1
|
Hasan M, Sarker MN, Jabin T, Sarker S, Ahmed S, Abdullah-Al-Shoeb M, Hossain T. Pathogenic single nucleotide polymorphisms in RhoA gene: Insights into structural and functional impacts on RhoA-PLD1 interaction through molecular dynamics simulation. Curr Res Struct Biol 2024; 8:100159. [PMID: 39698059 PMCID: PMC11653153 DOI: 10.1016/j.crstbi.2024.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/03/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Molecular switches serve as key regulators of biological systems by acting as one of the crucial driving forces in the initiation of signal transduction pathway cascades. The Ras homolog gene family member A (RhoA) is one of the molecular switches that binds with GTP in order to cycle between an active GTP-bound state and an inactive GDP-bound state. Any aberrance in control over this circuit, particularly due to any perturbation in switching, leads to the development of different pathogenicity. Consequently, the single nucleotide polymorphisms (SNPs) within the RhoA gene, especially deleterious genetic variations, are crucial to study to forecast structural alteration and their functional impacts in light of disease onset. In this comprehensive study, we employed a range of computational tools to screen the deleterious SNPs of RhoA from 207 nonsynonymous SNPs (nsSNPs). By utilizing 7 distinct tools for further analysis, 8 common deleterious SNPs were sorted, among them 5 nsSNPs (V9G, G17E, E40K, A61T, F171L) were found to be in the highly conserved regions, with E40K and A61T at G2 and G3 motif of the GTP-binding domain respectively, indicating potential perturbation in GTP/GDP binding ability of the protein. RhoA-GDP complex interacts with the enzyme phospholipase, specifically PLD1, to regulate different cellular activities. PLD1 is also a crucial regulator of thrombosis and cancer. In that line of focus, our initial structural analysis of Y66H, A61T, G17E, I86N, and I151T mutations of RhoA revealed remarkable decreased hydrophobicity from which we further filtered out G17E and I86N which may have potential impact on the RhoA-GDP-PLD1 complex. Intriguingly, the comparative 250 ns (ns) molecular dynamics (MD) simulation of these two mutated complexes revealed overall structural instability and altered interaction patterns. Therefore, further investigation into these deleterious mutations with in vitro and in vivo studies could lead to the identification of potential biomarkers in terms of different pathogenesis and could also be utilized in personalized therapeutic targets in the long run.
Collapse
Affiliation(s)
| | | | | | - Saifuddin Sarker
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shamim Ahmed
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Abdullah-Al-Shoeb
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
2
|
Yi LY, Hsieh HH, Lin ZQ, Hung KF, Sun YC. Exploring the Role of ROCK Inhibition in Corneal Edema Through Crosstalk Between Epithelial and Endothelial Cells. J Ophthalmol 2024; 2024:9381303. [PMID: 39534682 PMCID: PMC11557173 DOI: 10.1155/2024/9381303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The maintenance of corneal transparency and normal vision is dependent on preservation of epithelial and endothelial cell layer homeostases. Different types of corneal injury can induce swelling and losses in transparency. Fuchs endothelial corneal dystrophy (FECD) is one type of injury that is commonly treated with rho-associated coiled-coil-containing protein kinase (ROCK) inhibitors. While their clinical benefit is apparent, certain aspects of their mechanism of action require clarification. Specifically, although topical eye drops containing ROCK inhibitors have been employed to treat corneal endothelial dysfunction-associated corneal edema, it remains unclear whether interactions between both corneal epithelial and endothelial cell contribute to mitigating clinical signs that compromise normal vision. To address this question, we first review the intricate ROCK signaling pathways and their role in modulating a variety of functions that are related to the maintenance of corneal transparency and normal vision. We also review the results of ongoing clinical trials employing current FDA-approved ROCK inhibitors, highlighting the prominent role of Y-27632 in the treatment of a variety of ocular conditions, particularly FECD, and its promising results in reversing losses in normal vision through facilitating cell proliferation and suppressing apoptosis. This review shows that the ROCK inhibitor clinical benefit is affected by their interactions between the epithelium and the endothelium. This realization makes it likely that ROCK inhibitors will be approved for use in a clinical setting to treat FECD.
Collapse
Affiliation(s)
- Lieh-Yu Yi
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Medical Education, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hsiu-Hui Hsieh
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Zhi-Qian Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Sun
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
3
|
Sajib MS, Zahra FT, Lamprou M, Akwii RG, Park JH, Osorio M, Tullar P, Doci CL, Zhang C, Huveneers S, Van Buul JD, Wang MH, Markiewski MM, Srivastava SK, Zheng Y, Gutkind JS, Hu J, Bickel U, Maeda DY, Zebala JA, Lionakis MS, Trasti S, Mikelis CM. Tumor-induced endothelial RhoA activation mediates tumor cell transendothelial migration and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614304. [PMID: 39372784 PMCID: PMC11451620 DOI: 10.1101/2024.09.22.614304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endothelial barrier plays an active role in transendothelial tumor cell migration during metastasis, however, the endothelial regulatory elements of this step remain obscure. Here we show that endothelial RhoA activation is a determining factor during this process. Breast tumor cell-induced endothelial RhoA activation is the combined outcome of paracrine IL-8-dependent and cell-to-cell contact β 1 integrin-mediated mechanisms, with elements of this pathway correlating with clinical data. Endothelial-specific RhoA blockade or in vivo deficiency inhibited the transendothelial migration and metastatic potential of human breast tumor and three murine syngeneic tumor cell lines, similar to the pharmacological blockade of the downstream RhoA pathway. These findings highlight endothelial RhoA as a potent, universal target in the tumor microenvironment for anti-metastatic treatment of solid tumors.
Collapse
|
4
|
Yoshida S, Yoshida T, Inukai K, Kato K, Yura Y, Hattori T, Enomoto A, Ohashi K, Okumura T, Ouchi N, Kawase H, Wettschureck N, Offermanns S, Murohara T, Takefuji M. Protein kinase N promotes cardiac fibrosis in heart failure by fibroblast-to-myofibroblast conversion. Nat Commun 2024; 15:7638. [PMID: 39266515 PMCID: PMC11392935 DOI: 10.1038/s41467-024-52068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Chronic fibrotic tissue disrupts various organ functions. Despite significant advances in therapies, mortality and morbidity due to heart failure remain high, resulting in poor quality of life. Beyond the cardiomyocyte-centric view of heart failure, it is now accepted that alterations in the interstitial extracellular matrix (ECM) also play a major role in the development of heart failure. Here, we show that protein kinase N (PKN) is expressed in cardiac fibroblasts. Furthermore, PKN mediates the conversion of fibroblasts into myofibroblasts, which plays a central role in secreting large amounts of ECM proteins via p38 phosphorylation signaling. Fibroblast-specific deletion of PKN led to a reduction of myocardial fibrotic changes and cardiac dysfunction in mice models of ischemia-reperfusion or heart failure with preserved ejection fraction. Our results indicate that PKN is a therapeutic target for cardiac fibrosis in heart failure.
Collapse
Affiliation(s)
- Satoya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tatsuya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Kohei Inukai
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yoshimitsu Yura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tomoki Hattori
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Haruya Kawase
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan.
| |
Collapse
|
5
|
Zeng Y, Lockhart AC, Jin RU. The preclinical discovery and development of zolbetuximab for the treatment of gastric cancer. Expert Opin Drug Discov 2024; 19:873-886. [PMID: 38919123 DOI: 10.1080/17460441.2024.2370332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Gastric cancer remains a formidable challenge in oncology with high mortality rates and few advancements in treatment. Claudin-18.2 (CLDN18.2) is a tight junction protein primarily expressed in the stomach and is frequently overexpressed in certain subsets of gastric cancers. Targeting CLDN18.2 with monoclonal antibodies, such as zolbetuximab (IMAB362), has shown promising efficacy results in combination with chemotherapy. AREAS COVERED The molecular cell biology of CLDN18.2 is discussed along with studies demonstrating the utility of CLDN18.2 expression as a biomarker and therapeutic target. Important clinical studies are reviewed, including Phase III trials, SPOTLIGHT and GLOW, which demonstrate the efficacy of zolbetuximab in combination with chemotherapy in patients with CLDN18.2-positive advanced gastric cancer. EXPERT OPINION CLDN18.2 is involved in gastric differentiation through maintenance of epithelial barrier function and coordination of signaling pathways, and its expression in gastric cancers reflects a 'gastric differentiation' program. Targeting Claudin-18.2 represents the first gastric cancer specific 'targeted' treatment. Further studies are needed to determine its role within current gastric cancer treatment sequencing, including HER2-targeted therapies and immunotherapies. Management strategies will also be needed to better mitigate zolbetuximab-related treatment side effects, including gastrointestinal (GI) toxicities.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - A Craig Lockhart
- Division of Hematology/Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA
| |
Collapse
|
6
|
Artuyants A, Guo G, Flinterman M, Middleditch M, Jacob B, Lee K, Vella L, Su H, Wilson M, Eva L, Shelling AN, Blenkiron C. The tumour-derived extracellular vesicle proteome varies by endometrial cancer histology and is confounded by an obesogenic environment. Proteomics 2024; 24:e2300055. [PMID: 38644352 DOI: 10.1002/pmic.202300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups-low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)-identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8-1291.0 µg protein: 1.38 × 1011-1.10 × 1012 particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).
Collapse
Affiliation(s)
- Anastasiia Artuyants
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - George Guo
- Department of Physiology in the School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Mass Spectrometry Hub, The University of Auckland, Auckland, New Zealand
| | - Marcella Flinterman
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- Technical Services, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Bincy Jacob
- Centre of eResearch, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Kate Lee
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Laura Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Wilson
- Cancer and Blood, Auckland City Hospital, Auckland, New Zealand
- Department of Oncology, The University of Auckland, Auckland, New Zealand
| | - Lois Eva
- Department of Gynaecological Oncology, Auckland City Hospital, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Centre for Cancer Research, The University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Schneider S, Wirth C, Jank T, Hunte C, Aktories K. Tyrosine-modifying glycosylation by Yersinia effectors. J Biol Chem 2024; 300:107331. [PMID: 38703997 PMCID: PMC11152714 DOI: 10.1016/j.jbc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Silvia Schneider
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.
| | - Thomas Jank
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Carola Hunte
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Akamine T, Terabayashi T, Sasaki T, Hayashi R, Abe I, Hirayama F, Nureki SI, Ikawa M, Miyata H, Tokunaga A, Kobayashi T, Hanada K, Thumkeo D, Narumiya S, Ishizaki T. Conditional deficiency of Rho-associated kinases disrupts endothelial cell junctions and impairs respiratory function in adult mice. FEBS Open Bio 2024; 14:906-921. [PMID: 38604990 PMCID: PMC11148122 DOI: 10.1002/2211-5463.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown. In this study, we aimed to examine the roles of ROCK1 and ROCK2 proteins in normal adult mice. Tamoxifen (TAM)-inducible ROCK1 and ROCK2 single and double knockout mice (ROCK1flox/flox and/or ROCK2flox/flox;Ubc-CreERT2) were generated and administered a 5-day course of TAM. No deaths occurred in either of the single knockout strains, whereas all of the ROCK1/ROCK2 double conditional knockout mice (DcKO) had died by Day 11 following the TAM course. DcKO mice exhibited increased lung tissue vascular permeability, thickening of alveolar walls, and a decrease in percutaneous oxygen saturation compared with noninducible ROCK1/ROCK2 double-floxed control mice. On Day 3 post-TAM, there was a decrease in phalloidin staining in the lungs in DcKO mice. On Day 5 post-TAM, immunohistochemical analysis also revealed reduced staining for vascular endothelial (VE)-cadherin, β-catenin, and p120-catenin at cell-cell contact sites in vascular endothelial cells in DcKO mice. Additionally, VE-cadherin/β-catenin complexes were decreased in DcKO mice, indicating that ROCK proteins play a crucial role in maintaining lung function by regulating cell-cell adhesion.
Collapse
Affiliation(s)
- Takahiro Akamine
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takako Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Riku Hayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu, Japan
| | - Fumihiro Hirayama
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shin-Ichi Nureki
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Suita, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Suita, Japan
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Eiheiji-cho, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
9
|
Amstislavsky S, Brusentsev E, Lebedeva D, Rozhkova I, Rakhmanova T, Okotrub S, Kozeneva V, Igonina T, Babochkina T. Effect of cryopreservation on Odc1 and RhoA genes expression in diapausing mouse blastocysts. Reprod Domest Anim 2024; 59:e14576. [PMID: 38712681 DOI: 10.1111/rda.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
The possibility of embryo cryopreservation is important for applying the genome resource banking (GRB) concept to those mammalian species that exhibit embryonal diapause in their early development. Odc1 encodes ODC1, which is a key enzyme in polyamine synthesis. RhoA is an essential part of Rho/ROCK system. Both Odc1 and RhoA play an important role in preimplantation embryo development. Studying these systems in mammalian species with obligate or experimentally designed embryonic diapause may provide insight into the molecular machinery underlying embryo dormancy and re-activation. The effect of cryopreservation procedures on the expression of the Odc1 and RhoA in diapausing embryos has not been properly studied yet. The purpose of this work is to address the possibility of cryopreservation diapausing embryos and to estimate the expression of the Odc1 and RhoA genes in diapausing and non-diapausing embryos before and after freeze-thaw procedures using ovariectomized progesterone treated mice as a model. Both diapausing and non-diapausing in vivo-derived embryos continued their development in vitro after freezing-thawing as evidenced by blastocoel re-expansion. Although cryopreservation dramatically decreased the expression of the Odc1 and RhoA genes in non-diapausing embryos, no such effects have been observed in diapausing embryos where these genes were already at the low level before freeze-thaw procedures. Future studies may attempt to facilitate the re-activation of diapausing embryos, for example frozen-thawed ones, specifically targeting Odc1 or Rho/ROCK system.
Collapse
Affiliation(s)
- Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Eugeny Brusentsev
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Daria Lebedeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Irina Rozhkova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Tamara Rakhmanova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana Okotrub
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Varvara Kozeneva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Igonina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Babochkina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Song L, Shi X, Kovacs L, Han W, John J, Barman SA, Dong Z, Lucas R, Fulton DJR, Verin AD, Su Y. Calpain Promotes LPS-induced Lung Endothelial Barrier Dysfunction via Cleavage of Talin. Am J Respir Cell Mol Biol 2023; 69:678-688. [PMID: 37639326 PMCID: PMC10704117 DOI: 10.1165/rcmb.2023-0009oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Acute lung injury (ALI) is characterized by lung vascular endothelial cell (EC) barrier compromise resulting in increased endothelial permeability and pulmonary edema. The infection of gram-negative bacteria that produce toxins like LPS is one of the major causes of ALI. LPS activates Toll-like receptor 4, leading to cytoskeleton reorganization, resulting in lung endothelial barrier disruption and pulmonary edema in ALI. However, the signaling pathways that lead to the cytoskeleton reorganization and lung microvascular EC barrier disruption remain largely unexplored. Here we show that LPS induces calpain activation and talin cleavage into head and rod domains and that inhibition of calpain attenuates talin cleavage, RhoA activation, and pulmonary EC barrier disruption in LPS-treated human lung microvascular ECs in vitro and lung EC barrier disruption and pulmonary edema induced by LPS in ALI in vivo. Moreover, overexpression of calpain causes talin cleavage and RhoA activation, myosin light chain (MLC) phosphorylation, and increases in actin stress fiber formation. Furthermore, knockdown of talin attenuates LPS-induced RhoA activation and MLC phosphorylation and increased stress fiber formation and mitigates LPS-induced lung microvascular endothelial barrier disruption. Additionally, overexpression of talin head and rod domains increases RhoA activation, MLC phosphorylation, and stress fiber formation and enhances lung endothelial barrier disruption. Finally, overexpression of cleavage-resistant talin mutant reduces LPS-induced increases in MLC phosphorylation in human lung microvascular ECs and attenuates LPS-induced lung microvascular endothelial barrier disruption. These results provide the first evidence that calpain mediates LPS-induced lung microvascular endothelial barrier disruption in ALI via cleavage of talin.
Collapse
Affiliation(s)
| | | | - Laszlo Kovacs
- Department of Pharmacology & Toxicology
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | | | - Joseph John
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | | | - Zheng Dong
- Department of Cellular Biology and Anatomy, and
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - David J. R. Fulton
- Department of Pharmacology & Toxicology
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - Alexander D. Verin
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
| | - Yunchao Su
- Department of Pharmacology & Toxicology
- Department of Medicine
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia; and
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
12
|
Gomez F, Fisk B, McMichael JF, Mosior M, Foltz JA, Skidmore ZL, Duncavage EJ, Miller CA, Abel H, Li YS, Russler-Germain DA, Krysiak K, Watkins MP, Ramirez CA, Schmidt A, Martins Rodrigues F, Trani L, Khanna A, Wagner JA, Fulton RS, Fronick CC, O'Laughlin MD, Schappe T, Cashen AF, Mehta-Shah N, Kahl BS, Walker J, Bartlett NL, Griffith M, Fehniger TA, Griffith OL. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2312-2330. [PMID: 37910143 PMCID: PMC10648575 DOI: 10.1158/2767-9764.crc-23-0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Bryan Fisk
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joshua F. McMichael
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Matthew Mosior
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jennifer A. Foltz
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A. Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Haley Abel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Shan Li
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - David A. Russler-Germain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marcus P. Watkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Cody A. Ramirez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Alina Schmidt
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lee Trani
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Julia A. Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Robert S. Fulton
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Catrina C. Fronick
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Michelle D. O'Laughlin
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Amanda F. Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Neha Mehta-Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brad S. Kahl
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Walker
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nancy L. Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Todd A. Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
13
|
Malik HS, Magnotti F, Loeven NA, Delgado JM, Kettenbach AN, Henry T, Bliska JB. Phosphoprotein phosphatase activity positively regulates oligomeric pyrin to trigger inflammasome assembly in phagocytes. mBio 2023; 14:e0206623. [PMID: 37787552 PMCID: PMC10653879 DOI: 10.1128/mbio.02066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Pyrin, a unique cytosolic receptor, initiates inflammatory responses against RhoA-inactivating bacterial toxins and effectors like Yersinia's YopE and YopT. Understanding pyrin regulation is crucial due to its association with dysregulated inflammatory responses, including Familial Mediterranean Fever (FMF), linked to pyrin gene mutations. FMF mutations historically acted as a defense mechanism against plague. Negative regulation of pyrin through PKN phosphorylation is well established, with Yersinia using the YopM effector to promote pyrin phosphorylation and counteract its activity. This study highlights the importance of phosphoprotein phosphatase activity in positively regulating pyrin inflammasome assembly in phagocytic cells of humans and mice. Oligomeric murine pyrin has S205 phosphorylated before inflammasome assembly, and this study implicates the dephosphorylation of murine pyrin S205 by two catalytic subunits of PP2A in macrophages. These findings offer insights for investigating the regulation of oligomeric pyrin and the balance of kinase and phosphatase activity in pyrin-associated infectious and autoinflammatory diseases.
Collapse
Affiliation(s)
- Haleema S. Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Flora Magnotti
- CIRI, Centre International de Recherche en Infectiologie, Inserm U111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Nicole A. Loeven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jose M. Delgado
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Lebanon, New Hampshire, USA
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Hassan MDS, Razali N, Abu Bakar AS, Abu Hanipah NF, Agarwal R. Connective tissue growth factor: Role in trabecular meshwork remodeling and intraocular pressure lowering. Exp Biol Med (Maywood) 2023; 248:1425-1436. [PMID: 37873757 PMCID: PMC10657592 DOI: 10.1177/15353702231199466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-β) and is regulated via TGF-β SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-β avoids the consequences of interfering with the pleotropic effects of TGF-β. Both CTGF and its upstream mediator, TGF-β, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.
Collapse
Affiliation(s)
| | - Norhafiza Razali
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Amy Suzana Abu Bakar
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Center for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Noor Fahitah Abu Hanipah
- Institute of Medical Molecular Biotechnology (IMMB), Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), 47000 Sungai Buloh, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University (IMU), 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Jungmann C, Pyzik SC, Packeiser EM, Körber H, Hoppe S, Mazzuoli-Weber G, Goericke-Pesch S. The In Vitro Contractile Response of Canine Pregnant Myometrium to Oxytocin and Denaverine Hydrochloride. BIOLOGY 2023; 12:860. [PMID: 37372145 DOI: 10.3390/biology12060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
In pregnant bitches, the response to oxytocin and denaverine hydrochloride in dystocia management is usually poor. To better understand the effect of both drugs on myometrial contractility, the circular and longitudinal muscle layers were examined in an organ bath. For each layer, three myometrial strips were stimulated twice, each with one of three oxytocin concentrations. The effect of denaverine hydrochloride was studied once in direct combination with oxytocin and alone with subsequent oxytocin administration. Contractions were recorded and evaluated for average amplitude, mean force, area under the curve (AUC), and frequency. Effects of different treatments were analyzed and compared within and between layers. In the circular layer, oxytocin significantly increased amplitude and mean force compared to untreated controls regardless of stimulation cycles or concentrations. In both layers, high oxytocin concentrations caused tonic contractions, while the lowest concentration created regular rhythmic contractions. Longitudinal layer tissue responded to oxytocin with a significantly decreased contractility when stimulated twice, presumably a sign of desensitization. Denaverine hydrochloride neither affected oxytocin induced contractions nor showed a priming effect to subsequent oxytocin. Thus, no benefit of denaverine hydrochloride on myometrial contractility was found in the organ bath. Our results suggest a better efficiency of low-dose oxytocin in canine dystocia management.
Collapse
Affiliation(s)
- Carolin Jungmann
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | | | - Eva-Maria Packeiser
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Hanna Körber
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Susanne Hoppe
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Sandra Goericke-Pesch
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
16
|
Ali R, Sultan A, Ishrat R, Haque S, Khan NJ, Prieto MA. Identification of New Key Genes and Their Association with Breast Cancer Occurrence and Poor Survival Using In Silico and In Vitro Methods. Biomedicines 2023; 11:biomedicines11051271. [PMID: 37238942 DOI: 10.3390/biomedicines11051271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer is one of the most prevalent types of cancer diagnosed globally and continues to have a significant impact on the global number of cancer deaths. Despite all efforts of epidemiological and experimental research, therapeutic concepts in cancer are still unsatisfactory. Gene expression datasets are widely used to discover the new biomarkers and molecular therapeutic targets in diseases. In the present study, we analyzed four datasets using R packages with accession number GSE29044, GSE42568, GSE89116, and GSE109169 retrieved from NCBI-GEO and differential expressed genes (DEGs) were identified. Protein-protein interaction (PPI) network was constructed to screen the key genes. Subsequently, the GO function and KEGG pathways were analyzed to determine the biological function of key genes. Expression profile of key genes was validated in MCF-7 and MDA-MB-231 human breast cancer cell lines using qRT-PCR. Overall expression level and stage wise expression pattern of key genes was determined by GEPIA. The bc-GenExMiner was used to compare expression level of genes among groups of patients with respect to age factor. OncoLnc was used to analyze the effect of expression levels of LAMA2, TIMP4, and TMTC1 on the survival of breast cancer patients. We identified nine key genes, of which COL11A1, MMP11, and COL10A1 were found up-regulated and PCOLCE2, LAMA2, TMTC1, ADAMTS5, TIMP4, and RSPO3 were found down-regulated. Similar expression pattern of seven among nine genes (except ADAMTS5 and RSPO3) was observed in MCF-7 and MDA-MB-231 cells. Further, we found that LAMA2, TMTC1, and TIMP4 were significantly expressed among different age groups of patients. LAMA2 and TIMP4 were found significantly associated and TMTC1 was found less correlated with breast cancer occurrence. We found that the expression level of LAMA2, TIMP4, and TMTC1 was abnormal in all TCGA tumors and significantly associated with poor survival.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Armiya Sultan
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nida Jamil Khan
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| |
Collapse
|
17
|
Cai S, Hu B, Wang X, Liu T, Lin Z, Tong X, Xu R, Chen M, Duo T, Zhu Q, Liang Z, Li E, Chen Y, Li J, Liu X, Mo D. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig. BMC Biol 2023; 21:19. [PMID: 36726129 PMCID: PMC9893630 DOI: 10.1186/s12915-023-01519-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Skeletal muscle development is a multistep process whose understanding is central in a broad range of fields and applications, from the potential medical value to human society, to its economic value associated with improvement of agricultural animals. Skeletal muscle initiates in the somites, with muscle precursor cells generated in the dermomyotome and dermomyotome-derived myotome before muscle differentiation ensues, a developmentally regulated process that is well characterized in model organisms. However, the regulation of skeletal muscle ontogeny during embryonic development remains poorly defined in farm animals, for instance in pig. Here, we profiled gene expression and chromatin accessibility in developing pig somites and myotomes at single-cell resolution. RESULTS We identified myogenic cells and other cell types and constructed a differentiation trajectory of pig skeletal muscle ontogeny. Along this trajectory, the dynamic changes in gene expression and chromatin accessibility coincided with the activities of distinct cell type-specific transcription factors. Some novel genes upregulated along the differentiation trajectory showed higher expression levels in muscular dystrophy mice than that in healthy mice, suggesting their involvement in myogenesis. Integrative analysis of chromatin accessibility, gene expression data, and in vitro experiments identified EGR1 and RHOB as critical regulators of pig embryonic myogenesis. CONCLUSIONS Collectively, our results enhance our understanding of the molecular and cellular dynamics in pig embryonic myogenesis and offer a high-quality resource for the further study of pig skeletal muscle development and human muscle disease.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Bin Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tongni Liu
- Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Zhuhu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Enru Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Jianhao Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
18
|
Chumki SA, van den Goor LM, Hall BN, Miller AL. p115RhoGEF activates RhoA to support tight junction maintenance and remodeling. Mol Biol Cell 2022; 33:ar136. [PMID: 36200892 PMCID: PMC9727809 DOI: 10.1091/mbc.e22-06-0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, epithelial cell-cell junctions must rapidly remodel to maintain barrier function as cells undergo dynamic shape-change events. Consequently, localized leaks sometimes arise within the tight junction (TJ) barrier, which are repaired by short-lived activations of RhoA, called "Rho flares." However, how RhoA is activated at leak sites remains unknown. Here we asked which guanine nucleotide exchange factor (GEF) localizes to TJs to initiate Rho activity at Rho flares. We find that p115RhoGEF locally activates Rho flares at sites of TJ loss. Knockdown of p115RhoGEF leads to diminished Rho flare intensity and impaired TJ remodeling. p115RhoGEF knockdown also decreases junctional active RhoA levels, thus compromising the apical actomyosin array and junctional complex. Furthermore, p115RhoGEF is necessary to promote local leak repair to maintain TJ barrier function. In all, our work demonstrates a central role for p115RhoGEF in activating junctional RhoA to preserve barrier function and direct local TJ remodeling.
Collapse
Affiliation(s)
- Shahana A. Chumki
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Lotte M. van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin N. Hall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109,*Address correspondence to: Ann L. Miller ()
| |
Collapse
|
19
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
20
|
Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol 2022; 86:566-582. [PMID: 34933124 DOI: 10.1016/j.semcancer.2021.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is a major source of global cancer mortality with limited treatment options and poor patient survival. As our molecular understanding of gastric cancer improves, we are now beginning to recognize that these cancers are a heterogeneous group of diseases with incredibly unique pathogeneses and active oncogenic pathways. It is this molecular diversity and oftentimes lack of common oncogenic driver mutations that bestow the poor treatment responses that oncologists often face when treating gastric cancer. In this review, we will examine the treatments for gastric cancer including up-to-date molecularly targeted therapies and immunotherapies. We will then review the molecular subtypes of gastric cancer to highlight the diversity seen in this disease. We will then shift our discussion to basic science and gastric cancer mouse models as tools to study gastric cancer molecular heterogeneity. Furthermore, we will elaborate on a molecular process termed paligenosis and the cyclical hit model as key events during gastric cancer initiation that impart nondividing mature differentiated cells the ability to re-enter the cell cycle and accumulate disparate genomic mutations during years of chronic inflammation and injury. As our basic science understanding of gastric cancer advances, so too must our translational and clinical efforts. We will end with a discussion regarding single-cell molecular analyses and cancer organoid technologies as future translational avenues to advance our understanding of gastric cancer heterogeneity and to design precision-based gastric cancer treatments. Elucidation of interpatient and intratumor heterogeneity is the only way to advance future cancer prevention, diagnoses and treatment.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
21
|
Mesnage R, Ferguson S, Brandsma I, Moelijker N, Zhang G, Mazzacuva F, Caldwell A, Halket J, Antoniou MN. The surfactant co-formulant POEA in the glyphosate-based herbicide RangerPro but not glyphosate alone causes necrosis in Caco-2 and HepG2 human cell lines and ER stress in the ToxTracker assay. Food Chem Toxicol 2022; 168:113380. [PMID: 36028061 DOI: 10.1016/j.fct.2022.113380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
The toxicity of co-formulants present in glyphosate-based herbicides (GBHs) has been widely discussed leading to the European Union banning the polyoxyethylene tallow amine (POEA). We identified the most commonly used POEA, known as POE-15 tallow amine (POE-15), in the widely used US GBH RangerPro. Cytotoxicity assays using human intestinal epithelial Caco-2 and hepatocyte HepG2 cell lines showed that RangerPro and POE-15 are far more cytotoxic than glyphosate alone. RangerPro and POE-15 but not glyphosate caused cell necrosis in both cell lines, and that glyphosate and RangerPro but not POE-15 caused oxidative stress in HepG2 cells. We further tested these pesticide ingredients in the ToxTracker assay, a system used to evaluate a compound's carcinogenic potential, to assess their capability for inducing DNA damage, oxidative stress and an unfolded protein response (endoplasmic reticulum, ER stress). RangerPro and POE-15 but not glyphosate gave rise to ER stress. We conclude that the toxicity resulting from RangerPro exposure is thus multifactorial involving ER stress caused by POE-15 along with oxidative stress caused by glyphosate. Our observations reinforce the need to test both co-formulants and active ingredients of commercial pesticides to inform the enactment of more appropriate regulation and thus better public and environmental protection.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Scarlett Ferguson
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | | | | | - Gaonan Zhang
- Toxys, De Limes 7, 2342 DH, Oegstgeest, the Netherlands
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Anna Caldwell
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - John Halket
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
22
|
Zhang H, Cai B, Liu Y, Chong Y, Matsunaga A, Mori SF, Fang X, Kitamura E, Chang CS, Wang P, Cowell JK, Hu T. RHOA-regulated IGFBP2 promotes invasion and drives progression of BCR-ABL1 chronic myeloid leukemia. Haematologica 2022; 108:122-134. [PMID: 35833297 PMCID: PMC9827165 DOI: 10.3324/haematol.2022.280757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
The Philadelphia 9;22 chromosome translocation has two common isoforms that are preferentially associated with distinct subtypes of leukemia. The p210 variant is the hallmark of chronic myeloid leukemia (CML) whereas p190 is frequently associated with B-cell acute lymphoblastic leukemia. The only sequence difference between the two isoforms is the guanidine exchange factor domain. This guanidine exchange factor is reported to activate RHO family GTPases in response to diverse extracellular stimuli. It is not clear whether and, if so, how RHOA contributes to progression of p210 CML. Here we show that knockout of RHOA in the K562 and KU812, p210-expressing cell lines leads to suppression of leukemogenesis in animal models in vivo. RNA-sequencing analysis of the mock control and null cells demonstrated a distinct change in the gene expression profile as a result of RHOA deletion, with significant downregulation of genes involved in cell activation and cell adhesion. Cellular analysis revealed that RHOA knockout leads to impaired cell adhesion and migration and, most importantly, the homing ability of leukemia cells to the bone marrow, which may be responsible for the attenuated leukemia progression. We also identified IGFBP2 as an important downstream target of RHOA. Further mechanistic investigation showed that RHOA activation leads to relocation of the serum response factor (SRF) into the nucleus, where it directly activates IGFBP2. Knockout of IGFBP2 in CML cells suppressed cell adhesion/invasion, as well as leukemogenesis in vivo. This elevated IGFBP2 expression was confirmed in primary CML samples. Thus, we demonstrate one mechanism whereby the RHOA-SRF-IGFBP2 signaling axis contributes to the development of leukemia in cells expressing the p210 BCR-ABL1 fusion kinase.
Collapse
Affiliation(s)
- Hualei Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Baohuan Cai
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Liu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yating Chong
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | | | - Xuexiu Fang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | | | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - John K. Cowell
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,J. K. Cowell
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,T. Hu
| |
Collapse
|
23
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
24
|
Ida-Naitoh M, Tokuyama H, Futatsugi K, Yasuda M, Adachi K, Kanda T, Tanabe Y, Wakino S, Itoh H. Proximal-tubule molecular relay from early Protein diaphanous homolog 1 to late Rho-associated protein kinase 1 regulates kidney function in obesity-induced kidney damage. Kidney Int 2022; 102:798-814. [PMID: 35716954 DOI: 10.1016/j.kint.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
The small GTPase protein RhoA has two effectors, ROCK (Rho-associated protein kinase 1) and mDIA1 (Protein diaphanous homolog 1), which cooperate reciprocally. However, temporal regulation of RhoA and its effectors in obesity-induced kidney damage remains unclear. Here, we investigated the role of RhoA activation in the proximal tubules at the early and late stages of obesity-induced kidney damage. In mice, a three week high-fat diet induced proximal tubule hypertrophy and damage without increased albuminuria, and RhoA/mDIA1 activation without ROCK activation. Conversely, a 12- week high-fat diet induced proximal tubule hypertrophy, proximal tubule damage, increased albuminuria, and RhoA/ROCK activation without mDIA1 elevation. Proximal tubule hypertrophy resulting from cell cycle arrest accompanied by downregulation of the multifunctional cyclin-dependent kinase inhibitor p27Kip1 was elicited by RhoA activation. Mice overexpressing proximal tubule-specific and dominant-negative RHOA display amelioration of high-fat diet-induced kidney hypertrophy, cell cycle abnormalities, inflammation, and renal impairment. In human proximal tubules cells, mechanical stretch mimicking hypertrophy activated ROCK, which triggered inflammation. In human kidney samples from normal individuals with a body mass index of about 25, proximal tubule cell size correlated with body mass index, proximal tubule cell damages, and mDIA1 expression. Thus, RhoA activation in proximal tubules is critical for the initiation and progression of obesity-induced kidney damage. Hence, the switch in the downstream RhoA effector in proximal tubule represents a transition from normal to pathogenic kidney adaptation and to body weight gain, leading to obesity-induced kidney damage.
Collapse
Affiliation(s)
- Makiko Ida-Naitoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koji Futatsugi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Marie Yasuda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Keika Adachi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiyuki Tanabe
- Department of Clinical Pharmacology, Yokohama University of Pharmacy, Kanagawa, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
25
|
Díaz E, Febres A, Giammarresi M, Silva A, Vanegas O, Gomes C, Ponte-Sucre A. G Protein-Coupled Receptors as Potential Intercellular Communication Mediators in Trypanosomatidae. Front Cell Infect Microbiol 2022; 12:812848. [PMID: 35651757 PMCID: PMC9149261 DOI: 10.3389/fcimb.2022.812848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Detection and transduction of environmental signals, constitute a prerequisite for successful parasite invasion; i.e., Leishmania transmission, survival, pathogenesis and disease manifestation and dissemination, with diverse molecules functioning as inter-cellular signaling ligands. Receptors [i.e., G protein-coupled receptors (GPCRs)] and their associated transduction mechanisms, well conserved through evolution, specialize in this function. However, canonical GPCR-related signal transduction systems have not been described in Leishmania, although orthologs, with reduced domains and function, have been identified in Trypanosomatidae. These inter-cellular communication means seem to be essential for multicellular and unicellular organism’s survival. GPCRs are flexible in their molecular architecture and may interact with the so-called receptor activity-modifying proteins (RAMPs), which modulate their function, changing GPCRs pharmacology, acting as chaperones and regulating signaling and/or trafficking in a receptor-dependent manner. In the skin, vasoactive- and neuro- peptides released in response to the noxious stimuli represented by the insect bite may trigger parasite physiological responses, for example, chemotaxis. For instance, in Leishmania (V.) braziliensis, sensory [Substance P, SP, chemoattractant] and autonomic [Vasoactive Intestinal Peptide, VIP, and Neuropeptide Y, NPY, chemorepellent] neuropeptides at physiological levels stimulate in vitro effects on parasite taxis. VIP and NPY chemotactic effects are impaired by their corresponding receptor antagonists, suggesting that the stimulated responses might be mediated by putative GPCRs (with essential conserved receptor domains); the effect of SP is blocked by [(D-Pro 2, D-Trp7,9]-Substance P (10-6 M)] suggesting that it might be mediated by neurokinin-1 transmembrane receptors. Additionally, vasoactive molecules like Calcitonin Gene-Related Peptide [CGRP] and Adrenomedullin [AM], exert a chemorepellent effect and increase the expression of a 24 kDa band recognized in western blot analysis by (human-)-RAMP-2 antibodies. In-silico search oriented towards GPCRs-like receptors and signaling cascades detected a RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function, suggesting that in Leishmania, CGRP and AM activities may be modulated by RAMP- (-2) and (-3) homologs. The possible presence of proteins and molecules potentially involved in GPCRs cascades, i.e., RAMPs, signpost conservation of ancient signaling systems associated with responses, fundamental for cell survival, (i.e., taxis and migration) and may constitute an open field for description of pharmacophores against Leishmania parasites.
Collapse
Affiliation(s)
- Emilia Díaz
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Anthony Febres
- Section of Infectious Diseases, Baylor College of Medicine, TX, United States
| | - Michelle Giammarresi
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Adrian Silva
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oriana Vanegas
- Pediatric Gastroenterology, University of Iowa, Iowa City, IA, United States
| | - Carlos Gomes
- Royal Berkshire NHS, Foundation Trust, Light House Lab, Bracknell, United Kingdom
| | - Alicia Ponte-Sucre
- Laboratory of Molecular Physiology, Institute of Experimental Medicine, School of Medicine Luis Razetti, Faculty of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Würzburg, Germany
- *Correspondence: Alicia Ponte-Sucre,
| |
Collapse
|
26
|
Rajasekaran S, Tangavel C, Anand KSSV, Soundararajan DCR, Nayagam SM, Sunmathi R, Raveendran M, Shetty AP, Kanna RM, Pushpa BT. Can Scoliotic Discs Be Controls for Molecular Studies in Intervertebral Disc Research? Insights From Proteomics. Global Spine J 2022; 12:598-609. [PMID: 32945197 PMCID: PMC9109558 DOI: 10.1177/2192568220959038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Proteomic analysis of human intervertebral discs. OBJECTIVES To compare the characters of scoliotic discs and discs from magnetic resonance imaging (MRI)-normal voluntary organ donors controls used in disc research employing proteomics and establish "true controls" that can be utilized for future intervertebral disc (IVD) research. METHODS Eight MRI-normal discs from 8 brain-dead voluntary organ donors (ND) and 8 scoliotic discs (SD) from 3 patients who underwent anterior surgery for adolescent idiopathic scoliosis were subjected to tandem mass spectrometry, and further analysis was performed. RESULTS Mass spectrometry identified a total of 235 proteins in ND and 438 proteins in the SD group. Proteins involved in extracellular matrix integrity (Versican, keratins KRT6A, KRT14, KRT5, and KRT 13A1, A-kinase anchor protein 13, coagulation factor XIII A chain, proteoglycan 4) and proteins involved in transcription and DNA repair (Von Willebrand factor A domain-containing 3B, eukaryotic initiation factor 2B, histone H4, leukocyte cell-derived chemotaxin 2) were found to be downregulated in SD. Inflammatory proteins (C3, C1S), and oxidative stress response proteins (peroxiredoxin-2,6, catalase, myeloperoxidase, apolipoprotein E) were found to be upregulated in SD. These changes were reflected at the pathway level also. CONCLUSION Findings of our study confirm that scoliotic discs have an abundance of inflammatory, oxidative stress response proteins, which are either absent or downregulated in the ND group indicating that scoliotic discs are not pathologically inert. Furthermore, this study has established MRI-normal discs from voluntary organ donors as the "true" control for molecular studies in IVD research.
Collapse
Affiliation(s)
- S. Rajasekaran
- Ganga Hospital, Coimbatore, Tamil
Nadu, India,S. Rajasekaran, Department of Spine Surgery,
Ganga Hospital, 313, Mettupalayam Road, Coimbatore, 641043, Tamil Nadu India.
| | | | | | | | | | - R. Sunmathi
- Ganga Research Centre, Coimbatore,
Tamil Nadu, India
| | - M. Raveendran
- Tamil Nadu Agricultural University,
Coimbatore, Tamil Nadu, India
| | | | | | | |
Collapse
|
27
|
Liu HH, Xu Y, Li CJ, Hsu SJ, Lin XH, Zhang R, Chen J, Chen J, Gao DM, Cui JF, Yang XR, Ren ZG, Chen RX. An SCD1-dependent mechanoresponsive pathway promotes HCC invasion and metastasis through lipid metabolic reprogramming. Mol Ther 2022; 30:2554-2567. [PMID: 35358687 DOI: 10.1016/j.ymthe.2022.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
|
28
|
Takei S, Kawazoe A, Shitara K. The New Era of Immunotherapy in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14041054. [PMID: 35205802 PMCID: PMC8870470 DOI: 10.3390/cancers14041054] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Advanced gastric cancer remains a malignancy with a poor prognosis, with a median survival of about 12–15 months. In recent years, immune checkpoint inhibitors have emerged as a new standard of care for several malignancies, including advanced gastric cancer, and have demonstrated good clinical benefit in some populations. In this review paper, we describe the current status of immunotherapy in gastric cancer, with a focus on molecular and immunological profiles, biomarkers, major clinical trials, and novel immunotherapies. Abstract Immune checkpoint inhibitors (ICIs) such as anti-programmed cell death-1 (PD-1) or programmed cell death ligand-1 (PD-L1) monoclonal antibodies have prolonged survival in various types of malignancies, including advanced gastric cancer (AGC). Nivolumab, a monoclonal anti-PD-1 antibody, showed an improvement in overall survival at a later-line therapy in unselected AGC patients in the ATTRACTION-2 study or in combination with chemotherapy as first-line therapy in the global CheckMate-649 study. Another monoclonal anti-PD-1 antibody, pembrolizumab, showed single agent activity in tumors with high microsatellite instability or high tumor mutational burden. Furthermore, a recent KEYNOTE-811 study demonstrated significant improvement in response rate with pembrolizumab combined with trastuzumab and chemotherapy for HER2-positive AGC. Based on these results, ICIs are now incorporated into standard treatment for AGC patients. As a result of pivotal clinical trials, three anti-PD-1 antibodies were approved for AGC: nivolumab combined with chemotherapy as first-line treatment or nivolumab monotherapy as third- or later-line treatment in Asian countries; pembrolizumab for previously treated microsatellite instability-high (MSI-H) or tumor mutational burden-high AGC, or pembrolizumab combined with trastuzumab and chemotherapy for HER2-positive AGC in the United States; and dostarlimab for previously treated MSI-H AGC in the United States. However, a substantial number of patients have showed resistance to ICIs, highlighting the importance of the better selection of patients or further combined immunotherapy. This review focused on molecular and immunological profiles, pivotal clinical trials of ICIs with related biomarkers, and investigational immunotherapy for AGC.
Collapse
|
29
|
Borst C, Symmank D, Drach M, Weninger W. Cutaneous signs and mechanisms of inflammasomopathies. Ann Rheum Dis 2022; 81:454-465. [PMID: 35039323 DOI: 10.1136/annrheumdis-2021-220977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
The emerging group of autoinflammatory diseases (AIDs) is caused by a dysregulation of the innate immune system while lacking the typical footprint of adaptive immunity. A prominent subgroup of AIDs are inflammasomopathies, which are characterised by periodic flares of cutaneous signs as well as systemic organ involvement and fever. The range of possible skin lesions is vast, ranging from urticarial, erysipelas-like and pustular rashes to erythematous patches, violaceous plaques and eventual necrosis and ulceration. This review provides a structured overview of the pathogenesis and the clinical picture with a focus on dermatological aspects of inflammasomopathies. Current treatment options for these conditions are also discussed.
Collapse
Affiliation(s)
- Carina Borst
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Dörte Symmank
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Mathias Drach
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
30
|
Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest 2021; 131:e145734. [PMID: 34499618 DOI: 10.1172/jci145734] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/01/2021] [Indexed: 01/31/2023] Open
Abstract
Formation of NO by endothelial NOS (eNOS) is a central process in the homeostatic regulation of vascular functions including blood pressure regulation, and fluid shear stress exerted by the flowing blood is a main stimulus of eNOS activity. Previous work has identified several mechanosensing and -transducing processes in endothelial cells, which mediate this process and induce the stimulation of eNOS activity through phosphorylation of the enzyme via various kinases including AKT. How the initial mechanosensing and signaling processes are linked to eNOS phosphorylation is unclear. In human endothelial cells, we demonstrated that protein kinase N2 (PKN2), which is activated by flow through the mechanosensitive cation channel Piezo1 and Gq/G11-mediated signaling, as well as by Ca2+ and phosphoinositide-dependent protein kinase 1 (PDK1), plays a pivotal role in this process. Active PKN2 promoted the phosphorylation of human eNOS at serine 1177 and at a newly identified site, serine 1179. These phosphorylation events additively led to increased eNOS activity. PKN2-mediated eNOS phosphorylation at serine 1177 involved the phosphorylation of AKT synergistically with mTORC2-mediated AKT phosphorylation, whereas active PKN2 directly phosphorylated human eNOS at serine 1179. Mice with induced endothelium-specific deficiency of PKN2 showed strongly reduced flow-induced vasodilation and developed arterial hypertension accompanied by reduced eNOS activation. These results uncover a central mechanism that couples upstream mechanosignaling processes in endothelial cells to the regulation of eNOS-mediated NO formation, vascular tone, and blood pressure.
Collapse
Affiliation(s)
- Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ramesh Chennupati
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Guozheng Liang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta District, Xi'an, China
| | - András Iring
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Laboratory of Molecular Medicine, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| |
Collapse
|
31
|
Mesnage R, Brandsma I, Moelijker N, Zhang G, Antoniou MN. Genotoxicity evaluation of 2,4-D, dicamba and glyphosate alone or in combination with cell reporter assays for DNA damage, oxidative stress and unfolded protein response. Food Chem Toxicol 2021; 157:112601. [PMID: 34626751 DOI: 10.1016/j.fct.2021.112601] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022]
Abstract
The current generation of carcinogenicity tests is often insufficient to predict cancer outcomes from pesticide exposures. In order to facilitate health risk assessment, The International Agency for Research on Cancer identified 10 key characteristics which are commonly exhibited by human carcinogens. The ToxTracker panel of six validated GFP-based mouse embryonic stem reporter cell lines is designed to measure a number of these carcinogenic properties namely DNA damage, oxidative stress and the unfolded protein response. Here we present an evaluation of the carcinogenic potential of the herbicides glyphosate, 2,4-D and dicamba either alone or in combination, using the ToxTracker assay system. The pesticide 2,4-D was found to be a strong inducer of oxidative stress and an unfolded protein response. Dicamba induced a mild oxidative stress response, whilst glyphosate did not elicit a positive outcome in any of the assays. The results from a mixture of the three herbicides was primarily an oxidative stress response, which was most likely due to 2,4-D with dicamba or glyphosate only playing a minor role. These findings provide initial information regarding the risk assessment of carcinogenic effects arising from exposure to a mixture of these herbicides.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | - Inger Brandsma
- Toxys, De Limes 7, 2342, DH, Oegstgeest, the Netherlands
| | | | - Gaonan Zhang
- Toxys, De Limes 7, 2342, DH, Oegstgeest, the Netherlands
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
32
|
Song Y, Yang Y, Zeng W, Loor JJ, Jiang Q, Peng Z, Li Y, Jiang S, Feng X, Du X, Li X, Liu G. β-Hydroxybutyrate impairs neutrophil migration distance through activation of a protein kinase C and myosin light chain 2 signaling pathway in ketotic cows. J Dairy Sci 2021; 105:761-771. [PMID: 34635355 DOI: 10.3168/jds.2021-20875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
Ketosis in dairy cows often occurs in the peripartal period and is accompanied by immune dysfunction. High concentrations of β-hydroxybutyrate (BHB) in peripheral blood during ketosis are closely related to the impairment of polymorphonuclear neutrophil (PMN) chemotaxis and contribute to immune dysfunction. The specific effect of BHB on PMN chemotaxis in dairy cows and the underlying molecular mechanisms are unclear. Here, 30 multiparous cows (within 3 wk postpartum) classified based on serum BHB as control (n = 15, BHB <0.6 mM) or clinically ketotic (n = 15, BHB >3.0 mM) were used. Blood samples were collected before feeding, and the isolated PMN were treated with platelet-activating factor for 0.5 h to activate their migration. Scanning electron microscopy revealed a longer tail in PMN of ketotic cows. In addition, the phosphorylation and transcription levels of myosin light chain 2 (MLC2) increased in PMN of ketotic cows. Polymorphonuclear neutrophils from control dairy cows were incubated with 3.0 mM BHB for different times in vitro, and 6 h was selected as the proper duration of BHB stimulation according to its inhibition effect on PMN migration using an under-agarose PMN chemotaxis model. Similarly, BHB stimulation in vitro resulted in inhibition of migration distance and deviation of migration direction of PMN, as well as a longer tail in morphology in the scanning electron microscope data, suggesting that BHB-induced PMN migration inhibition may be mediated by impairing the trailing edge contraction. To confirm this hypothesis, sotrastaurin (Sotra)-a specific inhibitor of protein kinase C (PKC), which is the core regulator of cell contraction-was used with or without BHB treatment in vitro. Sotra was pretreated 0.5 h before BHB treatment. Accordingly, BHB treatment increased the phosphorylation level of PKC and MLC2, the protein abundance of RhoA and rho-kinase 1 (ROCK1), and the mRNA abundance of PRKCA, MYL2, RHOA, and ROCK1 in PMN. In contrast, these effects of BHB on PMN were dampened by Sotra. As demonstrated by immunofluorescence experiments in vitro, the BHB-induced inhibition of trailing edge contraction of PMN was relieved by Sotra. In addition, Sotra also dampened the effects of BHB on PMN migration in vitro. Furthermore, as verified by in vivo experiments, compared with the control cows, both abundance and activation of PKC signaling were enhanced in PMN of ketotic cows. Overall, the present study revealed that high concentrations of blood BHB impaired PMN migration distance through inhibition of the trailing edge contraction, mediated by enhancing the activation of PKC-MLC2 signaling. These findings help explain the dysfunctional immune state in ketotic cows and provide information on the pathogenesis of infectious diseases secondary to ketosis.
Collapse
Affiliation(s)
- Yuxiang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Wen Zeng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhicheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yunfei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Shang Jiang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiancheng Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
33
|
Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat Rev Clin Oncol 2021; 18:473-487. [PMID: 33790428 DOI: 10.1038/s41571-021-00492-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
Advances in cancer biology and sequencing technology have enabled the selection of targeted and more effective treatments for individual patients with various types of solid tumour. However, only three molecular biomarkers have thus far been demonstrated to predict a response to targeted therapies in patients with gastric and/or gastro-oesophageal junction (G/GEJ) cancers: HER2 positivity for trastuzumab and trastuzumab deruxtecan, and microsatellite instability (MSI) status and PD-L1 expression for pembrolizumab. Despite this lack of clinically relevant biomarkers, distinct molecular subtypes of G/GEJ cancers have been identified and have informed the development of novel agents, including receptor tyrosine kinase inhibitors and monoclonal antibodies, several of which are currently being tested in ongoing trials. Many of these trials include biomarker stratification, and some include analysis of circulating tumour DNA (ctDNA), which both enables the noninvasive assessment of biomarker expression and provides an indication of the contributions of intratumoural heterogeneity to response and resistance. The results of these studies might help to optimize the selection of patients to receive targeted therapies, thus facilitating precision medicine approaches for patients with G/GEJ cancers. In this Review, we describe the current evidence supporting the use of targeted therapies in patients with G/GEJ cancers and provide guidance on future research directions.
Collapse
|
34
|
Fernandez-Guerrero M, Zdral S, Castilla-Ibeas A, Lopez-Delisle L, Duboule D, Ros MA. Time-sequenced transcriptomes of developing distal mouse limb buds: A comparative tissue layer analysis. Dev Dyn 2021; 251:1550-1575. [PMID: 34254395 DOI: 10.1002/dvdy.394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of the amniote limb has been an important model system to study patterning mechanisms and morphogenesis. For proper growth and patterning, it requires the interaction between the distal sub-apical mesenchyme and the apical ectodermal ridge (AER) that involve the separate implementation of coordinated and tissue-specific genetic programs. RESULTS Here, we produce and analyze the transcriptomes of both distal limb mesenchymal progenitors and the overlying ectodermal cells, following time-coursed dissections that cover from limb bud initiation to fully patterned limbs. The comparison of transcriptomes within each layer as well as between layers over time, allowed the identification of specific transcriptional signatures for each of the developmental stages. Special attention was given to the identification of genes whose transcription dynamics suggest a previously unnoticed role in the context of limb development and also to signaling pathways enriched between layers. CONCLUSION We interpret the transcriptomic data in light of the known development pattern and we conclude that a major transcriptional transition occurs in distal limb buds between E9.5 and E10.5, coincident with the switch from an early phase continuation of the signature of trunk progenitors, related to the initial proximo distal specification, to a late intrinsic phase of development.
Collapse
Affiliation(s)
- Marc Fernandez-Guerrero
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Sofia Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | - Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain
| | | | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland.,Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Collège de France, Paris, France
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-University of Cantabria-SODERCAN), Santander, Spain.,Facultad de Medicina, Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
35
|
Coler BS, Shynlova O, Boros-Rausch A, Lye S, McCartney S, Leimert KB, Xu W, Chemtob S, Olson D, Li M, Huebner E, Curtin A, Kachikis A, Savitsky L, Paul JW, Smith R, Adams Waldorf KM. Landscape of Preterm Birth Therapeutics and a Path Forward. J Clin Med 2021; 10:2912. [PMID: 34209869 PMCID: PMC8268657 DOI: 10.3390/jcm10132912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Preterm birth (PTB) remains the leading cause of infant morbidity and mortality. Despite 50 years of research, therapeutic options are limited and many lack clear efficacy. Tocolytic agents are drugs that briefly delay PTB, typically to allow antenatal corticosteroid administration for accelerating fetal lung maturity or to transfer patients to high-level care facilities. Globally, there is an unmet need for better tocolytic agents, particularly in low- and middle-income countries. Although most tocolytics, such as betamimetics and indomethacin, suppress downstream mediators of the parturition pathway, newer therapeutics are being designed to selectively target inflammatory checkpoints with the goal of providing broader and more effective tocolysis. However, the relatively small market for new PTB therapeutics and formidable regulatory hurdles have led to minimal pharmaceutical interest and a stagnant drug pipeline. In this review, we present the current landscape of PTB therapeutics, assessing the history of drug development, mechanisms of action, adverse effects, and the updated literature on drug efficacy. We also review the regulatory hurdles and other obstacles impairing novel tocolytic development. Ultimately, we present possible steps to expedite drug development and meet the growing need for effective preterm birth therapeutics.
Collapse
Affiliation(s)
- Brahm Seymour Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Oksana Shynlova
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Adam Boros-Rausch
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
| | - Stephen Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (O.S.); (A.B.-R.); (S.L.)
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5G 1E2, Canada
| | - Stephen McCartney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Kelycia B. Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
| | - Sylvain Chemtob
- Departments of Pediatrics, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - David Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (K.B.L.); (W.X.); (D.O.)
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Department of Biological Sciencies, Columbia University, New York, NY 10027, USA
| | - Emily Huebner
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Anna Curtin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Alisa Kachikis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Leah Savitsky
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
| | - Jonathan W. Paul
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (J.W.P.); (R.S.)
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (J.W.P.); (R.S.)
- Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
- John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Kristina M. Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; (B.S.C.); (S.M.); (M.L.); (E.H.); (A.C.); (A.K.); (L.S.)
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Xu H, Peng C, Chen XT, Yao YY, Chen LP, Yin Q, Shen W. Chemokine receptor CXCR4 activates the RhoA/ROCK2 pathway in spinal neurons that induces bone cancer pain. Mol Pain 2021; 16:1744806920919568. [PMID: 32349612 PMCID: PMC7227150 DOI: 10.1177/1744806920919568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Chemokine receptor CXCR4 has been found to be associated with spinal neuron and glial cell activation during bone cancer pain. However, the underlying mechanism remains unknown. Furthermore, the RhoA/ROCK2 pathway serves as a downstream pathway activated by CXCR4 during bone cancer pain. We first validated the increase in the expressions of CXCR4, p-RhoA, and p-ROCK2 in the spinal dorsal horn of a well-characterized tumor cell implantation-induced cancer pain rat model and how these expressions contributed to the pain behavior in tumor cell implantation rats. We hypothesized that spinal blockade of the CXCR4-RhoA/ROCK2 pathway is a potential analgesic therapy for cancer pain management. Methods Adult female Sprague–Dawley rats (body weight of 180–220 g) and six- to seven-week old female Sprague–Dawley rats (body weight of 80–90 g) were taken. Ascitic cancer cells were extracted from the rats (body weight of 80–90 g) with intraperitoneally implanted Walker 256 mammary gland carcinoma cells. Walker 256 rat mammary gland carcinoma cells were then injected (tumor cell implantation) into the intramedullary space of the tibia to establish a rat model of bone cancer pain. Results We found increased expressions of CXCR4, p-RhoA, and p-ROCK2 in the neurons in the spinal cord. p-RhoA and p-ROCK2 were co-expressed in the neurons and promoted by overexpressed CXCR4. Intrathecal delivery of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil abrogated tumor cell implantation-induced pain hypersensitivity and tumor cell implantation-induced increase in p-RhoA and p-ROCK2 expressions. Intrathecal injection of stromal-derived factor-1, the principal ligand for CXCR4, accelerated p-RhoA expression in naive rats, which was prevented by postadministration of CXCR4 inhibitor Plerixafor (AMD3100) or ROCK2 inhibitor Fasudil. Conclusions Collectively, the spinal RhoA/ROCK2 pathway could be a critical downstream target for CXCR4-mediated neuronal sensitization and pain hypersensitivity in bone cancer pain, and it may serve as a potent therapeutic target for pain treatment.
Collapse
Affiliation(s)
- Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying-Ying Yao
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Anesthesiology, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qin Yin
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Shen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
37
|
Nonredundant roles of DIAPHs in primary ciliogenesis. J Biol Chem 2021; 296:100680. [PMID: 33872598 PMCID: PMC8122175 DOI: 10.1016/j.jbc.2021.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.
Collapse
|
38
|
Frehner BL, Reichler IM, Kowalewski MP, Gram A, Keller S, Goericke-Pesch S, Balogh O. Implications of the RhoA/Rho associated kinase pathway and leptin in primary uterine inertia in the dog. J Reprod Dev 2021; 67:207-215. [PMID: 33746146 PMCID: PMC8238673 DOI: 10.1262/jrd.2020-141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The underlying functional and molecular changes in canine primary uterine inertia (PUI) are still not clarified. Leptin (Lep) and obesity negatively affect
uterine contractility in women, partly mediated by the RhoA/Rho associated kinase pathway, affecting myometrial calcium sensitization. We hypothesized that
increased uterine Lep/Lep receptor (LepR) or decreased RhoA/Rho associated kinase expression contributes to PUI in dogs, independent of obesity. Dogs presented
for dystocia were grouped into PUI (n = 11) or obstructive dystocia (OD, still showing strong labor contractions; n = 7). Interplacental full-thickness uterine
biopsies were collected during Cesarean section for relative gene expression (RGE) of RhoA, its effector kinases (ROCK1,
ROCK2), Lep and LepR by qPCR. Protein and/or mRNA expression and localization was evaluated by immunohistochemistry
and in situ hybridization. RGE was compared between groups by one-way ANOVA using body weight as covariate with statistical significance at P
< 0.05. Uterine ROCK1 and ROCK2 gene expression was significantly higher in PUI than OD, while RhoA and
Lep did not differ. LepR RGE was below the detection limit in five PUI and all OD dogs. Litter size had no influence. Lep,
LepR, RhoA, ROCK1, ROCK2 protein and/or mRNA were localized in the myometrium and endometrium. Uterine protein expression appeared similar between groups.
LepR mRNA signals appeared stronger in PUI than OD. In conclusion, lasting, strong labor contractions in OD likely resulted in downregulation
of uterine ROCK1 and ROCK2, contrasting the higher expression in PUI dogs with insufficient contractions. The Lep-LepR system
may affect uterine contractility in non-obese PUI dogs in a paracrine-autocrine manner.
Collapse
Affiliation(s)
- Bianca Lourdes Frehner
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Iris Margaret Reichler
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Turkey
| | - Stefanie Keller
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sandra Goericke-Pesch
- Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Reproductive Unit of the Clinics - Small Animal, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orsolya Balogh
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| |
Collapse
|
39
|
Activin A and Cell-Surface GRP78 Are Novel Targetable RhoA Activators for Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22062839. [PMID: 33799579 PMCID: PMC8000060 DOI: 10.3390/ijms22062839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure. RhoA/Rho-associated protein kinase (ROCK) signaling is a recognized mediator of its pathogenesis, largely through mediating the profibrotic response. While RhoA activation is not feasible due to the central role it plays in normal physiology, ROCK inhibition has been found to be effective in attenuating DKD in preclinical models. However, this has not been evaluated in clinical studies as of yet. Alternate means of inhibiting RhoA/ROCK signaling involve the identification of disease-specific activators. This report presents evidence showing the activation of RhoA/ROCK signaling both in vitro in glomerular mesangial cells and in vivo in diabetic kidneys by two recently described novel pathogenic mediators of fibrosis in DKD, activins and cell-surface GRP78. Neither are present in normal kidneys. Activin inhibition with follistatin and neutralization of cell-surface GRP78 using a specific antibody blocked RhoA activation in mesangial cells and in diabetic kidneys. These data identify two novel RhoA/ROCK activators in diabetic kidneys that can be evaluated for their efficacy in inhibiting the progression of DKD.
Collapse
|
40
|
Magalhaes YT, Farias JO, Silva LE, Forti FL. GTPases, genome, actin: A hidden story in DNA damage response and repair mechanisms. DNA Repair (Amst) 2021; 100:103070. [PMID: 33618126 DOI: 10.1016/j.dnarep.2021.103070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
The classical small Rho GTPase (Rho, Rac, and Cdc42) protein family is mainly responsible for regulating cell motility and polarity, membrane trafficking, cell cycle control, and gene transcription. Cumulative recent evidence supports important roles for these proteins in the maintenance of genomic stability. Indeed, DNA damage response (DDR) and repair mechanisms are some of the prime biological processes that underlie several disease phenotypes, including genetic disorders, cancer, senescence, and premature aging. Many reports guided by different experimental approaches and molecular hypotheses have demonstrated that, to some extent, direct modulation of Rho GTPase activity, their downstream effectors, or actin cytoskeleton regulation contribute to these cellular events. Although much attention has been paid to this family in the context of canonical actin cytoskeleton remodeling, here we provide a contextualized review of the interplay between Rho GTPase signaling pathways and the DDR and DNA repair signaling components. Interesting questions yet to be addressed relate to the spatiotemporal dynamics of this collective response and whether it correlates with different subcellular pools of Rho GTPases. We highlight the direct and indirect targets, some of which still lack experimental validation data, likely associated with Rho GTPase activation that provides compelling evidence for further investigation in DNA damage-associated events and with potential therapeutic applications in translational medicine.
Collapse
Affiliation(s)
- Yuli T Magalhaes
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Jessica O Farias
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Luiz E Silva
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Fabio L Forti
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
41
|
Koga T, Ichinose K, Kawakami A, Tsokos GC. Current Insights and Future Prospects for Targeting IL-17 to Treat Patients With Systemic Lupus Erythematosus. Front Immunol 2021; 11:624971. [PMID: 33597953 PMCID: PMC7882681 DOI: 10.3389/fimmu.2020.624971] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune cell abnormalities which lead to the production of autoantibodies and the deposition of immune complexes. Interleukin (IL)-17-producing cells play an important role in the pathogenesis of the disease, making them an attractive therapeutic target. Studies in lupus-prone mice and of ex vivo cells from patients with SLE humans have shown that IL-17 represents a promising therapeutic target. Here we review molecular mechanisms involved in IL-17 production and Th17 cell differentiation and function and an update on the role of IL-17 in autoimmune diseases and the expected usefulness for targeting IL-17 therapeutically.
Collapse
Affiliation(s)
- Tomohiro Koga
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Guo F. RhoA and Cdc42 in T cells: Are they targetable for T cell-mediated inflammatory diseases? PRECISION CLINICAL MEDICINE 2021; 4:56-61. [PMID: 33842837 PMCID: PMC8023016 DOI: 10.1093/pcmedi/pbaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Many inflammatory diseases are not curable, necessitating a better understanding of their pathobiology that may help identify novel biological targets. RhoA and Cdc42 of Rho family small GTPases regulate a variety of cellular functions such as actin cytoskeletal organization, cell adhesion, migration, proliferation, and survival. Recent characterization of mouse models of conditional gene knockout of RhoA and Cdc42 has revealed their physiological and cell type-specific roles in a number of cell types. In T lymphocytes, which play an important role in the pathogenesis of most, if not all, of the inflammatory diseases, we and others have investigated the effects of T cell-specific knockout of RhoA and Cdc42 on T cell development in the thymus, peripheral T cell homeostasis, activation, and differentiation to effector and regulatory T cells, and on T cell-mediated allergic airway inflammation and colitis. Here we highlight the phenotypes resulting from RhoA and Cdc42 deletion in T cells and discuss whether pharmacological targeting of RhoA and Cdc42 is feasible in treating asthma that is driven by allergic airway inflammation and colitis.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
43
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
44
|
Palander O, Trimble WS. DIAPH1 regulates ciliogenesis and trafficking in primary cilia. FASEB J 2020; 34:16516-16535. [PMID: 33124112 DOI: 10.1096/fj.202001178r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
Primary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability. EB1 and EB3 have previously been implicated in cilia biogenesis to carry out centrosome-related functions. However, the role of DIAPH1 proteins had not been examined. Here we show that the depletion of DIAPH1 decreased ciliogenesis, cilia length, and reduced trafficking within cilia. Additionally, both actin nucleating and microtubule-stabilizing properties of DIAPH1 are important for their cilia functions. To assess their roles in ciliogenesis in isolation, we targeted DIAPH1 specifically to the basal body, which caused an increase in cilia length and increased trafficking within cilia. Intriguingly, expression of DIAPH1 mutants associated with human deafness and microcephaly impaired ciliation and caused cilia elongation and bulb formation. These results suggest that the actin and microtubule functions of DIAPH1 proteins regulate cilia maintenance in part by regulating vesicular trafficking to the base of the primary cilia.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Imanishi A, Ichise H, Fan C, Nakagawa Y, Kuwahara K, Sumiyama K, Matsuda M, Terai K. Visualization of Spatially-Controlled Vasospasm by Sympathetic Nerve-Mediated ROCK Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:194-203. [PMID: 33069718 DOI: 10.1016/j.ajpath.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023]
Abstract
Contraction of vascular smooth muscle is regulated primarily by calcium concentration and secondarily by ROCK activity within the cells. In contrast to the wealth of information regarding regulation of calcium concentration, little is known about the spatiotemporal regulation of ROCK activity in live blood vessels. Here, we report ROCK activation in subcutaneous arterioles in a transgenic mouse line that expresses a genetically encoded ROCK biosensor based on the principle of Fӧrster resonance energy transfer by two-photon excitation in vivo imaging. Rapid vasospasm was induced upon laser ablation of arterioles, concomitant with a transient increase in calcium concentration in arteriolar smooth muscles. Unlike the increase in calcium concentration, vasoconstriction and ROCK activation continued for several minutes after irradiation. Both the ROCK inhibitor, fasudil, and the ganglionic nicotinic acetylcholine receptor blocker, hexamethonium, inhibited laser-induced ROCK activation and reduced the duration of vasospasm at the segments distant from the irradiated point. These observations suggest that vasoconstriction is initially triggered by a rapid surge of cytoplasmic calcium and then maintained by sympathetic nerve-mediated ROCK activation.
Collapse
Affiliation(s)
- Ayako Imanishi
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Ichise
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Chuyun Fan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
46
|
Fujita Y, Uesugi N, Sugimoto R, Eizuka M, Toya Y, Akasaka R, Matsumoto T, Sugai T. Analysis of clinicopathological and molecular features of crawling-type gastric adenocarcinoma. Diagn Pathol 2020; 15:111. [PMID: 32943104 PMCID: PMC7500034 DOI: 10.1186/s13000-020-01026-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Crawling-type adenocarcinoma (CRA) is an important gastric cancer (GC) subtype that exhibits a specific histological pattern and has characteristic clinicopathological findings. Despite its characteristic histology, little is known about the molecular characteristics of CRA. METHODS We examined 177 GC cases, including 51 cases of CRA and 126 cases having conventional differentiated adenocarcinomas (CDAs). Results for immunohistochemistry (mucin phenotype; Muc5AC, Muc6, Muc2 and CD10, CDX-2, MLH-1, p53 and β-catenin), mutation analysis (TP53, KRAS and BRAF), microsatellite instability (BAT25, BAT26, D2S123, D5S346 and D17S250), DNA methylation status by a two-panel method (RUNX3, MINT31, LOX, NEUROG1, ELMO1 and THBD), MLH-1 promoter methylation, and allelic imbalance (AI; 1p, 3p, 4p, 5q, 8p, 9p, 13q, TP53, 18q and 22q) were examined. RESULTS CRAs were more likely to occur in the middle third of the stomach, in younger patients and to be macroscopically depressed. Nuclear accumulation of β-catenin and loss of MLH-1 expression were less frequent among CRA cases compared to CDA cases. At a molecular level, CRA is often characterized by the deletion mutation c.529_546 (18-base pair deletion at codon 177-182 in exon 5) in the TP53 gene (10 cases). Although the low methylation epigenotype was significantly more frequent for CRAs compared to CDAs, multiple AIs were more often seen in CRAs relative to CDAs. CONCLUSIONS The results demonstrated that TP53 mutations, particularly c.529_546del, and multiple AIs are closely associated with CRA carcinogenesis. Our results suggest that CRA is an independent entity of GC in terms of clinicopathologic and molecular findings.
Collapse
Affiliation(s)
- Yasuko Fujita
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Risaburo Akasaka
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan.
| |
Collapse
|
47
|
Park J, Lee SI, Shin S, Hong JH, Yoo HM, Kim JG. Genetic profiling of somatic alterations by Oncomine Focus Assay in Korean patients with advanced gastric cancer. Oncol Lett 2020; 20:129. [PMID: 32934698 PMCID: PMC7471730 DOI: 10.3892/ol.2020.11990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the leading causes of cancer-associated death; however, analysis of its molecular and clinical characteristics has been complicated by its histological and etiological heterogeneity. The present study aimed to estimate somatic mutation profiling in gastric cancer. To do so, targeted next-generation sequencing (NGS) was performed with the Oncomine Focus Assay to compare the clinicopathological characteristics with the mutation profiles in 50 patients with advanced gastric cancer (AGC). Among the 35 hotspot genes and 19 genes for copy number variations (CNVs), 18 single nucleotide variants (SNVs) or small insertions and deletions (14 missense and four frameshift mutations), and 10 amplifications were identified. To examine the association between mutation profiles and clinicopathological characteristics, each element of the clinicopathological characteristics was categorized into three groups: No alteration, PI3K catalytic subunit α (PIK3CA) alterations and alterations other than PIK3CA. Fisher's exact test identified no statistical differences between the clinicopathological characteristics, with the exception of the Tumor-Node-Metastasis (TNM) T stage between the three groups. Cases of AGC with somatic alterations but no PIK3CA exhibited a significant difference in the TNM T stage compared with those with no alterations or PIK3CA alterations (P=0.044). In addition, AGC with PIK3CA alterations was categorized by Lauren's classification to the intestinal type only. The distribution of Lauren's classification in AGC with PIK3CA alterations was statistically different compared with AGC with alterations other than PIK3CA (P=0.028), but not compared with AGC with no alterations (P=0.076). In conclusion, the present study demonstrated a molecular profiling approach that identified potential molecular classifications for gastric cancer and suggested a framework for precision medicine in AGC.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Soyoung Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jang Hee Hong
- Department of Pharmacology, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Han Mo Yoo
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Goo Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
48
|
Bhosle VK, Mukherjee T, Huang YW, Patel S, Pang BWF, Liu GY, Glogauer M, Wu JY, Philpott DJ, Grinstein S, Robinson LA. SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling. Nat Commun 2020; 11:4112. [PMID: 32807784 PMCID: PMC7431850 DOI: 10.1038/s41467-020-17651-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Bo Wen Frank Pang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- BenchSci, Suite 201, 559 College Street, Toronto, ON, M6G 1A9, Canada
| | - Guang-Ying Liu
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON, M5G 2L3, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
49
|
Malik HS, Bliska JB. The pyrin inflammasome and the Yersinia effector interaction. Immunol Rev 2020; 297:96-107. [PMID: 32721043 DOI: 10.1111/imr.12907] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Pyrin is a cytosolic pattern-recognition receptor that normally functions as a guard to trigger capase-1 inflammasome assembly in response to bacterial toxins and effectors that inactivate RhoA. The MEFV gene encoding human pyrin is preferentially expressed in phagocytes. Key domains in pyrin include a pyrin domain (PYD), a linker region, and a B30.2 domain. Binding of ASC to pyrin by a PYD-PYD interaction triggers inflammasome assembly. Pyrin is held in an inactive conformation by negative regulation mechanisms to avoid premature inflammasome assembly. One mechanism of negative regulation involves phosphorylation of the linker by PRK kinase which in turn is positively regulated by active RhoA. The B30.2 domain also negatively regulates pyrin. Gain of function mutations in MEFV responsible for the autoinflammatory disease Familial Mediterranean Fever (FMF) map to exon 10 encoding the B30.2 domain. Insights into pyrin regulation have come from studies of several Yersinia effectors, which are injected into phagocytes and interact with the RhoA-PRK-pyrin axis during infection. Two effectors, YopE and YopT, inactivate RhoA to disrupt phagocytic signaling. To counteract an effector-triggered immune response, a third effector, YopM, binds to and inhibits pyrin by hijacking PRK and RSK and directing linker phosphorylation. Inhibition of pyrin by YopM is required for virulence of Yersinia pestis, the agent of plague. Recent results from infection studies with human phagocytes and mice producing pyrin B30.2 FMF variants show that gain of function MEFV mutations bypass inhibition by YopM. Population genetic data suggest that MEFV mutations were selected for in individuals of Mediterranean decent during historic plague pandemics. This review discusses current concepts of pyrin regulation and its interaction with Yersinia effectors.
Collapse
Affiliation(s)
- Haleema S Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
50
|
Kong J, Wang W. A Systemic Review on the Regulatory Roles of miR-34a in Gastrointestinal Cancer. Onco Targets Ther 2020; 13:2855-2872. [PMID: 32308419 PMCID: PMC7138617 DOI: 10.2147/ott.s234549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding single-stranded small-molecule RNAs that regulate gene expression by repressing target messenger RNA (mRNA) translation or degrading mRNA. miR-34a is one of the most important miRNAs participating in various physiological and pathological processes. miR-34a is abnormally expressed in a variety of tumors. The roles of miR-34a in gastrointestinal cancer (GIC) draw lots of attention. Numerous studies have demonstrated that dysregulated miR-34a is closely related to the proliferation, differentiation, migration, and invasion of tumor cells, as well as the diagnosis, prognosis, treatment, and chemo-resistance of tumors. Thus, we systematically reviewed the abnormal expression and regulatory roles of miR-34a in GICs including esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), and gallbladder cancer (GBC). It may provide a profile of versatile roles of miR-34a in GICs.
Collapse
Affiliation(s)
- Jiehong Kong
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|