1
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zhang HM, Yao B, Li L, Guo SS, Deng HY, Ren YP. Causal relationship between OHSS and immune cells: A Mendelian randomization study. J Reprod Immunol 2024; 165:104314. [PMID: 39173334 DOI: 10.1016/j.jri.2024.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To confirm the causal relationship between immune cells and Ovarian Hyperstimulation Syndrome. DESIGN Obtaining data, collecting single nucleotide polymorphisms, detecting instrumental variables heterogeneity, assessing causality, and assessing bidirectional causality. SUBJECTS A two sample Mendelian study to confirm the causal relationship between immune cells and Ovarian Hyperstimulation Syndrome. EXPOSURE Immune cell phenotype (including 22 million SNPs from GWAS on 3757 European individuals). MAIN OUTCOME MEASURES Inverse variance weighting, one-sample analysis, MR-Egger, weighted median and weighted mode are used to assess the causal relationship between 731 immunophenotypes and Ovarian Hyperstimulation Syndrome. The weighted median and Mendelian Randomization multi-effect residuals and Mendelian Randomization multi-effect residuals and outlier tests are used to assess bidirectional causality between this two. RESULTS After False Discovery Rate correction, 9 immunophenotypes were found to be significantly associated with the risk of Ovarian Hyperstimulation Syndrome. B cell panel: IgD+ AC (OR, 0.90) 、CD19 on CD24+ CD27+ (OR, 0.86) 、BAFF-R on CD20- CD38 (OR, -1.22); Mature T cell group panel: EM DN (CD4 -CD8-) AC (OR, 1.46); Myeloid cell panel: Mo MDSC AC (OR, 1.13) 、CD45 on CD33br HLA-DR+ (OR, 0.87); Monocyte panel: HLA-DR on monocyte (OR, 0.86) 、CCR2 on CD14+ CD16+ monocyte (OR, 1.15) 、cDC panel: HLA-DR on myeloid DC (OR, 0.89). CONCLUSION This study shows the potential link between OHSS and immune cells by genetic means, providing new ideas for future clinical and basic research.
Collapse
Affiliation(s)
- Hai-Ming Zhang
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China; Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Li
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shi-Shi Guo
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong-Yi Deng
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan-Ping Ren
- Department of Histology and Embryology, School of Preclinical Medical, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Omidvar-Mehrabadi A, Ebrahimi F, Shahbazi M, Mohammadnia-Afrouzi M. Cytokine and chemokine profiles in women with endometriosis, polycystic ovary syndrome, and unexplained infertility. Cytokine 2024; 178:156588. [PMID: 38555853 DOI: 10.1016/j.cyto.2024.156588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Numerous factors (including immunological, congenital, hormonal, and morphological disorders) can lead to infertility. In this regard, 3 specific diseases associated with infertility are discussed in this review study (i.e., polycystic ovary syndrome [PCOS], endometriosis [EMS], and unexplained infertility [UI]). PCOS is a common endocrine disorder characterized by chronic low-grade inflammation, and EMS is a benign disease characterized by the presence of ectopic endometrial tissue. UI refers to couples who are unable to conceive for no known reason. Conception and pregnancy are significantly affected by the immune system; in this regard, chemokines and cytokines play important roles in the regulation of immune responses. Patients with PCOS, EMS, and UI have altered cytokine and chemokine profiles, suggesting that dysregulation of these molecules may contribute to infertility in these conditions. Accordingly, the issue of infertility is addressed in this review study, a condition that affects approximately 16% of couples worldwide.
Collapse
Affiliation(s)
| | - Fateme Ebrahimi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | |
Collapse
|
4
|
Zheng A, Harlow BL, Gereige J. Immune Dysregulation, Inflammation in Characterizing Women with Vulvodynia, Depression, and Both. J Womens Health (Larchmt) 2024; 33:364-370. [PMID: 38190297 PMCID: PMC10924120 DOI: 10.1089/jwh.2023.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Background: Depression and vulvodynia are often comorbid. The onset of depression and vulvodynia may be immune and/or stress/environmentally induced. We explored whether vulvodynia, depression, or both occur in response to a Th1-mediated versus Th2-mediated immune response. Materials and Methods: We analyzed data from a case-control study of clinically confirmed vulvodynia and history of depression determined through structured clinical interviews. Immune dysregulation and inflammation were categorized based on the following self-reported conditions: rheumatoid arthritis, Sjogren's disease, scleroderma, systemic lupus erythematosus, inflammatory bowel disease, fibromyalgia, osteoarthritis, polycystic ovarian syndrome, diabetes mellitus, uterine fibroids, asthma, atopic dermatitis, and allergic rhinitis. Logistic regression analyses were adjusted for marital status, body mass index, age, and pack years. Results: Women with systemic immune dysregulation had higher odds of depression (adjusted odds ratio [aOR] = 1.61, confidence interval [95% CI]: 0.65-3.98), vulvodynia (aOR = 2.45, 95% CI: 1.00-5.96), and comorbid depression and vulvodynia (aOR = 4.93, 95% CI: 2.19-11.10) versus neither condition. Women reporting local immune dysregulation had similar odds of depression (aOR = 1.89, 95% CI: 0.99-3.59), vulvodynia (aOR = 2.12, 95% CI: 1.08-4.18), and comorbid depression and vulvodynia (aOR = 1.96, 95% CI: 0.98-3.90). Women with Th2 inflammation had similar odds of depression (aOR = 2.23, 95% CI: 1.05-4.77) and vulvodynia (aOR = 2.56, 95% CI: 1.20-5.49). Women with Th1 or Th2 inflammation had similar odds of comorbid depression and vulvodynia (aOR = 3.03, 95% CI: 1.48-6.19; aOR = 3.14, 95% CI: 1.49-6.60, respectively). Conclusions: Our results suggest that an imbalance of cytokines, indicated by the presence of one or more immune-related health conditions, is associated with an increased risk of vulvodynia and/or depression.
Collapse
Affiliation(s)
- Amy Zheng
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Bernard L. Harlow
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jessica Gereige
- Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston, Massachusetts, USA
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Raheem BM, Obaid RM, Ali BR, Al-Fahham AA. The role of TNF-α and il-6 SNP in polycystic ovary syndrome susceptibility. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:286-291. [PMID: 39007466 DOI: 10.36740/merkur202403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Aim: To shed the light on the impact of TNF-α 1031 T/C (rs-1800629) and IL-6 174 G/C (rs1800795) polymorphism with disease susceptibility and development. PATIENTS AND METHODS Materials and Methods: A case-control study has been established based on 50 women with confirmed diagnosed polycystic ovarian syndrome, and 50 healthy controls. Allele specific PCR have been done in order to study SNP of TNF-alpha and IL-6 in both groups. RESULTS Result: The findings of the present investigation indicated that there was a signif i cant dif f erence in the frequency distribution of TNF-alpha 1031 T/C SNP according to genotype between patients and controls group p = 0.02. In addition, there is a high significant difference in the frequencies of distribution of alleles (T/C) between patients and control group p = 0.001. There was a signif i cant dif f erence in the frequency distribution of IL-6 174 G/C between patients and controls group p = 0.026. In addition, there is a signif i cant dif f erence in the frequencies of distribution of participants according to allele (G/C) between patients and control group p = 0.047. Genotype GC was significantly lower in patients' group and genotype GG was high significant in patients' group in comparison with a control group and the differences were significant, p = 0.024 and 0.006, respectively. CONCLUSION Conclusions: The present study concluded that IL-6 174 G/C, (rs:1800795) single nucleotide polymorphism (SNP) and TNF-alpha 1031 T/C (rs-1800629) were associated with PCOS susceptibility, and GG genotype in IL-6 and C allele in TNF are considered as risk factor.
Collapse
Affiliation(s)
| | - Reem Mohammed Obaid
- DEPARTMENT OF BIOLOGY, COLLEGE OF SCIENCE FOR WOMEN, UNIVERSITY OF BAGHDAD, BAGHDAD IRAQ
| | - Baida Rihan Ali
- DEPARTMENT OF PATHOLOGICAL ANALYSIS, COLLEGE OF SCIENCE, UNIVERSITY OF THI-QAR, THI-QUAR, IRAQ
| | | |
Collapse
|
6
|
Li X, Luan T, Wei Y, Zhang J, Zhang J, Zhao C, Ling X. The association between systemic immune-inflammation index and in vitro fertilization outcomes in women with polycystic ovary syndrome: a cohort study. J Ovarian Res 2023; 16:236. [PMID: 38087363 PMCID: PMC10717301 DOI: 10.1186/s13048-023-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As a novel prognostic and inflammatory marker, the systemic immune-inflammation index (SII) has come to the foreground in recent years. SII may be used as an indicator reflecting the progressive inflammatory process in patients with polycystic ovary syndrome (PCOS). This study aimed to evaluate the correlation between SII and assisted reproductive outcomes in PCOS patients. RESULTS A total of 966 women undergoing in vitro fertilization (IVF) procedure with PCOS were included in the study. The SII was calculated as platelet count (/L) × neutrophil count (/L)/lymphocyte count (/L). Participants were divided into four groups according to SII quartiles calculated at baseline, and the differences of clinical and laboratory outcomes between these four groups were compared. Moreover, a univariate linear regression model was used to evaluate the associations between SII and the outcomes. Patients in the highest SII quartile (Q4) had lower antral follicle count (AFC), estradiol (E2), and progesterone (P) levels on the day of human chorionic gonadotropin (HCG) start compared with the lower three SII quartiles (Q1-Q3). Moreover, our analysis demonstrated that women in the lower SII quartiles had a higher rate of available embryos and blastocyst formation compared with those in the highest SII quartile. Logarithm of SII correlated negatively with available embryo rate, but not with number of available embryos. Additionally, the results of our multivariate logistic regression analyses indicated that the highest SII quartile was negatively associated with biochemical pregnancy rate (BPR), clinical pregnancy rate (CPR), live birth rate (LBR), and implantation rate (IR). A non-linear relationship between the SII and number of available embryos, with a negative relationship seen to the right of the inflection point was also found. CONCLUSIONS The interplay among thrombocytosis, inflammation, and immunity could influence assisted reproductive outcomes in PCOS patients. In this regard, SII may serve as a valuable marker for exploring potential correlations.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yi Wei
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Juan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - JuanJuan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
7
|
Wang Y, Gao X, Yang Z, Yan X, He X, Guo T, Zhao S, Zhao H, Chen ZJ. Deciphering the DNA methylome in women with PCOS diagnosed using the new international evidence-based guidelines. Hum Reprod 2023; 38:ii69-ii79. [PMID: 37982419 DOI: 10.1093/humrep/dead191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/16/2023] [Indexed: 11/21/2023] Open
Abstract
STUDY QUESTION Is there any methylome alteration in women with PCOS who were diagnosed using the new international evidence-based guidelines? SUMMARY ANSWER A total of 264 differentially methylated probes (DMPs) and 53 differentially methylated regions (DMRs) were identified in patients with PCOS and healthy controls. WHAT IS KNOWN ALREADY PCOS is a common endocrine disorder among women of reproductive age and polycystic ovarian morphology (PCOM) is one of the main features of the disease. Owing to the availability of more sensitive ultrasound machines, the traditional diagnosis of PCOM according to the Rotterdam criteria (≥12 antral follicles per ovary) is currently debated as there is a risk of overdiagnosis. The new international evidence-based guidelines set the threshold for PCOM as ≥20 antral follicles per ovary when using endovaginal ultrasound transducers with a frequency bandwidth that includes 8 MHz. However, current DNA methylation studies in PCOS are still based on the Rotterdam criteria. This study aimed to explore aberrant DNA methylation in patients diagnosed with PCOS according to the new evidence-based guidelines. STUDY DESIGN, SIZE, DURATION This cross-sectional case-control study included 34 PCOS cases diagnosed using new international evidence-based guidelines and 36 controls. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 70 women, including 34 PCOS cases and 36 controls, were recruited. DNA extracted from whole blood samples of participants were profiled using array technology. Data quality control, preprocessing, annotation, and statistical analyses were performed. Least absolute shrinkage and selection operator (LASSO) regression were used to build a PCOS diagnosis model with DNA methylation sites. MAIN RESULTS AND THE ROLE OF CHANCE We identified 264 DMPs between PCOS cases and controls, which were mainly located in intergenic regions or gene bodies of the genome, CpG open sea sites, and heterochromatin of functional elements. Pathway enrichment analysis showed that DMPs were significantly enriched in biological processes involved in triglyceride regulation. Three of these DMPs overlapped with the PCOS susceptibility genes thyroid adenoma-associated protein (THADA), aminopeptidase O (AOPEP), and tripartite motif family-like protein 2 (TRIML2). Fifty-three DMRs were identified and their annotated genes were largely enriched in allograft rejection, thyroid hormone production, and peripheral downstream signaling effects. Two DMRs were closely related to the PCOS susceptibility genes, potassium voltage-gated channel subfamily A member 4 (KCNA4) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1). Finally, based on LASSO regression, we built a methylation marker model with high accuracy for PCOS diagnosis (AUC=0.952). LIMITATIONS, REASONS FOR CAUTION The study cohort was single-center and the sample size was relatively limited. Further analyses with a larger number of participants are required. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to identify DNA methylation alterations in women with PCOS diagnosed using the new international evidence-based guideline, and it provided new molecular insight into the application of the new guidelines. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2021YFC2700400), Basic Science Center Program of NSFC (31988101), CAMS Innovation Fund for Medical Sciences (2021-I2M-5-001), National Natural Science Foundation of China (32370916, 82071606, 82101707, 82192874, and 31871509), Shandong Provincial Key Research and Development Program (2020ZLYS02), Taishan Scholars Program of Shandong Province (ts20190988), and Fundamental Research Funds of Shandong University. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yuteng Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xueying Gao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Yang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xueqi Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xinmiao He
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Yang Z, Wu S, He S, Han L, Zhou M, Yang J, Chen J, Wu G. LncRNA AOC4P impacts the differentiation of macrophages and T-lymphocyte by regulating the NF-κB pathways of KGN cells: Potential pathogenesis of polycystic ovary syndrome. Am J Reprod Immunol 2023; 90:e13776. [PMID: 37766402 DOI: 10.1111/aji.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disease, which is an important cause of female infertility worldwide. PCOS patients are in a state of chronic low-grade inflammation, and immune imbalance is considered as a potential cause of its pathogenesis. METHODS The expression of AOC4P in PCOS and normal ovarian granulosa cells (GCs) was detected by real-time quantitative PCR. KGN cells were induced by dihydrotestosterone at 500 ng/mL to construct the PCOS model. After lentivirus-infected, KGN cells were constructed with AOC4P overexpression cell lines, the proliferation and apoptosis levels of KGN cells in AOC4P and NC groups were detected. Human monocyte cell line (THP-1)-derived macrophages and peripheral blood mononuclear cells (PBMC) were co-cultured with KGN cells for 48 h, respectively, and the differentiation of macrophages and CD4+ T cells were detected by flow cytometry. RESULTS Decreased AOC4P expression was found in PCOS patients. After constructing the PCOS cell model, we observed that overexpression of AOC4P promoted KGN cell proliferation and inhibited apoptosis. After co-culture with AOC4P overexpressed KGN cells, M1 macrophages decreased, M2 macrophages increased, T helper cells type 1 (Th1)/Th2 ratio increased, and regulatory T cell (Treg) cells increased. Finally, we found that AOC4P inhibited the activation of the nuclear factor κ B (NF-κB) pathway in KGN cells. CONCLUSIONS In this study, we found that AOC4P regulated the NF-κB signaling pathway by inhibiting the phosphorylation of P65, thereby affecting the proliferation and apoptosis of GCs, altering the differentiation of macrophages and T cells, thus contributing to the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhe Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Gengxiang Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
9
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
10
|
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol 2023; 14:1169232. [PMID: 37215125 PMCID: PMC10196194 DOI: 10.3389/fimmu.2023.1169232] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrine disorder affecting women, which can lead to infertility. Infertility, obesity, hirsutism, acne, and irregular menstruation are just a few of the issues that PCOS can be linked to. PCOS has a complicated pathophysiology and a range of clinical symptoms. Chronic low-grade inflammation is one of the features of PCOS. The inflammatory environment involves immune and metabolic disturbances. Numerous organ systems across the body, in addition to the female reproductive system, have been affected by the pathogenic role of immunological dysregulation in PCOS in recent years. Insulin resistance and hyperandrogenism are associated with immune cell dysfunction and cytokine imbalance. More importantly, obesity is also involved in immune dysfunction in PCOS, leading to an inflammatory environment in women with PCOS. Hormone, obesity, and metabolic interactions contribute to the pathogenesis of PCOS. Hormone imbalance may also contribute to the development of autoimmune diseases. The aim of this review is to summarize the pathophysiological role of immune dysregulation in various organ systems of PCOS patients and provide new ideas for systemic treatment of PCOS in the future.
Collapse
Affiliation(s)
- Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
11
|
Moulana M. Androgen-Induced Cardiovascular Risk in Polycystic Ovary Syndrome: The Role of T Lymphocytes. Life (Basel) 2023; 13:life13041010. [PMID: 37109539 PMCID: PMC10145997 DOI: 10.3390/life13041010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
An estimated 15-20% of reproductive-age women are affected by polycystic ovary syndrome (PCOS). PCOS is associated with substantial metabolic and cardiovascular long-term consequences. In young women with PCOS, several cardiovascular risk factors may be found, including chronic inflammation, high blood pressure, and elevated leukocytes. These women are at an increased risk of cardiovascular diseases (CVD), not only during the reproductive years, but also with aging and menopause; therefore, the early prevention and treatment of future cardiovascular adverse effects are necessary. The fundamental characteristic of PCOS is hyperandrogenemia, which is associated with increased pro-inflammatory cytokines and T lymphocytes. Whether these factors play a role in the pathophysiology of hypertension, a risk factor of CVD, due to PCOS is not well established. This review will briefly discuss how a modest increase in androgens in females is linked to the development of hypertension through pro-inflammatory cytokines and T lymphocyte subsets and the promotion of renal injury. Moreover, it reveals a few existing research gaps in this area, including the lack of specific therapy directed at androgen-induced inflammation and immune activation, thus emphasizing the necessity to explore the systemic inflammation in women with PCOS to halt the inevitable inflammatory process targeting the underlying abnormalities of CVD.
Collapse
Affiliation(s)
- Mohadetheh Moulana
- Department of Psychiatry and Human Behavior, Women's Health Research Center, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
12
|
Pervaz S, Ullah A, Adu-Gyamfi EA, Lamptey J, Sah SK, Wang MJ, Wang YX. Role of CPXM1 in Impaired Glucose Metabolism and Ovarian Dysfunction in Polycystic Ovary Syndrome. Reprod Sci 2023; 30:526-543. [PMID: 35697923 DOI: 10.1007/s43032-022-00987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common female endocrinopathy associated with both reproductive and metabolic disorders, has an unclear etiology and unsatisfactory management methods. Carboxypeptidase X, M14 family member 1 (CPXM1) is a protein involved in follicular atresia, insulin production, and adipose tissue production, though its role in PCOS is not fully understood. We used a 60% high-fat diet (HFD) plus dehydroepiandrosterone (DHEA)-induced PCOS mouse model to determine the role of CPXM1 in abnormal glucose metabolism and ovarian dysfunction in PCOS. We found that serum CPXM1 concentrations were higher in PCOS mice and positively correlated with increased levels of serum testosterone and insulin. In both ovarian and adipose tissues of PCOS mice, CPXM1 mRNA and protein levels were significantly increased but GLUT4 levels were significantly decreased. Immunohistochemistry (IHC) staining of the ovary showed increased CPXM1 expression in PCOS. In addition, the protein expression of phosphorylated protein kinase B (p-Akt) was also significantly decreased in PCOS mice. Furthermore, mRNA levels of inflammatory markers such as TNF-α, IL-6, IFN-α, and IFN-γ were increased in ovarian and adipose tissues of PCOS mice. However, IRS-1, IRS-2, and INSR levels were significantly decreased. Our results indicated for the first time that abnormally high expression of CPXM1, increased adiposity, impaired glucose tolerance, and chronic low-grade inflammation may act together in a vicious cycle in the pathophysiology of PCOS. Our research suggests the possibility of CPXM1 as a potential therapeutic target for the treatment of PCOS.
Collapse
Affiliation(s)
- Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Enoch Appiah Adu-Gyamfi
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China.,Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Sanjay Kumar Sah
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China. .,Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China. .,Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
13
|
Medenica S, Spoltore ME, Ormazabal P, Marina LV, Sojat AS, Faggiano A, Gnessi L, Mazzilli R, Watanabe M. Female infertility in the era of obesity: The clash of two pandemics or inevitable consequence? Clin Endocrinol (Oxf) 2023; 98:141-152. [PMID: 35644933 PMCID: PMC10084349 DOI: 10.1111/cen.14785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Obesity is an epidemic that has led to a rise in the incidence of many comorbidities: among others, reduced fertility is often under-evaluated in clinical practice. The mechanisms underlying the link between reduced fertility and obesity are numerous, with insulin resistance, hyperglycaemia and the frequent coexistence of polycystic ovary syndrome being the most acknowledged. However, several other factors concur, such as gut microbiome alterations, low-grade chronic inflammation and oxidative stress. Not only do women with obesity take longer to conceive, but in vitro fertilization (IVF) is also less likely to succeed. We herein provide an updated state-of-the-art regarding the molecular bases of what we could define as dysmetabolic infertility, focusing on the clinical aspects, as well as possible treatment.
Collapse
Affiliation(s)
- Sanja Medenica
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Maria Elena Spoltore
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Macul, Santiago, Chile
| | - Ljiljana V Marina
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Antoan Stefan Sojat
- Department for Obesity, Metabolic and Reproductive Disorders, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, AOU Sant'Andrea, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Corrie L, Awasthi A, Kaur J, Vishwas S, Gulati M, Kaur IP, Gupta G, Kommineni N, Dua K, Singh SK. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:197. [PMID: 37259345 PMCID: PMC9967581 DOI: 10.3390/ph16020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600007, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Kamal Dua
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
15
|
Mohamed Rasheed ZB, Nordin F, Wan Kamarul Zaman WS, Tan YF, Abd Aziz NH. Autologous Human Mesenchymal Stem Cell-Based Therapy in Infertility: New Strategies and Future Perspectives. BIOLOGY 2023; 12:108. [PMID: 36671799 PMCID: PMC9855776 DOI: 10.3390/biology12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Infertility could be associated with a few factors including problems with physical and mental health, hormonal imbalances, lifestyles, and genetic factors. Given that there is a concern about the rise of infertility globally, increased focus has been given to its treatment for the last several decades. Traditional assisted reproductive technology (ART) has been the prime option for many years in solving various cases of infertility; however, it contains significant risks and does not solve the fundamental problem of infertility such as genetic disorders. Attention toward the utilization of MSCs has been widely regarded as a promising option in the development of stem-cell-based infertility treatments. This narrative review briefly presents the challenges in the current ART treatment of infertility and the various potential applications of autologous MSCs in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Zahirrah Begam Mohamed Rasheed
- UKM Medical Molecular Biology Institute (UMBI), Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, WPKL, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Research Laboratory of UKM Specialist Children’s Hospital, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
16
|
Izadi M, Rezvani ME, Aliabadi A, Karimi M, Aflatoonian B. Mesenchymal stem cells-derived exosomes as a promising new approach for the treatment of infertility caused by polycystic ovary syndrome. Front Pharmacol 2022; 13:1021581. [PMID: 36299896 PMCID: PMC9589245 DOI: 10.3389/fphar.2022.1021581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial metabolic and most common endocrine disorder that its prevalence, depending on different methods of evaluating PCOS traits, varies from 4% to 21%. Chronic low-grade inflammation and irregular apoptosis of granulosa cells play a crucial role in the pathogenesis of PCOS infertility. Mesenchymal stem cells (MSCs)-derived exosomes and extracellular vesicles (EVs) are lipid bilayer complexes that act as a means of intercellular transferring of proteins, lipids, DNA and different types of RNAs. It seems that this nanoparticles have therapeutic effects on the PCOS ovary such as regulating immunity response, anti-inflammatory (local and systemic) and suppress of granulosa cells (GCs) apoptosis. Although there are few studies demonstrating the effects of exosomes on PCOS and their exact mechanisms is still unknown, in the present study we reviewed the available studies of the functions of MSC-derived exosome, EVs and secretome on apoptosis of granulosa cells and inflammation in the ovary. Therefore, the novel cell-free therapeutic approaches for PCOS were suggested in this study.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- *Correspondence: Behrouz Aflatoonian,
| |
Collapse
|
17
|
KIRLANGIÇ MM, ERASLAN ŞAHİN M, VURAL YALMAN M, AKDEMİR E, ÇÖL MADENDAĞ İ, SADE OS, KÜTÜK S. Polikistik over sendromlu obez olmayan kadınlarda progesteron ve progesteron kaynaklı bloke edici faktör (PIBF) düzeyleri. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: This study aimed to evaluate the level of progesterone and progesterone-induced blocking factor (PIBF), an immune mediator, in non-obese patients with polycystic ovary syndrome (PCOS).
Materials and Methods: Totally 72 patients were recruited into study and divided into 2 groups: The first group was patients diagnosed with PCOS (n = 36) and the second was the healthy control group (n=36). The diagnosis of PCOS was made according to Rotterdam diagnostic criteria. All patients were 18–35 years old and non-obese (body mass index (BMI) < 25 kg/m2). Follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), thyroid-stimulating hormone (TSH), prolactin (PRL), total testosterone, and dehydroepiandrostenedione sulfate (DHEA-S) levels were measured on the third day of the menstrual cycle. On the 21st day of the same menstrual period, fasting blood glucose, insulin, progesterone, and PIBF levels were measured.
Results: Demographic and clinical characteristics of study participants were similar between the two groups. Serum FSH, E2, TSH, PRL, DHEA-S, total testosterone, fasting blood glucose, fasting insulin, homeostatic model assessment for insulin resistance (HOMA-IR), and hemoglobin A1c values were similar between the groups. Differences in LH, LH/FSH ratio, serum progesterone, and serum PIBF were statistically significant.
Conclusion: Progesterone and PIBF levels decreased in non-obese PCOS patients. We suggest that even in the absence of obesity, which is the origin and enhancer of inflammation in PCOS, low PIBF as the underlying immunomodulator will drive complications.
Collapse
Affiliation(s)
| | | | | | - Esra AKDEMİR
- SAĞLIK BİLİMLERİ ÜNİVERSİTESİ, KAYSERİ SAĞLIK UYGULAMA VE ARAŞTIRMA MERKEZİ
| | | | | | | |
Collapse
|
18
|
Stojanovic Gavrilovic AZ, Cekovic JM, Parandilovic AZ, Nikolov AB, Sazdanovic PS, Velickovic AM, Andjelkovic MV, Sorak MP. IL-6 of follicular fluid and outcome of in vitro fertilization. Medicine (Baltimore) 2022; 101:e29624. [PMID: 35866786 PMCID: PMC9302246 DOI: 10.1097/md.0000000000029624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The quality of an oocyte is influenced by its microenvironment, which includes cumulus cells and follicular fluid, as well as cells of the immune system and their products. The ovarian interleukins, which are secreted by the granulosa cells and other immune cells within the ovaries and follicles, regulate various functions between the cells. IL-6 is a cytokine that is present in the follicular fluid and may affect the quality of oocytes. There are some inconsistencies in the literature regarding the concentration of interleukin 6 in the follicular fluid. The main objective of this study was to examine whether the concentration of interleukin 6 in the follicular fluid affects the outcome of IVF. This study involved 83 patients who underwent IVF. Follicular fluid was used as the biological material for the analysis. Examination of the obtained follicular fluid and collection of oocytes under a stereomicroscope was performed in the embryological laboratory. The concentration of IL-6 in the follicular fluid was analyzed. IVF and ICSI methods were used as the fertilization methods. Pregnancy was confirmed by the positive serum β-hCG level. The software package SPSS 20 was used for statistical data processing. Analysis of the follicular fluid samples showed a correlation between the concentration of IL-6 in the follicular fluid and the outcome of IVF. The concentration of IL-6 in the follicular fluid was higher in patients with confirmed pregnancy (9.55 ± 7.47 ng/ml). Based on our results, we conclude that the concentration of IL-6 affects the outcome of IVF. If the range of IL-6 concentration is between 3,67 ng/ml and 10 ng/ml, we can expect good IVF outcome with vital pregnancy.
Collapse
Affiliation(s)
- Aleksandra Z. Stojanovic Gavrilovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, PhD student, Kragujevac, Serbia
| | - Jelena M. Cekovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Aida Z. Parandilovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Aleksandar B. Nikolov
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Predrag S. Sazdanovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Anatomy, Kragujevac, Serbia
| | - Aleksandra M. Velickovic
- Clinical Center Kragujevac, Department of Laboratory Diagnostics, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Kragujevac, Serbia
| | - Marija V. Andjelkovic
- Clinical Center Kragujevac, Department of Laboratory Diagnostics, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Kragujevac, Serbia
| | - Marija P. Sorak
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Gynecology and Obstetrics, Kragujevac, Serbia
- *Correspondence: Marija Sorak, Faculty of Medical Sciences, University of Kragujevac, 34 000 Kragujevac, SerbiaUniversity Clinical Center Kragujevac, Center for Biomedical Assisted Fertilization, 34 000 Kragujevac, Serbia (e-mail: )
| |
Collapse
|
19
|
Xiao N, Wang J, Wang T, Xiong X, Zhou J, Su X, Peng J, Yang C, Li X, Lin G, Lu G, Gong F, Cheng L. Metformin abrogates pathological TNF-α-producing B cells through mTOR-dependent metabolic reprogramming in polycystic ovary syndrome. eLife 2022; 11:74713. [PMID: 35748536 PMCID: PMC9270024 DOI: 10.7554/elife.74713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
B cells contribute to the pathogenesis of polycystic ovary syndrome (PCOS). Clinically, metformin is used to treat PCOS, but it is unclear whether metformin exerts its therapeutic effect by regulating B cells. Here, we showed that the expression level of tumor necrosis factor-alpha (TNF-α) in peripheral blood B cells from PCOS patients was increased. Metformin used in vitro and in vivo was able to reduce the production of TNF-α in B cells from PCOS patients. Administration of metformin improved mouse PCOS phenotypes induced by dehydroepiandrosterone (DHEA) and also inhibited TNF-α expression in splenic B cells. Furthermore, metformin induced metabolic reprogramming of B cells in PCOS patients, including the alteration in mitochondrial morphology, the decrease in mitochondrial membrane potential, Reactive Oxygen Species (ROS) production and glucose uptake. In DHEA-induced mouse PCOS model, metformin altered metabolic intermediates in splenic B cells. Moreover, the inhibition of TNF-α expression and metabolic reprogramming in B cells of PCOS patients and mouse model by metformin were associated with decreased mTOR phosphorylation. Together, TNF-α-producing B cells are involved in the pathogenesis of PCOS, and metformin inhibits mTOR phosphorylation and affects metabolic reprogramming, thereby inhibiting TNF-α expression in B cells, which may be a new mechanism of metformin in the treatment of PCOS.
Collapse
Affiliation(s)
- Na Xiao
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jie Wang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Ting Wang
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Xingliang Xiong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Junyi Zhou
- Hunan Normal University, Changsha, China
| | - Xian Su
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Jing Peng
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Chao Yang
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Xiaofeng Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
| |
Collapse
|
20
|
Chen Y, Ma L, Ge Z, Pan Y, Xie L. Key Genes Associated With Non-Alcoholic Fatty Liver Disease and Polycystic Ovary Syndrome. Front Mol Biosci 2022; 9:888194. [PMID: 35693550 PMCID: PMC9174783 DOI: 10.3389/fmolb.2022.888194] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrinopathies disorder in women of reproductive age and non-alcoholic fatty liver (NAFLD) is one of the most common liver diseases worldwide. Previous research has indicated potential associations between PCOS and NAFLD, but the underlying pathophysiology is still not clear. The present study aims to identify the differentially expressed genes (DEGs) between PCOS and NAFLD through the bioinformatics method, and explore the associated molecular mechanisms. Methods: The microarray datasets GSE34526 and GSE63067 were downloaded from Gene Expression Omnibus (GEO) database and analyzed to obtain the DEGs between PCOS and NAFLD with the GEO2R online tool. Next, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the DEGs were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, NetworkAnalyst was used to construct the network between the targeted microRNAs (miRNAs) and the hub genes. Results: A total of 52 genes were identified as DEGs in the above two datasets. GO and KEGG enrichment analysis indicated that DEGs are mostly enriched in immunity and inflammation related pathways. In addition, nine hub genes, including TREM1, S100A9, FPR1, NCF2, FCER1G, CCR1, S100A12, MMP9, and IL1RN were selected from the PPI network by using the cytoHubba and MCODE plug-in. Then, four miRNAs, including miR-20a-5p, miR-129-2-3p, miR-124-3p, and miR-101-3p, were predicted as possibly the key miRNAs through the miRNA-gene network construction. Conclusion: In summary, we firstly constructed a miRNA-gene regulatory network depicting interactions between the predicted miRNA and the hub genes in NAFLD and PCOS, which provides novel insights into the identification of potential biomarkers and valuable therapeutic leads for PCOS and NAFLD.
Collapse
Affiliation(s)
- Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yizhao Pan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lubin Xie
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Zhai Y, Pang Y. Systemic and Ovarian Inflammation in Women with Polycystic Ovary Syndrome. J Reprod Immunol 2022; 151:103628. [DOI: 10.1016/j.jri.2022.103628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
|
22
|
A review on inflammation and angiogenesis as key mechanisms involved in the pathogenesis of bovine cystic ovarian disease. Theriogenology 2022; 186:70-85. [DOI: 10.1016/j.theriogenology.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
23
|
Huang J, Chen P, Xiang Y, Liang Q, Wu T, Liu J, Zeng Y, Zeng H, Liang X, Zhou C. Gut microbiota dysbiosis-derived macrophage pyroptosis causes polycystic ovary syndrome via steroidogenesis disturbance and apoptosis of granulosa cells. Int Immunopharmacol 2022; 107:108717. [PMID: 35334358 DOI: 10.1016/j.intimp.2022.108717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
Gut microbiota dysbiosis is critical in the etiology of polycystic ovary syndrome (PCOS). However, the mechanisms of gut microbiota in PCOS pathogenesis have not been fully elucidated. We aimed to explore the role of gut microbiota-derived macrophage pyroptosis in PCOS. This study conducted dehydroepiandrosterone (DHEA) induced PCOS mice model, 16S rDNA sequencing, western blot, genetic knocking out, transcriptome and translatome profiling, et al. to evaluate the underlying mechanisms. 16S rDNA sequencing showed reduced gut Akkermansia and elevated gram-negative bacteria (Desulfovibrio and Burkholderia) abundances in DHEA induced PCOS mice, which was accompanied by increased serum lipopolysaccharide (LPS). LPS could induce macrophage pyroptosis in mice ovaries, also activated in PCOS. Gasdermin D (GSDMD) is the final executor of macrophage pyroptosis. We demonstrated that Gsdmd knockout in mice could dramatically ameliorate PCOS. Mechanistically, transcriptome and translatome profiling revealed that macrophage pyroptosis disrupted estrogen production and promoted apoptosis of granulosa cells. Interferon (IFN)-γ, which was elevated in PCOS mice serum and ovaries, enhanced macrophage pyroptosis and exacerbated its effect on estrogen receptor in granulosa cells. Inspiringly, we identified that disulfiram and metformin could augment gut Akkermansia abundance, reduce serum IFN-γ level, inhibit macrophage pyroptosis in ovaries, therefore ameliorating PCOS. Collectively, this study emphasizes that macrophage pyroptosis, which was induced by gut microbiota dysbiosis and enhanced by IFN-γ, plays a key role in PCOS pathogenesis through estrogen synthesis dysfunction and apoptosis of granulosa cells. Disulfiram and metformin, which enhanced gut Akkermansia abundance and suppressed macrophage pyroptosis, may be considered as potential therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Jiana Huang
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Peigen Chen
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yuting Xiang
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Qiqi Liang
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Taibao Wu
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jiawen Liu
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yanyan Zeng
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Haitao Zeng
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Xiaoyan Liang
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Chuanchuan Zhou
- Reproductive Medicine Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
24
|
Czika A, Yang Y, Yang JP, Adu-Gyamfi EA, Ullah A, Ruan LL, Chen XM, Wang YX, Wang MJ, Ding YB. A decrease in CD2 expression on NK cells is associated with PCOS but not influenced by metformin in a mouse model. Biol Reprod 2022; 106:756-765. [DOI: 10.1093/biolre/ioac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 11/02/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Problem: Natural killer (NK) cells from the peripheral blood and spleen represent the source from which various tissues replenish their immune cell populations. Hyperandrogenism and high interleukin-2 (IL-2) levels are factors present in polycystic ovary syndrome (PCOS). These factors and metformin, one of the commonest medications used in treating PCOS, may have an impact on NK cell levels and its receptor profile. However, this is presently unknown. Here, we aimed to assess the levels of peripheral blood and splenic NK cells and their CD2 and CD94 expression patterns in a PCOS mouse model and test whether metformin could reverse these effects.
Method of study: Four mouse groups were designed as follows (n = 15/group): control, PCOS, PCOS plus vehicle, PCOS plus metformin. Dehydroepiandrosterone (DHEA) and a high-fat diet (HFD) were administered to induce the PCOS mouse model. Flow cytometry was used to analyze the expression of CD2 and CD94 on peripheral blood and splenic NK cells. Serum IL-2 levels were analyzed through enzyme-linked immunosorbent assays.
Results: PCOS mice had a decreased mean fluorescence intensity (MFI) of CD2 on peripheral blood NK cells and a decreased percentage of CD2+ splenic NK cells. Metformin administration did not significantly influence these changes; however, it reduced the splenic NK cell count. IL-2 levels were significantly elevated in PCOS mice and significantly reduced after metformin administration.
Conclusions: Our findings proved the association of PCOS with an altered expression of CD2 on peripheral blood and splenic NK cells and that of metformin with a lowered splenic NK cell reserve in PCOS conditions. These findings could further unlock key mechanisms in PCOS pathophysiology and in the mechanism of action of metformin, towards improving PCOS management.
Collapse
Affiliation(s)
- Armin Czika
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yin Yang
- Department of Epidemiology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun-Pu Yang
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Enoch Appiah Adu-Gyamfi
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Amin Ullah
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ling-Ling Ruan
- Department of Traditional Chinese Medical Resources, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xue-Mei Chen
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
25
|
Falahatian S, Haddad R, Pakravan N. Modulatory effects of R10 fraction of garlic (Allium sativum L.) on hormonal levels, T cell polarization, and fertility-related genes in mice model of polycystic ovarian syndrome. J Ovarian Res 2022; 15:4. [PMID: 34991678 PMCID: PMC8734287 DOI: 10.1186/s13048-021-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an inflammatory endocrine-metabolic disorder related to reproductive system characterized by polycystic ovarian morphology, androgen excess, and chronic anovulation. Current treatments haven't been very successful in PCOS treatment and the problem still remains as a challenge. Therefore, new approaches should be applied to overcome the disease. Previous studies demonstrated immunomodulatory effects of R10 fraction of garlic in the treatment of inflammatory conditions such as cancer. Considering previous studies suggesting immunomodulatory therapy for PCOS, therapeutic effects of R10 fraction was evaluated in a mouse model of PCOS. To do so, PCOS was developed by intramuscular injection of estradiol valerate. Treatment with R10 fraction, isolated from garlic, was performed and the alterations in hormonal levels (estradiol, progesterone, and testosterone), T cell polarization markers (IFN-γ, IL-4, and IL-17), and expression of fertility-related genes (Gpx3 and Ptx3) were evaluated. The results showed that hormonal levels were elevated in PCOS model comparing to normal animals but were markedly modulated after treatment with R10 fraction. Moreover, a severe disturbance in T cell polarization with a significant reduction of fertility-related genes expression were detected in PCOS-induced ovaries. Treatment with R10 fraction also represented modulatory effects on T cell polarization by increasing IL-4 and decreasing IL-17 and IFN-γ levels. Accordingly, fertility-related genes were also modulated following treatment with R10 fraction in PCOS. Our study elucidated that R10 fraction of garlic possess immunomodulatory effects alleviating PCOS symptoms. This approach could be adjusted to give rise the optimum therapeutic results and considered as a candidate therapeutic approach for PCOS.
Collapse
Affiliation(s)
- Somaye Falahatian
- Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Raheem Haddad
- Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Nafiseh Pakravan
- Department of Immunology, Medical School, Alborz University of Medical Sciences, Nabowat Blvd, West Bou-Ali St, Karaj, Iran.
| |
Collapse
|
26
|
Zhou H, Xu J, Hong L, Jia Y, Burk LV, Chi F, Zhao M, Guan X, Liu D, Yin X, Zhang Y, Teng X, Duan L, Li K. The alterations of circulating mucosal-associated invariant T cells in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:1038184. [PMID: 36518256 PMCID: PMC9742442 DOI: 10.3389/fendo.2022.1038184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting reproductive age females and an important cause of infertility. Although the etiology is complex and its pathogenesis remains unclear, the pathological process of PCOS is tightly related with the immune dysfunction and gut microbial dysbiosis. Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells which can regulate inflammation through the production of cytokines and play a role in regulating the gut microbiota. We aim to evaluate the correlation between characteristics of PCOS and MAIT cells as well as their impact on cytokine secretion. METHODS Peripheral blood samples were taken from PCOS patients (n=33) and healthy controls (n=30) during 2-5 days of the menstrual period. The frequencies of MAIT cells and T cells were measured by flow cytometry. Cytokines interleukin 17 (IL-17), interleukin 22(IL-22), interferon γ (IFN-γ) and granzyme B were determined by Enzyme-linked immunosorbent assay (ELISA). RESULTS The frequency of MAIT cells was significantly reduced in the blood of PCOS patients compared with the controls, and negatively correlated with Body Mass Index (BMI), Homeostatic model assessment- insulin resistance (HOMA-IR) index, and Anti Miillerian Hormone (AMH). Thus, the frequencies of MAIT cells decreased in PCOS patients with abnormal weight (BMI≥24kg/m2), higher HOMA-IR (≥1.5), and excessive AMH (≥8ng/ml). The Cytokine IL-17 was significantly higher in PCOS patients and negatively correlated with the frequency of MAIT cells. Even though the IL-22 was lower in PCOS Patients, no correlation with MAIT cells was detected. In subgroup, CD4+MAIT cells correlated with BMI, AMH, and testosterone (T) levels. CONCLUSION The frequency change of MAIT cells may play a significant role in the pathogenesis of PCOS. Exploring these interactions with MAIT cells may provide a new target for PCOS treatment and prevention.
Collapse
Affiliation(s)
- Hong Zhou
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junting Xu
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Hong
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanping Jia
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lilo Valerie Burk
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Fengli Chi
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mei Zhao
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohong Guan
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Liu
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiangjie Yin
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiqiao Zhang
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Xiaoming Teng
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liyan Duan
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Kunming Li, ; Liyan Duan,
| | - Kunming Li
- Center for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Kunming Li, ; Liyan Duan,
| |
Collapse
|
27
|
Wu JX, Xia T, She LP, Lin S, Luo XM. Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant 2022; 31:9636897221083252. [PMID: 35348026 PMCID: PMC8969497 DOI: 10.1177/09636897221083252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
Physical and mental health and hormonal imbalance are associated with the problems related to infertility and reproductive disorders. The rate of infertility has increased globally over the years, due to various reasons. Given the psychosocial implications of infertility and its effects on the life of the affected people, there has been an increased focus on its treatment over the last several years. Assisted reproductive technology can only solve about 50% of the cases. Moreover, it contains significant risks and does not solve the fundamental problem of infertility. As pluripotent stem cells have the potential to differentiate into almost any type of cell, they have been widely regarded as a promising option in the development of stem cell-based fertility treatments, which could even correct genetic diseases in offspring. These advancements in reproductive biotechnology present both challenges and possibilities for solving infertility problems caused by various unexplainable factors. This review briefly presents the different types of infertility disorders and the potential applications of stem cells in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Jin-Xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tian Xia
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Li-Ping She
- New England Fertility Institute, Stamford, CT, USA
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Xiang-Min Luo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
28
|
Zhu M, Xu Y, Li C, Lu Z, Bi K, Wang K, Guo P, Jiang H, Cao Y. Involvement of impaired CD8 + mucosal-associated invariant T cells and myeloid-derived suppressor cells in polycystic ovary syndrome. Reprod Biol Endocrinol 2021; 19:175. [PMID: 34847942 PMCID: PMC8630849 DOI: 10.1186/s12958-021-00861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/14/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Immune dysfunction is one of the mechanisms to promote polycystic ovary syndrome (PCOS). Various immune cells have been reported to be involved in the development of PCOS. Meanwhile, the disturbance of metabolism is closely related to PCOS. The aim of this study is to explore the association of mucosal-associated invariant T (MAIT) cells and myeloid-derived suppressor cells (MDSCs) with the metabolic dysfunction in PCOS. METHODS 68 PCOS patients and 40 controls were recruited in this study and we collected the peripheral blood of participants' during their follicular phase. The frequencies of MAIT cells and MDSCs were determined by flow cytometry after being stained with different monoclonal antibodies. And the concentrations of cytokines were determined by ELISA. RESULTS Compared to controls with normal metabolism, the frequency of MDSCs, CD8+MAIT cells and CD38+CD8+MAIT cells were significantly decreased in PCOS patients with normal metabolism, however, proportion of CD4+MAIT cells exhibited a noticeable increase. Similar results of CD8+MAIT, CD38+CD8+MAIT cells and reduced expression of IL-17 were observed in PCOS patients with metabolic dysfunction as compared to controls with metabolic disorders. PCOS patients with excessive testosterone levels displayed significantly decreased levels of CD8+MAIT, CD38+CD8+MAIT cells, MDSCs and Mo-MDSCs as compared to PCOS patients with normal testosterone concentrations. PCOS patients with abnormal weight showed a lower level and activation of CD8+MAIT cells. On the contrary, they displayed an enrichment of CD4+MAIT cells. PCOS patients with glucose metabolic disorder displayed a remarkable dysregulation of MDSCs and Mo-MDSCs. MDSCs were positively correlated with MAIT cells. Negative correlations between the frequency of CD8+MAIT cells, CD38+CD8+MAIT cells and body mass index were revealed. CD4+MAIT cells positively correlated with BMI. Mo-MDSCs were found to be negatively related to the levels of 2hour plasma glucose and HOMA-IR index. CONCLUSION The impairment of CD8+MAIT cells and MDSCs is involved in the metabolic dysfunction of PCOS.
Collapse
Affiliation(s)
- Mengting Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kangxia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, Hefei, 230000, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Wanshui Road Nr.120, Hefei, 230000, China.
| |
Collapse
|
29
|
Li H, Guo Y, Deng J, Fischer H, Weedin EA, Burks HR, Craig LB, Yu X. Increased testosterone and proinflammatory cytokines in patients with polycystic ovary syndrome correlate with elevated GnRH receptor autoantibody activity assessed by a fluorescence resonance energy transfer-based bioassay. Endocrine 2021; 74:163-171. [PMID: 34013495 PMCID: PMC8440388 DOI: 10.1007/s12020-021-02761-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE The recently identified agonistic autoantibodies (AAb) to the gonadotropin-releasing hormone receptor (GnRHR) are a novel investigative and therapeutic target for polycystic ovary syndrome (PCOS). In this study, we used a new cell-based fluorescence resonance energy transfer (FRET) bioassay to analyze serum GnRHR-AAb activity and examine its relationship with testosterone and proinflammatory cytokines in patients with PCOS. METHODS Serum samples from 33 PCOS patients, 39 non-PCOS ovulatory infertile controls and 30 normal controls were tested for GnRHR-AAb activity and proinflammatory cytokines in a FRET-based bioassay and multiplex bead-based immunoassay, respectively. Correlation was analyzed using the Spearman's correlation test. RESULTS Serum GnRHR-AAb activity was significantly higher in the PCOS patients than for the ovulatory infertile (p < 0.05) and normal (p < 0.01) controls. GnRHR-AAb were positive in 39% of PCOS patients, 10% of ovulatory infertile controls, and 0% of normal controls. PCOS IgG-induced GnRHR activation was specifically blocked by the GnRHR antagonist cetrorelix. Serum levels of proinflammatory cytokines interleukin-2, interleukin-6, interferon-γ, and tumor necrosis factor-α were significantly increased in PCOS patients compared with ovulatory infertile and normal controls (p < 0.01). Correlation analysis demonstrated positive correlations of GnRHR-AAb activity with testosterone and proinflammatory cytokine levels in the PCOS group. CONCLUSIONS Elevated GnRHR-AAb activity, as assessed by a new FRET assay, is associated with increased testosterone and proinflammatory cytokines in PCOS, suggesting autoimmune activation of GnRHR may contribute to the pathogenesis of this common disorder.
Collapse
Affiliation(s)
- Hongliang Li
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yankai Guo
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jielin Deng
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hayley Fischer
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elizabeth A Weedin
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Heather R Burks
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - LaTasha B Craig
- Section of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xichun Yu
- Section of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
30
|
Chen H, Zhang Y, Li S, Tao Y, Gao R, Xu W, Yang Y, Cheng K, Wang Y, Qin L. The Association Between Genetically Predicted Systemic Inflammatory Regulators and Polycystic Ovary Syndrome: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2021; 12:731569. [PMID: 34646235 PMCID: PMC8503255 DOI: 10.3389/fendo.2021.731569] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic diseases among women of reproductive age. Inflammation may be involved in the pathogenesis of PCOS, but its exact relationship with PCOS remains unclear. Herein, we investigate the causal association between systemic inflammatory regulators and PCOS risk through a two-sample Mendelian randomization (MR) approach based on the latest and largest genome-wide association study (GWAS) of 41 systemic inflammatory regulators in 8293 Finnish participants and a GWAS meta-analysis consisting of 10,074 PCOS cases and 103,164 controls of European ancestry. Our results suggest that higher levels of IL-17 and SDF1a, as well as lower levels of SCGFb and IL-4, are associated with an increased risk of PCOS (OR = 1.794, 95% CI = 1.150 - 2.801, P = 0.010; OR = 1.563, 95% CI = 1.055 - 2.315, P = 0.026; OR = 0.838, 95% CI = 0.712 - 0.986, P = 0.034; and OR = 0.637, 95% CI = 0.413 - 0.983, P = 0.042, respectively). In addition, genetically predicted PCOS is related to increased levels of IL-2 and VEGF (OR = 1.257, 95% CI = 1.022 - 1.546, P = 0.030 and OR = 1.112, 95% CI = 1.006 - 1.229, P = 0.038, respectively). Our results indicate the essential role of cytokines in the pathogenesis of PCOS. Further studies are warranted to assess the possibility of these biomarkers as targets for PCOS prevention and treatment.
Collapse
Affiliation(s)
- Hanxiao Chen
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shangwei Li
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuanzhi Tao
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan University-The Chinese University of Hong Kong (SCU–CUHK) Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yihong Yang
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kemin Cheng
- Outpatient Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Obstetrics and Gynaecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Lang Qin, ; Yan Wang,
| | - Lang Qin
- Reproductive Centre, Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lang Qin, ; Yan Wang,
| |
Collapse
|
31
|
Wang J, Gong P, Li C, Pan M, Ding Z, Ge X, Zhu W, Shi B. Correlation between leptin and IFN-γ involved in granulosa cell apoptosis in PCOS. Gynecol Endocrinol 2020; 36:1051-1056. [PMID: 32393090 DOI: 10.1080/09513590.2020.1760817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Our study aimed to explore the relationship between leptin and IFN-γ in PCOS patients, and confirmed the effect of leptin-induced IFN-γ on granulosa cells furtherly. METHODS 29 patients with PCOS and 36 healthy controls were enrolled. Leptin level and the proportion of Th1 cells were detected and association between them were analyzed. Meanwhile, peripheral blood mononuclear cells (PBMCs) isolated from PCOS patients were treated with leptin and then the proportion of Th1 was analyzed. Besides that, the apoptotic level of KGN cells was monitored after IFN-γ treatment. RESULTS In the circulation of PCOS patients, leptin level dramatically increased compared with controls. And, this was associated with upregulated Th1 cells proportion and IFN-γ level. In vitro, Th1 cells proportion increased after leptin treated PBMCs from PCOS patients. Furthermore, for KGN cells, the percentage of live cells decreased and later apoptosis cells increased after IFN-γ treatment. CONCLUSIONS Our results indicated that leptin takes part in process of PCOS via inducing expression of IFN-γ. Our findings highlight the importance of the connection between leptin and inflammation in PCOS and provide new insights therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Juan Wang
- Department of Laboratory Medicine, Changzhou TCM Hospital, Changzhou, China
| | - Ping Gong
- Department of Obstetrics and Gynecology, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunmei Li
- Department of Laboratory Medicine, Changzhou TCM Hospital, Changzhou, China
| | - Meizhen Pan
- Department of Laboratory Medicine, Changzhou TCM Hospital, Changzhou, China
| | - Zhixiang Ding
- Department of Laboratory Medicine, Changzhou TCM Hospital, Changzhou, China
| | - Xian Ge
- Department of Laboratory Medicine, Changzhou TCM Hospital, Changzhou, China
| | - Weijin Zhu
- Department of Laboratory Medicine, Changzhou TCM Hospital, Changzhou, China
| | - Bingwei Shi
- Department of Laboratory Medicine, Changzhou TCM Hospital, Changzhou, China
| |
Collapse
|
32
|
He S, Mao X, Lei H, Dong B, Guo D, Zheng B, Sun P. Peripheral Blood Inflammatory-Immune Cells as a Predictor of Infertility in Women with Polycystic Ovary Syndrome. J Inflamm Res 2020; 13:441-450. [PMID: 32884325 PMCID: PMC7443446 DOI: 10.2147/jir.s260770] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose This study aimed to investigate the inflammatory-immune cells in the peripheral blood of women with polycystic ovary syndrome (PCOS) and assessed the potential correlation between inflammatory-immune cells and infertility in PCOS women. Materials and Methods In this case-control study, the profiles of lymphocyte subsets were analyzed by flow cytometry. White blood cells (WBC), neutrophils (Neu), lymphocytes, Ferriman-Gallwey (F-G) score, testosterone, prolactin, follicle-stimulating hormone, luteinizing hormone, fasting blood glucose, and fasting plasma insulin were measured, together with body mass index. Association between inflammatory-immune cells and PCOS was evaluated. Moreover, inflammatory-immune cells of the PCOS women with infertility were evaluated, and the relative operating characteristic (ROC) curve and cutoff values were calculated. Results The number of WBC, Neu, and lymphocytes was higher in PCOS women than controls (P<0.05). The percentages of total T lymphocytes, CD4+T, and NK were significantly increased in the PCOS group (P<0.001). The CD4/CD8 ratio was obviously elevated for increasing CD4+T (P<0.05). Consequently, T%, CD4+T%, and NK% were found to be the independent risk factors of PCOS by ROC curve and multivariate logistic regression analysis. Furthermore, only NK% was significantly higher in PCOS women with infertility than those who had PCOS without infertility (P<0.001). To diagnose infertility in PCOS, the cutoff value of NK% was calculated as 16.43%. Conclusion These findings suggest that the pathogenesis of PCOS is related to immune cells including T, CD4+T, and NK cells. NK cells are likely to be a potential predictive factor for PCOS women with infertility.
Collapse
Affiliation(s)
- ShuQiong He
- Department of Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - XiaoDan Mao
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, People's Republic of China
| | - HuiFang Lei
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, People's Republic of China
| | - BinHua Dong
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, People's Republic of China
| | - DanHua Guo
- Department of Prenatal Diagnosis, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - BeiHong Zheng
- Department of Reproduction, Fujian, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - PengMing Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, People's Republic of China
| |
Collapse
|
33
|
Yang J, Yang X, Yang H, Bai Y, Zha H, Jiang F, Meng Y. Interleukin 6 in follicular fluid reduces embryo fragmentation and improves the clinical pregnancy rate. J Assist Reprod Genet 2020; 37:1171-1176. [PMID: 32189182 PMCID: PMC7244683 DOI: 10.1007/s10815-020-01737-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the role of interleukin 6 in embryo development in the in vitro fertilization cycles. METHODS This was a retrospective cohort study. One hundred and three women undergoing in vitro fertilization and embryo transfer due to a tubal factor were included in the study. The follicular fluid IL-6 levels on oocyte retrieval day from each patient were determined by ELISA. The relationships between follicular fluid IL-6 levels and IVF cycle parameters were investigated. RESULTS The levels of follicular fluid IL-6 were not affected by the use of drugs for superovulation or by estrogen. In addition, follicular fluid IL-6 levels did not affect the number of oocytes retrieved or the MII oocyte rate. High levels of follicular fluid IL-6 correlated with a significant increase in the rates of clinical pregnancy. Follicular fluid IL-6 levels did not affect the cell number or the blastomere symmetry of day 3 embryos, but it did significantly reduce the embryo fragmentation rate. CONCLUSIONS High levels of follicular fluid IL-6 improved the rates of clinical pregnancy and reduce embryo fragmentation.
Collapse
Affiliation(s)
- Jie Yang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Xiaoling Yang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Hong Yang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Yang Bai
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Hao Zha
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Fangjie Jiang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Yushi Meng
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China.
| |
Collapse
|
34
|
Zhao X, Jiang Y, Xi H, Chen L, Feng X. Exploration of the Relationship Between Gut Microbiota and Polycystic Ovary Syndrome (PCOS): a Review. Geburtshilfe Frauenheilkd 2020; 80:161-171. [PMID: 32109968 PMCID: PMC7035130 DOI: 10.1055/a-1081-2036] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic syndrome (MS) with a complex etiology, and its pathogenesis is not yet clear. In recent years, the correlation between gut microbiota (GM) and metabolic disease has become a hot topic in research, leading to a number of new ideas about the etiology and pathological mechanisms of PCOS. The literature shows that GM can cause insulin resistance, hyperandrogenism, chronic inflammation and metabolic syndrome (obesity, diabetes) and may contribute to the development of PCOS by influencing energy absorption, the pathways of short chain fatty acids (SCFA), lipopolysaccharides, choline and bile acids, intestinal permeability and the brain-gut axis. As part of the treatment of PCOS, fecal microbiota transplantation, supplementation with prebiotics and traditional Chinese medicine can be used to regulate GM and treat disorders. This article reviews possible mechanisms and treatment options for PCOS, based on methods which target the GM, and offers new ideas for the treatment of PCOS.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuepeng Jiang
- Department of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongyan Xi
- Department of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lu Chen
- Department of First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoling Feng
- Department of First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
35
|
Hiam D, Simar D, Laker R, Altıntaş A, Gibson-Helm M, Fletcher E, Moreno-Asso A, Trewin AJ, Barres R, Stepto NK. Epigenetic Reprogramming of Immune Cells in Women With PCOS Impact Genes Controlling Reproductive Function. J Clin Endocrinol Metab 2019; 104:6155-6170. [PMID: 31390009 DOI: 10.1210/jc.2019-01015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is a chronic disease affecting reproductive function and whole-body metabolism. Although the etiology is unclear, emerging evidence indicates that the epigenetics may be a contributing factor. OBJECTIVE To determine the role of global and genome-wide epigenetic modifications in specific immune cells in PCOS compared with controls and whether these could be related to clinical features of PCOS. DESIGN Cross-sectional study. PARTICIPANTS Women with (n = 17) or without PCOS (n = 17). SETTING Recruited from the general community. MAIN OUTCOME MEASURES Isolated peripheral blood mononuclear cells were analyzed using multicolor flow cytometry methods to determine global DNA methylation levels in a cell-specific fashion. Transcriptomic and genome-wide DNA methylation analyses were performed on T helper cells using RNA sequencing and reduced representation bisulfite sequencing. RESULTS Women with PCOS had lower global DNA methylation in monocytes (P = 0.006) and in T helper (P = 0.004), T cytotoxic (P = 0.004), and B cells (P = 0.03). Specific genome-wide DNA methylation analysis of T helper cells from women with PCOS identified 5581 differentially methylated CpG sites. Functional gene ontology enrichment analysis showed that genes located at the proximity of differentially methylated CpG sites belong to pathways related to reproductive function and immune cell function. However, these genes were not altered at the transcriptomic level. CONCLUSIONS It was shown that PCOS is associated with global and gene-specific DNA methylation remodeling in a cell type-specific manner. Further investigation is warranted to determine whether epigenetic reprogramming of immune cells is important in determining the different phenotypes of PCOS.
Collapse
Affiliation(s)
- Danielle Hiam
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Rhianna Laker
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Ali Altıntaş
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Gibson-Helm
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elly Fletcher
- Baker Heart and Disease Institute, Melbourne, Victoria, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Adam J Trewin
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Romain Barres
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Nigel K Stepto
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Medicine-Western Health, School of Medicine, Faculty of Medicine, Dentistry, and Health Science, Melbourne, Australia
| |
Collapse
|
36
|
Bishop CV, Reiter TE, Erikson DW, Hanna CB, Daughtry BL, Chavez SL, Hennebold JD, Stouffer RL. Chronically elevated androgen and/or consumption of a Western-style diet impairs oocyte quality and granulosa cell function in the nonhuman primate periovulatory follicle. J Assist Reprod Genet 2019; 36:1497-1511. [PMID: 31187329 DOI: 10.1007/s10815-019-01497-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To investigate the impact of chronically elevated androgens in the presence and absence of an obesogenic diet on oocyte quality in the naturally selected primate periovulatory follicle. METHODS Rhesus macaques were treated using a 2-by-2 factorial design (n = 10/treatment) near the onset of menarche with implants containing either cholesterol (C) or testosterone (T, 4-5-fold increase above C) and a standard or "Western-style" diet alone (WSD) or in combination (T+WSD). Following ~ 3.5 years of treatment, females underwent controlled ovulation (COv, n = 7-10/treatment) cycles, and contents of the naturally selected periovulatory follicle were aspirated. Follicular fluid (FF) was analyzed for cytokines, chemokines, growth factors, and steroids. RNA was extracted from luteinizing granulosa cells (LGCs) and assessed by RNA-seq. RESULTS Only healthy, metaphase (M) I/II-stage oocytes (100%) were retrieved in the C group, whereas several degenerated oocytes were recovered in other groups (33-43% of T, WSD, and T+WSD samples). Levels of two chemokines and one growth factor were reduced (p < 0.04) in FF of follicles with a MI/MII oocyte in WSD+T (CCL11) or T and WSD+T groups (CCL2 and FGF2) compared to C and/or WSD. Intrafollicular cortisol was elevated in T compared to C follicles (p < 0.02). Changes in the expression pattern of 640+ gene products were detected in LGC samples from follicles with degenerated versus MI/MII-stage oocytes. Pathway analysis on RNAs altered by T and/or WSD found enrichment of genes mapping to steroidogenic and immune cell pathways. CONCLUSIONS Female primates experiencing hyperandrogenemia and/or consuming a WSD exhibit an altered intrafollicular microenvironment and reduced oocyte quality/competency, despite displaying menstrual cyclicity.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA. .,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Taylor E Reiter
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Brittany L Daughtry
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
37
|
Li Z, Peng A, Feng Y, Zhang X, Liu F, Chen C, Ye X, Qu J, Jin C, Wang M, Qiu H, Qi Y, Huang J, Yang Q. Detection of T lymphocyte subsets and related functional molecules in follicular fluid of patients with polycystic ovary syndrome. Sci Rep 2019; 9:6040. [PMID: 30988342 PMCID: PMC6465402 DOI: 10.1038/s41598-019-42631-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Immune responses play an important role in the pathogenesis of polycystic ovary syndrome (PCOS). However, the characteristics of T lymphocyte subsets in PCOS remain insufficiently understood. In this study, lymphocytes of follicular fluid (FF) were obtained from oocyte retrieval before in-vitro fertilization (IVF) in infertile women with or without PCOS. The levels of cluster of differentiation 25 (CD25), CD69, programmed death 1 (PD-1), interferon-γ (IFN-γ), interleukin 17A (IL-17A) and IL-10 in T lymphocytes were determined by flow cytometry. Our results showed that the percentage of FF CD8+ T cells was significantly decreased in infertile patients with PCOS (P < 0.05). Furthermore, the levels of CD69 and IFN-γ were significantly decreased and the level of PD-1 was increased in both CD4+ and CD8+ T cells from infertile patients with PCOS (P < 0.05). Moreover, the expression of PD-1 on CD4+ or CD8+ T cells was positively correlated with the estradiol (E2) levels in the serum and reversely correlated with the expression of IFN-γ in CD4+ or CD8+ T cells in infertile patients with PCOS. These results suggested that T cell dysfunction may be involved in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zitao Li
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China
| | - Anping Peng
- Clinical laboratory, Traditional Chinese Medicine Hospital of Guangdong province, 510120, Guangzhou, China
| | - Yuanfa Feng
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaona Zhang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, 510655, Guangzhou, China
| | - Fenghua Liu
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China
| | - Chuangqi Chen
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China
| | - Xin Ye
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Jiale Qu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Chenxi Jin
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.
| | - Quan Yang
- Reproductive medical center, Guangdong Women and Children Hospital, Guangzhou Medical University, 511400, Guangzhou, China. .,Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.
| |
Collapse
|
38
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
39
|
Gong P, Shi B, Wang J, Cao P, Diao Z, Wang Y, Hu Y, Li S. Association between Th1/Th2 immune imbalance and obesity in women with or without polycystic ovary syndrome. Gynecol Endocrinol 2018; 34:709-714. [PMID: 29447491 DOI: 10.1080/09513590.2018.1428301] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the Th1/Th2 cells in peripheral blood of PCOS patients, and assess the potential correlation between Th1/Th2 imbalance and obesity. METHODS Thirty-nine PCOS patients and 23 age-matched controls were enrolled. The PBMCs were obtained before pharmacological intervention in women with or without PCOS. The profiles of Th1 (IFN-γ) and Th2 (IL-4) cytokines of CD3+CD- T lymphocyte subsets were analyzed by flow cytometry. Plasma sex hormones including E2, T, FSH, LH, and FINS, FPG were measured, together with BMI, WC, LH/FSH, E2/T and HOMA-IR index being calculated. Association between Th1/Th2 imbalance and BMI, WC were evaluated. RESULTS The proportion of Th1 cells and Th1/Th2 ratio were significantly higher in PCOS patients than those in controls, accompanied by elevated T, LH, LH/FSH, FINS, HOMA-IR index and reduced E2/T. The Th1/Th2 ratio was increased when BMI and WC were enhanced in PCOS. Moreover, the significant difference of Th1/Th2 ratio was observed between WC subgroups of PCOS. CONCLUSIONS It is concluded that Th1 type immunity is predominant in systemic immunization of PCOS patients. Th1/Th2 immune imbalance is connected with obesity, especially abdominal obesity, and may be one of the underlying mechanism for the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Ping Gong
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
- b Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China
| | - Bingwei Shi
- c Department of Laboratory Medicine , Changzhou Hospital of Traditional Chinese Medicine , Changzhou , China
| | - Juan Wang
- c Department of Laboratory Medicine , Changzhou Hospital of Traditional Chinese Medicine , Changzhou , China
| | - Peixia Cao
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
| | - Zhenyu Diao
- b Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China
| | - Yuji Wang
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
| | - Yali Hu
- b Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing , China
| | - Shuping Li
- a Department of Obstetrics and Gynecology , Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine , Changzhou , China
| |
Collapse
|
40
|
Wang S, He G, Chen M, Zuo T, Xu W, Liu X. The Role of Antioxidant Enzymes in the Ovaries. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4371714. [PMID: 29147461 PMCID: PMC5632900 DOI: 10.1155/2017/4371714] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 01/21/2023]
Abstract
Proper physiological function of the ovaries is very important for the entire female reproductive system and overall health. Reactive oxygen species (ROS) are generated as by-products during ovarian physiological metabolism, and antioxidants are indicated as factors that can maintain the balance between ROS production and clearance. A disturbance in this balance can induce pathological consequences in oocyte maturation, ovulation, fertilization, implantation, and embryo development, which can ultimately influence pregnancy outcomes. However, our understanding of the molecular and cellular mechanisms underlying these physiological and pathological processes is lacking. This article presents up-to-date findings regarding the effects of antioxidants on the ovaries. An abundance of evidence has confirmed the various significant roles of these antioxidants in the ovaries. Some animal models are discussed in this review to demonstrate the harmful consequences that result from mutation or depletion of antioxidant genes or genes related to antioxidant synthesis. Disruption of antioxidant systems may lead to pathological consequences in women. Antioxidant supplementation is indicated as a possible strategy for treating reproductive disease and infertility by controlling oxidative stress (OS). To confirm this, further investigations are required and more antioxidant therapy in humans has to been performed.
Collapse
Affiliation(s)
- Shan Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Zuo
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Talaat RM, Mohamed YA, Mohamad EH, Elsharkawy M, Guirgis AA. Interleukin 10 (- 1082 G/A) and (- 819 C/T) gene polymorphisms in Egyptian women with polycystic ovary syndrome (PCOS). Meta Gene 2016; 9:254-8. [PMID: 27617227 PMCID: PMC5006121 DOI: 10.1016/j.mgene.2016.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022] Open
Abstract
Cytokines play critical roles in the pathogenesis of Polycystic Ovarian Syndrome (PCOS). This work was designed to study the implication of IL10 gene polymorphisms (− 1082 G/A and − 819 C/T) on the susceptibility of Egyptian women to have PCOS. Rotterdam consensus criteria were used to diagnose PCOS patients. Genotyping was performed by single-stranded polymorphism-polymerase chain reaction (SSP-PCR) in 61 PCOS patients and 80 healthy controls, and IL-10 serum levels were measured using Enzyme linked immunosorbent assay (ELISA). The frequency of IL10 − 1082 G/G (46%) genotype was significantly increased (p < 0.001) while the frequency of − 1082 A/A (16%) genotype was significantly decreased (p < 0.05) in PCOS patients compared to controls (14% and 35% for G/G and A/A genotypes; respectively). G allele (65%) is significantly increased (p < 0.01( in PCOS patients while A allele (61%) is significantly increased (p < 0.001( in control subjects. The distribution of IL10 -819 T/T genotype was significantly increased (p < 0.05) in PCOS group. G/G genotype (odd ratio (OR = 5.322) with confidence interval (CI = 2.364–11.982) and the G allele (OR = 2.828 with CI = 1.73–4.61) of − 1082 G/A and T/T genotype of − 819 C/T (OR = 4.18 with CI = 1.26–13.86) could be considered as risk factors for PCOS. IL-10 levels were significantly lower among PCOS patients (313.42 ± 30.10) compared to normal controls (4914.36 ± 303.72). Depending on our preliminary work, IL10 − 1082 G/G might be considered as a host genetic factor for PCOS susceptibility in Egyptian women. Studies concerning other cytokine gene polymorphisms are required to get a better understanding of the pathogenesis of PCOS disease.
Collapse
Affiliation(s)
- Roba M Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | - Yasmin A Mohamed
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | - Ehab H Mohamad
- Obstetrics and Gynecology Department, Faculty of Medicine, Al-Azhar University, Egypt
| | - Marwa Elsharkawy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Egypt
| | - Adel A Guirgis
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| |
Collapse
|
42
|
Inhibition of Zymosan-Induced Inflammatory Factors Expression by ATRA Nanostructured Lipid Carriers. J Ophthalmol 2016; 2016:4952340. [PMID: 27340562 PMCID: PMC4908262 DOI: 10.1155/2016/4952340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 11/20/2022] Open
Abstract
Purpose. The study aimed to evaluate the effect of all-trans retinoic acid-loaded nanostructured lipid carriers (ATRA-NLCs) on the zymosan-induced expression of the cytokines IL-4, IL-10, and IFN-γ and the matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMPs/TIMPs) and TLR2 in rabbit corneal fibroblasts (RCFs). Methods. ATRA-NLCs were prepared by emulsification. RCFs were isolated and harvested after four to seven passages in monolayer culture. Cytokine release (IL-4, IL-10, and IFN-γ) induced by zymosan was analyzed by cytokine release assay, reverse transcription, and real-time polymerase chain reaction (RT-PCR) analysis detection. MMP-1, MMP-3, and MMP-13, TIMP-1 and TIMP-2, and TLR2 expression were analyzed by immunoblotting. Results. ATRA-NLCs were resistant to light and physically stable, and the average size of the ATRA-NLCs was 200 nm. ATRA-NLCs increased the zymosan-induced release of IL-4 and IL-10 and decreased the release of IFN-γ by RCFs. ATRA-NLCs decreased the levels of TLR2 and MMPs/TIMPs above. Conclusions. ATRA may be a potent anti-inflammatory agent for the therapy of fungal keratitis (FK).
Collapse
|