surface amino groups were shed during the aging of PS-NH2, which can likewise be demonstrated by the change in surface electric potential from positive to negative before and after aging. PMMA, due to the addition of plasticizers (HEHP and DIBP detected in high concentration) and its own structure, has stronger resistance to aging than the other three microplastics, and no significant aging phenomenon occurs. As for I. galbana, growth inhibition, oxidative stress and energy metabolism were tested after exposure to different microplastics and their leachate. It was found that high concentrations of A-PS had a greater negative impact on I. galbana, while the toxic effects of PS-NH2 and PS-COOH on I. galbana behaved in a diametrically opposite way before and after aging compared to PS with the inhibitory effect decreasing after aging, which was caused by the shedding of surface groups. As for PMMA, the differences in the toxic effects on microalgae before and after aging were not significant. The inhibitory effect of low concentrations of PAEs (Phthalate acid esters) in the leachate of PS-COOH on I. galbana was not significant, and the stronger inhibitory effect of 4 d L-PS-NH2 was presumed to be the shedding of positively charged groups.
Collapse
Affiliation(s)
- Fanmeng Meng
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Ziqi Ni
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Peining Cai
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
22
|
Li J, Zheng X, Liu X, Zhang L, Zhang S, Li Y, Zhang W, Li Q, Zhao Y, Chen X, Wang X, Huang H, Fan Z. Effect and mechanism of microplastics exposure against microalgae: Photosynthesis and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167017. [PMID: 37717764 DOI: 10.1016/j.scitotenv.2023.167017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The occurrence of microplastics (MPs) within aquatic ecosystems attracts a major environmental concern. It was demonstrated MPs could cause various ecotoxicological effects on microalgae. However, existing data on the effects of MPs on microalgae showed great variability among studies. Here, we performed a meta-analysis of the latest studies on the effects of MPs on photosynthesis and oxidative stress in microalgae. A total of 835 biological endpoints were investigated from 55 studies extracted, and 37 % of them were significantly affected by MPs. In this study, the impact of MPs against microalgae was concentration-dependent and size-dependent, and microalgae were more susceptible to MPs stress in freshwater than marine. Additionally, we summarized the biological functions of microalgae that are primarily affected by MPs. Under MPs exposure, the content of chlorophyll a (Chl-a) was reduced and electron transfer in the photosynthetic system was hindered, causing electron accumulation and oxidative stress damage, which may also affect biological processes such as energy production, carbon fixation, lipid metabolism, and nucleic acid metabolism. Finally, our findings provide important insights into the effects of MPs stress on photosynthesis and oxidative stress in microalga and enhance the current understanding of the potential risk of MPs pollution on aquatic organisms.
Collapse
Affiliation(s)
- Jue Li
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Xianglin Liu
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Liangliang Zhang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
| | - Shun Zhang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Yanyao Li
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Qihui Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yuqiang Zhao
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiangrong Wang
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| | - Zhengqiu Fan
- Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China.
| |
Collapse
|
23
|
Wang Q, Liu W, Meng L, Zeb A, Mo F, Wang J, Shi R. The interfacial interaction between Dechlorane Plus (DP) and polystyrene nanoplastics (PSNPs): An overlooked influence factor for the algal toxicity of PSNPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167129. [PMID: 37730039 DOI: 10.1016/j.scitotenv.2023.167129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
As pollution has attracted attention due to its wide distribution. An environmental concern that may be overlooked is that NPs additives are easily released into the environment due to their physical combination with NPs. However, the knowledge gaps still exist about the interfacial reactions of NPs and the additives (e.g. flame retardants) and the joint ecological effect. In the present study, fourier transform infrared (FTIR) spectrometer coupled with 2D correlation spectroscopy (2D-COS) analysis revealed the interfacial reactions between polystyrene nanoplastics (PSNPs) and Dechlorane Plus (DP). Results showed that carbon‑oxygen bonds and carbon‑chlorine bonds were the important binding sites during adhesion and DP could reduce the colloidal stability. Single and joint ecological effects of PSNPs and DP on the microalgae Chlorella vulgaris were further deliberated. Reduced photosynthetic efficiency (reduced Fv/Fm by 0.03 %), higher growth inhibition (16.15 %) and oxidative damage (increased ROS by 152 %) were observed in algae under co-exposure. Notably, DP could significantly increase the attachment of PSNPs to the surface of the algae. Metabolomics further revealed that co-exposure significantly down-regulated amino acid metabolism and tricarboxylic acid cycle (TCA) cycle, and up-regulated fatty acid metabolism. The present study provides new insights into the risk assessment of NPs in aquatic environment by investigating the interfacial reaction mechanism and combined ecotoxicity of NPs and additives.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingzuo Meng
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
24
|
Sansing J, Karapetrova A, Gan J. A multi-factor analysis evaluating the toxicity of microplastics on algal growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166140. [PMID: 37562627 DOI: 10.1016/j.scitotenv.2023.166140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Marine and freshwater bodies are the primary destinations of microplastics (MPs), where MPs can interact closely with algae. Here, we synthesized existing literature on the effect of MPs on algal growth. Studies examining the effects of MPs on algal growth have yielded conflicting results. Some studies reported growth inhibition, whereas others showed no significant effect or even growth enhancement. Data from 71 studies in the subject area were evaluated using cross-tables, scatterplots, and chi-square tests of independence, and four factors (polymer type, algal type, MP size, MP concentration) likely influencing the observations were identified. Experiments using certain polymers of plastic, such as polyvinyl chloride, and algal phyla, such as Chlorophyta, were more likely to show growth inhibition. Higher MP concentrations were more likely to reduce algal growth, which was further amplified by exposure time. However, MP size appeared to exhibit a nonlinear relationship with algal growth inhibition, suggesting that different MP sizes may elicit different effects. Finally, this review highlights the need for more standardized data collection and analysis methods as well as future research focused on exploring the possible mechanisms of growth hindrance and algae exposure to environmentally relevant conditions.
Collapse
Affiliation(s)
- Julia Sansing
- Department of Earth, Environmental & Planetary Sciences, Brown University, Providence, RI 02912, USA.
| | | | - Jay Gan
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Zhao Y, Tao S, Liu S, Hu T, Zheng K, Shen M, Meng G. Research advances on impacts micro/nanoplastics and their carried pollutants on algae in aquatic ecosystems: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106725. [PMID: 37806023 DOI: 10.1016/j.aquatox.2023.106725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The widespread presence of micro/nanoplastics in aquatic ecosystems has certainly affected ecosystem functions and food chains/webs. The impact is worsened by the accumulation of different pollutants and microorganisms on the surface of microplastics. At the tissue, cellular, and molecular levels, micro/nanoplastics and the contaminants they carry can cause damage to aquatic organisms. Problematically, the toxic mechanism of micro/nanoplastics and contaminants on aquatic organisms is still not fully understood. Algae are key organisms in the aquatic ecosystem, serving as primary producers. The investigation of the toxic effects and mechanisms of micro/nanoparticles and pollutants on algae can contribute to understanding the impact on the aquatic ecosystem. Micro/nanoplastics inhibit algal growth, reduce chlorophyll and photosynthesis, induce ultrastructural changes, and affect gene expression in algae. The effects of energy flow can alter the productivity of aquatic organisms. The type, particle size, and concentration of micro/nanoparticles can influence their toxic effects on algae. Although there has been some research on the toxic effects of algae, the limited information has led to a significant lack of understanding of the underlying mechanisms. This paper provides a comprehensive review of the interactions between micro/nanoplastics, pollutants, and algae. The effects of various factors on algal toxicity are also analyzed. In addition, this article discusses the combined effects of microplastics, global warming, and oil pollution on algae and aquatic ecosystems in the context of global change. This research is of great importance for predicting future environmental changes. This review offers a more comprehensive understanding of the interactions between microplastics/nanoplastics and algae, as well as their impact on the carbon cycle.
Collapse
Affiliation(s)
- Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou 310058, PR China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| |
Collapse
|
26
|
Zhang W, Liu J, Li Q, Xiao Y, Zhang Y, Lei N, Wang Q. Effects of combined exposure of PVC and PFOA on the physiology and biochemistry of Microcystis aeruginosa. CHEMOSPHERE 2023; 338:139476. [PMID: 37451644 DOI: 10.1016/j.chemosphere.2023.139476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) have drawn significant attention as emerging threats to aquatic ecosystems. There are currently just a few investigations on the combined toxicity of PFAS and MP on freshwater microalgae. In this research, the combined toxicity of polyvinyl chloride (PVC) and perfluorooctanoic acid (PFOA) to Microcystis aeruginosa was investigated. The results indicated that the combination of these pollutants inhibited the growth of M. aeruginosa and promoted the synthesis and release of Microcystin-LR (MC-LR). Individual and combined exposure caused different responses to cellular oxidative stress. Under the Individual exposure of PFOA, when the concentration was greater than 20.0 mg/L, the catalase (CAT) activity increased significantly, and when it was greater than 100.0 mg/L, the malondialdehyde (MDA) content increased significantly, but there is no significant change under combined exposure. PVC and PFOA exposure also caused physical damage to the algal cells and reduced the content of extracellular polymer substances (EPS) based on analysis of cell morphology. Metabolic analysis revealed that carbohydrate metabolism and amino acid metabolism of the algae were affected. The current study offers a fresh theoretical framework for MPs and PFASs environmental risk evaluations.
Collapse
Affiliation(s)
- Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jing Liu
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Qi Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yunxing Xiao
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yumiao Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Ningfei Lei
- School of Ecological Environment, Chengdu University of Technology, Chengdu, 610059, China
| | | |
Collapse
|
27
|
Das S, Mukherjee A. Combined effects of P25 TiO 2 nanoparticles and disposable face mask leachate on microalgae Scenedesmus obliquus: analysing the effects of heavy metals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1428-1437. [PMID: 37534914 DOI: 10.1039/d3em00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Disposable surgical face masks extensively used during the COVID-19 outbreak would release microplastics into the aquatic environment. The increasing usage of titanium dioxide nanoparticles (nTiO2) in various consumer items has led to its ubiquitous presence in freshwater systems. This study determined the quantity and kind of microplastics discharged from disposable surgical face masks. The mask-leached microplastics were identified to be polypropylene of varying shapes and sizes, spanning from 1 μm to 15 μm. In addition, heavy metals like Cd, Cr, and Hg leached from the face masks were quantified. Four concentrations of nTiO2, 0.5, 1, 2, and 4 mg L-1, were mixed with leached solution from the face masks to perform the combined toxicity test on freshwater algae, Scenedesmus obliquus. A dose-dependent decrease in algal cell viability was observed upon treatment with various concentrations of nTiO2 individually. The mixtures of nTiO2 and the leached solution from the face masks exhibited significantly more toxicity in the algal cells than in their pristine forms. nTiO2 promoted increased production of oxidative stress and antioxidant enzyme activities resulting in cellular damage and decreased photosynthesis. These impacts were elevated when the algal cells were treated with the binary mixture. Furthermore, the heavy metal ions leached from face masks also contributed to the toxic effects. Our study shows that the leachates from disposable surgical face masks, combined with nTiO2, may pose a severe environmental threat.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
28
|
Gopalakrishnan KK, Kashian DR. Complex interactions among temperature, microplastics and cyanobacteria may facilitate cyanobacteria proliferation and microplastic deposition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115259. [PMID: 37473702 DOI: 10.1016/j.ecoenv.2023.115259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Cyanobacterial blooms are a global concern prone to causing environmental and economic damages and are tightly linked to anthropogenic nutrient inputs. Likewise, microplastic pollution has also become globally ubiquitous inevitably co-occurring with blooms. However, little is known on how microplastics influence cyanobacterial physiologically and how potential physiological changes can affect their buoyancy, ultimately impacting their fate, and transport, including deposition during bloom events. Interactions of environmental relevant concentrations of high-density polyethylene microplastics (MPs) (0-0.4 mg/mL) and temperatures (2.5-32.5 °C) were evaluated to assess the effects of MPs on interactions of cyanobacteria Anabaena variabilis's growth, total organic carbon concentrations, extracellular polymeric substances (EPS) production, and MP deposition. Microplastics both stimulated and inhibited A. variabilis growth depending on the concentration. Lower MPs concentrations (0.1-0.2 mg/L) increased A. variabilis growth while higher MP concentrations (>0.3 mg/mL) impeded it across all temperatures studied. Carbon sources leached from MPs may have been a contributing factor to the increased growth at lower MPs concentration, while higher MPs concentration potentially shaded A. variabilis inhibiting its growth. Shading may have induced stress which corresponded with an observed increase in EPS production by A. variabilis when exposed to MP. Extracellular polymeric substances generation activated under adverse circumstances (MPs 0.4 mg/mL) enhanced MP deposition. Overall, our findings indicate that MPs play an important role in cyanobacterial blooms, and that these blooms may enhance MPs deposition.
Collapse
Affiliation(s)
| | - Donna R Kashian
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
29
|
Ye J, Ni J, Tian F, Ji X, Hou M, Li Y, Yang L, Wang R, Xu W, Meng L. Toxicity effects of disinfection byproduct chloroacetic acid to Microcystis aeruginosa: Cytotoxicity and mechanisms. J Environ Sci (China) 2023; 129:229-239. [PMID: 36804238 DOI: 10.1016/j.jes.2022.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 06/18/2023]
Abstract
Chlorine-based disinfectants are widely used for disinfection in wastewater treatment. The mechanism of the effects of chlorinated disinfection by-products on cyanobacteria was unclear. Herein, the physiological effects of chloroacetic acid (CAA) on Microcystis aeruginosa (M. aeruginosa), including acute toxicity, oxidative stress, apoptosis, production of microcystin-LR (MC-LR), and the microcystin transportation-related gene mcyH transcript abundance have been investigated. CAA exposure resulted in a significant change in the cell ultrastructure, including thylakoid damage, disappearance of nucleoid, production of gas vacuoles, increase in starch granule, accumulation of lipid droplets, and disruption of cytoplasm membranes. Meanwhile, the apoptosis rate of M. aeruginosa increased with CAA concentration. The production of MC-LR was affected by CAA, and the transcript abundance of mcyH decreased. Our results suggested that CAA poses acute toxicity to M. aeruginosa, and it could cause oxidative damage, stimulate MC-LR production, and damage cell ultrastructure. This study may provide information about the minimum concentration of CAA in the water environment, which is safe for aquatic organisms, especially during the global coronavirus disease 2019 pandemic period.
Collapse
Affiliation(s)
- Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jiawei Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Runxiang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
30
|
Ding T, Huang X, Wei L, Li J. Size-dependent effect of microplastics on toxicity and fate of diclofenac in two algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131071. [PMID: 36889078 DOI: 10.1016/j.jhazmat.2023.131071] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are frequently detected in natural waters and usually acted as vectors for other pollutants, leading to possible threats to aquatic organisms. This study investigated the impact of polystyrene MPs (PS MPs) with different diameters on two algae Phaeodactylum tricornutum and Euglena sp., and the combined toxicity of PS MPs and diclofenac (DCF) in two algae was also studied. Significant inhibition of P. tricornutum was observed after 1 d exposure of 0.03 µm MPs at 1 mg L-1, whereas the decreased growth rate of Euglena sp. was recovered after 2 d exposure. However, their toxicity decreased in the presence of MPs with larger diameters. The oxidative stress contributed a major for the size-dependent toxicity of PS MPs in P. tricornutum, while in Euglena sp. the toxicity was mainly caused by a combination of oxidative damage and hetero-aggregation. Also, PS MPs alleviated the toxicity of DCF in P. tricornutum and the DCF toxicity continually decreased as their diameter increased, whereas the DCF at environmentally concentration could weaken the toxicity of MPs in Euglena sp. Moreover, the Euglena sp. revealed a higher removal for DCF, especially in the presence of MPs, but the higher accumulation and bioaccumulation factors (BCFs) indicated a possible ecological risk in natural waters. The present study explored discrepancy on the size-dependent toxicity and removal of MPs associated with DCF in two algae, providing valuable data for risk assessment and pollution control of MPs associated with DCF.
Collapse
Affiliation(s)
- Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiaotong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Liyan Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
31
|
Das S, Chandrasekaran N, Mukherjee A. Unmasking effects of masks: Microplastics released from disposable surgical face masks induce toxic effects in microalgae Scenedesmus obliquus and Chlorella sp. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109587. [PMID: 36858140 DOI: 10.1016/j.cbpc.2023.109587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
During the COVID-19 pandemic billions of face masks were used since they became a necessity in everyone's lives. But these were not disposed properly and serve as one of the most significant sources of micro and nano plastics in the environment. The effects of mask leached plastics in aquatic biota remains largely unexplored. In this work, we quantified and characterized the released microplastics from the three layers of the mask. The outer layer of the face mask released more microplastics i.e., polypropylene than middle and inner layers. We investigated and compared the acute toxic effects of the released microplastics between Scenedesmus obliquus and Chlorella sp. The results showed a decrease in cell viability, photosynthetic yield, and electron transport rate in both the algal species. This was accompanied by an increase in oxidative stress markers such reactive oxygen species (ROS) and malondialdehyde (MDA) content. There was also a significant rise of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in both the algal cells. Furthermore, morphological changes like cell aggregation and surface chemical changes in the algae were ascertained by optical microscopy and FTIR spectroscopy techniques, respectively. The tests confirmed that Scenedesmus obliquus was more sensitive than Chlorella sp. to the mask leachates. Our study clearly revealed serious environmental risk posed by the released microplastics from surgical face masks. Further work with other freshwater species is required to assess the environmental impacts of the mask leachates.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
32
|
Zhao Z, Zheng X, Han Z, Yang S, Zhang H, Lin T, Zhou C. Response mechanisms of Chlorella sorokiniana to microplastics and PFOA stress: Photosynthesis, oxidative stress, extracellular polymeric substances and antioxidant system. CHEMOSPHERE 2023; 323:138256. [PMID: 36858114 DOI: 10.1016/j.chemosphere.2023.138256] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Co-pollution of microplastics and per- and polyfluoroalkyl substances (PFAS) is prevailing in the aquatic environment. However, the risks of coexisting microplastics and PFAS on organisms remain unknown. This study investigated the response mechanisms of Chlorella sorokiniana (C. sorokiniana) under polystyrene microplastics (PS-MPs) and perfluorooctanoic acid (PFOA) stress, including toxicity and defense mechanisms. C. sorokiniana was exposed to PS-MPs (10 mg/L) and PFOA (0.05, 0.5, and 5 mg/L) and their mixtures for 96 h, respectively. We found that the dominant toxicity mechanism of PFOA and PS-MPs to C. sorokiniana was dissimilar. PS-MPs mainly inhibited photosynthesis through shading effect, while PFOA mainly induced oxidative stress by reactive oxygen species. The co-exposure of PFOA and PS-MPs aggravated biotoxicity (maximum inhibition rate: 27.27 ± 2.44%), such as photosynthesis inhibition, physical damage, and oxidative stress, compared with individuals. To alleviate toxicity, C. sorokiniana activated defense mechanisms. Extracellular polymeric substances were the first barrier to protect cells, the effect on its secretion was ordered PS-MPs+5PFOA > PS-MPs > 5PFOA, and IBRv2 values were 2.37, 1.35, 1.11, respectively. Antioxidant system was thought of second defense pathway, the influence order of treatment groups was PS-MPs+5PFOA > 5PFOA > PS-MPs, and its IBRv2 values were 2.89, 1.69, 0.25, respectively. Our findings provide valuable information on the complex impacts of PFOA and PS-MPs, which facilitate the ecological risk assessment of multiple pollutants.
Collapse
Affiliation(s)
- Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Shanshan Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Huijie Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Chao Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
33
|
Wu D, Deng L, Wang T, Du W, Yin Y, Guo H. Aging process does not necessarily enhance the toxicity of polystyrene microplastics to Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163608. [PMID: 37087009 DOI: 10.1016/j.scitotenv.2023.163608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Microplastic (MP) pollution in aquatic systems has attracted increasing attention in recent years. MPs will inevitably encounter aging process in the environment. However, research on the effects of aged MPs on freshwater ecosystems remains limited. This study compared the properties of pristine and aged polystyrene (PS) MPs of different sizes (20 nm, 200 nm, 2000 nm) and determined the effects of aging on the toxicity of PS MPs to typical freshwater cyanobacteria, Microcystis aeruginosa. Aging process induced significant changes to the properties of the MPs, especially their microstructures and surface functional groups. Aging process also influenced zeta potential, which could further affect stability and toxicity of PS MPs. After 96 h exposure, increase of algal growth and photosynthetic activity was observed in the treatment of pristine 200 nm, aged 20 nm and aged 200 nm PS MPs. In addition, pristine 20 nm, pristine 200 nm, pristine 2000 nm, aged 20 nm and aged 200 nm PS MPs were adsorbed on algal cell surface, which could influence the cell permeability. Pristine PS MPs promoted microcystin synthesis and release, which could do harm to drinking water safety and freshwater ecosystems. However, there was no significant increase in aged PS MPs treatments. Furthermore, the increased 13C content of algal cells in all pristine PS MPs treatments indicated that M. aeruginosa assimilated more CO2 and generate more energy to resist the stress of pristine PS MPs when compared with aged PS MPs. These results indicate that aging process did not necessarily enhance the toxicity and biological risk of PS MPs to freshwater ecosystems. Findings of this study fill the knowledge gap in understanding the effects and risks of aged MPs on freshwater ecosystems.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Svigruha R, Prikler B, Farkas A, Ács A, Fodor I, Tapolczai K, Schmidt J, Bordós G, Háhn J, Harkai P, Kaszab E, Szoboszlay S, Pirger Z. Presence, variation, and potential ecological impact of microplastics in the largest shallow lake of Central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163537. [PMID: 37075990 DOI: 10.1016/j.scitotenv.2023.163537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The presence of microplastics (MPs) in the global ecosystem has generated a rapidly growing concern worldwide. Although their presence in the marine environment has been well-studied, much less data are available on their abundance in freshwaters. MPs alone and in combination with different chemicals has been shown to cause acute and chronic effects on algae and aquatic invertebrate and vertebrate species at different biological levels. However, the combined ecotoxicological effects of MPs with different chemicals on aquatic organisms are still understudied in many species and the reported data are often controversial. In the present study, we investigated, for the first time, the presence of MPs in Lake Balaton, which is the largest shallow lake of Central Europe and an important summer holiday destination. Moreover, we exposed neonates of the well-established ecotoxicological model organism Daphnia magna to different MPs (polystyrene [3 μm] or polyethylene [≤ 100 μm]) alone and in combination with three progestogen compounds (progesterone, drospirenone, levonorgestrel) at an environmentally relevant concentration (10 ng L-1) for 21 days. The presence of 7 polymer types of MPs in the size range of 50-100 μm was detected in Lake Balaton. Similarly to the global trends, polypropylene and polyethylene MPs were the most common types of polymer. The calculated polymer-independent average particle number was 5.5 particles m-3 (size range: 50 μm - 100 μm) which represents the values detected in other European lakes. Our ecotoxicological experiments confirmed that MPs and progestogens can affect D. magna at the behavioral (body size and reproduction) and biochemical (detoxification-related enzyme activity) levels. The joint effects were negligible. The presence of MPs may lead to reduced fitness in the aquatic biota in freshwaters such as Lake Balaton, however, the potential threat of MPs as vectors for progestogens may be limited.
Collapse
Affiliation(s)
- Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Bence Prikler
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary; Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - Kálmán Tapolczai
- Aquatic Botany and Microbial Ecology Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Bordós
- Eurofins-Wessling Hungary Ltd, 1045 Budapest, Hungary
| | - Judit Háhn
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Péter Harkai
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Edit Kaszab
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Sándor Szoboszlay
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), 8237 Tihany, Hungary.
| |
Collapse
|
35
|
Yang H, Li X, Guo M, Cao X, Zheng X, Bao D. UV-induced microplastics (MPs) aging leads to comprehensive toxicity. MARINE POLLUTION BULLETIN 2023; 189:114745. [PMID: 36848786 DOI: 10.1016/j.marpolbul.2023.114745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Herein, the toxicity of 4 MPs and additives released from MPs during UV-aging was quantitatively evaluated by the transcriptional effect level index (TELI) based on E. coli whole-cell microarray assay, and MPs-antibiotics complex pollutants. Results showed that MPs and these additives had high toxicity potential, the maximum TELI was 5.68/6.85 for polystyrene (PS)/bis(2-ethylhexyl) phthalate (DEHP). There were many similar toxic pathways between MPs and additives, indicating that part of the toxicity risk of MPs was caused by the release of additives. MPs were compounded with antibiotics, the toxicity value changed significantly. The TELI values of amoxicillin (AMX) + polyvinyl chloride (PVC) and ciprofloxacin (CIP) + PVC were as high as 12.30 and 14.58 (P < 0.05). Three antibiotics all decreased the toxicity of PS and had little effect on polypropylene (PP) and polyethylene (PE). The combined toxicity mechanism of MPs and antibiotics was very complicated, and the results could be divided into four types: MPs (PVC/PE + CIP), antibiotics (PVC + TC, PS + AMX/ tetracycline (TC)/CIP, PE + TC), both (PP + AMX/TC/CIP), or brand-new mechanisms (PVC + AMX).
Collapse
Affiliation(s)
- Heyun Yang
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - MengHan Guo
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Xi'an Water Conservancy Planning Survey and Design Institute, Xi'an 710054, China
| | - Xin Cao
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North west Arid Region, Xi'an University of Technology, Xi'an 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; National Supervision & Inspection Center of Environmental Protection Equipment Quality, Jiangsu, Yixing 214205, China.
| | - Dongguan Bao
- Shanghai Hanyuan Engineering & Technology Co., Ltd, Shanghai 201507, China
| |
Collapse
|
36
|
Li X, Chen Y, Zhang S, Dong Y, Pang Q, Lynch I, Xie C, Guo Z, Zhang P. From marine to freshwater environment: A review of the ecotoxicological effects of microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114564. [PMID: 36682184 DOI: 10.1016/j.ecoenv.2023.114564] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have been widely detected in the world's water, which may pose a significant threat to the ecosystem as a whole and have been a subject of much attention because their presence impacts seas, lakes, rivers, and even the Polar Regions. There have been numerous studies that report direct adverse effects on marine organisms, but only a few have explored their ecological effects on freshwater organisms. In this field, there is still a lack of a systematic overview of the toxic effects and mechanisms of MPs on aquatic organisms, as well as a consistent understanding of the potential ecological consequences. This review describes the fate and impact on marine and freshwater aquatic organisms. Further, we examine the toxicology of MPs in order to uncover the relationship between aquatic organism responses to MPs and ecological disorders. In addition, an overview of the factors that may affect the toxicity effects of MPs on aquatic organisms was presented along with a brief examination of their identification and characterization. MPs were discussed in terms of their physicochemical properties in relation to their toxicological concerns regarding their bioavailability and environmental impact. This paper focuses on the progress of the toxicological studies of MPs on aquatic organisms (bacteria, algae, Daphnia, and fish, etc.) of different trophic levels, and explores its toxic mechanism, such as behavioral alternations, metabolism disorders, immune response, and poses a threat to the composition and stability of the ecosystem. We also review the main factors affecting the toxicity of MPs to aquatic organisms, including direct factors (polymer types, sizes, shapes, surface chemistry, etc.) and indirect factors (persistent organic pollutants, heavy metal ions, additives, and monomer, etc.), and the future research trends of MPs ecotoxicology are also pointed out. The findings of this study will be helpful in guiding future marine and freshwater rubbish studies and management strategies.
Collapse
Affiliation(s)
- Xiaowei Li
- School of life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yiqing Chen
- School of life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shujing Zhang
- School of life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yuling Dong
- School of life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Qiuxiang Pang
- School of life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Iseult Lynch
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Changjian Xie
- School of life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Zhiling Guo
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Peng Zhang
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK; School of Geography, Earth and & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
37
|
Ni Z, Tan L, Wang J, Chen Y, Zhang N, Meng F, Wang J. Toxic effects of pristine and aged polystyrene and their leachate on marine microalgae Skeletonema costatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159614. [PMID: 36283517 DOI: 10.1016/j.scitotenv.2022.159614] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The acute toxic effects of pristine and aged polystyrene (P-PS and A-PS) and their leaching solutions (L-PS) on microalgae Skeletonema costatum were investigated by measuring algal density and growth inhibition rate (IR), chlorophyll concentration and photosynthetic efficiency (Fv/Fm) over 96 h. Total protein (TP), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) were measured to analyze the oxidative damage to microalgae by microplastics and their leachates. Hydrodynamic diameter of microplastics in seawater, FITR and SEM images were used to study the changes of polystyrene during aging. The interaction of algae cell with microplastics and the cellular ultrastructure changes of cells were analyzed combined with electron microscopy for a comprehensive and systematic understanding on the mechanisms of microplastic toxicity to microalgae. Both high concentration and small size of PS had significant inhibitory effect on the growth of microalgae, and the inhibitory effect was greater with increasing exposure time. The inhibition effect of aged microplastics was more obvious, which was speculated to be caused by the synergistic effect of aged PS itself and leaching solution. The negative effect of leaching solution on microalgae was due to the release of some additives during the aging process. The content of MDA reached the highest value of 54.41 nmol/mgprot in 1.0 μm 50 mg/L A-PS treatment group, and A-PS were found to be more prone to heterogeneous aggregation with algae cells by SEM.
Collapse
Affiliation(s)
- Ziqi Ni
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiayin Wang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanshan Chen
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Na Zhang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Fanmeng Meng
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology of the Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
38
|
Zheng X, Zhang L, Jiang C, Li J, Li Y, Liu X, Li C, Wang Z, Zheng N, Fan Z. Acute effects of three surface-modified nanoplastics against Microcystis aeruginosa: Growth, microcystin production, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158906. [PMID: 36150599 DOI: 10.1016/j.scitotenv.2022.158906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
As plastic pollution continues to increase and plastic waste is shredded to form smaller plastic particles, there is growing concern about the potential impact of nanoplastics (NPs) on freshwater ecosystems. In this work, the effects of three surface-modified NPs, including polystyrene (PS), PS-NH2, and PS-COOH, on the growth, photosynthetic activity, oxidative damage, and microcystins (MCs) production/release of Microcystis aeruginosa (M. aeruginosa) were investigated. Results indicated that all three NPs significantly inhibited the growth of M. aeruginosa after a 96 h exposure, and the growth inhibition followed the order of PS-NH2 > PS > PS-COOH (p < 0.05). Meanwhile, all three NPs at the concentration of 100 mg/L significantly increased the content of intra-MCs (115 %, 147 %, and 121 % higher than the control, respectively) and extra-MCs (142 %, 175 %, and 151 % higher than the control, respectively) after a 96 h exposure (p < 0.05). Moreover, our findings also suggested that the potential mechanisms of surface-modified PS NPs on M. aeruginosa growth and MCs production/release were associated with physical constraints, photosynthetic activity obstruct, and oxidative damage. Our findings provided direct evidence for different kinds of surface modifications of PS NPs on freshwater algae and improve the understanding of the potential risk of NPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liangliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chao Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jue Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium
| | - Xianglin Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chengwei Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zeming Wang
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Nan Zheng
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
39
|
Amaneesh C, Anna Balan S, Silpa PS, Kim JW, Greeshma K, Aswathi Mohan A, Robert Antony A, Grossart HP, Kim HS, Ramanan R. Gross Negligence: Impacts of Microplastics and Plastic Leachates on Phytoplankton Community and Ecosystem Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5-24. [PMID: 36534053 DOI: 10.1021/acs.est.2c05817] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plastic debris is an established environmental menace affecting aquatic systems globally. Recently, microplastics (MP) and plastic leachates (PL) have been detected in vital human organs, the vascular system, and in vitro animal studies positing severe health hazards. MP and PL have been found in every conceivable aquatic ecosystem─from open oceans and deep sea floors to supposedly pristine glacier lakes and snow covered mountain catchment sites. Many studies have documented the MP and PL impacts on a variety of aquatic organisms, whereby some exclusively focus on aquatic microorganisms. Yet, the specific MP and PL impacts on primary producers have not been systematically analyzed. Therefore, this review focuses on the threats posed by MP, PL, and associated chemicals on phytoplankton, their comprehensive impacts at organismal, community, and ecosystem scales, and their endogenous amelioration. Studies on MP- and PL-impacted individual phytoplankton species reveal the production of reactive oxygen species, lipid peroxidation, physical damage of thylakoids, and other physiological and metabolic changes, followed by homo- and heteroaggregations, ultimately eventuating in decreased photosynthesis and primary productivity. Likewise, analyses of the microbial community in the plastisphere show a radically different profile compared to the surrounding planktonic diversity. The plastisphere also enriches multidrug-resistant bacteria, cyanotoxins, and pollutants, accelerating microbial succession, changing the microbiome, and thus, affecting phytoplankton diversity and evolution. These impacts on cellular and community scales manifest in changed ecosystem dynamics with widespread bottom-up and top-down effects on aquatic biodiversity and food web interactions. These adverse effects─through altered nutrient cycling─have "knock-on" impacts on biogeochemical cycles and greenhouse gases. Consequently, these impacts affect provisioning and regulating ecosystem services. Our citation network analyses (CNA) further demonstrate dire effects of MP and PL on all trophic levels, thereby unsettling ecosystem stability and services. CNA points to several emerging nodes indicating combined toxicity of MP, PL, and their associated hazards on phytoplankton. Taken together, our study shows that ecotoxicity of plastic particles and their leachates have placed primary producers and some aquatic ecosystems in peril.
Collapse
Affiliation(s)
- C Amaneesh
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Shankari Anna Balan
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
- Wageningen University & Research, P.O. Box 8000, 6700 EA, Wageningen, Netherlands
| | - P S Silpa
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - A Aswathi Mohan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Aiswarya Robert Antony
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, 12587 Berlin, Germany
- Potsdam University, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Centre for Policy Research & Governance, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| |
Collapse
|
40
|
Senousy HH, Khairy HM, El-Sayed HS, Sallam ER, El-Sheikh MA, Elshobary ME. Interactive adverse effects of low-density polyethylene microplastics on marine microalga Chaetoceros calcitrans. CHEMOSPHERE 2023; 311:137182. [PMID: 36356803 DOI: 10.1016/j.chemosphere.2022.137182] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Low-density polyethylene (LDPE) is broadly utilized worldwide, increasing more dramatically during the COVID-19 pandemic, and the majority ends up in the aquatic environment as microplastics. The influence of polyethylene microplastics (LDPE-MPs) on aquatic ecosystems still needs further investigation, especially on microalgae as typical organisms represented in all aquatic systems and at the base of the trophic chain. Thereby, the biological and toxicity impacts of LDPE-MPs on Chaetoceros calcitrans were examined in this work. The results revealed that LDPE-MPs had a concentration-dependent adverse effect on the growth and performance of C. calcitrans. LDPE-MPs contributed the maximum inhibition rates of 85%, 51.3%, 21.49% and 16.13% on algal growth chlorophyll content, φPSII and Fv/Fm, respectively. The total protein content, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were significantly increased at 25 mg L-1 LDPE-MPs by 1.37, 3.52, 2.75 and 1.84 folds higher than those of the controls to sustain the adverse effects of LDPE-MPs. Extracellular polymeric substance (EPS) and monosaccharides contents of C. calcitrans were improved under low concentration of LDPE-MPs, which could facilitate the adsorption of MPs particles on the microalgae cell wall. This adsorption caused significant physical damage to the algal cell structure, as observed by SEM. These results suggest that the ecological footprint of MPs may require more attention, particularly due to the continuing breakdown of plastics in the ecosystem.
Collapse
Affiliation(s)
- Hoda H Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hanan M Khairy
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Heba S El-Sayed
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Eman R Sallam
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Mohamed A El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa E Elshobary
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
41
|
Li J, Liu W, Lian Y, Shi R, Wang Q, Zeb A. Single and combined toxicity of polystyrene nanoplastics and arsenic on submerged plant Myriophyllum verticillatum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:513-523. [PMID: 36516538 DOI: 10.1016/j.plaphy.2022.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The contamination of nanoplastics (NPs) and heavy metals (HM) in water bodies has caused widespread concern, while their effects on submerged plants are poorly reported. Polystyrene nanoplastics (PSNPs) and arsenic (As) were used to assess their toxicity on Myriophyllum verticillatum L. via the orthogonal experiments. PSNPs significantly reduced the accumulation of As (17.24%-66.67%) in plant. Single As and high As-PSNPs treatments significantly inhibited plant growth, with a maximum reduction of 70.09% in the growth rate. The mineral nutrient content was significantly affected by PSNPs and As treatments. The antioxidant system was significantly inhibited, which was more pronounced in the roots. Similar findings were observed for soluble protein and soluble sugar. Some organic acids and amino acids showed down-regulation at high concentrations of As, leading to a decrease in the content of the mineral element and down-regulation of antioxidant enzyme synthesis. Furthermore, PSNPs could alleviate As toxicity under 0.1 mg/L As treatment but exacerbate As toxicity at 1 mg/L As dose. This study has important implications for the study of submerged plants exposed to co-contamination of microplastics and heavy metals, as well as the possible ecological risk assessment in freshwater.
Collapse
Affiliation(s)
- Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
42
|
Song Y, Zhang B, Si M, Chen Z, Geng J, Liang F, Xi M, Liu X, Wang R. Roles of extracellular polymeric substances on Microcystis aeruginosa exposed to different sizes of polystyrene microplastics. CHEMOSPHERE 2023; 312:137225. [PMID: 36375605 DOI: 10.1016/j.chemosphere.2022.137225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Extracellular polymeric substances (EPS) are important shields for microalgae when confronting with external stresses. However, the underlying roles of EPS in the interactions between microplastics (MPs) and microalgae remain poorly understood. In this study, three sizes of polystyrene (PS) MPs (20 nm, 100 nm, and 1 μm) were chosen for evaluating the compositions of EPS, secreted by Microcystis aeruginosa during exposure. The results indicated that the EPS compositions were different when M. aeruginosa was exposed to PS MPs of different sizes. The presence of EPS is helpful for alleviating the adverse effects of PS MPs on M. aeruginosa cell growth, photosynthesis, and oxidative stress. With the exception of the shading effect, insufficient EPS cause direct adsorption of unstable 1 μm PS MPs to the algal surface, which could destroy the cell wall. In contrast, aromatic proteins and fulvic acids are representative EPS components stimulated by 100 nm PS MPs, contributing to the self-aggregation and encapsulation of algal cells and availability of nutrients for algal growth, respectively. High amounts of polysaccharides were secreted by M. aeruginosa along with humic acids during exposure to 20 nm PS MPs, both of which are crucial in the homo-aggregation of 20 nm PS MPs toward minimize its adverse effects on M. aeruginosa. Together, these findings revealed the differences in EPS under the stimulation of PS MPs of different sizes and clarified the roles of different EPS components in resisting the adverse effects of PS MPs on M. aeruginosa.
Collapse
Affiliation(s)
- Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Baoxin Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Mengying Si
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Zixuan Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jinyu Geng
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Fei Liang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Muchen Xi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xiaomei Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
43
|
Dong R, Liu R, Xu Y, Liu W, Sun Y. Effect of foliar and root exposure to polymethyl methacrylate microplastics on biochemistry, ultrastructure, and arsenic accumulation in Brassica campestris L. ENVIRONMENTAL RESEARCH 2022; 215:114402. [PMID: 36167108 DOI: 10.1016/j.envres.2022.114402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Despite the serious risk of microplastic pollution in the roots and leaves of crops, the phytotoxicity of microplastics (introduced via different exposure routes) in leafy vegetables remain insufficiently understood. Here, the effects of the root and foliar exposure of polymethyl methacrylate microplastic (PMMAMPs) on phytotoxicity, As accumulation, and subcellular distribution were investigated in rapeseed (Brassica campestris L). The relative chlorophyll content under PMMAMPs treatment decreased with time, and the 0.05 g L-1 root exposure decreased it significantly (by 9.97-20.48%, P < 0.05). In addition, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX) activities in rapeseed were more sensitive to PMMAMPs introduced through root exposure than through foliar exposure. There was dose-dependent ultrastructural damage, and root exposure had a greater impact than foliar exposure on root tip cells and chloroplasts. PMMAMPs entered the shoots and roots of rapeseed through root exposure. Under foliar exposure, PMMAMPs promoted As accumulation in rapeseed by up to 75.6% in shoots and 68.2% in roots compared to that under control (CK). As content in cell wall under PMMAMP treatments was 3.6-5.3 times higher than that of CK, as indicated by subcellular component results. In general, root exposure to PMMAMPs resulted in a stronger physiological impact and foliar exposure led to increased As accumulation in rapeseed.
Collapse
Affiliation(s)
- Ruyin Dong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Rongle Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Weitao Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
44
|
Tavelli R, Callens M, Grootaert C, Abdallah MF, Rajkovic A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Manzi HP, Abou-Shanab RAI, Jeon BH, Wang J, Salama ES. Algae: a frontline photosynthetic organism in the microplastic catastrophe. TRENDS IN PLANT SCIENCE 2022; 27:1159-1172. [PMID: 35792026 DOI: 10.1016/j.tplants.2022.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Recalcitrancy in microplastics (MPs) contributes to white pollution. Bioremediation can remove MPs and facilitate environmental sustainability. Although recent studies have been conducted on the interaction of algae and MPs, the role of algae in MP removal with the simultaneous implementation of 'omics studies has not yet been discussed. Here, we review the adverse effects of MPs on the environment and possible approaches to remove them from the aquatic environment by using algae. We highlight the mechanism of MP biodegradation, the algal species that have been used, and how these are affected by MPs. We propose that algomics, characterization of biodegrading enzymes, and genetic engineering could be effective strategies for optimizing MP degradation.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Reda A I Abou-Shanab
- College of Biological Sciences, BioTechnology Institute, University of Minnesota, St Paul, MN, USA
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China.
| |
Collapse
|
46
|
Yang Y, Liu J, Xue T, Hanamoto S, Wang H, Sun P, Zhao L. Complex behavior between microplastic and antibiotic and their effect on phosphorus-removing Shewanella strain during wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157260. [PMID: 35820524 DOI: 10.1016/j.scitotenv.2022.157260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Owing to their widespread application and use, microplastics (MPs) and antibiotics coexist in the sewage treatment systems. In this study, the effects and mechanisms of the combined stress of MPs and ciprofloxacin (CIP) on phosphorus removal by phosphorus-accumulating organisms (PAOs) were investigated. This study found that the four types of MPs and CIP exhibited different antagonistic effects on the inhibition of phosphorus removal by PAO. MPs reduced the effective concentration of CIP through adsorption and thus reduced its toxicity, which was affected by the biofilms on MPs. In addition, CIP may cause PAO to produce more extracellular polymeric substances, which reduces the physical and oxidative stress of MPs on PAO. Our results are helpful as they increase the understanding of the effects of complex emerging pollutants in sewage systems and propose measures to strengthen the biological phosphorus removal in sewage treatment processes.
Collapse
Affiliation(s)
- Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jinyi Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tongyu Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Polyvinyl Chloride Nanoparticles Affect Cell Membrane Integrity by Disturbing the Properties of the Multicomponent Lipid Bilayer in Arabidopsis thaliana. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185906. [PMID: 36144641 PMCID: PMC9503312 DOI: 10.3390/molecules27185906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
The ubiquitous presence of nanoplastics (NPs) in natural ecosystems is a serious concern, as NPs are believed to threaten every life form on Earth. Micro- and nanoplastics enter living systems through multiple channels. Cell membranes function as the first barrier of entry to NPs, thus playing an important biological role. However, in-depth studies on the interactions of NPs with cell membranes have not been performed, and effective theoretical models of the underlying molecular details and physicochemical behaviors are lacking. In the present study, we investigated the uptake of polyvinyl chloride (PVC) nanoparticles by Arabidopsis thaliana root cells, which leads to cell membrane leakage and damage to membrane integrity. We performed all-atom molecular dynamics simulations to determine the effects of PVC NPs on the properties of the multicomponent lipid bilayer. These simulations revealed that PVCs easily permeate into model lipid membranes, resulting in significant changes to the membrane, including reduced density and changes in fluidity and membrane thickness. Our exploration of the interaction mechanisms between NPs and the cell membrane provided valuable insights into the effects of NPs on membrane structure and integrity.
Collapse
|
48
|
Liu X, Zheng X, Zhang L, Li J, Li Y, Huang H, Fan Z. Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129355. [PMID: 35716567 DOI: 10.1016/j.jhazmat.2022.129355] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Since traditional Per- and polyfluoroalkyl substances (PFAS) were banned in 2009 due to their bioaccumulation, persistence and biological toxicity, the emerging PFAS have been widely used as their substitutes and entered the aquatic environment in the form of mixtures. However, the joint toxicity mechanisms of these emerging PFAS mixtures to aquatic organisms remain largely unknown. Then, based on the testing of growth inhibition, cytotoxicity, photosynthesis and oxidative stress, and the toxicity mechanism of PFAS mixture (Perfluorobutane sulfonate and Perfluorobutane sulfonamide) to algae was explored using the Gene set enrichment analysis (GSEA). The results revealed that all three emerging PFAS treatments had a certain growth inhibitory effect on Chlorella pyrenoidosa (C. pyrenoidosa), but the toxicity of PFAS mixture was stronger than that of individual PFAS and showed a significant synergistic effect at environmental concentration. The joint toxicity mechanisms of binary PFAS mixture to C. pyrenoidosa were related to the damage of photosynthetic system, obstruction of ROS metabolism, and inhibition of DNA replication. Our findings are conductive to adding knowledge in understanding the joint toxicity mechanisms and provide a basis for assessing the environmental risk of emerging PFAS.
Collapse
Affiliation(s)
- Xianglin Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Liangliang Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Jue Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Zhengqiu Fan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
49
|
Jiao Y, Zhu Y, Chen M, Wan L, Zhao Y, Gao J, Liao M, Tian X. The humic acid-like substances released from Microcystis aeruginosa contribute to defending against smaller-sized microplastics. CHEMOSPHERE 2022; 303:135034. [PMID: 35609660 DOI: 10.1016/j.chemosphere.2022.135034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are ubiquitous in freshwater ecosystems, but knowledge of their effects on extracellular polymeric substance (EPS) produced by algae is poorly understood. The components in specific EPS fractions of Microcystis respond when exposed to MPs is also still unclear. In this study, the responses of Microcystis aeruginosa under polystyrene (PS) microplastic exposure were studied over 17 days of cultivation, using 0.1 μm and 1.0 μm sized PS at three concentration gradients (1, 10 and 100 mg/L). Results indicate that algal growth significantly increased using the 0.1 and 1.0 μm PS at a high concentration (100 mg/L) on day 17, with growth rates of 74.71% ± 0.94% and 35.87% ± 1.23%, respectively. All tested PS had a maximum inhibitory effect on the photosynthesis on day 5, but the inhibition of photosynthetic activity by 0.1 μm PS alleviated after 13 days of exposure, indicating recovery of microalgae from the toxic environment. The two PS sizes at 100 mg/L concentration triggered EPS release in the latter stage of the experiment; meanwhile, fluorescence EEM analysis showed that smaller-sized PS (0.1 μm) at various doses noticeably increased humic acid-like substances in tightly bound EPS (TB-EPS) fractions on day 17. Our findings showed that EPS release and humic acid-like substances secretion of Microcystis likely can resist MPs exposure. The results provide new insights into the toxicity mechanism of MPs on freshwater microalgae, as well as understanding the ecological risks of microplastics.
Collapse
Affiliation(s)
- Yiying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China.
| | - Yongjie Zhu
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| | - Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Wan
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China
| | - Yijun Zhao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China
| | - Jian Gao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China
| | - Mingjun Liao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China; Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan, 430068, China
| | - Xiaofang Tian
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
50
|
Fan Y, Liu T, Qian X, Deng L, Rao W, Zhang Q, Zheng J, Gao X. Metabolic impacts of polystyrene microplastics on the freshwater microalga Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155655. [PMID: 35526622 DOI: 10.1016/j.scitotenv.2022.155655] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (plastic particles < 5 mm; MPs) are ubiquitous in aquatic environments but their potential adverse ecological effects on biota remain poorly understood. This is in part because in typical ecotoxicology tests the toxic effects of MPs were found to be limited. To capture the potential find-scale effects of MPs on freshwater organisms, we employed ultra-performance liquid chromatography-tandem mass spectrometry based untargeted metabolomics to investigate the metabolic impact of polystyrene microbeads microplastics (PS-MPs) of different sizes (0.1, 1, 10, 100 μm) and concentrations (1, 10, 100 mg/L) on a common freshwater microalga, Microcystis aeruginosa, after a 96-h exposure test. The phenotype-based results illustrated that while PS-MPs had no discernible effects on microalgal growth and photosynthesis, both oxidative stress and microcystin production were slightly increased. Metabolomics analysis revealed that the PS-MPs altered the global metabolic profile of the microalga. Specially, PS-MPs of larger size and higher concentration induced a larger number of differentially expressed metabolites. The PS-MPs significantly disturbed metabolisms involved in amino acid synthesis, membrane formation, nitrogen storage, and antioxidant defense of the microalga, consistent with the phenotypic observations. These results suggested several perturbed metabolic pathways, especially arginine-related pathways, as the mechanism. Our study showed that the insights provided by metabolomics-based approaches can enhance assessments of the ecological impacts of MPs on freshwater organisms.
Collapse
Affiliation(s)
- Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ligang Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenxin Rao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qiji Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinglan Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|