1
|
Ślusarz MJ. Structural Basis for Antagonist Binding to Vasopressin V1b Receptor Revealed by the Molecular Dynamics Simulations. Biopolymers 2024:e23627. [PMID: 39286992 DOI: 10.1002/bip.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
The human V1b receptor (V1bR) is primarily expressed in the corticotropic cells of the anterior pituitary where it is involved in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis. The activation of V1bR induces the secretion of adrenocorticotropin hormone (ACTH) from the anterior pituitary cells which, in turn, stimulates the production of cortisol via the adrenal cortex. Clinical studies have demonstrated the chronic dysfunction of the HPA axis in patients with several psychiatric disorders. Thus, the inhibition of the V1b receptor and normalizing the HPA axis hyperactivity is a promising approach to the treatment of many stress-related disorders such as anxiety and depression. Nelivaptan is a selective V1bR antagonist that can be used for this purpose and an excellent molecule to study how antagonists interact with V1bR, especially since in recent years the experimental structures of vasopressin V2 and oxytocin receptors were solved, providing high-similarity templates for homology modeling of V1bR. Therefore, in this work, six independent molecular dynamics simulations of a V1bR-nelivaptan complex in a fully hydrated lipid bilayer, yielding a total simulation time of 6.0 μs, have been conducted. In the lowest-energy complexes obtained in this work and proposed to be the most probable structure of the V1bR-nelivaptan complex, the location of the ligand inside the receptor pocket is very similar to that of the other ligands observed in the experimental structures of the vasopressin/oxytocin receptor family. The receptor-ligand interaction has been analyzed and described, revealing the details of the molecular mechanism of this antagonist binding to V1bR and a probable contribution of L2005×40 and T2035×43 to binding selectivity.
Collapse
|
2
|
Um S, Lee J, Kim SJ, Cho KA, Kang KS, Kim SH. Xinghamide A, a New Cyclic Nonapeptide Found in Streptomyces xinghaiensis. Mar Drugs 2023; 21:509. [PMID: 37888444 PMCID: PMC10608500 DOI: 10.3390/md21100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Xinghamide A (1), a new nonapeptide, was discovered in Streptomyces xinghaiensis isolated from a halophyte, Suaeda maritima (L.) Dumort. Based on high-resolution mass and NMR spectroscopic data, the planar structure of 1 was established, and, in particular, the sequence of nine amino acids was determined with ROESY and HMBC NMR spectra. The absolute configurations of the α-carbon of each amino acid residue were determined with 1-fluoro-2,4-dinitrophenyl-l-and -d-leucine amide (Marfey's reagents) and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. The anti-inflammatory activity of xinghamide A (1) was evaluated by inhibitory abilities against the nitric oxide (NO) secretion and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Soohyun Um
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea; (S.U.); (J.L.); (K.A.C.)
| | - Jaeyoun Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea; (S.U.); (J.L.); (K.A.C.)
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Kyung A Cho
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea; (S.U.); (J.L.); (K.A.C.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea; (S.U.); (J.L.); (K.A.C.)
| |
Collapse
|
3
|
Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, Ghalandari-Shamami M, Naderian R, Afshin Samaei S, Rashidy-Pour A. Hypothalamus and Post-Traumatic Stress Disorder: A Review. Brain Sci 2023; 13:1010. [PMID: 37508942 PMCID: PMC10377115 DOI: 10.3390/brainsci13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.
Collapse
Affiliation(s)
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Alizadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sakineh Shafia
- Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ramtin Naderian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Afshin Samaei
- Department of Neurology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Abstract
BACKGROUND There is a burgeoning body of evidence suggesting that arginine vasopressin (AVP) acts as a neuromodulator of the stress response. AVP stimulates the release of adrenocorticotropic hormone, synergistic to corticotropin-releasing hormone, which might explain AVP's role in resilience. Personal hardiness is the bedrock of resilience. Numerous studies have demonstrated elevated plasma levels of AVP in patients with major depressive disorder (MDD), suggesting an etiopathogenetic role as well as a novel therapeutic target. OBJECTIVE The aim of this study was to examine the relationship between AVP and resilience in patients with MDD and to determine AVP levels in serum of patients with MDD. METHODS Forty patients with MDD and 40 healthy control subjects were studied using the Dispositional Resilience (Hardiness) Scale by Barton, the Quality of Life Scale, the Social Readjustment Rating Scale, and the Beck Depression Inventory. Biochemical analysis of plasma levels of AVP, using the enzyme-linked immunosorbent assay (ELISA), was performed for all participants. RESULTS Levels of AVP were statistically significantly elevated in patients with MDD compared with healthy controls. Psychological hardiness was decreased in patients with MDD compared with healthy controls, a finding also statistically significant. There was a negative correlation between plasma AVP level and psychological hardiness. CONCLUSION AVP and psychological hardiness are negatively correlated, reflecting lower stress resilience. AVP levels are indeed higher in patients struggling with MDD.
Collapse
|
5
|
Goerlich KS, Votinov M. Hormonal abnormalities in alexithymia. Front Psychiatry 2023; 13:1070066. [PMID: 36699481 PMCID: PMC9868825 DOI: 10.3389/fpsyt.2022.1070066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Alexithymia is a personality trait characterized by difficulties in emotion recognition and regulation that is associated with deficits in social cognition. High alexithymia levels are considered a transdiagnostic risk factor for a range of psychiatric and medical conditions, including depression, anxiety, and autism. Hormones are known to affect social-emotional cognition and behavior in humans, including the neuropeptides oxytocin and vasopressin, the steroid hormones testosterone and estradiol, the stress hormone cortisol as well as thyroid hormones. However, few studies have investigated hormonal effects on alexithymia and on alexithymia-related impairments in emotion regulation and reactivity, stress response, and social cognition. Here, we provide a brief overview of the evidence linking alexithymia to abnormalities in hormone levels, particularly with regard to cortisol and oxytocin, for which most evidence exists, and to thyroid hormones. We address the current lack of research on the influence of sex hormones on alexithymia and alexithymia-related deficits, and lastly provide future directions for research on associations between hormonal abnormalities and deficits in emotion regulation and social cognition associated with alexithymia.
Collapse
Affiliation(s)
- Katharina S. Goerlich
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mikhail Votinov
- Institute of Neuroscience and Medicine 10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Salahinejad A, Attaran A, Meuthen D, Rachamalla M, Chivers DP, Niyogi S. Maternal exposure to bisphenol S induces neuropeptide signaling dysfunction and oxidative stress in the brain, and abnormal social behaviors in zebrafish (Danio rerio) offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154794. [PMID: 35341835 DOI: 10.1016/j.scitotenv.2022.154794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Recent studies show that bisphenol S (BPS) induces multiple adverse effects in exposed organisms; however, the maternal effects of BPS exposure remain poorly understood. Here, we expose adult female zebrafish to environmentally relevant concentrations of BPS (0, 1, 10, 30 μg/L) and 1 μg/L of 17-β-estradiol (E2) as a positive control for 60 days. Females were then paired with BPS-unexposed males and their offspring were raised in control water for 6 months. Maternal exposure to BPS was found to alter social behavior and anxiety response in a dose-specific manner in male offspring. Group preferences and social cohesion were significantly reduced by maternal exposure to 1 and 10 μg/L BPS, respectively. Additionally, maternal exposure to 1 and 30 μg/L BPS and E2 decreased offspring stress responses during the novel tank test. The impaired social behavior was associated with elevated arginine-vasotocin (AVT) level as well as with the altered expression of genes involved in AVT signaling pathway (AVT, avpr1aa) and enzymatic antioxidant genes (cat and Mn-sod) in the brain. Collectively, these results suggest that maternal exposure to environmentally relevant concentrations of BPS alters social behavior in zebrafish offspring, which is likely mediated by oxidative stress and disruption of neuropeptide signaling pathways in the brain.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
7
|
Witte AM, Riem MME, van der Knaap N, de Moor MHM, van IJzendoorn MH, Bakermans-Kranenburg MJ. The effects of oxytocin and vasopressin administration on fathers' neural responses to infant crying: A randomized controlled within-subject study. Psychoneuroendocrinology 2022; 140:105731. [PMID: 35334388 DOI: 10.1016/j.psyneuen.2022.105731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
In a randomized double-blind within-subject control study we investigated the effects of oxytocin and vasopressin administration on neural reactivity to infant cry sounds in 70 first-time fathers in the first year of fatherhood. Additionally, we examined whether effects of oxytocin and vasopressin administration on neural reactivity were moderated by fathers' early childhood experiences. Neural reactivity to infant cry sounds (versus control sounds) was measured using functional magnetic resonance imaging (fMRI). Furthermore, participants reported on their childhood experiences of parental harsh discipline and parental love withdrawal. Whole brain analyses revealed no significant effect of vasopressin or oxytocin administration on neural activation in response to infant cry sounds. Region of interest analyses showed decreased amygdala activation in both the oxytocin condition and the vasopressin condition as compared to placebo. We found no moderating effects of fathers' early childhood experiences. Our findings suggest that oxytocin administration may decrease feelings of anxiety or aversion to a crying infant. Whether decreased amygdala activation after vasopressin administration might be explained by contextual factors (e.g., absence of high levels of threat, unfamiliarity of the infant) or represents an affiliative response to infant distress warrants further investigation. Findings of the present study showed that oxytocin and vasopressin are important hormones implicated in neural models of infant cry perception in fatherhood.
Collapse
Affiliation(s)
- Annemieke M Witte
- Clinical Child & Family Studies, Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Madelon M E Riem
- Clinical Child & Family Studies, Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands; Behavioral Science Institute, Radboud University, the Netherlands
| | - N van der Knaap
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Marleen H M de Moor
- Clinical Child & Family Studies, Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands; Research Department of Clinical, Education and Health Psychology, Faculty of Brain Sciences, UCL, London, UK
| | - Marian J Bakermans-Kranenburg
- Clinical Child & Family Studies, Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Czarzasta K, Żera T. Multiple Aspects of Inappropriate Action of Renin-Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J Clin Med 2022; 11:908. [PMID: 35207180 PMCID: PMC8877782 DOI: 10.3390/jcm11040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular system and the central nervous system (CNS) closely cooperate in the regulation of primary vital functions. The autonomic nervous system and several compounds known as cardiovascular factors, especially those targeting the renin-angiotensin system (RAS), the vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with depression, Alzheimer's disease, Parkinson's disease, autism, and schizophrenia. The altered function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.W.); (A.C.-J.); (K.C.); (T.Ż.)
| | | | | | | | | |
Collapse
|
9
|
Eslinger PJ, Anders S, Ballarini T, Boutros S, Krach S, Mayer AV, Moll J, Newton TL, Schroeter ML, de Oliveira-Souza R, Raber J, Sullivan GB, Swain JE, Lowe L, Zahn R. The neuroscience of social feelings: mechanisms of adaptive social functioning. Neurosci Biobehav Rev 2021; 128:592-620. [PMID: 34089764 PMCID: PMC8388127 DOI: 10.1016/j.neubiorev.2021.05.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023]
Abstract
Social feelings have conceptual and empirical connections with affect and emotion. In this review, we discuss how they relate to cognition, emotion, behavior and well-being. We examine the functional neuroanatomy and neurobiology of social feelings and their role in adaptive social functioning. Existing neuroscience literature is reviewed to identify concepts, methods and challenges that might be addressed by social feelings research. Specific topic areas highlight the influence and modulation of social feelings on interpersonal affiliation, parent-child attachments, moral sentiments, interpersonal stressors, and emotional communication. Brain regions involved in social feelings were confirmed by meta-analysis using the Neurosynth platform for large-scale, automated synthesis of functional magnetic resonance imaging data. Words that relate specifically to social feelings were identfied as potential research variables. Topical inquiries into social media behaviors, loneliness, trauma, and social sensitivity, especially with recent physical distancing for guarding public and personal health, underscored the increasing importance of social feelings for affective and second person neuroscience research with implications for brain development, physical and mental health, and lifelong adaptive functioning.
Collapse
Affiliation(s)
- Paul J Eslinger
- Departments of Neurology, Neural & Behavioral Sciences, Pediatrics, and Radiology, Penn State Hershey Medical Center, Hershey, PA, USA.
| | - Silke Anders
- Social and Affective Neuroscience, Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Sören Krach
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Annalina V Mayer
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Jorge Moll
- Cognitive Neuroscience Unit, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Tamara L Newton
- University of Louisville, Department of Psychological and Brain Sciences, Louisville, KY, USA
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Ricardo de Oliveira-Souza
- Cognitive Neuroscience Unit, D'Or Institute for Research and Education (IDOR), BR Hospital Universitario, Universidade do Rio de Janeiro, Brazil
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Gavin B Sullivan
- International Psychoanalytic University, Berlin, Germany, Centre for Trust, Peace and Social Relations, Coventry University, UK
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Psychology and Obstetrics and Gynecology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| |
Collapse
|
10
|
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with a wide range of behavioral disturbances and serious consequences for both patient and society. One of the main reasons for unsuccessful therapies is insufficient knowledge about its underlying pathomechanism. In the search for centrally signaling molecules that might be relevant to the development of PTSD we focus here on arginine vasopressin (AVP). So far AVP has not been strongly implicated in PTSD, but different lines of evidence suggest a possible impact of its signaling in all clusters of PTSD symptomatology. More specifically, in laboratory rodents, AVP agonists affect behavior in a PTSD-like manner, while significant reduction of AVP signaling in the brain e.g. in AVP-deficient Brattleboro rats, ameliorated defined behavioral parameters that can be linked to PTSD symptoms. Different animal models of PTSD also show alterations in the AVP signaling in distinct brain areas. However, pharmacological treatment targeting central AVP receptors via systemic routes is hampered by possible side effects that are linked to the peripheral action of AVP as a hormone. Indeed, the V1a receptor, the most common receptor subtype in the brain, is implicated in vasoconstriction. Thus, systemic treatment with V1a receptor antagonists would be implicated in hypotonia. This implies that novel treatment concepts are needed to target AVP receptors not only at brain level but also in distinct brain areas, to offer alternative treatments for PTSD.
Collapse
Affiliation(s)
- Eszter Sipos
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bibiána Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Barna
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), Magdeburg, Germany
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Swaab DF, Bao AM. Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:335-358. [PMID: 33008536 DOI: 10.1016/b978-0-444-64123-6.00023-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress-related disorders, such as mood disorders and posttraumatic stress disorder (PTSD), are more common in women than in men. This sex difference is at least partly due to the organizing effect of sex steroids during intrauterine development, while activating or inhibiting effects of circulating sex hormones in the postnatal period and adulthood also play a role. Such effects result in structural and functional changes in neuronal networks, neurotransmitters, and neuropeptides, which make the arousal- and stress-related brain systems more vulnerable to environmental stressful events in women. Certain brainstem nuclei, the amygdala, habenula, prefrontal cortex, and hypothalamus are important hubs in the stress-related neuronal network. Various hypothalamic nuclei play a central role in this sexually dimorphic network. This concerns not only the hypothalamus-pituitary-adrenal axis (HPA-axis), which integrates the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of mood disorders, such as disordered day-night rhythm, lack of reward feelings, disturbed eating and sex, and disturbed cognitive functions. The present chapter focuses on the structural and functional sex differences that are present in the stress-related brain systems in mood disorders and PTSD, placing the HPA-axis in the center. The individual differences in the vulnerability of the discussed systems, caused by genetic and epigenetic developmental factors warrant further research to develop tailor-made therapeutic strategies.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Key Laboratory of Mental Disorder Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Bao AM, Swaab DF. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep 2018; 6:45-53. [PMID: 31211281 PMCID: PMC6562194 DOI: 10.1016/j.ibror.2018.11.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
There are no specific structural neuropathological hallmarks found in the brain of mood disorders. Instead, there are molecular, functional and structural alterations reported in many brain areas. The neurodevelopmental underpinning indicated the presence of various genetic and developmental risk factors. The effect of genetic polymorphisms and developmental sequalae, some of which may start in the womb, result in functional changes in a network mediated by neurotransmitters and neuropeptides, which make the emotion- and stress-related brain systems more vulnerable to stressful events. This network of stress-related neurocircuits consists of, for instance, brainstem nuclei, the amygdala, habenula, prefrontal cortex and hypothalamus. Various nuclei of the hypothalamus form indeed one of the crucial hubs in this network. This structure concerns not only the hypothalamo-pituitary-adrenal (HPA) axis that integrate the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of depression, such as disordered day-night rhythm, lack of reward feelings, disturbed eating, sex, and disturbed cognitive functions. The present review will focus on the changes in the human hypothalamus in depression, with the HPA axis in the center. We will discuss the inordinate network of neurotransmitters and neuropeptides involved, with the hope to find the most vulnerable neurobiological systems and the possible development of tailor-made treatments for mood disorders in the future.
Collapse
Affiliation(s)
- Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick F Swaab
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Chen X, Hackett PD, DeMarco AC, Feng C, Stair S, Haroon E, Ditzen B, Pagnoni G, Rilling JK. Effects of oxytocin and vasopressin on the neural response to unreciprocated cooperation within brain regions involved in stress and anxiety in men and women. Brain Imaging Behav 2017; 10:581-93. [PMID: 26040978 DOI: 10.1007/s11682-015-9411-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are characterized by hyperactivity in both the amygdala and the anterior insula. Interventions that normalize activity in these areas may therefore be effective in treating anxiety disorders. Recently, there has been significant interest in the potential use of oxytocin (OT), as well as vasopressin (AVP) antagonists, as treatments for anxiety disorders. In this double-blind, placebo-controlled, pharmaco- fMRI study, 153 men and 151 women were randomized to treatment with either 24 IU intranasal OT, 20 IU intranasal AVP, or placebo and imaged with fMRI as they played the iterated Prisoner's Dilemma game with same-sex human and computer partners. In men, OT attenuated the fMRI response to unreciprocated cooperation (CD), a negative social interaction, within the amygdala and anterior insula. This effect was specific to interactions with human partners. In contrast, among women, OT unexpectedly attenuated the amygdala and anterior insula response to unreciprocated cooperation from computer but not human partners. Among women, AVP did not significantly modulate the response to unreciprocated cooperation in either the amygdala or the anterior insula. However, among men, AVP attenuated the BOLD response to CD outcomes with human partners across a relatively large cluster including the amygdala and the anterior insula, which was contrary to expectations. Our results suggest that OT may decrease the stress of negative social interactions among men, whereas these effects were not found in women interacting with human partners. These findings support continued investigation into the possible efficacy of OT as a treatment for anxiety disorders.
Collapse
Affiliation(s)
- Xu Chen
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA, 30322, USA.,Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Patrick D Hackett
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA, 30322, USA
| | - Ashley C DeMarco
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Chunliang Feng
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA, 30322, USA
| | - Sabrina Stair
- Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Beate Ditzen
- Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA.,Center for Behavioral Neuroscience, Emory University, Atlanta, GA, USA.,Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Giuseppe Pagnoni
- Department of Neural, Biomedical, and Metabolic Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - James K Rilling
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA, 30322, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA. .,Center for Behavioral Neuroscience, Emory University, Atlanta, GA, USA. .,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA. .,Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Fields CT, Chassaing B, Paul MJ, Gewirtz AT, de Vries GJ. Vasopressin deletion is associated with sex-specific shifts in the gut microbiome. Gut Microbes 2017; 9:13-25. [PMID: 28759308 PMCID: PMC5914910 DOI: 10.1080/19490976.2017.1356557] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brattleboro rats harbor a spontaneous deletion of the arginine-vasopressin (Avp) gene. In addition to diabetes insipidus, these rats exhibit low levels of anxiety and depressive behaviors. Recent work on the gut-brain axis has revealed that gut microbiota can influence anxiety behaviors. Therefore, we studied the effects of Avp gene deletion on gut microbiota. Since Avp gene expression is sexually different, we also examined how Avp deletion affects sex differences in gut microbiota. Males and females show modest but differentiated shifts in taxa abundance across 3 separate Avp deletion genotypes: wildtype (WT), heterozygous (Het) and AVP-deficient Brattleboro (KO) rats. For each sex, we found examples of taxa that have been shown to modulate anxiety behavior, in a manner that correlates with anxiety behavior observed in homozygous knockout Brattleboro rats. One prominent example is Lactobacillus, which has been reported to be anxiolytic: Lactobacillus was found to increase in abundance in inverse proportion to increasing gene dosage (most abundant in KO rats). This genotype effect of Lactobacillus abundance was not found when females were analyzed independently. Therefore, Avp deletion appears to affect microbiota composition in a sexually differentiated manner.
Collapse
Affiliation(s)
- Christopher T. Fields
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA,CONTACT Christopher T. Fields Neuroscience Institute, Georgia State University, Atlanta, GA, 30303
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA, USA
| | - Matthew J. Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
15
|
Haber YO, Chandler HK, Serrador JM. Symptoms Associated with Vestibular Impairment in Veterans with Posttraumatic Stress Disorder. PLoS One 2016; 11:e0168803. [PMID: 28033352 PMCID: PMC5199023 DOI: 10.1371/journal.pone.0168803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and disabling, anxiety disorder resulting from exposure to life threatening events such as a serious accident, abuse or combat (DSM IV definition). Among veterans with PTSD, a common complaint is dizziness, disorientation and/or postural imbalance in environments such as grocery stores and shopping malls. The etiology of these symptoms in PTSD is poorly understood and some attribute them to anxiety or traumatic brain injury. There is a possibility that an impaired vestibular system may contribute to these symptoms since, symptoms of an impaired vestibular system include dizziness, disorientation and postural imbalance. To our knowledge, this is the first report to describe the nature of vestibular related symptoms in veterans with and without PTSD. We measured PTSD symptoms using the Posttraumatic Stress Disorder Checklist (PCL-C) and compared it to responses on vestibular function scales including the Dizziness Handicap Inventory (DHI), the Vertigo Symptom Scale Short Form (VSS-SF), the Chambless Mobility Inventory (CMI), and the Neurobehavioral Scale Inventory (NSI) in order to identify vestibular-related symptoms. Our findings indicate that veterans with worse PTSD symptoms report increased vestibular related symptoms. Additionally veterans with PTSD reported 3 times more dizziness related handicap than veterans without PTSD. Veterans with increased avoidance reported more vertigo and dizziness related handicap than those with PTSD and reduced avoidance. We describe possible contributing factors to increased reports of vestibular symptoms in PTSD, namely, anxiety, a vestibular component as well as an interactive effect of anxiety and vestibular impairment. We also present some preliminary analyses regarding the contribution of TBI. This data suggests possible evidence for vestibular symptom reporting in veterans with PTSD, which may be explained by possible underlying vestibular impairment, worthy of further exploration.
Collapse
Affiliation(s)
- Yaa O. Haber
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences, Newark, New Jersey, United States of America
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, United States of America
| | - Helena K. Chandler
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, United States of America
- * E-mail:
| | - Jorge M. Serrador
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences, Newark, New Jersey, United States of America
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, United States of America
- Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Barsegyan A, Atsak P, Hornberger WB, Jacobson PB, van Gaalen MM, Roozendaal B. The Vasopressin 1b Receptor Antagonist A-988315 Blocks Stress Effects on the Retrieval of Object-Recognition Memory. Neuropsychopharmacology 2015; 40:1979-89. [PMID: 25669604 PMCID: PMC4839522 DOI: 10.1038/npp.2015.48] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/13/2022]
Abstract
Stress-induced activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory.
Collapse
Affiliation(s)
- Areg Barsegyan
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Peer B Jacobson
- Integrated Sciences and Technology, Imaging Research, AbbVie, North Chicago, IL, USA
| | - Marcel M van Gaalen
- Neuroscience Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands,Department of Cognitive Neuroscience, Radboud University Medical Centre, Geert Grooteplein Noord 21, PO Box 9101, Nijmegen 6500 HB, The Netherlands, Tel: +31 (0) 24 366 6301, E-mail:
| |
Collapse
|
17
|
Balázsfi D, Pintér O, Klausz B, Kovács KB, Fodor A, Török B, Engelmann M, Zelena D. Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats. Psychoneuroendocrinology 2015; 51:11-23. [PMID: 25278460 DOI: 10.1016/j.psyneuen.2014.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/19/2023]
Abstract
Beside its hormonal function in salt and water homeostasis, vasopressin released into distinct brain areas plays a crucial role in stress-related behavior resulting in the enhancement of an anxious/depressive-like state. We aimed to investigate whether correction of the peripheral symptoms of congenital absence of AVP also corrects the behavioral alterations in AVP-deficient Brattleboro rats. Wild type (WT) and vasopressin-deficient (KO) male Brattleboro rats were tested. Half of the KO animals were treated by desmopressin (V2-receptor agonist) via osmotic minipump (subcutaneous) to eliminate the peripheral symptoms of vasopressin-deficiency. Anxiety was studied by elevated plus maze (EPM), defensive withdrawal (DW) and marble burying (MB) tests, while depressive-like changes were monitored in forced swimming (FS) and anhedonia by sucrose preference test. Cell activity was examined in septum and amygdala by c-Fos immunohistochemistry after 10 min FS. KO rats spent more time in the open arm of the EPM, spent less time at the periphery of DW and showed less burying behavior in MB suggesting a reduced anxiety state. KO animals showed less floating behavior during FS revealing a less depressive phenotype. Desmopressin treatment compensated the peripheral effects of vasopressin-deficiency without a significant influence on the behavior. The FS-induced c-Fos immunoreactivity in the medial amygdala was different in WT and KO rats, with almost identical levels in KO and desmopressin treated animals. There were no differences in central and basolateral amygdala as well as in lateral septum. Our data confirmed the role of vasopressin in the development of affective disorders through central mechanisms. The involvement of the medial amygdala in the behavioral alterations of vasopressin deficient animals deserves further attention.
Collapse
Affiliation(s)
- Diána Balázsfi
- Hungarian Academy of Sciences, Institute of Experimental Medicine, 1083 Budapest Szigony 43, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Ottó Pintér
- Hungarian Academy of Sciences, Institute of Experimental Medicine, 1083 Budapest Szigony 43, Budapest, Hungary
| | - Barbara Klausz
- Hungarian Academy of Sciences, Institute of Experimental Medicine, 1083 Budapest Szigony 43, Budapest, Hungary
| | - Krisztina B Kovács
- Hungarian Academy of Sciences, Institute of Experimental Medicine, 1083 Budapest Szigony 43, Budapest, Hungary
| | - Anna Fodor
- Hungarian Academy of Sciences, Institute of Experimental Medicine, 1083 Budapest Szigony 43, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Hungarian Academy of Sciences, Institute of Experimental Medicine, 1083 Budapest Szigony 43, Budapest, Hungary
| | - Mario Engelmann
- Institut für Biochemie und Zellbiologie (M.E.), Otto-von-Guericke-Universität, Magdeburg, Germany; Center of Behavioral Brain Science, Magdeburg, Germany
| | - Dóra Zelena
- Hungarian Academy of Sciences, Institute of Experimental Medicine, 1083 Budapest Szigony 43, Budapest, Hungary.
| |
Collapse
|
18
|
Khemissi W, Farooq RK, Le Guisquet AM, Sakly M, Belzung C. Dysregulation of the hypothalamus-pituitary-adrenal axis predicts some aspects of the behavioral response to chronic fluoxetine: association with hippocampal cell proliferation. Front Behav Neurosci 2014; 8:340. [PMID: 25324748 PMCID: PMC4179749 DOI: 10.3389/fnbeh.2014.00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/10/2014] [Indexed: 01/19/2023] Open
Abstract
In depressed patients, antidepressant resistance has been associated with dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis but the underlying mechanisms are poorly understood. The scope of this study was to try to create HPA-related antidepressant resistance in mice and to investigate adult hippocampal neurogenesis as a putative mechanism of antidepressant resistance. Mice were subjected to a 9 week Unpredictable Chronic Mild Stress (UCMS). After a 2 weeks drug-free period, mice were segregated in two groups, according to the percentage of corticosterone suppression after dexamethasone injection: High suppression (HS) and Low suppression (LS) mice. From the 5th week onwards, fluoxetine at a dose of 15 mg/kg (i.p.) was administered daily and at the end of 8th week, a battery of behavioral tests assessing the emotional, cognitive, and motor aspects of UCMS-induced depressive-like behavior was applied. Results show that fluoxetine-induced antidepressant effects were observed with higher amplitude in HS when compared to LS on various behavioral phenotypes, like coat state, novelty suppression of feeding, splash test and nest test. The same profile was found concerning the immunohistochimical analysis of ki-67 positive cells in the dentate gyrus of the hippocampus, which is a marker of neuronal proliferation, but not for doublecortin labeling. This suggests that the failure of fluoxetine to induce antidepressant effects may be associated to the poor ability of the compound to stimulate cell proliferation in the hippocampus.
Collapse
Affiliation(s)
- Wahid Khemissi
- Inserm U930 Eq 4, UFR Sciences et Techniques Tours, France ; Université François Rabelais Tours, France
| | - Rai Khalid Farooq
- Inserm U930 Eq 4, UFR Sciences et Techniques Tours, France ; Université François Rabelais Tours, France
| | - Anne-Marie Le Guisquet
- Inserm U930 Eq 4, UFR Sciences et Techniques Tours, France ; Université François Rabelais Tours, France
| | - Mohsen Sakly
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Université de Carthage Bizerte, Tunisia
| | - Catherine Belzung
- Inserm U930 Eq 4, UFR Sciences et Techniques Tours, France ; Université François Rabelais Tours, France
| |
Collapse
|
19
|
Grassi D, Lagunas N, Calmarza-Font I, Diz-Chaves Y, Garcia-Segura LM, Panzica GC. Chronic unpredictable stress and long-term ovariectomy affect arginine-vasopressin expression in the paraventricular nucleus of adult female mice. Brain Res 2014; 1588:55-62. [PMID: 25218558 DOI: 10.1016/j.brainres.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022]
Abstract
Arginine-Vasopressin (AVP) may regulate the hypothalamic-pituitary-adrenal axis (HPA) and its effects on depressive responses. In a recent study, we demonstrated that Chronic Unpredictable Stress (CUS) depressive effects are enhanced by long-term ovariectomy (a model of post-menopause). In the present study, we investigated the effects of long-term ovariectomy and CUS on AVP expression in different subdivision of the paraventricular nucleus (PVN) of female mice. Both long-term ovariectomy and CUS affect AVP immunoreactivity in some of the PVN subnuclei of adult female mice. In particular, significant changes on AVP immunoreactivity were observed in magnocellular subdivisions, the paraventricular lateral magnocellular (PaLM) and the paraventricular medial magnocellular (PaMM), the 2 subnuclei projecting to the neurohypophysis for the hormonal regulation of body homeostasis. AVP immunoreactivity was decreased in the PaLM by both the long-term deprivation of ovarian hormones and the CUS. In contrast, AVP immunoreactivity was increased in the PaMM by CUS, whereas it was decreased by ovariectomy. Therefore, present results suggest morphological and functional differences among the PVN's subnuclei and complex interactions among CUS, gonadal hormones and AVP immunoreactivity.
Collapse
Affiliation(s)
- D Grassi
- Cajal Institute, CSIC, Madrid, Spain; University of Torino, Department of Neuroscience "Rita Levi Montalcini", Torino, Italy; Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - N Lagunas
- Cajal Institute, CSIC, Madrid, Spain
| | | | | | | | - G C Panzica
- University of Torino, Department of Neuroscience "Rita Levi Montalcini", Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; National Institute of Neuroscience (INN), Torino, Italy.
| |
Collapse
|
20
|
Matro R, Daskalakis C, Negoianu D, Katz L, Henry C, Share M, Kastenberg D. Randomised clinical trial: Polyethylene glycol 3350 with sports drink vs. polyethylene glycol with electrolyte solution as purgatives for colonoscopy--the incidence of hyponatraemia. Aliment Pharmacol Ther 2014; 40:610-9. [PMID: 25066025 DOI: 10.1111/apt.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Polyethylene glycol 3350 plus sports drink (PEG-SD) is a hypo-osmotic purgative commonly used for colonoscopy, though little safety data are available. AIM To evaluate the effect of PEG-SD on serum sodium (Na) and other electrolytes compared with PEG-electrolyte solution (PEG-ELS). METHODS We performed a single center, prospective, randomised, investigator-blind comparison of PEG-ELS to PEG-SD in out-patients undergoing colonoscopy. Laboratories were obtained at baseline and immediately before and after colonoscopy. The primary endpoint was development of hyponatraemia (Na <135 mmol/L) the day of colonoscopy. Changes in electrolyte levels were computed as the difference between the lowest value on the day of colonoscopy and baseline. Purgative tolerance and efficacy were assessed. RESULTS A total of 389 patients were randomised; 364 took purgative and had baseline and day of colonoscopy labs (180 PEG-SD, 184 PEG-ELS). The groups were well matched except for a higher fraction of women and Blacks in PEG-ELS. Seven patients (3.9%) in PEG-SD and four patients (2.2%) in PEG-ELS developed hyponatraemia (OR = 1.82, 95% CI: 0.45-8.62, P = 0.376). Changes in electrolytes from baseline were small but significantly worse with PEG-SD for sodium, potassium and chloride (P = 0.001, 0.012, 0.001, respectively). Preparation completion, adverse events, and overall colon cleansing were similar between the groups, but PEG-ELS had more excellent preparations (52% vs. 30%; P = 0.001). CONCLUSIONS Greater, but very modest, electrolyte changes occur with PEG-SD. Hyponatraemia is infrequent with both purgatives. A significant increase in hyponatraemia was not identified for PEG-SD vs. PEG-ELS, but the sample size may have been inadequate to identify a small, but clinically important difference. ClinicalTrials.gov identifier NCT01299779.
Collapse
Affiliation(s)
- R Matro
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Ventura-Juncá R, Symon A, López P, Fiedler JL, Rojas G, Heskia C, Lara P, Marín F, Guajardo V, Araya AV, Sasso J, Herrera L. Relationship of cortisol levels and genetic polymorphisms to antidepressant response to placebo and fluoxetine in patients with major depressive disorder: a prospective study. BMC Psychiatry 2014; 14:220. [PMID: 25086452 PMCID: PMC4149200 DOI: 10.1186/s12888-014-0220-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/23/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Increased cortisol levels and genetic polymorphisms have been related to both major depressive disorder and antidepressant treatment outcome. The aim of this study is to evaluate the relationship between circadian salivary cortisol levels, cortisol suppression by dexamethasone and genetic polymorphisms in some HPA axis-related genes to the response to placebo and fluoxetine in depressed patients. METHODS The diagnosis and severity of depression were performed using the Mini International Neuropsychiatric Interview (M.I.N.I.) and Hamilton depression scale (HAM-D17), respectively. Euthyroid patients were treated with placebo (one week) followed by fluoxetine (20 mg) (two months). Severity of depression was re-evaluated after placebo, three weeks and two months of fluoxetine treatments. Placebo response was defined as HAM-D17 score reductions of at least 25% and to < 15. Early response and response were reductions of at least 50% after three weeks and two months, and remission with ≤ 7 after two months. Plasma TSH, free-T4, circadian salivary cortisol levels and cortisol suppression by dexamethasone were evaluated. Seven genetic polymorphisms located in the Corticotrophin-releasing-hormone-receptor-1 (rs242939, rs242941, rs1876828), Corticotrophin-releasing-hormone-receptor-2 (rs2270007), Glucocorticoid-receptor (rs41423247), FK506-binding-protein-5 (rs1360780), and Arginine-vasopressin (rs3729965) genes were determined. Association analyses between response to placebo/fluoxetine and polymorphism were performed by chi-square or Fisher exact test. Cortisol levels were compared by t-test, ANOVA and the general linear model for repeated measures. RESULTS 208 depressed patients were recruited, 187 of whom were euthyroid. Placebo responders, fluoxetine responders and remitters exhibited significantly lower circadian cortisol levels than those who did not respond (p-values of 0.014, 0.008 and 0.021 respectively). Patients who abandoned treatment before the third week also exhibited a trend to low cortisol levels (p = 0.057). The polymorphisms rs242939 (CRHR1) and rs2270007 (CRHR2) were not in Hardy-Weinberg equilibrium. Only the rs242939 polymorphism (CRHR1) exhibited association with early response (three weeks) to fluoxetine (p-value = 0.043). No other association between outcomes and polymorphisms was observed. CONCLUSIONS These results support the clinical relevance of low salivary cortisol levels as a predictor of antidepressant response, either to placebo or to fluoxetine. Only one polymorphism in the CRHR1 gene was associated with the early response. Other factors may be involved in antidepressant response, although further studies are needed to identify them.
Collapse
Affiliation(s)
- Raúl Ventura-Juncá
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile ,Escuela de Psicología, Universidad de Los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile
| | - Adriana Symon
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| | - Pamela López
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| | - Jenny L Fiedler
- Laboratorio de Neuroplasticidad y Neurogenética, Departamento de Bioquímica y Biología Molecular, Universidad de Chile, Calle Sergio Livingstone Pohlhammer 1007 (ex Olivos), Independencia, Santiago, Chile
| | - Graciela Rojas
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - Cristóbal Heskia
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| | - Pamela Lara
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - Felipe Marín
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - Viviana Guajardo
- Clínica Psiquiátrica Universitaria, Hospital Clínico Universidad de Chile, Av. La Paz 1003, Recoleta, Santiago, Chile
| | - A Verónica Araya
- Departamento de Endocrinología, Universidad de Chile, Santos Dumont 999, Independencia, Santiago, Chile
| | - Jaime Sasso
- Instituto de Investigaciones Farmacológicas y Toxicológicas (IFT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luisa Herrera
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Independencia, Santiago Chile
| |
Collapse
|
22
|
Cudnoch-Jedrzejewska A, Puchalska L, Szczepanska-Sadowska E, Wsol A, Kowalewski S, Czarzasta K. The effect of blockade of the central V1 vasopressin receptors on anhedonia in chronically stressed infarcted and non-infarcted rats. Physiol Behav 2014; 135:208-14. [DOI: 10.1016/j.physbeh.2014.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 06/05/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
23
|
Glahn A, Riera Knorrenschild R, Rhein M, Haschemi Nassab M, Gröschl M, Heberlein A, Muschler M, Frieling H, Bleich S, Hillemacher T. Alcohol-induced changes in methylation status of individual CpG sites, and serum levels of vasopressin and atrial natriuretic peptide in alcohol-dependent patients during detoxification treatment. Eur Addict Res 2014; 20:143-50. [PMID: 24356727 DOI: 10.1159/000357473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022]
Abstract
Disturbances of volume-regulating peptides like vasopressin (AVP) and atrial natriuretic peptide (ANP) have been described in early abstinent alcohol-dependent patients. In a longitudinal approach, we investigated whether changes in AVP and ANP serum levels correlated to cytosine-phosphatidyl-guanine (CpG) methylation of the respective gene promoters on days 1, 7 and 14 of alcohol withdrawal. We analyzed the blood samples of 99 patients suffering from alcohol dependence alongside age- and BMI-matched controls. Concerning AVP promoter methylation, we observed an interaction between time of measurement and CpG loci with CpG 2 showing a significant increase in methylation from day 1 to 14. Serum levels of AVP were significantly decreased in the patient group. Compared to healthy controls, promoter-related DNA methylation of the ANP promoter was significantly reduced on days 7 and 14. Moreover, we detected a significant interaction between CpG position and group. In both cases the difference was mainly observed at CpG 1. The present study shows significant changes in the methylation status of individual CpG sites of AVP and ANP. Observing respective alterations of AVP serum protein levels in alcohol-dependent patients during detoxification treatment, we consider methylation as a possible mode of regulation for these proteins during alcohol detoxification.
Collapse
Affiliation(s)
- Alexander Glahn
- Center for Addiction Research (CARe), Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nephew B, Murgatroyd C. The role of maternal care in shaping CNS function. Neuropeptides 2013; 47:371-8. [PMID: 24210943 PMCID: PMC3874801 DOI: 10.1016/j.npep.2013.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Maternal care involves the consistent and coordinated expression of a variety of behaviours over an extended period of time, and adverse changes in maternal care can have profound impacts on the CNS and behaviour of offspring. This complex behavioural pattern depends on a number of integrated neuroendocrine mechanisms. This review will discuss the use of animal models in the study of the role of maternal care in shaping CNS function, the contributions of corticosteroid releasing hormone, vasopressin, oxytocin, and prolactin in this process, the molecular mechanisms involved, and the translational relevance of this research.
Collapse
Affiliation(s)
- Benjamin Nephew
- Tufts University Cummings School of Veterinary Medicine, Biomedical Sciences, 200 Wesboro Rd., Peabody Pavilion, North Grafton, MA 01536, UNITED STATES, 508-641-0865,
| | | |
Collapse
|
25
|
Murgatroyd CA, Nephew BC. Effects of early life social stress on maternal behavior and neuroendocrinology. Psychoneuroendocrinology 2013; 38:219-28. [PMID: 22770862 PMCID: PMC3477290 DOI: 10.1016/j.psyneuen.2012.05.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/21/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Maternal mood disorders such as depression and chronic anxiety can negatively affect the lives of both mothers and their adult offspring. An active focus of maternal depression and anxiety research has been the role of chronic social stress in the development of these disorders. Chronic exposure to social stress is common in humans, especially in lactating mothers, and postpartum mood disorders have been correlated with high levels of social conflict and low levels of social support. Recent studies have described an effective and ethologically relevant chronic social stress (CSS) based rodent model for postpartum depression and anxiety. Since CSS attenuates maternal behavior and impairs both dam and offspring growth, it was hypothesized that CSS is an ethologically relevant form of early life stress for the developing female offspring and may have effects on subsequent adult maternal behavior and neuroendocrinology. Dams exposed to early life CSS as infants display substantial increases in pup retrieval and nursing behavior that are specifically associated with attenuated oxytocin, prolactin, and vasopressin gene expression in brain nuclei involved in the control of maternal behavior. Since the growth patterns of both groups were similar despite substantial increases in nursing duration, the early life CSS dams exhibited an attenuated nursing efficiency. It is concluded that early life CSS has long term effects on the neuroendocrinology of maternal care (oxytocin and prolactin) which results in decreased nursing efficiency in the adult dams. The data support the use of early life CSS as an effective model for stress-induced impairments in nursing, such as those associated with postpartum depression and anxiety.
Collapse
Affiliation(s)
| | - Benjamin C. Nephew
- Tufts University Cummings School of Veterinary Medicine, Department of Biomedical Sciences
| |
Collapse
|
26
|
|
27
|
Chafai M, Corbani M, Guillon G, Desarménien MG. Vasopressin inhibits LTP in the CA2 mouse hippocampal area. PLoS One 2012; 7:e49708. [PMID: 23236353 PMCID: PMC3517623 DOI: 10.1371/journal.pone.0049708] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 10/12/2012] [Indexed: 12/02/2022] Open
Abstract
Growing evidence points to vasopressin (AVP) as a social behavior regulator modulating various memory processes and involved in pathologies such as mood disorders, anxiety and depression. Accordingly, AVP antagonists are actually envisaged as putative treatments. However, the underlying mechanisms are poorly characterized, in particular the influence of AVP on cellular or synaptic activities in limbic brain areas involved in social behavior. In the present study, we investigated AVP action on the synapse between the entorhinal cortex and CA2 hippocampal pyramidal neurons, by using both field potential and whole-cell recordings in mice brain acute slices. Short application (1 min) of AVP transiently reduced the synaptic response, only following induction of long-term potentiation (LTP) by high frequency stimulation (HFS) of afferent fibers. The basal synaptic response, measured in the absence of HFS, was not affected. The Schaffer collateral-CA1 synapse was not affected by AVP, even after LTP, while the Schaffer collateral-CA2 synapse was inhibited. Although investigated only recently, this CA2 hippocampal area appears to have a distinctive circuitry and a peculiar role in controlling episodic memory. Accordingly, AVP action on LTP-increased synaptic responses in this limbic structure may contribute to the role of this neuropeptide in controlling memory and social behavior.
Collapse
Affiliation(s)
- Magda Chafai
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
| | - Maithé Corbani
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
| | - Gilles Guillon
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
| | - Michel G. Desarménien
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 & 2, UMR-5203, Montpellier, France
- * E-mail:
| |
Collapse
|
28
|
Coverdill AJ, McCarthy M, Bridges RS, Nephew BC. Effects of Chronic Central Arginine Vasopressin (AVP) on Maternal Behavior in Chronically Stressed Rat Dams. Brain Sci 2012; 2:589-604. [PMID: 24349762 PMCID: PMC3862255 DOI: 10.3390/brainsci2040589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022] Open
Abstract
Exposure of mothers to chronic stressors during pregnancy or the postpartum period often leads to the development of depression, anxiety, or other related mood disorders. The adverse effects of mood disorders are often mediated through maternal behavior and recent work has identified arginine vasopressin (AVP) as a key neuropeptide hormone in the expression of maternal behavior in both rats and humans. Using an established rodent model that elicits behavioral and physiological responses similar to human mood disorders, this study tested the effectiveness of chronic AVP infusion as a novel treatment for the adverse effects of exposure to chronic social stress during lactation in rats. During early (day 3) and mid (day 10) lactation, AVP treatment significantly decreased the latency to initiate nursing and time spent retrieving pups, and increased pup grooming and total maternal care (sum of pup grooming and nursing). AVP treatment was also effective in decreasing maternal aggression and the average duration of aggressive bouts on day 3 of lactation. Central AVP may be an effective target for the development of treatments for enhancing maternal behavior in individuals exposed to chronic social stress.
Collapse
Affiliation(s)
- Alexander J. Coverdill
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA; (M.M.); (R.S.B.); (B.C.N.)
| | | | | | | |
Collapse
|
29
|
Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b Receptors: From Molecules to Physiological Systems. Physiol Rev 2012; 92:1813-64. [DOI: 10.1152/physrev.00035.2011] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The neurohypophysial hormone arginine vasopressin (AVP) is essential for a wide range of physiological functions, including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. These and other actions of AVP are mediated by at least three distinct receptor subtypes: V1a, V1b, and V2. Although the antidiuretic action of AVP and V2 receptor in renal distal tubules and collecting ducts is relatively well understood, recent years have seen an increasing understanding of the physiological roles of V1a and V1b receptors. The V1a receptor is originally found in the vascular smooth muscle and the V1b receptor in the anterior pituitary. Deletion of V1a or V1b receptor genes in mice revealed that the contributions of these receptors extend far beyond cardiovascular or hormone-secreting functions. Together with extensively developed pharmacological tools, genetically altered rodent models have advanced the understanding of a variety of AVP systems. Our report reviews the findings in this important field by covering a wide range of research, from the molecular physiology of V1a and V1b receptors to studies on whole animals, including gene knockout/knockdown studies.
Collapse
Affiliation(s)
- Taka-aki Koshimizu
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Nobuaki Egashira
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Masami Hiroyama
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Hiroshi Nonoguchi
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| | - Akito Tanoue
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University, Tochigi, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan; and Department of Internal Medicine, Kitasato University, Kitasato Institute Medical Center Hospital, Saitama, Japan
| |
Collapse
|
30
|
Nephew BC, Febo M. Effects of cocaine on maternal behavior and neurochemistry. Curr Neuropharmacol 2012; 10:53-63. [PMID: 22942878 PMCID: PMC3286847 DOI: 10.2174/157015912799362760] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/25/2010] [Accepted: 09/03/2010] [Indexed: 11/26/2022] Open
Abstract
Drug addiction is a chronic relapsing disorder that involves drug seeking and abuse despite the negative social and health consequences. While the potential effects of cocaine on child development have been extensively studied over the last 30 years, few researchers have focused on the effects of cocaine on maternal behavior, which includes offspring care and maternal aggression towards an unfamiliar individual. In humans, maternal cocaine use can lead to child neglect, abuse, and disrupt the mother-child bond. While it has been argued the developmental effects of maternal cocaine use on children were initially overstated, it is clear that disruptions of typical maternal behavior (i.e. postpartum depression, anxiety disorders) are detrimental to the physical and emotional health of offspring. Cocaine use in mothers is commonly associated with psychological disorders, including depression and anxiety, and it is postulated that many of the negative effects of maternal cocaine use on offspring are mediated through changes in maternal behavior. This review will summarize research on cocaine and maternal behavior in animal and human studies, discuss potential mechanisms, and suggest therapeutic strategies for treating cocaine-affected maternal behavior which may improve the physical and behavioral health of both mother and child. The primary objective is to stimulate future communication, cooperation, and collaboration between researchers who use animals and humans to study cocaine and maternal behavior.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, Grafton, MA, USA
| | | |
Collapse
|
31
|
Kenna GA, Swift RM, Hillemacher T, Leggio L. The relationship of appetitive, reproductive and posterior pituitary hormones to alcoholism and craving in humans. Neuropsychol Rev 2012; 22:211-28. [PMID: 22772772 PMCID: PMC3432156 DOI: 10.1007/s11065-012-9209-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/22/2012] [Indexed: 12/20/2022]
Abstract
A significant challenge for understanding alcoholism lies in discovering why some, but not other individuals, become dependent on alcohol. Genetic, environmental, cultural, developmental, and neurobiological influences are recognized as essential factors underlying a person's risk for becoming alcohol dependent (AD); however, the neurobiological processes that trigger this vulnerability are still poorly understood. Hormones are important in the regulation of many functions and several hormones are strongly associated with alcohol use. While medical consequences are important, the primary focus of this review is on the underlying confluence of appetitive/feeding, reproductive and posterior pituitary hormones associated with distinct phases of alcoholism or assessed by alcohol craving in humans. While these hormones are of diverse origin, the involvement with alcoholism by these hormone systems is unmistakable, and demonstrates the complexity of interactions with alcohol and the difficulty of successfully pursuing effective treatments. Whether alcohol associated changes in the activity of certain hormones are the result of alcohol use or are the result of an underlying predisposition for alcoholism, or a combination of both, is currently of great scientific interest. The evidence we present in this review suggests that appetitive hormones may be markers as they appear involved in alcohol dependence and craving, that reproductive hormones provide an example of the consequences of drinking and are affected by alcohol, and that posterior pituitary hormones have potential for being targets for treatment. A better understanding of the nature of these associations may contribute to diagnosing and more comprehensively treating alcoholism. Pharmacotherapies that take advantage of our new understanding of hormones, their receptors, or their potential relationship to craving may shed light on the treatment of this disorder.
Collapse
Affiliation(s)
- George A Kenna
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
32
|
Savas S, Hyde A, Stuckless SN, Parfrey P, Younghusband HB, Green R. Serotonin transporter gene (SLC6A4) variations are associated with poor survival in colorectal cancer patients. PLoS One 2012; 7:e38953. [PMID: 22911682 PMCID: PMC3404081 DOI: 10.1371/journal.pone.0038953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/14/2012] [Indexed: 12/02/2022] Open
Abstract
Prognosis in colorectal cancer patients is quite variable, even after adjustment for clinical parameters such as disease stage and microsatellite instability status. It is possible that the psychological distress experienced by patients, including anxiety and depression, may be correlated with poor prognosis. In the present study, we hypothesize that genetic variations within three genes biologically linked to the stress response, namely serotonin transporter (SLC6A4), brain-derived neurotrophic factor (BDNF), and arginine vasopressin receptor (AVPR1B) genes are associated with prognosis in colorectal cancer patients. We used a population-based cohort of 280 patients who were followed for up to 12.5 years after diagnosis. Our multivariate analysis showed that a tagSNP in the SLC6A4 gene (rs12150214) was a predictor of shorter overall survival (HR: 1.572, 95%CI: 1.142–2.164, p = 0.005) independent of stage, age, grade and MSI status. Additionally, a multivariate analysis using the combined genotypes of three polymorphisms in this gene demonstrated that the presence of any of the minor alleles at these polymorphic loci was an independent predictor of both shorter overall survival (HR: 1.631, 95%CI: 1.190–2.236, p = 0.002) and shorter disease specific survival (HR: 1.691, 95%CI: 1.138–2.512, p = 0.009). The 5-HTT protein coded by the SLC6A4 gene has also been implicated in inflammation. While our results remain to be replicated in other patient cohorts, we suggest that the genetic variations in the SLC6A4 gene contribute to poor survival in colorectal cancer patients.
Collapse
Affiliation(s)
- Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Laryea G, Arnett MG, Muglia LJ. Behavioral Studies and Genetic Alterations in Corticotropin-Releasing Hormone (CRH) Neurocircuitry: Insights into Human Psychiatric Disorders. Behav Sci (Basel) 2012; 2:135-71. [PMID: 23077729 PMCID: PMC3471213 DOI: 10.3390/bs2020135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 05/23/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
To maintain well-being, all organisms require the ability to re-establish homeostasis in the presence of adverse physiological or psychological experiences. The regulation of the hypothalamic-pituitary adrenal (HPA) axis during stress is important in preventing maladaptive responses that may increase susceptibility to affective disorders. Corticotropin-releasing hormone (CRH) is a central stress hormone in the HPA axis pathway and has been implicated in stress-induced psychiatric disorders, reproductive and cardiac function, as well as energy metabolism. In the context of psychiatric disorders, CRH dysfunction is associated with the occurrence of post-traumatic stress disorder, major depression, anorexia nervosa, and anxiety disorders. Here, we review the synthesis, molecular signaling and regulation, as well as synaptic activity of CRH. We go on to summarize studies of altered CRH signaling in mutant animal models. This assembled data demonstrate an important role for CRH in neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation. Next, we present findings regarding human genetic polymorphisms in CRH pathway genes that are associated with stress and psychiatric disorders. Finally, we discuss a role for regulators of CRH activity as potential sites for therapeutic intervention aimed at treating maladaptive behaviors associated with stress.
Collapse
Affiliation(s)
- Gloria Laryea
- Neuroscience Graduate Program, School of Medicine, Vanderbilt University, 465 21st. Avenue South, Nashville, TN 37232, USA; E-Mail:
- Center for Preterm Birth Research, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; E-Mail:
| | - Melinda G. Arnett
- Center for Preterm Birth Research, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; E-Mail:
| | - Louis J. Muglia
- Center for Preterm Birth Research, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; E-Mail:
| |
Collapse
|
34
|
Yang J, Pan YJ, Yin ZK, Hai GF, Lu L, Zhao Y, Wang DX, Wang H, Wang G. Effect of arginine vasopressin on the behavioral activity in the behavior despair depression rat model. Neuropeptides 2012; 46:141-9. [PMID: 22513399 DOI: 10.1016/j.npep.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 02/03/2023]
Abstract
Arginine vasopressin (AVP), a nonapeptide posterior hormone of the pituitary, is mainly synthesized and secreted in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). Large numbers of studies have reported that AVP plays a role in depression. The present study was to investigate by which level, brain or periphery, AVP affects the behavioral activity in the behavior despair depression rat model. The results showed that (1) either forced swimming or tail suspension significantly increased AVP concentration not only in the brain (PVN, SON, frontal of cortex, hippocampus, amygdala, lumber spinal cord) but also in the periphery (posterior pituitary and serum); (2) intraventricular injection (icv) of AVP decreased the animal immobility time, whereas V₁ receptor antagonist d(CH₂)₅Tyr(Me)AVP (icv) increased the animal immobility time in a dose-dependent manner not only in FST but also in TST, but the V₂ receptor antagonist d(CH₂)₅[D-Ile, Ile, Ala-NH₉]AVP did not change the animal immobility time in FST or TST; (3) V₁, not V₂ receptor antagonist could inhibit the animal immobility time decrease induced by AVP (icv); (4) neither AVP nor its receptor antagonist (including V₁ and V₂ receptor antagonist) influenced the animal immobility time in both FST and TST. The data suggested that AVP in the brain rather than the periphery played a role in the behavior despair depression by V₁, not V₂ receptors, which behavior despair might have a positive feedback effect on central AVP and blood AVP might have a negative feedback on central AVP in the depressive process.
Collapse
Affiliation(s)
- Jun Yang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rilling JK, DeMarco AC, Hackett PD, Thompson R, Ditzen B, Patel R, Pagnoni G. Effects of intranasal oxytocin and vasopressin on cooperative behavior and associated brain activity in men. Psychoneuroendocrinology 2012; 37:447-61. [PMID: 21840129 PMCID: PMC3251702 DOI: 10.1016/j.psyneuen.2011.07.013] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 01/08/2023]
Abstract
The neural mechanisms supporting social bonds between adult men remain uncertain. In this double-blind, placebo-controlled study, we investigate the impact of intranasally administered oxytocin (OT) and vasopressin (AVP) on behavior and brain activity among men in the context of an iterated Prisoner's Dilemma game, which models a real-life social situation. fMRI results show that, relative to both AVP and placebo, OT increases the caudate nucleus response to reciprocated cooperation, which may augment the reward of reciprocated cooperation and/or facilitate learning that another person can be trusted. OT also enhances left amygdala activation in response to reciprocated cooperation. Behaviorally, OT was associated with increased rates of cooperation following unreciprocated cooperation in the previous round compared with AVP. AVP strongly increased cooperation in response to a cooperative gesture by the partner compared with both placebo and OT. In response to reciprocated cooperation, AVP increased activation in a region spanning known vasopressin circuitry implicated in affiliative behaviors in other species. Finally, both OT and AVP increase amygdala functional connectivity with the anterior insula relative to placebo, which may increase the amygdala's ability to elicit visceral somatic markers that guide decision making. These findings extend our knowledge of the neural and behavioral effects of OT and AVP to the context of genuine social interactions.
Collapse
Affiliation(s)
- James K. Rilling
- Department of Anthropology, Emory University,Department of Psychiatry and Behavioral Sciences, Emory University,Center for Behavioral Neuroscience, Emory University,Yerkes National Primate Research Center, Emory University,Center for Translational Social Neuroscience, Emory University
| | | | | | | | - Beate Ditzen
- Department of Psychiatry and Behavioral Sciences, Emory University,Center for Behavioral Neuroscience, Emory University,Department of Psychology, University of Zurich
| | - Rajan Patel
- Department of Biostatistics, Emory University
| | - Giuseppe Pagnoni
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
36
|
Edwards S, Guerrero M, Ghoneim OM, Roberts E, Koob GF. Evidence that vasopressin V1b receptors mediate the transition to excessive drinking in ethanol-dependent rats. Addict Biol 2012; 17:76-85. [PMID: 21309953 DOI: 10.1111/j.1369-1600.2010.00291.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alcoholism is a devastating condition that represents a progression from initial alcohol use to dependence. Although most individuals are capable of consuming alcohol in a limited fashion, the development of alcohol dependence in a subset of individuals is often associated with negative emotional states (including anxiety and depression). Since the alleviation of this negative motivational state via excessive alcohol consumption often becomes a central goal of alcoholics, the transition from initial use to dependence is postulated to be associated with a transition from positive to negative reinforcement mechanisms. Vasopressin is a neuropeptide known to potentiate the effects of CRF on the HPA axis, and emerging evidence also suggests a role for centrally located vasopressin acting on V(1b) receptors in the regulation of stress- and anxiety-like behaviors in rodents. The present study determined state-dependent alterations in vasopressin/V(1b) R signaling in an animal model of ethanol dependence. The V(1b) R antagonist SSR149415 dose-dependently reduced excessive levels of ethanol self-administration observed in dependent animals without affecting the limited levels of ethanol drinking in non-dependent animals. Ethanol self-administration reduced V(1b) receptor levels in the basolateral amygdala of non-dependent animals, a neuroadaptation that could theoretically facilitate the positive reinforcing effects of alcohol. In contrast, V(1b) R levels were seemingly restored in ethanol-dependent rats, a switch that may in part underlie a transition from positive to negative reinforcement mechanisms with dependence. Together, our data suggest a key role for vasopressin/V(1b) R signaling in the transition to ethanol dependence.
Collapse
Affiliation(s)
- Scott Edwards
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
37
|
Bao AM, Ruhé HG, Gao SF, Swaab DF. Neurotransmitters and neuropeptides in depression. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:107-36. [PMID: 22608619 DOI: 10.1016/b978-0-444-52002-9.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
38
|
Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 2011; 233:102-11. [PMID: 22101006 DOI: 10.1016/j.expneurol.2011.10.032] [Citation(s) in RCA: 626] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 10/17/2011] [Accepted: 10/30/2011] [Indexed: 12/16/2022]
Abstract
Early life stress, such as childhood abuse, neglect and loss, is a well established major risk factor for developing depressive disorders later in life. We here summarize and discuss current developments in human research regarding the link between early life stress and depression. Specifically, we review the evidence for the existence of sensitive periods for the adverse effects of early life stress in humans. We further review the current state of knowledge regarding gene×environment (G×E) interactions in the effects of early life stress. While multiple genes operate in multiple environments to induce risk for depression after early life stress, these same genes also seem to enhance the beneficial effects of a positive early environment. Also, we discuss the epigenetic mechanisms that might underlie these G×E interactions. Finally, we discuss the potential importance of identifying sensitive time periods of opportunity, as well as G×E interactions and epigenetic mechanisms, for early interventions that might prevent or reverse the detrimental outcomes of early life stress and its transmission across generations.
Collapse
Affiliation(s)
- Christine Heim
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany.
| | | |
Collapse
|
39
|
Kokras N, Sotiropoulos I, Pitychoutis P, Almeida O, Papadopoulou-Daifoti Z. Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression. Neuroscience 2011; 194:62-71. [DOI: 10.1016/j.neuroscience.2011.07.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/13/2011] [Accepted: 07/31/2011] [Indexed: 12/14/2022]
|
40
|
Zavala JK, Fernandez AA, Gosselink KL. Female responses to acute and repeated restraint stress differ from those in males. Physiol Behav 2011; 104:215-21. [PMID: 21453715 PMCID: PMC3118914 DOI: 10.1016/j.physbeh.2011.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022]
Abstract
Chronic stress is implicated in diseases which differentially affect men and women. This study investigated how the activation of neuronal subpopulations contributes to changes in neuroendocrine regulation that predispose members of each sex to stress-related health challenges. Adult male and female rats were restrained in single (acute) or 14 consecutive daily (repeated) 30 min sessions; brain sections were immunohistochemically stained for Fos, arginine vasopressin (AVP) or glucocorticoid receptor (GR) within the paraventricular hypothalamic nucleus (PVH). Acute restraint increased the number of PVH cells expressing Fos, with greater increases in males than females. Habituated responses were seen following repeated stress in both sexes, with no sex differences between groups. No sex differences were found in the number of neurons co-expressing Fos and AVP. Absolute counts of cellular Fos and GR co-localization mirrored Fos expression. In contrast, when doubly-labeled cells were normalized to staining for Fos alone, females showed greater numbers of Fos- and GR-positive cells than males after both acute and repeated stress. These data demonstrate that sex-specific stress responses are evident at the level of neuronal activation, and may contribute to different consequences of chronic stress in females versus males. Females may be more sensitive to glucocorticoid negative feedback, suggesting that sex-dependent differences in the efficiency of initiating and terminating stress responses may exist. Understanding the neural and endocrine pathways that mediate these functions in males and females will inform targeted therapeutic strategies to alleviate stress and the sex-specific afflictions with which it is associated.
Collapse
Affiliation(s)
- Jaidee K. Zavala
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968
| | - Almendra A. Fernandez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968
| | - Kristin L. Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
41
|
Kodavanti PRS, Curras-Collazo MC. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol 2010; 31:479-96. [PMID: 20609372 DOI: 10.1016/j.yfrne.2010.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 02/08/2023]
Abstract
Organohalogen compounds are global environmental pollutants. They are highly persistent, bioaccumulative, and cause adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination may be a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. This review focuses on PCBs and PBDEs as old and new organohalogens, respectively, and their effects on two neuroendocrine systems; thyroid hormones and the arginine vasopressin system (AVP). Regarding neuroendocrine effects of organohalogens, there is considerable information on the thyroid system as a target and evidence is now accumulating that the AVP system and associated functions are also susceptible to disruption. AVP-mediated functions such as osmoregulation, cardiovascular function as well as social behavior, sexual function and learning/memory are discussed. For both thyroid and AVP systems, the timing of exposure seems to play a major role in the outcome of adverse effects. The mechanism of organohalogen action is well understood for the thyroid system. In comparison, this aspect is understudied in the AVP system but some similarities in neural processes, shown to be targeted by these pollutants, serve as promising possibilities for study. One challenge in understanding modes of action within neuroendocrine systems is their complexity stemming, in part, from interdependent levels of organization. Further, because of the interplay between neuroendocrine and neural functions and behavior, further investigation into organohalogen-mediated effects is warranted and may yield insights with wider scope. Indeed, the current literature provides scattered evidence regarding the role of organohalogen-induced neuroendocrine disruption in the neuroplasticity related to both learning functions and brain structure but future studies are needed to establish the role of endocrine disruption in nervous system function and development.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, B 105-06, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
42
|
Prefrontal cortical contributions during discriminative fear conditioning, extinction, and spontaneous recovery in rats. Exp Brain Res 2010; 203:285-97. [DOI: 10.1007/s00221-010-2228-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|
43
|
Hlavacova N, Bakos J, Jezova D. Eplerenone, a selective mineralocorticoid receptor blocker, exerts anxiolytic effects accompanied by changes in stress hormone release. J Psychopharmacol 2010; 24:779-86. [PMID: 19825909 DOI: 10.1177/0269881109106955] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate the impact of chronic treatment with eplerenone, a mineralocorticoid receptor antagonist and clinically used antihypertensive drug, on animal correlates of mood disorders, namely anxiety-like behaviour, stress hormones release and brain plasticity. Male rats (n = 40) were injected subcutaneously twice daily with eplerenone (50 mg/kg body weight) or vehicle for 11 days. Open-field and elevated plus-maze tests were used as both anxiety-related paradigms and stress stimuli to evaluate hormone responses. Eplerenone-treated rats showed reduced anxiety-like behaviour manifested by both conventional and ethological parameters related to exploration and risk assessment behaviour in the elevated plus-maze test and partially in the open-field test. Eplerenone treatment resulted in an elevation of plasma aldosterone and oxytocin levels. Chronic treatment with eplerenone prevented the stress-induced rise in plasma corticosterone levels and vasopressin concentrations in the posterior pituitary. Eplerenone treatment failed to induce substantial changes in hippocampal brain derived neurotrophic factor protein concentrations. In conclusions, chronic treatment with eplerenone (1) exerts anxiolytic effects and (2) influences corticosterone, oxytocin and vasopressin concentrations in a manner consistent with the anxiolytic outcome.
Collapse
Affiliation(s)
- Natasa Hlavacova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | |
Collapse
|
44
|
Holt NF, Haspel KL. Vasopressin: A Review of Therapeutic Applications. J Cardiothorac Vasc Anesth 2010; 24:330-47. [DOI: 10.1053/j.jvca.2009.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Indexed: 01/03/2023]
|
45
|
Neumann ID, Veenema AH, Beiderbeck DI. Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 2010; 4:12. [PMID: 20407578 PMCID: PMC2854527 DOI: 10.3389/fnbeh.2010.00012] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 03/07/2010] [Indexed: 01/29/2023] Open
Abstract
Psychopathologies such as anxiety- and depression-related disorders are often characterized by impaired social behaviours including excessive aggression and violence. Excessive aggression and violence likely develop as a consequence of generally disturbed emotional regulation, such as abnormally high or low levels of anxiety. This suggests an overlap between brain circuitries and neurochemical systems regulating aggression and anxiety. In this review, we will discuss different forms of male aggression, rodent models of excessive aggression, and neurobiological mechanisms underlying male aggression in the context of anxiety. We will summarize our attempts to establish an animal model of high and abnormal aggression using rats selected for high (HAB) vs. low (LAB) anxiety-related behaviour. Briefly, male LAB rats and, to a lesser extent, male HAB rats show high and abnormal forms of aggression compared with non-selected (NAB) rats, making them a suitable animal model for studying excessive aggression in the context of extremes in innate anxiety. In addition, we will discuss differences in the activity of the hypothalamic–pituitary–adrenal axis, brain arginine vasopressin, and the serotonin systems, among others, which contribute to the distinct behavioural phenotypes related to aggression and anxiety. Further investigation of the neurobiological systems in animals with distinct anxiety phenotypes might provide valuable information about the link between excessive aggression and disturbed emotional regulation, which is essential for understanding the social and emotional deficits that are characteristic of many human psychiatric disorders.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg Regensburg, Germany
| | | | | |
Collapse
|
46
|
Lee S, Jeong J, Kwak Y, Park SK. Depression research: where are we now? Mol Brain 2010; 3:8. [PMID: 20219105 PMCID: PMC2848031 DOI: 10.1186/1756-6606-3-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/10/2010] [Indexed: 12/26/2022] Open
Abstract
Extensive studies have led to a variety of hypotheses for the molecular basis of depression and related mood disorders, but a definite pathogenic mechanism has yet to be defined. The monoamine hypothesis, in conjunction with the efficacy of antidepressants targeting monoamine systems, has long been the central topic of depression research. While it is widely embraced that the initiation of antidepressant efficacy may involve acute changes in monoamine systems, apparently, the focus of current research is moving toward molecular mechanisms that underlie long-lasting downstream changes in the brain after chronic antidepressant treatment, thereby reaching for a detailed view of the pathophysiology of depression and related mood disorders. In this minireview, we briefly summarize major themes in current approaches to understanding mood disorders focusing on molecular views of depression and antidepressant action.
Collapse
Affiliation(s)
- Saebom Lee
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Stanojcic M, Loheswaran G, Xu L, Hoffman SA, Sakic B. Intrathecal antibodies and brain damage in autoimmune MRL mice. Brain Behav Immun 2010; 24:289-97. [PMID: 19853033 DOI: 10.1016/j.bbi.2009.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/12/2009] [Accepted: 10/18/2009] [Indexed: 12/20/2022] Open
Abstract
Neuropsychiatric (NP) manifestations and brain pathology are poorly understood and potentially fatal concomitants of systemic lupus erythematosus (SLE). For many years, autoantibodies to brain tissue (i.e., brain-reactive antibodies, BRA) were proposed as a key factor in pathogenesis of CNS manifestations. Recent evidence suggests that intrathecal BRA, rather than serum autoantibodies, are a better predictor of disturbed brain morphology and function. We presently test this hypothesis by examining the relationship among BRA in cerebrospinal fluid (CSF), behavioral deficits, and brain pathology in a well-established animal model of CNS lupus. We showed earlier that significant diversity in disease manifestations within genetically homogenous MRL-lpr mice allows for constructive and informative correlational analysis. Therefore, levels of CSF antibodies were presently correlated with behavioral, neuropathological and immune measures in a cohort of diseased MRL-lpr males (N=40). ELISA, Western Blotting, standardized behavioral battery, digital planimetry, HE staining, and immunohistochemistry were employed in overall data collection. The IgG antibodies from CSF were binding to different regions of brain parenchyma, with dentate gyrus, amygdale, and subventricular zones showing enhanced immunoreactivity. High levels of CSF antibodies correlated with increased immobility in the forced-swim test and density of HE(+) cells in the paraventricular nucleus. Peripheral measures of autoimmunity were associated with other deficits in behavior and neuropathology. This correlation pattern suggests that etiology of brain damage in lupus-prone mice is multifactorial. Intrathecal BRA may be important in altering motivated responses and activity of major neuroendocrine axes at the onset of SLE-like disease.
Collapse
Affiliation(s)
- Mile Stanojcic
- Department of Psychiatry and Behavioural Neurosciences, The Brain-Body Institute, McMaster University, Hamilton, Ontario, Canada L8N 4A6
| | | | | | | | | |
Collapse
|
48
|
McKlveen JM, Wilson JM, Rubin RT, Rhodes ME. Sexually diergic, dose-dependent hypothalamic-pituitary-adrenal axis responses to nicotine in a dynamic in vitro perfusion system. J Pharmacol Toxicol Methods 2010; 61:311-8. [PMID: 20117222 DOI: 10.1016/j.vascn.2010.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The hypothalamic-pituitary-adrenal cortical (HPA) axis modulates physiological responses to stress. We previously reported sexually diergic, dose-dependent HPA responses in vivo following nicotine administration: Male rats had greater arginine vasopressin (AVP) responses than females, and female rats had greater adrenocorticotropic hormone (ACTH) and corticosterone (CORT) responses than males. The goal of the present study was to further investigate sexually diergic, dose-dependent HPA responses following nicotine addition to an in vitro model of the HPA axis, so that hormone output could be determined at each level of the axis. METHODS Hypothalami, pituitaries, and adrenal glands were harvested from male and female rats. One-half hypothalamus, one-half pituitary, and one adrenal gland were placed individually into three jacketed tissue baths connected by tubing and perfused in series with physiological medium. Sampling ports between tissue baths were used to collect buffer before and after addition of various doses of nicotine, for measurement of AVP and corticotropin-releasing hormone (CRH) from the hypothalamus bath, ACTH from the pituitary bath, and CORT from the adrenal bath. Hormones were measured by highly specific immunoassays. RESULTS Stable temperatures, flow rates, pH, and hormone baselines were achieved in the in vitro system. Consistent with our in vivo and earlier in vitro studies, nicotine added to the hypothalamus tissue bath significantly increased HPA responses in a sex- and dose-dependent manner: Males had greater AVP responses than did females, and females had greater CRH responses than did males. Sexually diergic ACTH and CORT responses were less apparent and were higher in females. DISCUSSION Our in vitro system accurately models in vivo HPA responses to nicotine in both sexes and thus represents a reliable method for investigating the effects of nicotine on components of the HPA axis. These studies may be pertinent to understanding the biological differences to nicotine between men and women smokers.
Collapse
Affiliation(s)
- Jessica M McKlveen
- Department of Biology, Saint Vincent College, Latrobe, Pennsylvania 15650, USA
| | | | | | | |
Collapse
|
49
|
Bao AM, Swaab DF. Corticotropin-Releasing Hormone and Arginine Vasopressin in Depression. HORMONES OF THE LIMBIC SYSTEM 2010; 82:339-65. [DOI: 10.1016/s0083-6729(10)82018-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Dobruch J, Gomolka R, Puchalska L. Brain vasopressin V(1) receptors contribute to enhanced cardiovascular responses to acute stress in chronically stressed rats and rats with myocardial infarcton. Am J Physiol Regul Integr Comp Physiol 2009; 298:R672-80. [PMID: 20042688 DOI: 10.1152/ajpregu.00543.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to determine the role of central vasopressin 1 receptors (V(1)R) in the regulation of cardiovascular parameters in chronically stressed infarcted rats and sham-operated rats under resting conditions and during exposure to acute alarming stress. The experiments were performed on four groups of conscious sham-operated and four groups of infarcted rats subjected to intraventricular infusion of either vehicle or a V(1)R antagonist (V(1)RANT). Two groups of infarcted and two groups of sham-operated rats were subjected to mild chronic stressing. Mean arterial blood pressure (MABP) and heart rate (HR) were determined under resting conditions and after exposure to acute stress (air jet). During vehicle infusion, MABP and HR increases in response to acute stress in the infarcted rats not subjected to chronic stress, and in the infarcted and sham-operated chronically stressed rats, were significantly greater than in the sham-operated rats not exposed to chronic stress. However, MABP and HR responses to acute stress in the chronically stressed infarcted rats and chronically stressed sham-operated rats did not differ. V(1)RANT abolished differences in cardiovascular responses to acute stress between the experimental groups. Resting cardiovascular parameters were not affected by any of the experimental treatments. It is concluded that chronic stressing enhances the pressor and tachycardic responses to acute stress in the sham-operated rats but does not further intensify these responses in infarcted rats.The results provide evidence that central V(1)Rs are involved in potentiation of cardiovascular responses to acute stress in chronically stressed rats, infarcted rats, and chronically stressed infarcted rats.
Collapse
|