1
|
Qu K, Shi M, Chen L, Liu Y, Yao X, Li X, Tan B, Xie S. Residual levels of dietary deltamethrin interfere with growth and intestinal health in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117376. [PMID: 39612679 DOI: 10.1016/j.ecoenv.2024.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
To date, few study explored the damage of chronic dietary exposure to the lipophilic pesticide deltamethrin (DM) in aquatic animals, and it remains unclear whether its toxicity and residue levels would be affected by dietary lipid levels. Therefore, the present study aimed to elucidate the interactions between dietary lipid levels and DM levels in the Pacific white shrimp, focusing on growth performance, antioxidant capacity, and intestinal microbiota. DM has excellent insecticidal activity and has been used worldwide. Previous research has shown that environmental DM poses toxicity risks to aquatic animals. Six different diets were formulated to feed shrimp for 6 weeks with two lipid levels (6.96 %, 10.88 %) and three DM levels (0.2 mg·kg-1, 1 mg·kg-1, 5 mg·kg-1), namely LF0.2, LF1, LF5, HF0.2, HF1, HF5, respectively. Each diet was assigned to three net cages with a total of 18 cages (40 shrimp per tank, average weight (0.382±0.001 g), of which 0.2 mg·kg-1, are grouped in environmental DM control groups. The growth of shrimp was reduced as the dietary DM levels increased. When shrimp were fed a diet containing a high dose of DM, a reduction in their antioxidant capacity was also observed. Enzyme activity and gene expression related to lipid metabolism in hepatopancreas and hemolymph indicated a significant interaction between dietary lipid levels and DM in the lipid metabolism of shrimp. The terms of detoxification-related genes (gst, sult, cyp1a1) were upregulated in shrimp fed the high-dose DM. Additionally, the presence of DM in the diet severely harmed the hepatopancreas and intestinal histological morphology. DM in the diet increased the susceptibility of shrimp to pathogens and induced intestine microbiota dysbiosis, disrupting the balance of inter-species interactions. DM was not detected in the muscle and hepatopancreas of the shrimp after six weeks of exposure. In conclusion, the presence of DM in feed reduced the growth performance and antioxidant capacity of shrimp, damaging intestinal health. DM was rapidly metabolized by shrimp.
Collapse
Affiliation(s)
- Kangyuan Qu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Menglin Shi
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liutong Chen
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yucheng Liu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinzhou Yao
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyue Li
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beiping Tan
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Zhao Y, Luo F, Jiao F, Tang T, Wu S, Wang F, Zhao X. Combined toxic effects of fluxapyroxad and multi-walled carbon nanotubes in Xenopus laevis larvae. CHEMOSPHERE 2024; 362:142685. [PMID: 38909862 DOI: 10.1016/j.chemosphere.2024.142685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Carbon nanomaterials rarely exist in isolation in the natural environment, and their combined effects cannot be ignored. Multi-walled carbon nanotubes (MWCNTs) have shown tremendous potential applications in diverse fields, including pollution remediation, biomedicine, energy, and smart agriculture. However, the combined toxicities of MWCNTs and pesticides on non-target organisms, particularly amphibians, are often overlooked. Fluxapyroxad (FLX), a significant succinate dehydrogenase inhibitor fungicide, has been extensively utilized for the protection of food and cash crops and control of fungi. This raises the possibility of coexistence of MWCNTs and FLX. The objective of this study was to explore the individual and combined toxic effects of FLX and MWCNTs on the early life stages of Xenopus laevis. Embryos were exposed to varying concentrations of FLX (0, 5, and 50 μg/L) either alone or in combination with MWCNTs (100 μg/L) for a duration of 17 days. The findings indicated that co-exposure to FLX and MWCNTs worsened the inhibition of growth, liver damage, and dysregulation of enzymatic activity in tadpoles. Liver transcriptomic analysis further revealed that the presence of MWCNTs exacerbated the disturbances in glucose and lipid metabolism caused by FLX. Additionally, the combined exposure groups exhibited amplified alterations in the composition and function of the gut microflora. Our study suggests that it is imperative to pay greater attention to the agricultural applications, management and ecological risks of MWCNTs in the future, considering MWCNTs may significantly enhance the toxicity of FLX.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
3
|
Stilwell JM, Perry SM, Petrie-Hanson L, Sheffler R, Buchweitz JP, Delaune AJ. Pyrethroid-associated nephrotoxicity in channel catfish, Ictalurus punctatus, and blue catfish, I. furcatus, at a public aquarium. Vet Pathol 2024; 61:633-640. [PMID: 38193450 DOI: 10.1177/03009858231222226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Over the course of an approximately 11-month period, an outdoor, freshwater, mixed species, recirculating, display system at a public aquarium experienced intermittent mortalities of channel catfish (Ictalurus punctatus) and blue catfish (I. furcatus). Catfish acutely presented for abnormal buoyancy, coelomic distention, and protein-rich coelomic effusion. Gross lesions typically involved massive coelomic distension with protein-rich effusion, generalized edema, and gastric hemorrhage and edema. Microscopically, primary lesions included renal tubular necrosis, gastric edema with mucosal hemorrhages, and generalized edema. Aerobic culture and virus isolation could not recover a consistent infectious agent. Intracoelomic injection of coelomic effusion and aspirated retrobulbar fluid from a catfish into naïve zebrafish (bioassay) produced peracute mortality in 3 of 4 fish and nervous signs in the fourth compared with 2 saline-injected control zebrafish that had - no mortality or clinical signs. Kidney tissue and coelomic effusion were submitted for gas chromatography tandem mass spectrometry by multiple reaction monitoring against laboratory standards, which detected the presence of multiple pyrethroid toxins, including bioallethrin, bifenthrin, trans-permethrin, phenothrin, and deltamethrin. Detection of multiple pyrethroids presumably reflects multiple exposures with several products. As such, the contributions of each pyrethroid toward clinical presentation, lesion development, and disease pathogenesis cannot be determined, but they are suspected to have collectively resulted in disrupted osmoregulation and fluid overload due to renal injury. Pesticide-induced toxicoses involving aquarium fish are rarely reported with this being the first description of pyrethroid-induced lesions and mortality in public aquarium-held fish.
Collapse
Affiliation(s)
| | - Sean M Perry
- Mississippi State University, Mississippi State, MS
- Mississippi Aquarium, Gulfport, MS
| | | | | | | | - Alexa J Delaune
- Mississippi State University, Mississippi State, MS
- Mississippi Aquarium, Gulfport, MS
| |
Collapse
|
4
|
Vineetha VP, Tejaswi HN, Sooraj NS, Das S, Pillai D. Implications of deltamethrin on hematology, cardiac pathology, and gene expression in Nile tilapia (Oreochromis niloticus) and its possible amelioration with Shatavari (Asparagus racemosus). Vet Res Commun 2024; 48:811-826. [PMID: 37930611 DOI: 10.1007/s11259-023-10251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Deltamethrin (DM) is one of the extensively used pyrethroids for controlling ectoparasites. Unfortunately, DM is highly toxic to fish as it primarily targets the sodium channels of the plasma membrane thereby affecting their cardiac and nervous systems. The present study investigated the protective efficacy of Shatavari (Asparagus racemosus) against DM-induced cardiotoxicity in Nile tilapia (Oreochromis niloticus). The fish were segregated into nine groups having 36 fish/group maintained in triplicates exposed to DM (1 µg/L) and fed with a diet containing three different concentrations (10 g, 20 g, and 30 g/kg feed) of aqueous extract of A. racemosus (ARE) for 21 days. DM caused significant alterations in the blood and serum parameters, and expression of cardiac and apoptotic genes compared to the control group. The ARE cotreatment significantly reduced the increase in serum transaminases, creatine kinase, and lactate dehydrogenase levels induced by DM. ARE facilitated the regain of electrolyte (sodium, potassium, chloride) homeostasis and antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, and glutathione in DM-exposed fish. The cardiac histology exhibited loose separation of the cardiomyocytes and myofibrillar loss in the DM group which was ameliorated in the DM-ARE cotreatment group. Significant modulations were observed in the expression of cardiac-specific genes (gata4, myh6, tnT, cox1) and apoptosis signaling genes and proteins (HSP70, bax, bcl-2, caspase3), in the cotreatment group compared to the DM-exposed group. The current study suggests that ARE possesses potential cardioprotective properties that are effective in mitigating the toxic effects induced by DM via ameliorating oxidative stress, electrolyte imbalance, and apoptosis in tilapia.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Hemla Naik Tejaswi
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Nediyirippil Suresh Sooraj
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Sweta Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India.
| |
Collapse
|
5
|
Huang P, Gao J, Du J, Nie Z, Li Q, Sun Y, Xu G, Cao L. Prometryn exposure disrupts the intestinal health of Eriocheir sinensis: Physiological responses and underlying mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109820. [PMID: 38145793 DOI: 10.1016/j.cbpc.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Most toxicity studies of prometryn in non-target aquatic animals have focused on hepatotoxicity, cardiotoxicity, embryonic developmental and growth toxicity, while studies on the molecular mechanisms of intestinal toxicity of prometryn are still unknown. In the current study, the intestinal tissues of the Chinese mitten crab (Eriocheir sinensis) were used to uncover the underlying molecular mechanisms of stress by 96-h acute in vivo exposure to prometryn. The results showed that prometryn activated the Nrf2-Keap1 pathway and up-regulated the expression of downstream antioxidant genes. Prometryn induced the expression of genes associated with non-specific immunity and autophagy, and induced apoptosis through the MAPK pathway. Interestingly, the significant up-or down-regulation of the above genes mainly occurred at 12 h- 24 h after exposure. Intestinal flora sequencing revealed that prometryn disrupted the intestinal normal barrier function mainly by reducing beneficial bacteria abundance, which further weakened the intestinal resistance to exogenous toxicants and caused an inflammatory response. Correlation analyses found that differential flora at the genus level had potential associations with gut stress-related genes. In conclusion, our study contributes to understanding the molecular mechanisms behind the intestinal stress caused by herbicides on aquatic crustaceans.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
6
|
Wu H, Gao J, Xie Z, Xie M, Song R, Yuan X, Wu Y, Ou D. Effect of chronic deltamethrin exposure on brain transcriptome and metabolome of juvenile crucian carp. ENVIRONMENTAL TOXICOLOGY 2024; 39:1544-1555. [PMID: 38009670 DOI: 10.1002/tox.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Deltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 μg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha, China
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha, China
| |
Collapse
|
7
|
Wang L, Hu C, Wang B, Wang H, Wang C, Shu Y, Gao C, Yan Y. Chronic environmentally relevant concentration of copper exposure induces intestinal oxidative stress, inflammation, and microbiota disturbance in freshwater grouper (Acrossocheilus fasciatus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106702. [PMID: 37741225 DOI: 10.1016/j.aquatox.2023.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The influence of chronic environmentally relevant concentration of Cu2+ exposure on fish intestinal health has been rarely studied. In the present study, freshwater grouper (Acrossocheilus fasciatus) was subjected to 0 (control), 0.01 mg/L Cu2+ (Cu0.01), and 0.04 mg/L Cu2+ (Cu0.04) for 30 days. The Cu0.04 group obtained a significantly reduced survival rate, weight gain, and feed intake compared to the control group (P < 0.05). Both levels of Cu2+ exposure induced oxidative stress, evidenced by increased antioxidant enzymes' activities and malondialdehyde (MDA) contents in the intestine and serum. Based on 16S rDNA analysis, both levels of Cu2+ exposure significantly reduced intestinal microbiota community richness. In the Cu2+ exposure groups, Firmicutes/Bacteroidota ratio, and potentially pathogenic bacteria, such as Proteobacteria, genus Pseudomonas, Citrobacter, Shinella, and Aeromonas were enriched. Meanwhile, the richness of probiotic bacteria, such as Fusobacteriota, Planctomycetota, Cetobacterium, Gemmobacter, and Gemmata were significantly reduced by Cu2+ exposure. Both levels of Cu2+ exposure significantly reduced villus length, lamina propria width, and muscular thickness in the foregut and hindgut, but increased intestinal goblet cell numbers. 0.04 mg/L Cu2+ exposure significantly upregulated superoxide dismutase (sod), pro-inflammation genes nuclear factor kappa b subunit 1 (nfκb1) and interleukin 1 beta (il1β) expression, but downregulated anti-inflammation gene transforming growth factor beta 1 (tgfβ1) expression. In summary, chronic environmentally relevant concentrations of Cu2+ exposure induced intestinal oxidative stress, inflammation, prevalence of pathogen and inhibition of probiotic bacteria, and damage intestinal integrity of freshwater grouper.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| | - Cong Hu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Heng Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Yilin Shu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| |
Collapse
|
8
|
Ma R, Sun T, Wang X, Ren K, Min T, Xie X, Wang D, Li K, Zhang Y, Zhu K, Mo C, Dang C, Yang Y, Zhang H. Chronic exposure to low-dose deltamethrin can lead to colon tissue injury through PRDX1 inactivation-induced mitochondrial oxidative stress injury and gut microbial dysbiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115475. [PMID: 37714033 DOI: 10.1016/j.ecoenv.2023.115475] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE To date, it is unclear whether deltamethrin (DLM) intake causes damage to colon tissue. Hence, in this study, we aimed to clarify the effect of long-term exposure to low-dose DLM on colon tissues, and its potential mechanisms. METHODS Mice were treated with DLM (0.2 mg/kg/day) or DLM combined with N-acetyl-l-cysteine (NAC) (50 mg/kg/day) for 8 weeks. Human colon cancer cells (HCT-116) were treated with DLM (0, 25, 50, or 100 µM), NAC (2 mM), or overexpression plasmids targeting peroxiredoxin 1 (PRDX1) for 48 h. DLM was detected using a DLM rapid detection card. Colon injury was evaluated using haematoxylin and eosin staining and transmission electron microscopy. Apoptosis was determined using immunofluorescence staining (IF), western blotting (WB) and flow cytometry (FC) assays. MitoTracker, JC-1, and glutathione (GSH) detection were used to detect mitochondrial oxidative stress. Intestinal flora were identified by 16 S rDNA sequencing. RESULTS DLM accumulation was detected in the colon tissue and faeces of mice following long-term intragastric administration. Interestingly, our results showed that, even at a low dose, long-term intake of DLM resulted in severe weight loss and decreased the disease activity index scores and colon length. The results of IF, WB, and FC showed that DLM induced apoptosis in the colon tissue and cells. MitoTracker, JC-1, and GSH assays showed that DLM increased mitochondrial stress in colonic epithelial cells. Mechanistic studies have shown that increased mitochondrial stress and apoptosis are mediated by PRDX1 inhibition. Further experiments showed that PRDX1 overexpression significantly reduced DLM-induced oxidative stress injury and apoptosis. In addition, we observed that chronic exposure to DLM altered the composition of the intestinal flora in mice, including an increase in Odoribacter and Bacteroides and a decrease in Lactobacillus. The gut microbial richness decreased after DLM exposure in mice. Supplementation with NAC both in vivo and in vitro alleviated DLM-induced oxidative stress injury, colonic epithelial cell apoptosis, and gut microbial dysbiosis. CONCLUSION Chronic exposure to DLM, even at small doses, can cause damage to the colon tissue, which cannot be ignored. The production and use of pesticides such as DLM should be strictly regulated during agricultural production.
Collapse
Affiliation(s)
- Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dangdang Wang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Caijing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yong Yang
- Xi'an Analytical and Monitoring Centre for Agri-food Quality Safety, Xi'an 710077, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
9
|
Zheng Y, Fateh B, Xu G. Effects of methomyl on the intestinal microbiome and hepatic transcriptome of tilapia, and the modifying effects of mint co-culture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106675. [PMID: 37666106 DOI: 10.1016/j.aquatox.2023.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Methomyl (MET) is an oxime carbamate insecticide that can contaminate aquatic systems resulting in toxicological effects. It can harm some fish species possibly through the anti-oxidative, phagosome pathway. Mint is one of the most widely herbal plants exhibiting antioxidant activities. In this study, we investigated the impact of MET on the antioxidant system of Oreochromis niloticus in presence of mint as a floating bed. Results revealed that the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, and glutathione S-transferase significantly decreased and the GSH content significantly increased in the intestine. The hepatic peroxisome proliferator-activated receptor (PPAR) signalling pathway, carbon metabolism, renal phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK) signalling pathway, and phagosomes were significantly affected. Upon long-term exposure, circadian rhythm and phagosomes were enriched in the liver and kidney. However, mint increased the enriched pathways of Toll-like receptor, PPAR, p53, NF-kappa B, MAPK, oestrogen, and B cell receptor signalling pathways. MET with different concentrations destroyed the balance of gut microbiota, mint decreased Verrucomicrobia and Akkermansia for the maintenance resulted from MET. Cetobacterium had a positive impact on total nitrogen (TN), chemical oxygen demand (CODMn), and glutathione reductase (GR), while Akkermansia had a positive impact on feed conversion ratio (FCR), SOD and CAT, and the abundance of both decreased due to MET exposure. High mint density removed more concentrations of nitrogen and phosphorus in the tilapia cultivation wastewater. Therefore, planting with mint can alleviate the toxicological effects produced by MET, shape the intestinal microbiota, and strengthen the connection between water quality and the metabolic parameters.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui east Rd., Wuxi, Jiangsu 214081, China
| | - Benkhelifa Fateh
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui east Rd., Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui east Rd., Wuxi, Jiangsu 214081, China.
| |
Collapse
|
10
|
Wu H, Yuan X, Gao J, Xie M, Tian X, Xiong Z, Song R, Xie Z, Ou D. Conventional Anthelmintic Concentration of Deltamethrin Immersion Disorder in the Gill Immune Responses of Crucian Carp. TOXICS 2023; 11:743. [PMID: 37755753 PMCID: PMC10534886 DOI: 10.3390/toxics11090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Current treatment strategies for parasitic infectious diseases in crucian carp primarily rely on chemotherapy. As a commonly used antiparasitic agent, deltamethrin (DEL) may have the potential adverse effects on external mucosa of fish such as gills. In this study, 180 healthy juvenile crucian carp (Carassius auratus) (average weight: 8.8 ± 1.0 g) were randomly divided into three groups for 28 days, which were immersed in 0 μg/L, 0.3 μg/L, and 0.6 μg/L of DEL, respectively. The results of histological analysis revealed that severe hyperplasia in the secondary lamellae of gills was observed, and the number of goblet (mucus-secreting) cells increased significantly after DEL immersion. TUNEL staining indicated that the number of apoptotic cells increased in crucian carp gill. At the molecular level, the mRNA expression analysis revealed significant upregulation of apoptosis (caspase 3, caspase 8, and bax), autophagy (atg5 and beclin-1), and immune response (lzm, muc5, il-6, il-8, il-10, tnfα, ifnγ, tgfβ, tlr4, myd88, and nf-kb), whereas tight junction-related genes (occludin and claudin12) were downregulated after DEL immersion, suggesting that DEL immersion altered innate immunity responses and promoted mucus secretion. Moreover, tandem mass tag (TMT)-based proteomics revealed that a total of 428 differentially expressed proteins (DEPs) contained 341 upregulated DEPs and 87 downregulated DEPs with function annotation were identified between the control and DEL groups. Functional analyses revealed that the DEPs were enriched in apoptotic process, phagosome, and lysosome pathways. Additionally, DEL immersion also drove gill microbiota to dysbiosis and an increase in potentially harmful bacteria such as Flavobacterium. Overall, this study showed that DEL elicited shifts in the immune response and changes in the surface microbiota of fish. These results provide new perspectives on the conventional anthelmintic concentration of DEL immersion disorder of the gill immune microenvironment in crucian carp and theoretical support for future optimization of their practical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China; (H.W.); (X.Y.); (J.G.); (M.X.); (X.T.); (Z.X.); (Z.X.); (D.O.)
| | | | | |
Collapse
|
11
|
Chen C, Deng Y, Liu L, Zou Z, Jin C, Chen Z, Wang S. High-Dose Deltamethrin Induces Developmental Toxicity in Caenorhabditis elegans via IRE-1. Molecules 2023; 28:6303. [PMID: 37687132 PMCID: PMC10488762 DOI: 10.3390/molecules28176303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Deltamethrin (DM), a Type II pyrethroid, is widely used worldwide in agriculture, household applications, and medicine. Recent studies have shown that DM exerts a variety of toxic effects on organs such as the kidney, heart muscle, and nerves in animals. However, little is known about the effects of high-dose DM on growth and development, and the mechanism of toxicity remains unclear. Using the Caenorhabditis elegans model, we found that high-dose DM caused a delay in nematode development. Our results showed that high-dose DM reduced the activation of the endoplasmic reticulum unfolded protein response (UPRER). Further studies revealed that high-dose DM-induced developmental toxicity and reduced capacity for UPRER activation were associated with the IRE-1/XBP-1 pathway. Our results provide new evidence for the developmental toxicity of DM and new insights into the mechanism of DM toxicity.
Collapse
Affiliation(s)
- Chuhong Chen
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Ying Deng
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Linyan Liu
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
| | - Zhenyan Zou
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Chenzhong Jin
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Zhiyin Chen
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| | - Shuanghui Wang
- Key Laboratory of Green Control of Crop Pests in Hunan Higher Education, Hunan University of Humanities Science and Technology, Loudi 417000, China
- Collaborative Innovation Center for Farmland Weeds Control Techniques and Application of Hunan Province, Hunan University of Humanities Science and Technology, Loudi 417000, China (Z.C.)
| |
Collapse
|
12
|
Wang L, Wang C, Huang C, Gao C, Wang B, He J, Yan Y. Dietary berberine against intestinal oxidative stress, inflammation response, and microbiota disturbance caused by chronic copper exposure in freshwater grouper (Acrossocheilus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2023:108910. [PMID: 37385463 DOI: 10.1016/j.fsi.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Berberine (BBR) is known for its strong antioxidant, anti-inflammatory, and capacity to preserve intestinal microbiota balance in fish. This study aimed to investigate the protective effects of berberine against copper-induced toxicity in the intestine of freshwater grouper Acrossocheilus fasciatus. The experiment involved four groups: a control group, a Cu group exposed to 0.02 mg/L Cu2+, and two BBR groups fed with 100 or 400 mg/kg of berberine diets and exposed to the same Cu2+ concentration. Three replicates of healthy fish (initial weight 1.56 ± 0.10 g) were subjected to their respective treatments for 30 days. Results showed that none of the treatments significantly affected the survival rate, final weight, weight gain, and feed intake (P > 0.05). However, supplementation with 100 and 400 mg/kg of BBR significantly lowered the antioxidant activities, and glutathione peroxidase (gpx) and superoxide dismutase (sod) expression levels, as well as reduced malondialdehyde (MDA) content caused by Cu2+ exposure (P < 0.05). Berberine inclusion significantly downregulated proinflammatory factors NLR family pyrin domain containing 3 (nlrp3), interleukin 1 beta (il1β), interleukin 6 cytokine family signal transducer (il6st) but upregulated transforming growth factor beta 1 (tgfβ1) and heat shock 70kDa protein (hsp70) expression. Moreover, berberine at both levels maintained the intestinal structural integrity and significantly improved gap junction gamma-1 (gjc1) mRNA level compared to the Cu group (P < 0.05). Based on 16S rDNA sequencing, the richness and diversity of intestinal microbiota in different groups were not significantly influenced. Berberine reduced the Firmicutes/Bacteroidota ratio and stifled the growth of some specific pathogenic bacteria such as Pseudomonas, Citrobacter, and Acinetobacter, while boosting the richness of potential probiotic bacteria, including Roseomonas and Reyranella compared with the Cu group. In conclusion, berberine showed significant protective effects against Cu2+-induced intestinal oxidative stress, inflammation response, and microbiota disturbance in freshwater grouper.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| | - Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenchen Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jiang He
- Anhui Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| |
Collapse
|
13
|
Xiang X, Peng B, Liu K, Wang T, Ding P, Li H, Zhu Y, Ming Y. Association between salivary microbiota and renal function in renal transplant patients during the perioperative period. Front Microbiol 2023; 14:1122101. [PMID: 37065138 PMCID: PMC10090686 DOI: 10.3389/fmicb.2023.1122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionRenal transplantation is an effective treatment for the end stage renal disease (ESRD). However, how salivary microbiota changes during perioperative period of renal transplant recipients (RTRs) has not been elucidated.MethodsFive healthy controls and 11 RTRs who had good recovery were enrolled. Saliva samples were collected before surgery and at 1, 3, 7, and 14 days after surgery. 16S rRNA gene sequencing was performed.ResultsThere was no significant difference in the composition of salivary microbiota between ESRD patients and healthy controls. The salivary microbiota of RTRs showed higher operational taxonomic units (OTUs) amount and greater alpha and beta diversity than those of ESRD patients and healthy controls, but gradually stabilized over time. At the phylum level, the relative abundance of Actinobacteria, Tenericutes and Spirochaetes was about ten times different from ESRD patients or healthy controls for RTRs overall in time. The relative abundance of Bacteroidetes, Fusobacteria, Patescibacteria, Leptotrichiaceae and Streptococcaceae was correlated with serum creatinine (Scr) after renal transplantation.DiscussionIn short, salivary microbiota community altered in the perioperative period of renal transplantation and certain species of salivary microbiota had the potential to be a biomarker of postoperative recovery.
Collapse
Affiliation(s)
- Xuyu Xiang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Bo Peng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Kai Liu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Tianyin Wang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Peng Ding
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Hao Li
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yi Zhu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
- *Correspondence: Yingzi Ming
| |
Collapse
|
14
|
Wei X, Peng H, Li Y, Meng B, Wang S, Bi S, Zhao X. Pyrethroids exposure alters the community and function of the internal microbiota in Aedes albopictus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114579. [PMID: 36706527 DOI: 10.1016/j.ecoenv.2023.114579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), β-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in β-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and β-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and β-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.
Collapse
Affiliation(s)
- Xiao Wei
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Hong Peng
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Yan Li
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Biao Meng
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shichao Wang
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Shanzheng Bi
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Xiangna Zhao
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Guo X, Li N, Wang H, Su W, Song Q, Liang Q, Sun C, Liang M, Ding X, Lowe S, Sun Y. Exploratory analysis of the association between pyrethroid exposure and rheumatoid arthritis among US adults: 2007-2014 data analysis from the National Health and Nutrition Examination Survey (NHANES). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14413-14423. [PMID: 36151437 DOI: 10.1007/s11356-022-23145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Previous studies indicate that pesticide use may play an important role in the occurrence and development of rheumatoid arthritis (RA); however, little is known about the effect of specific pesticides on RA. The objective of this study was to evaluate whether pyrethroid exposure was linked to RA in adults. Data were originated from the 2007-2014 National Health and Nutrition Examination Survey (NHANES). The levels of pyrethroid exposure were assessed by 3-phenoxybenzoic acid (3-PBA) concentrations in urine samples. We built multivariate logistic regression models to assess associations between pyrethroid exposure and RA among US adults. A restricted cubic spline plot (three knots) was applied to test whether there was a nonlinear relationship between exposure to pyrethroid pesticides and the prevalence of RA. Finally, 4384 subjects were included in our analysis with 278 RA patients. In crude model, higher level of 3-PBA (creatinine-adjusted) was positively associated with RA (OR: 1.51, 95% CI: 1.07, 2.15). After adjustment for sex, race/ethnicity, education, body mass index, family poverty income, level of education, marital status, smoking status, alcohol usage, physical activity, hypertension, and urinary creatinine, the highest (vs lowest) quartile of 3-PBA was associated with an increased prevalence of RA (OR: 1.23, 95% CI: 0.86, 1.79). Significantly positive associations between 3-PBA concentration and RA were observed in the population aged between 40 and 59 years and with lower level of education. The restricted cubic spline plot presented an increase in trend and indicated that pyrethroid exposure was linearly associated with occurrence of RA (p for nonlinearity = 0.728). In conclusion, our study indicated that pyrethroid pesticide exposure was associated with an increased risk of RA. Higher levels of pyrethroid exposure were linearly associated with increased prevalence of RA in adults. Certainly, our findings are in great need of further corroboration by prospective studies with strict design.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hao Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wanying Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiuxia Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
16
|
Chen Q, Wei T, Yang B, Li S, Ge L, Zhou A, Xie S. The impact of deleting the mitfa gene in zebrafish on the intestinal microbiota community. Gene 2022; 846:146870. [PMID: 36075325 DOI: 10.1016/j.gene.2022.146870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
To explore the relationship between the mitfa gene and intestinal microbiota, the 16S rRNA gene amplicon sequencing was performed to compare the intestinal microbiota composition of the mitfa knockout zebrafish line (CKO group) and the wild-type zebrafish (WT group) in this study. The results showed that the Fusobacteria and Firmicutes were significantly decreased and the Dependentiae and Patescibacteria were significantly increased in the CKO group at the phylum level. Furthermore, the relative abundance of Citrobacter, Gordonia, Mesorhizobium, Legionella, and Bradyrhizobium were extremely higher in the CKO group, whereas the other four genera Nocardia, Pannonibacter, Shinella, and Cetobacterium were significantly declined in the CKO group at the genus level. Due to these changed intestinal microbiota appear to be related to lipid metabolism and immunity, eight lipid metabolism-related genes and nine inflammation-related genes were detected in the intestinal. The results showed that the expression levels of these genes were significant differences between the CKO and WT group. These results indicated that the deletion of mitfa can affect the expression levels of immune and metabolism-related genes, and causing changes in the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Qingshi Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tianli Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Siying Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liangjun Ge
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Aiguo Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Cheng H, Dai Y, Ruan X, Duan X, Zhang C, Li L, Huang F, Shan J, Liang K, Jia X, Wang Q, Zhao H. Effects of nanoplastic exposure on the immunity and metabolism of red crayfish (Cherax quadricarinatus) based on high-throughput sequencing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114114. [PMID: 36179446 DOI: 10.1016/j.ecoenv.2022.114114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Previous studies have shown that nanoplastics (NPs) are harmful pollutants that threaten aquatic organisms and ecosystems, however, less research has been conducted on the hazards of NPs for aquaculture animals. In this study, Cherax quadricarinatus was used as an experimental model to evaluate the possible effects of three concentrations (25, 250 and 2500 μg/L) of NPs on red crayfish. The toxicological effects of NPs on this species were investigated based on transcriptomics and microbiome. A total of 67,668 genes were obtained from the transcriptome. The annotation rate of the four major libraries (Nr, KEGG, KOG, Swissprot) was 40.17 %, and the functions of differential genes were mainly related to antioxidant activity, metabolism and immune processes. During the experiment, the activities of superoxide dismutase (SOD) and catalase (CAT) in the high concentration group were significantly decreased, while the concentration of malondialdehyde (MDA) increased after nanoplastics (NPs) exposure, and SOD1, Jafrac1 were significantly reduced at high concentrations. expression is inhibited. The immune genes LYZ and PPO2 were highly expressed at low concentrations and suppressed at high concentrations. After 14 days of exposure to NPs, significant changes in gut microbiota were observed, such as decreased abundances of Actinobacteria, Bacteroidetes, and Firmicutes. NPs compromise host health by inducing changes in microbial communities and the production of beneficial bacterial metabolites. Overall, these results suggest that NPs affect immune-related gene expression and antioxidant enzyme activity in red crayfish and cause redox imbalance in the body, altering the composition and diversity of the gut microbiota.
Collapse
Affiliation(s)
- Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Yuantang Dai
- Modern Agriculture Comprehensive Service Center of Dongyuan County, Heyuan 517500, China.
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunli Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jinhong Shan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kaishan Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianze Jia
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Mercury Induced Tissue Damage, Redox Metabolism, Ion Transport, Apoptosis, and Intestinal Microbiota Change in Red Swamp Crayfish (Procambarus clarkii): Application of Multi-Omics Analysis in Risk Assessment of Hg. Antioxidants (Basel) 2022; 11:antiox11101944. [PMID: 36290667 PMCID: PMC9598479 DOI: 10.3390/antiox11101944] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022] Open
Abstract
As one of the most toxic elements, mercury (Hg) is a widespread toxicant in aquatic environments. Crayfish are considered suitable for indicating the impact of heavy metals on aquatic crustaceans. Nevertheless, Hg toxicity on Procambarus clarkii is largely unknown. In this research, the acute Hg-induced alterations of biochemical responses, histopathology, hepatopancreatic transcriptome, and intestinal microbiome of Procambarus clarkii were studied. Firstly, Hg induced significant changes in reactive oxygen species (ROS) and malonaldehyde (MDA) content as well as antioxidant enzyme activity. Secondly, Hg exposure caused structural damage to the hepatopancreas (e.g., vacuolization of the epithelium and dilatation of the lumen) as well as to the intestines (e.g., dysregulation of lamina epithelialises and extension of lamina proprias). Thirdly, after treatment with three different concentrations of Hg, RNA-seq assays of the hepatopancreas revealed a large number of differentially expressed genes (DEGs) linked to a specific function. Among the DEGs, a lot of redox metabolism- (e.g., ACOX3, SMOX, GPX3, GLO1, and P4HA1), ion transport- (e.g., MICU3, MCTP, PYX, STEAP3, and SLC30A2), drug metabolism- (e.g., HSP70, HSP90A, CYP2L1, and CYP9E2), immune response- (e.g., SMAD4, HDAC1, and DUOX), and apoptosis-related genes (e.g., CTSL, CASP7, and BIRC2) were identified, which suggests that Hg exposure may perturb the redox equilibrium, disrupt the ion homeostasis, weaken immune response and ability, and cause apoptosis. Fourthly, bacterial 16S rRNA gene sequencing showed that Hg exposure decreased bacterial diversity and dysregulated intestinal microbiome composition. At the phylum level, there was a marked decrease in Proteobacteria and an increase in Firmicutes after exposure to high levels of Hg. With regards to genus, abundances of Bacteroides, Dysgonomonas, and Arcobacter were markedly dysregulated after Hg exposures. Our findings elucidate the mechanisms involved in Hg-mediated toxicity in aquatic crustaceans at the tissue, cellular, molecular as well as microbial levels.
Collapse
|
19
|
Wang S, Liu S, Wang C, Ye B, Lv L, Ye Q, Xie S, Hu G, Zou J. Dietary Antimicrobial Peptides Improve Intestinal Function, Microbial Composition and Oxidative Stress Induced by Aeromonas hydrophila in Pengze Crucian Carp ( Carassius auratus var. Pengze). Antioxidants (Basel) 2022; 11:antiox11091756. [PMID: 36139830 PMCID: PMC9495946 DOI: 10.3390/antiox11091756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing evidence for the potential use of antimicrobial peptides as dietary supplements and antibiotic substitutes. In this study, we analyzed the differential effects of varying levels of antimicrobial peptides on the intestinal function and intestinal microbial and disease resistance of Pengze crucian carp. Approximately 630 experimental fishes were randomized in the control group (G0: 0 mg/kg) and in five groups supplemented with different doses of AMPs (G1: 100 mg/kg, G2: 200 mg/kg, G3: 400 mg/kg, G4: 800 mg/kg, and G5: 1600 mg/kg) and were fed for ten weeks. Three replicates per group of 35 fish were performed. The results showed that AMPs promoted intestinal villus development and increased intestinal muscular thickness (p < 0.05) and goblet cell abundance. The enzymatic activities of all groups supplemented with AMPs were effectively improved. AMP supplementation significantly enhanced the activities of antioxidant enzymes and digestive enzymes in the intestines of G3 animals (p < 0.05). Compared with G0 animals, AMP-supplemented animals regulated the expression of intestinal immune-related genes and exhibited significant differences in the G3 animal group (p < 0.05). The abundance of intestinal Firmicutes and Bacteroidetes increased in the AMP-supplemented groups, but the Firmicutes/Bacteroidetes ratio was lower than that in the G0 group. AMP supplementation also decreased the abundance of Fusobacterium while increasing the proportion of Actinobacteria (p < 0.05). After Aeromonas hydrophila infection, the expression levels of anti-inflammatory factors in the intestinal tract of G3 animals were significantly upregulated, and the level of the proinflammatory factor was decreased (p < 0.05). The intestinal Cetobacterium levels of G3 animals were significantly increased (p < 0.01), while the Proteobacteria levels were decreased, and the intestinal goblet cell proliferation was significantly lower than that of G0 animals (p < 0.05). This indicates that groups supplemented with AMPs have better disease resistance than the G0 group and can rapidly reduce the adverse effects caused by inflammatory response. Taken together, the present results suggest that AMP supplementation can improve intestinal function and intestinal microbial and pathogen resistance in Pengze crucian carp.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ye
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Liqun Lv
- National Pathogen Collection Center for Aquatic Animals, Key Laboratory of Freshwater Fishery Germplasm Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
- Correspondence: (G.H.); (J.Z.); Tel./Fax: +86-20-29119036 (G.H.); +86-20-87571321 (J.Z.)
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.H.); (J.Z.); Tel./Fax: +86-20-29119036 (G.H.); +86-20-87571321 (J.Z.)
| |
Collapse
|
20
|
Wu H, Gao J, Xie M, Wu J, Song R, Yuan X, Wu Y, Ou D. Chronic exposure to deltamethrin disrupts intestinal health and intestinal microbiota in juvenile crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113732. [PMID: 35679730 DOI: 10.1016/j.ecoenv.2022.113732] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The indiscriminate use of deltamethrin in agriculture and aquaculture can lead to residues increased in many regions, which poses negative impacts on intestinal health of aquatic organisms. Although the potential toxicity of deltamethrin have recently attracted attention, the comprehensive studies on intestinal injuries after chronic deltamethrin exposure remain poorly understood. Herein, in a 28-day chronic toxicity test, crucian carp expose to different concentrations of deltamethrin (0, 0.3, and 0.6 μg/L) were used as the research object. We found that the morphology changes and increased goblet cells in intestinal tissue, and the extent of tissue injury increased along with the increasing exposure dose of deltamethrin. Additionally, the genes expression of antioxidant activity (Cu/Zn superoxide dismutase (Cu-Zn SOD), glutathione peroxidase 1 (GPX1), and catalase (CAT)), inflammatory response (tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin 1 beta (IL-1β)), and tight junctions (Claudin 12 (CLDN12), and tight junction protein 1 (ZO-1)) dramatically increased. Meanwhile, the apoptosis and autophagy process were triggered through caspase-9 cascade and autophagy related 5 (ATG5)- autophagy related 12 (ATG12) conjugate. Besides, chronic deltamethrin exposure increased the amount of Proteobacteria and Verrucomicrobiota, while decreased Fusobacteriota abundance, resulting in intestinal microbiota function disorders. In summary, our results highlight that chronic exposure to deltamethrin cause serious intestinal toxicity and results in physiological changes and intestinal flora disturbances.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha 410153, China.
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha 410153, China.
| |
Collapse
|
21
|
Li M, Wu X, Zou J, Lai Y, Niu X, Chen X, Kong Y, Wang G. Dietary α-lipoic acid alleviates deltamethrin-induced immunosuppression and oxidative stress in northern snakehead (Channa argus) via Nrf2/NF-κB signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 127:228-237. [PMID: 35738487 DOI: 10.1016/j.fsi.2022.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The goal of the study was to determine the ameliorative effects of dietary alpha-lipoic acid (α-LA) on deltamethrin (DEL)-induced immunosuppression and oxidative stress in northern snakehead (Channa argus). The northern snakeheads (15.38 ± 0.09 g) were exposed to DEL (0.242 μg/L) and fed with diets supplemented α-LA at 300, 600, and 900 mg/kg. After the 28-day exposure test, we obtained the following results: i) α-LA alleviates DEL-induced liver injury by reversing the increase of the serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and liver cytochrome P450 enzymes (Cytochrome P450 (cyp)1a and cyp1b) expression levels. ii) α-LA can reverse the DEL-induced reduction of serum complement 4 (C4), C3, immunoglobulin M (IgM), and lysozyme (LYS) levels and the increase of liver and intestine nuclear factor kappa B (nf-κb) p65, tumor necrosis factor (tnf)-α, interleukin (il)-1β, il-8, and il-6 gene expressions, while il-10 expression levels showed the opposite result. iii) α-LA reversed the reduction of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione-S-transferase (GST) and glutathione peroxidase (GSH-Px) levels in the liver and intestine induced by DEL, while malondialdehyde (MDA) showed the opposite result. iv) α-LA reversed the reduction of Cu/Zn sod, nuclear factor erythroid 2-related factor 2 (nrf2), NAD (P)H: quinone oxidoreductase (nqo)1, and heme oxygenase (ho)-1 antioxidant gene expression levels in the liver and intestine induced by DEL. Therefore, our study indicated that optimal α-LA (600 mg/kg) could attenuate DEL-induced toxicity (including liver damage, immunotoxicity, and oxidative stress) in northern snakehead via Nrf2/NF-κB signaling pathway. This is the first research that explores the alleviated effects of α-LA on DEL-induced toxicity damage in fish. This study provides a positive measure to reduce the toxicity damage caused by DEL to aquatic animals, and provides a theoretical basis for exploring the regulation mechanism of α-LA in toxic substances.
Collapse
Affiliation(s)
- Min Li
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xueqin Wu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Jixing Zou
- South China Agricultural University, College of Marine Sciences, Guangzhou, 510642, China
| | - Yingqian Lai
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xiaotian Niu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xiumei Chen
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yidi Kong
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China.
| | - Guiqin Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China.
| |
Collapse
|
22
|
Yang Y, Zhu X, Huang Y, Zhang H, Liu Y, Xu N, Fu G, Ai X. RNA-Seq and 16S rRNA Analysis Revealed the Effect of Deltamethrin on Channel Catfish in the Early Stage of Acute Exposure. Front Immunol 2022; 13:916100. [PMID: 35747138 PMCID: PMC9211022 DOI: 10.3389/fimmu.2022.916100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Deltamethrin (Del) is a widely used pyrethroid insecticide and a dangerous material that has brought serious problems to the healthy breeding of aquatic animals. However, the toxicological mechanisms of Del on channel catfish remain unclear. In the present study, we exposed channel catfish to 0, 0.5, and 5 μg/L Del for 6 h, and analyzed the changes in histopathology, trunk kidney transcriptome, and intestinal microbiota composition. The pathological analyses showed that a high concentration of Del damaged the intestine and trunk kidney of channel catfish in the early stage. The transcriptome analysis detected 32 and 1837 differentially expressed genes (DEGs) in channel catfish trunk kidneys after exposure to 0.5 and 5 μg/L Del, respectively. Moreover, the KEGG pathway and GO enrichment analyses showed that the apoptosis signaling pathway was significantly enriched, and apoptosis-related DEGs, including cathepsin L, p53, Bax, and caspase-3, were also detected. These results suggested that apoptosis occurs in the trunk kidney of channel catfish in the early stage of acute exposure to Del. We also detected some DEGs and signaling pathways related to immunity and drug metabolism, indicating that early exposure to Del can lead to immunotoxicity and metabolic disorder of channel catfish, which increases the risk of pathogenic infections and energy metabolism disorders. Additionally, 16S rRNA gene sequencing showed that the composition of the intestinal microbiome significantly changed in channel catfish treated with Del. At the phylum level, the abundance of Firmicutes, Fusobacteria, and Actinobacteria significantly decreased in the early stage of Del exposure. At the genus level, the abundance of Romboutsia, Lactobacillus, and Cetobacterium decreased after Del exposure. Overall, early exposure to Del can lead to tissue damage, metabolic disorder, immunotoxicity, and apoptosis in channel catfish, and affect the composition of its intestinal microbiota. Herein, we clarified the toxic effects of Del on channel catfish in the early stage of exposure and explored why fish under Del stress are more vulnerable to microbial infections and slow growth.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Guihong Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|