1
|
Li L, Chen J, Wang Z, Xu Y, Yao H, Lei W, Zhou X, Zheng M. NECA alleviates inflammatory responses in diabetic retinopathy through dendritic cell toll-like receptor signaling pathway. Front Immunol 2024; 15:1415004. [PMID: 38895119 PMCID: PMC11182989 DOI: 10.3389/fimmu.2024.1415004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction This study examined the impact of 5'-(N- ethylcarboxamido)adenosine (NECA) in the peripheral blood of healthy individuals, those with diabetes mellitus, diabetic retinopathy (DR), and C57BL/6 mice, both in vivo and in vitro. Methods Enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FCM) were used to evaluate the effects of NECA on dendritic cells (DCs) and mouse bone marrow-derived dendritic cells (BMDCs) and the effects of NECA-treated DCs on Treg and Th17 cells. The effect of NECA on the Toll-like receptor (TLR) pathway in DCs was evaluated using polymerase chain reaction (PCR) and western blotting (WB). Results FCM and ELISA showed that NECA inhibited the expression of surface markers of DCs and BMDCs, increased anti-inflammatory cytokines and decreased proinflammatory cytokines. PCR and WB showed that NCEA decreased mRNA transcription and protein expression in the TLR-4-MyD88-NF-kβ pathway in DCs and BMDCs. The DR severity in streptozocin (STZ) induced diabetic mice was alleviated. NECA-treated DCs and BMDCs were co-cultivated with CD4+T cells, resulting in modulation of Treg and Th17 differentiation, along with cytokine secretion alterations. Conclusion NECA could impair DCs' ability to present antigens and mitigate the inflammatory response, thereby alleviating the severity of DR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiyuan Zhou
- *Correspondence: Xiyuan Zhou, ; Minming Zheng,
| | | |
Collapse
|
2
|
Miziak B, Błaszczyk B, Chrościńska-Krawczyk M, Czuczwar SJ. Caffeine and Its Interactions with Antiseizure Medications-Is There a Correlation between Preclinical and Clinical Data? Int J Mol Sci 2023; 24:17569. [PMID: 38139396 PMCID: PMC10744211 DOI: 10.3390/ijms242417569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Experimental studies reveal that caffeine (trimethylxanthine) at subconvulsive doses, distinctly reduced the anticonvulsant activity of numerous antiseizure medications (ASMs) in rodents, oxcarbazepine, tiagabine and lamotrigine being the exceptions. Clinical data based on low numbers of patients support the experimental results by showing that caffeine (ingested in high quantities) may sharply increase seizure frequency, considerably reducing the quality of patients' lives. In contrast, this obviously negative activity of caffeine was not found in clinical studies involving much higher numbers of patients. ASMs vulnerable to caffeine in experimental models of seizures encompass carbamazepine, phenobarbital, phenytoin, valproate, gabapentin, levetiracetam, pregabalin and topiramate. An inhibition of R-calcium channels by lamotrigine and oxcarbazepine may account for their resistance to the trimethylxanthine. This assumption, however, is complicated by the fact that topiramate also seems to be a blocker of R-calcium channels. A question arises why large clinical studies failed to confirm the results of experimental and case-report studies. A possibility exists that the proportion of patients taking ASMs resistant to caffeine may be significant and such patients may be sufficiently protected against the negative activity of caffeine.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Medical Sciences, Lipinski University, 25-734 Kielce, Poland;
| | | | | |
Collapse
|
3
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
4
|
Dong LW, Chen YY, Chen CC, Ma ZC, Fu J, Huang BL, Liu FJ, Liang DC, Sun DM, Lan C. Adenosine 2A receptor contributes to the facilitation of post-infectious irritable bowel syndrome by γδ T cells via the PKA/CREB/NF-κB signaling pathway. World J Gastroenterol 2023; 29:1475-1491. [PMID: 36998428 PMCID: PMC10044852 DOI: 10.3748/wjg.v29.i9.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Immunological dysfunction-induced low-grade inflammation is regarded as one of the predominant pathogenetic mechanisms in post-infectious irritable bowel syndrome (PI-IBS). γδ T cells play a crucial role in innate and adaptive immunity. Adenosine receptors expressed on the surface of γδ T cells participate in intestinal inflammation and immunity regulation.
AIM To investigate the role of γδ T cell regulated by adenosine 2A receptor (A2AR) in PI-IBS.
METHODS The PI-IBS mouse model has been established with Trichinella spiralis (T. spiralis) infection. The intestinal A2AR and A2AR in γδ T cells were detected by immunohistochemistry, and the inflammatory cytokines were measured by western blot. The role of A2AR on the isolated γδ T cells, including proliferation, apoptosis, and cytokine production, were evaluated in vitro. Their A2AR expression was measured by western blot and reverse transcription polymerase chain reaction (RT-PCR). The animals were administered with A2AR agonist, or A2AR antagonist. Besides, γδ T cells were also injected back into the animals, and the parameters described above were examined, as well as the clinical features. Furthermore, the A2AR-associated signaling pathway molecules were assessed by western blot and RT-PCR.
RESULTS PI-IBS mice exhibited elevated ATP content and A2AR expression (P < 0.05), and suppression of A2AR enhanced PI-IBS clinical characteristics, indicated by the abdominal withdrawal reflex and colon transportation test. PI-IBS was associated with an increase in intestinal T cells, and cytokine levels of interleukin-1 (IL-1), IL-6, IL-17A, and interferon-α (IFN-α). Also, γδ T cells expressed A2AR in vitro and generated IL-1, IL-6, IL-17A, and IFN-α, which can be controlled by A2AR agonist and antagonist. Mechanistic studies demonstrated that the A2AR antagonist improved the function of γδ T cells through the PKA/CREB/NF-κB signaling pathway.
CONCLUSION Our results revealed that A2AR contributes to the facilitation of PI-IBS by regulating the function of γδ T cells via the PKA/CREB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Wei Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yi-Yao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Chao-Chao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zhi-Chao Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Jiao Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bai-Li Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fu-Jin Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Dong-Chun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - De-Ming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
5
|
Castro MFV, Assmann CE, Stefanello N, Reichert KP, Palma TV, da Silva AD, Miron VV, Mostardeiro VB, Morsch VMM, Schetinger MRC. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats: Pivotal role of the cholinergic and purinergic signaling pathways. J Nutr Biochem 2023; 115:109280. [PMID: 36796549 DOI: 10.1016/j.jnutbio.2023.109280] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1β density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Diniz SE, Ribau A, Vinha A, Oliveira J, Abreu M, Sousa R. Simple and inexpensive synovial fluid biomarkers for the diagnosis of prosthetic joint infection according to the new EBJIS definition. J Bone Jt Infect 2023; 8:109-118. [PMID: 37032977 PMCID: PMC10077577 DOI: 10.5194/jbji-8-109-2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: diagnosis of periprosthetic joint infection (PJI) is challenging, as no single test has absolute accuracy. The purpose of this study was to assess the utility of different simple synovial biomarkers in the diagnosis of PJI as defined by the European Bone and Joint Infection Society (EBJIS). Methods: we retrospectively identified all patients undergoing revision hip or knee arthroplasty from 2013 to 2019 on our prospectively maintained database. Only patients with minimum required infection diagnostic workup were included in the study. Patients with comorbidities that may influence the accuracy of synovial biomarkers were excluded. Receiver operator characteristic (ROC) curves were utilised to assess the diagnostic utility of synovial fluid white blood cell (WBC) count, polymorphonuclear leukocyte percentage (PMN %), C-reactive protein (CRP), adenosine deaminase (ADA), and alpha-2-microglobulin (A2M). Results: in total, 102 patients met the inclusion criteria. Of these, 58 were classified as infection unlikely, 8 as infection likely, and 36 as infection confirmed. Synovial WBC count (area under the curve (AUC) 0.94) demonstrated the best utility for the diagnosis of PJI, followed by PMN % (AUC 0.91), synovial CRP (AUC 0.90), ADA (AUC 0.82), and A2M (AUC 0.76). We found added value in the combined interpretation of different biomarkers. We calculated high sensitivity and negative predictive value if at least two of them are negative and high specificity and positive predictive value if at least two are elevated. Conclusion: current results show that synovial fluid investigation is a useful tool for the diagnosis of PJI, and the combined interpretation of simple and inexpensive biomarkers demonstrated improved diagnostic accuracy.
Collapse
Affiliation(s)
- Sara Elisa Diniz
- Orthopedics Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Ana Ribau
- Orthopedics Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - André Vinha
- Orthopedics Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - José Carlos Oliveira
- Department of Laboratory Pathology, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Miguel Araújo Abreu
- Department of Infectious Diseases, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- part of the Porto Bone and Joint Infection Group (GRIP), Porto, Portugal
| | - Ricardo Sousa
- Orthopedics Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- part of the Porto Bone and Joint Infection Group (GRIP), Porto, Portugal
| |
Collapse
|
7
|
Atakisi O, Dalginli KY, Gulmez C, Kalacay D, Atakisi E, Zhumabaeva TT, Aşkar TK, Demirdogen RE. The Role of Reduced Glutathione on the Activity of Adenosine Deaminase, Antioxidative System, and Aluminum and Zinc Levels in Experimental Aluminum Toxicity. Biol Trace Elem Res 2022:10.1007/s12011-022-03503-0. [PMID: 36456741 DOI: 10.1007/s12011-022-03503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Aluminum (Al) is one of the most abundant element in the world. But aluminum exposure and accumulation causes serious diseases, related with free radicals. Reduced glutathione (GSH) is a tripeptide with intracellular antioxidant effects. This study aimed to investigate the role of GSH on adenosine deaminase (ADA), antioxidant system, and aluminum and zinc (Zn) levels in acute aluminum toxicity. In this study, Sprague-Dawley rats (n = 32) were used. The rats were divided into four equal groups (n = 8). Group I received 0.5 mL intraperitoneal injection of 0.9% saline solution (NaCI), Group II received single-dose AlCI3, Group III was given GSH for seven days, and Group IV was given AlCI3 single dose, and at the same time, 100 mg/kg GSH was given for seven days. At the end of the trial, blood samples were collected by cardiac puncture. Serum total antioxidant status (TAS) and Zn levels were lower in the aluminum-administered group than the control group. In contrast, plasma total oxidant status (TOS) and aluminum concentrations and ADA activity were found higher in the aluminum-administered group than in the control group. Unlike the other groups, group GSH administrated with aluminum was similar to the control group. As a result, GSH administration has a regulatory effect on ADA activity, antioxidant system, and Zn levels in experimental aluminum toxicity. In addition, GSH may reduce the oxidant capacity increased by Al administration and may have a tolerant role on the accumulated serum Al levels. But long-term experimental Al toxicity studies are needed to reach a firm conclusion.
Collapse
Affiliation(s)
- Onur Atakisi
- Department of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey.
| | - Kezban Yildiz Dalginli
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, Igdir, Turkey
| | - Destan Kalacay
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Emine Atakisi
- Faculty of Veterinary Medicine Department of Biochemistry, Kafkas University, Kars, Turkey
| | | | - Tunay Kontaş Aşkar
- Department of Dietetics and Nutrition, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Ruken Esra Demirdogen
- Deptartments of Chemistry Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
8
|
Velankar KY, Mou M, Hartmeier PR, Clegg B, Gawalt ES, Jiang M, Meng WS. Recrystallization of Adenosine for Localized Drug Delivery. Mol Pharm 2022; 19:3394-3404. [PMID: 36001090 DOI: 10.1021/acs.molpharmaceut.2c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine (ADO) is an endogenous metabolite with immense potential to be repurposed as an immunomodulatory therapeutic, as preclinical studies have demonstrated in models of epilepsy, acute respiratory distress syndrome, and traumatic brain injury, among others. The currently licensed products Adenocard and Adenoscan are formulated at 3 mg/mL of ADO for rapid bolus intravenous injection, but the systemic administration of the saline formulations for anti-inflammatory purposes is limited by the nucleoside's profound hemodynamic effects. Moreover, concentrations that can be attained in the airway or the brain through direct instillation or injection are limited by the volumes that can be accommodated in the anatomical space (<5 mL in humans) and the rapid elimination by enzymatic and transport mechanisms in the interstitium (half-life <5 s). As such, highly concentrated formulations of ADO are needed to attain pharmacologically relevant concentrations at sites of tissue injury. Herein, we report a previously uncharacterized crystalline form of ADO (rcADO) in which 6.7 mg/mL of the nucleoside is suspended in water. Importantly, the crystallinity is not diminished in a protein-rich environment, as evidenced by resuspending the crystals in albumin (15% w/v). To the best of our knowledge, this is the first report of crystalline ADO generated using a facile and organic solvent-free method aimed at localized drug delivery. The crystalline suspension may be suitable for developing ADO into injectable formulations for attaining high concentrations of the endogenous nucleoside in inflammatory locales.
Collapse
Affiliation(s)
- Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mingyao Mou
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Benjamin Clegg
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Mo Jiang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States.,Center for Pharmaceutical Engineering and Sciences, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
9
|
Goldoni I, Ibelli AMG, Fernandes LT, Peixoto JDO, Hul LM, Cantão ME, Gouveia JJDS, Ledur MC. Comprehensive Analyses of Bone and Cartilage Transcriptomes Evince Ion Transport, Inflammation and Cartilage Development-Related Genes Involved in Chickens’ Femoral Head Separation. Animals (Basel) 2022; 12:ani12060788. [PMID: 35327184 PMCID: PMC8944783 DOI: 10.3390/ani12060788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Femoral head necrosis (FHN) and other locomotor problems cause severe impacts on the poultry industry due to huge economic losses and reduced animal welfare. Femoral head separation (FHS), the initial phase of FHN, is usually a subclinical condition characterized by the detachment of articular cartilage from the bone. In this study, we aimed to identify genes and biological processes involved with FHS in broilers. A better understanding of the FHS molecular mechanisms can help to develop strategies to reduce this condition in chickens. Here, we described several genes that have their expression altered in the articular cartilage and femur when normal and FHS-affected animals were compared. Furthermore, genetic variants were found differing between the studied groups. Therefore, performing an integrated analysis of these datasets, we were able to detect genes and variants related to FHS in chickens. Some of them, such as SLC4A1, RHAG, ANK1, MKNK2, SPTB, ADA, C7 and EPB420 genes were highlighted and should be further explored to validate them as candidates to FHS and FHN in chickens and possibly in humans. Abstract Femoral head separation (FHS) is usually a subclinical condition characterized by the detachment of articular cartilage from the bone. In this study, a comprehensive analysis identifying shared and exclusive expression profiles, biological processes (BP) and variants related to FHS in the femoral articular cartilage and growth plate in chickens was performed through RNA sequencing analysis. Thirty-six differentially expressed (DE) genes were shared between femoral articular cartilage (AC) and growth plate (GP) tissues. Out of those, 23 genes were enriched in BP related to ion transport, translation factors and immune response. Seventy genes were DE exclusively in the AC and 288 in the GP. Among the BP of AC, the response against bacteria can be highlighted, and for the GP tissue, the processes related to chondrocyte differentiation and cartilage development stand out. When the chicken DE genes were compared to other datasets, eight genes (SLC4A1, RHAG, ANK1, MKNK2, SPTB, ADA, C7 and EPB420) were shared between chickens and humans. Furthermore, 89 variants, including missense in the SPATS2L, PRKAB1 and TRIM25 genes, were identified between groups. Therefore, those genes should be more explored to validate them as candidates to FHS/FHN in chickens and humans.
Collapse
Affiliation(s)
- Iara Goldoni
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
| | - Adriana Mércia Guaratini Ibelli
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
- Correspondence: (A.M.G.I.); (M.C.L.); Tel.: +55-49-3441-3217 (A.M.G.I.); +55-49-3441-0411 (M.C.L.)
| | - Lana Teixeira Fernandes
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
| | - Jane de Oliveira Peixoto
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
| | - Ludmila Mudri Hul
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, R. Salvatore Renna, 875, Guarapuava 85015-430, PR, Brazil; (I.G.); (J.d.O.P.); (L.M.H.)
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
| | - João José de Simoni Gouveia
- Programa de Pós-Graduação em Ciências Veterinárias no Semiárido, Universidade Federal do Vale do São Francisco, UNIVASF, Rodovia BR 407, 12 Lote 543, Petrolina 56300-000, PE, Brazil;
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Rodovia BR 153, km 110, Concórdia 89715-899, SC, Brazil; (L.T.F.); (M.E.C.)
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Rua Beloni Trombeta Zanin, 680E, Chapecó 89815-630, SC, Brazil
- Correspondence: (A.M.G.I.); (M.C.L.); Tel.: +55-49-3441-3217 (A.M.G.I.); +55-49-3441-0411 (M.C.L.)
| |
Collapse
|
10
|
Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022; 18:93-113. [PMID: 34997903 PMCID: PMC8742569 DOI: 10.1007/s11302-021-09838-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Present Address: Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina L. Mazzocco Mariotta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Haya de La Torre and Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
11
|
Determination of Serum Oxidative Stress, Antioxidant Capacity and Protein Profiles in Dogs Naturally Infected with Ehrlichia canis. Acta Parasitol 2021; 66:1341-1348. [PMID: 34018150 DOI: 10.1007/s11686-021-00411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/05/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Canine ehrlichiosis is an important tick-borne disease of dogs worldwide. In the present study, we aimed to determine the serum total antioxidant capacity (TAC), malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase, (SOD), glutathione peroxidase (GSH-Px), adenosine deaminase (ADA) activity and serum protein profiles in dogs affected with naturally acquired ehrlichiosis. METHODS The animal materials had been consisted of ten dogs naturally infected with Ehrlichia canis, and ten controls negative for Ehrlichia canis. TAC, MDA, NO, SOD, GSH-Px, ADA activity and TP, ALB, GLOB levels were measured in sera of the animals. The serum protein concentrations were measured by autoanalyzer. The electrophoretic profiles of serum total protein were determined by native polyacrylamide gel electrophoresis (Native-PAGE). RESULTS In dogs with ehrlichiosis, decreased TAC (P < 0.05) and GSH-Px (P > 0.05) levels were determined. However, NO (P > 0.05), SOD (P < 0.05), ADA (P > 0.05), MDA (P > 0.05), TP (P < 0.05) and GLO (P < 0.05) levels were found as increased in the Ehrlichia positive dogs. ALB levels were decreased without a statistical significance (P > 0.05). ALB, α1 and β2 globulin strip densities were found as decreased in native-PAGE, while β1 and γ globulin strip densities were significantly increased in the E. canis positive group when compared to the control. CONCLUSION It was determined that the oxidative stress decreased high antioxidant activity in dogs naturally infected with E. canis, and consequently, pro-oxidant and antioxidant defense and serum protein profiles were affected. It was thought that antioxidant supplementation could be beneficial to the treatment of the disease.
Collapse
|
12
|
Hixson EA, Borker PV, Jackson EK, Macatangay BJ. The Adenosine Pathway and Human Immunodeficiency Virus-Associated Inflammation. Open Forum Infect Dis 2021; 8:ofab396. [PMID: 34557556 PMCID: PMC8454523 DOI: 10.1093/ofid/ofab396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Human immunodeficiency virus (HIV) is associated with an increased risk of age-associated comorbidities and mortality compared to people without HIV. This has been attributed to HIV-associated chronic inflammation and immune activation despite viral suppression. The adenosine pathway is an established mechanism by which the body regulates persistent inflammation to limit tissue damage associated with inflammatory conditions. However, HIV infection is associated with derangements in the adenosine pathway that limits its ability to control HIV-associated inflammation. This article reviews the function of purinergic signaling and the role of the adenosine signaling pathway in HIV-associated chronic inflammation. This review also discusses the beneficial and potential detrimental effects of pharmacotherapeutic strategies targeting this pathway among people with HIV.
Collapse
Affiliation(s)
- Emily A Hixson
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Priya V Borker
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bernard J Macatangay
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pennsylvania, USA
| |
Collapse
|
13
|
Hul LM, Ibelli AMG, Savoldi IR, Marcelino DEP, Fernandes LT, Peixoto JO, Cantão ME, Higa RH, Giachetto PF, Coutinho LL, Ledur MC. Differentially expressed genes in the femur cartilage transcriptome clarify the understanding of femoral head separation in chickens. Sci Rep 2021; 11:17965. [PMID: 34504189 PMCID: PMC8429632 DOI: 10.1038/s41598-021-97306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Locomotor problems are among one of the main concerns in the current poultry industry, causing major economic losses and affecting animal welfare. The most common bone anomalies in the femur are dyschondroplasia, femoral head separation (FHS), and bacterial chondronecrosis with osteomyelitis (BCO), also known as femoral head necrosis (FHN). The present study aimed to identify differentially expressed (DE) genes in the articular cartilage (AC) of normal and FHS-affected broilers by RNA-Seq analysis. In the transcriptome analysis, 12,169 genes were expressed in the femur AC. Of those, 107 genes were DE (FDR < 0.05) between normal and affected chickens, of which 9 were downregulated and 98 were upregulated in the affected broilers. In the gene-set enrichment analysis using the DE genes, 79 biological processes (BP) were identified and were grouped into 12 superclusters. The main BP found were involved in the response to biotic stimulus, gas transport, cellular activation, carbohydrate-derived catabolism, multi-organism regulation, immune system, muscle contraction, multi-organism process, cytolysis, leukocytes and cell adhesion. In this study, the first transcriptome analysis of the broilers femur articular cartilage was performed, and a set of candidate genes (AvBD1, AvBD2, ANK1, EPX, ADA, RHAG) that could trigger changes in the broiler´s femoral growth plate was identified. Moreover, these results could be helpful to better understand FHN in chickens and possibly in humans.
Collapse
Affiliation(s)
- Ludmila Mudri Hul
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil
| | - Adriana Mércia Guaratini Ibelli
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | - Igor Ricardo Savoldi
- grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| | | | | | - Jane Oliveira Peixoto
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | | | - Roberto Hiroshi Higa
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP 70770-901 Brazil
| | | | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Departamento de Zootecnia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil ,grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| |
Collapse
|
14
|
Rasmussen HB, Jürgens G, Thomsen R, Taboureau O, Zeth K, Hansen PE, Hansen PR. Cellular Uptake and Intracellular Phosphorylation of GS-441524: Implications for Its Effectiveness against COVID-19. Viruses 2021; 13:v13071369. [PMID: 34372575 PMCID: PMC8310262 DOI: 10.3390/v13071369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
GS-441524 is an adenosine analog and the parent nucleoside of the prodrug remdesivir, which has received emergency approval for treatment of COVID-19. Recently, GS-441524 has been proposed to be effective in the treatment of COVID-19, perhaps even being superior to remdesivir for treatment of this disease. Evaluation of the clinical effectiveness of GS-441524 requires understanding of its uptake and intracellular conversion to GS-441524 triphosphate, the active antiviral substance. We here discuss the potential impact of these pharmacokinetic steps of GS-441524 on the formation of its active antiviral substance and effectiveness for treatment of COVID-19. Available protein expression data suggest that several adenosine transporters are expressed at only low levels in the epithelial cells lining the alveoli in the lungs, i.e., the alveolar cells or pneumocytes from healthy lungs. This may limit uptake of GS-441524. Importantly, cellular uptake of GS-441524 may be reduced during hypoxia and inflammation due to decreased expression of adenosine transporters. Similarly, hypoxia and inflammation may lead to reduced expression of adenosine kinase, which is believed to convert GS-441524 to GS-441524 monophosphate, the perceived rate-limiting step in the intracellular formation of GS-441524 triphosphate. Moreover, increases in extracellular and intracellular levels of adenosine, which may occur during critical illnesses, has the potential to competitively decrease cellular uptake and phosphorylation of GS-441524. Taken together, tissue hypoxia and severe inflammation in COVID-19 may lead to reduced uptake and phosphorylation of GS-441524 with lowered therapeutic effectiveness as a potential outcome. Hypoxia may be particularly critical to the ability of GS-441524 to eliminate SARS-CoV-2 from tissues with low basal expression of adenosine transporters, such as alveolar cells. This knowledge may also be relevant to treatments with other antiviral adenosine analogs and anticancer adenosine analogs as well.
Collapse
Affiliation(s)
- Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, DK-4000 Roskilde, Denmark
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark; (K.Z.); (P.E.H.)
- Correspondence:
| | - Gesche Jürgens
- Clinical Pharmacology Unit, Zealand University Hospital, DK-4000 Roskilde, Denmark;
| | - Ragnar Thomsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Olivier Taboureau
- INSERM U1133, CNRS UMR 8251, Université de Paris, F-75013 Paris, France;
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark; (K.Z.); (P.E.H.)
| | - Poul Erik Hansen
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark; (K.Z.); (P.E.H.)
| | - Peter Riis Hansen
- Department of Cardiology, Herlev and Gentofte Hospital, DK-2900 Hellerup, Denmark;
| |
Collapse
|
15
|
Catoni C, Di Paolo V, Rossi E, Quintieri L, Zamarchi R. Cell-Secreted Vesicles: Novel Opportunities in Cancer Diagnosis, Monitoring and Treatment. Diagnostics (Basel) 2021; 11:1118. [PMID: 34205256 PMCID: PMC8233857 DOI: 10.3390/diagnostics11061118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication playing a pivotal role in the regulation of physiological and pathological processes, including cancer. In particular, there is significant evidence suggesting that tumor-derived EVs exert an immunosuppressive activity during cancer progression, as well as stimulate tumor cell migration, angiogenesis, invasion and metastasis. The use of EVs as a liquid biopsy is currently a fast-growing area of research in medicine, with the potential to provide a step-change in the diagnosis and treatment of cancer, allowing the prediction of both therapy response and prognosis. EVs could be useful not only as biomarkers but also as drug delivery systems, and may represent a target for anticancer therapy. In this review, we attempted to summarize the current knowledge about the techniques used for the isolation of EVs and their roles in cancer biology, as liquid biopsy biomarkers and as therapeutic tools and targets.
Collapse
Affiliation(s)
- Cristina Catoni
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
| | - Veronica Di Paolo
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy;
| | - Elisabetta Rossi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Luigi Quintieri
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy;
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; (C.C.); (R.Z.)
| |
Collapse
|
16
|
Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD, da Costa P, Borba L, da Cruz IBM, Morsch VM, Schetinger MRC. Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 2021; 277:119421. [PMID: 33785337 DOI: 10.1016/j.lfs.2021.119421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by a chronic hyperglycemia state, increased oxidative stress parameters, and inflammatory processes. AIMS To evaluate the effect of caffeic acid (CA) on ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and adenosine deaminase (ADA) enzymatic activity and expression of the A2A receptor of the purinergic system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymatic activity and expression of the α7nAChR receptor of the cholinergic system as well as inflammatory and oxidative parameters in diabetic rats. METHODS Diabetes was induced by a single dose intraperitoneally of streptozotocin (STZ, 55 mg/kg). Animals were divided into six groups (n = 10): control/oil; control/CA 10 mg/kg; control/CA 50 mg/kg; diabetic/oil; diabetic/CA 10 mg/kg; and diabetic/CA 50 mg/kg treated for thirty days by gavage. RESULTS CA treatment reduced ATP and ADP hydrolysis (lymphocytes) and ATP levels (serum), and reversed the increase in ADA and AChE (lymphocytes), BuChE (serum), and myeloperoxidase (MPO, plasma) activities in diabetic rats. CA treatment did not attenuate the increase in IL-1β and IL-6 gene expression (lymphocytes) in the diabetic state; however, it increased IL-10 and A2A gene expression, regardless of the animals' condition (healthy or diabetic), and α7nAChR gene expression. Additionally, CA attenuated the increase in oxidative stress markers and reversed the decrease in antioxidant parameters of diabetic animals. CONCLUSION Overall, our findings indicated that CA treatment positively modulated purinergic and cholinergic enzyme activities and receptor expression, and improved oxi-inflammatory parameters, thus suggesting that this phenolic acid could improve redox homeostasis dysregulation and purinergic and cholinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Margarete Dulce Bagatini
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Pauline da Costa
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Loren Borba
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
17
|
Lamontagne RJ, Soldan SS, Su C, Wiedmer A, Won KJ, Lu F, Goldman AR, Wickramasinghe J, Tang HY, Speicher DW, Showe L, Kossenkov AV, Lieberman PM. A multi-omics approach to Epstein-Barr virus immortalization of B-cells reveals EBNA1 chromatin pioneering activities targeting nucleotide metabolism. PLoS Pathog 2021; 17:e1009208. [PMID: 33497421 PMCID: PMC7864721 DOI: 10.1371/journal.ppat.1009208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/05/2021] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) immortalizes resting B-lymphocytes through a highly orchestrated reprogramming of host chromatin structure, transcription and metabolism. Here, we use a multi-omics-based approach to investigate these underlying mechanisms. ATAC-seq analysis of cellular chromatin showed that EBV alters over a third of accessible chromatin during the infection time course, with many of these sites overlapping transcription factors such as PU.1, Interferon Regulatory Factors (IRFs), and CTCF. Integration of RNA-seq analysis identified a complex transcriptional response and associations with EBV nuclear antigens (EBNAs). Focusing on EBNA1 revealed enhancer-binding activity at gene targets involved in nucleotide metabolism, supported by metabolomic analysis which indicated that adenosine and purine metabolism are significantly altered by EBV immortalization. We further validated that adenosine deaminase (ADA) is a direct and critical target of the EBV-directed immortalization process. These findings reveal that purine metabolism and ADA may be useful therapeutic targets for EBV-driven lymphoid cancers.
Collapse
Affiliation(s)
| | - Samantha S. Soldan
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Chenhe Su
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Aaron R. Goldman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Hsin-Yao Tang
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - David W. Speicher
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Louise Showe
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Mathiesen CBK, Rudjord-Levann AM, Gad M, Larsen J, Sellebjerg F, Pedersen AE. Cladribine inhibits secretion of pro-inflammatory cytokines and phagocytosis in human monocyte-derived M1 macrophages in-vitro. Int Immunopharmacol 2020; 91:107270. [PMID: 33360830 DOI: 10.1016/j.intimp.2020.107270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Abstract
Cladribine (Cd) is a purine nucleoside analogue which in an oral formulation is approved for treatment of patients with multiple sclerosis (MS). It is known to mediate the effect through a short-term selective reduction of lymphocytes with minimal effect on the innate immune system. However, a few studies have emerged, that also demonstrate a beneficial immunomodulatory effect of cladribine on monocyte-derived cells. As cladribine crosses the blood-brain barrier this effect could have clinical meaningful impact in the treatment of MS, where recruitment of innate cells such as M1 macrophages play a role in plaque development. Here, we investigated the in-vitro effect on monocyte differentiation into M1 and M2 macrophages and dendritic cells as well as the effect on activation of M1 macrophages. In our experiments, cladribine in therapeutic relevant in-vitro concentrations, did not lead to apoptosis in differentiated M1, M2 macrophages or DCs and did not interfere with the phenotype of these differentiated cells. In M1 macrophages, cladribine reduced the secretion of IL-6 and TNF-α observed after activation with LPS. Similar, cladribine reduced the phagocytic capacity of LPS activated M1 macrophages but did not affect unactivated cells. We conclude, that such reduction of inflammatory potential as well as reduced M1 phagocytic activity, e.g. within an MS plaque, could be an additional clinical meaningful effect of cladribine in the treatment of MS while at the same time it would leave M1 macrophages intact for the protection against infections.
Collapse
Affiliation(s)
| | | | | | | | - Finn Sellebjerg
- The Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anders Elm Pedersen
- Merck (Denmark), Denmark, an affiliate of Merck KGaA Darmstadt, Germany; Department of Odontology, University of Copenhagen, Denmark.
| |
Collapse
|
19
|
Soh KY, Loh JMS, Hall C, Proft T. Functional Analysis of Two Novel Streptococcus iniae Virulence Factors Using a Zebrafish Infection Model. Microorganisms 2020; 8:E1361. [PMID: 32899555 PMCID: PMC7564053 DOI: 10.3390/microorganisms8091361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Streptococcus iniae is a major fish pathogen that contributes to large annual losses in the aquaculture industry, exceeding US$100 million. It is also reported to cause opportunistic infections in humans. We have recently identified two novel S. iniae virulence factors, an extracellular nuclease (SpnAi) and a secreted nucleotidase (S5nAi), and verified their predicted enzymatic activities using recombinant proteins. Here, we report the generation of green fluorescent S. iniae spnAi and s5nAi deletion mutants and their evaluation in a transgenic zebrafish infection model. Our results show nuclease and nucleotidase activities in S. iniae could be attributed to SpnAi and S5nAi, respectively. Consistent with this, larvae infected with the deletion mutants demonstrated enhanced survival and bacterial clearance, compared to those infected with wild-type (WT) S. iniae. Deletion of spnAi and s5nAi resulted in sustained recruitment of neutrophils and macrophages, respectively, to the site of infection. We also show that recombinant SpnAi is able to degrade neutrophil extracellular traps (NETs) isolated from zebrafish kidney tissue. Our results suggest that both enzymes play an important role in S. iniae immune evasion and might present potential targets for the development of therapeutic agents or vaccines.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
20
|
Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo R, Herrero-Beaumont G, Mediero A. Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Front Med (Lausanne) 2020; 7:506. [PMID: 32984382 PMCID: PMC7485330 DOI: 10.3389/fmed.2020.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation triggered by metabolic imbalance, also called metainflammation, is low-grade inflammation caused by the components involved in metabolic syndrome (MetS), including central obesity and impaired glucose tolerance. This phenomenon is mainly due to excess nutrients and energy, and it contributes to the pathogenesis of osteoarthritis (OA). OA is characterized by the progressive degeneration of articular cartilage, which suffers erosion and progressively becomes thinner. Purinergic signaling is involved in several physiological and pathological processes, such as cell proliferation in development and tissue regeneration, neurotransmission and inflammation. Adenosine and ATP receptors, and other members of the signaling pathway, such as AMP-activated protein kinase (AMPK), are involved in obesity, type 2 diabetes (T2D) and OA progression. In this review, we focus on purinergic regulation in osteoarthritic cartilage and how different components of MetS, such as obesity and T2D, modulate the purinergic system in OA. In that regard, we describe the critical role in this disease of receptors, such as adenosine A2A receptor (A2AR) and ATP P2X7 receptor. Finally, we also assess how nucleotides regulate the inflammasome in OA.
Collapse
Affiliation(s)
- Paula Gratal
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ana Lamuedra
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Juan Pablo Medina
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
21
|
Macatangay BJC, Jackson EK, Abebe KZ, Comer D, Cyktor J, Klamar-Blain C, Borowski L, Gillespie DG, Mellors JW, Rinaldo CR, Riddler SA. A Randomized, Placebo-Controlled, Pilot Clinical Trial of Dipyridamole to Decrease Human Immunodeficiency Virus-Associated Chronic Inflammation. J Infect Dis 2020; 221:1598-1606. [PMID: 31282542 PMCID: PMC7184919 DOI: 10.1093/infdis/jiz344] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Adenosine is a potent immunoregulatory nucleoside produced during inflammatory states to limit tissue damage. We hypothesized that dipyridamole, which inhibits cellular adenosine uptake, could raise the extracellular adenosine concentration and dampen chronic inflammation associated with human immunodeficiency virus (HIV) type 1. METHODS Virally suppressed participants receiving antiretroviral therapy were randomized 1:1 for 12 weeks of dipyridamole (100 mg 4 times a day) versus placebo capsules. All participants took open-label dipyridamole during weeks 12-24. Study end points included changes in markers of systemic inflammation (soluble CD163 and CD14, and interleukin 6) and levels of T-cell immune activation (HLA-DR+CD38+). RESULTS Of 40 participants who were randomized, 17 dipyridamole and 18 placebo recipients had baseline and week 12 data available for analyses. There were no significant changes in soluble markers, apart from a trend toward decreased levels of soluble CD163 levels (P = .09). There was a modest decrease in CD8+ T-cell activation (-17.53% change for dipyridamole vs +13.31% for placebo; P = .03), but the significance was lost in the pooled analyses (P = .058). Dipyridamole also reduced CD4+ T-cell activation (-11.11% change; P = .006) in the pooled analyses. In post hoc analysis, detectable plasma dipyridamole levels were associated with higher levels of inosine, an adenosine surrogate, and of cyclic adenosine monophosphate. CONCLUSION Dipyridamole increased extracellular adenosine levels and decreased T-cell activation significantly among persons with HIV-1 infection receiving virally suppressive therapy.
Collapse
Affiliation(s)
- Bernard J C Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pennsylvania
| | - Kaleab Z Abebe
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Diane Comer
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Joshua Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Cynthia Klamar-Blain
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Luann Borowski
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pennsylvania
| | - John W Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
- Department of Pathology, University of Pittsburgh School of Medicine, Pennsylvania
| | - Sharon A Riddler
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pennsylvania
| |
Collapse
|
22
|
Wang M, Guo X, Zhao H, Lv J, Wang H, An Y. Adenosine A 2B receptor activation stimulates alveolar fluid clearance through alveolar epithelial sodium channel via cAMP pathway in endotoxin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L787-L800. [PMID: 32129084 DOI: 10.1152/ajplung.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clinical studies have established that the capacity of removing excess fluid from alveoli is impaired in most patients with acute respiratory distress syndrome. Impaired alveolar fluid clearance (AFC) correlates with poor outcomes. Adenosine A2B receptor (A2BAR) has the lowest affinity with adenosine among four adenosine receptors. It is documented that A2BAR can activate adenylyl cyclase (AC) resulting in elevated cAMP. Based on the understanding that cAMP is a key regulator of epithelial sodium channel (ENaC), which is the limited step in sodium transport, we hypothesized that A2BAR signaling may affect AFC in acute lung injury (ALI) through regulating ENaC via cAMP, thus attenuating pulmonary edema. To address this, we utilized pharmacological approaches to determine the role of A2BAR in AFC in rats with endotoxin-induced lung injury and further focused on the mechanisms in vitro. We observed elevated pulmonary A2BAR level in rats with ALI and the similar upregulation in alveolar epithelial cells exposed to LPS. A2BAR stimulation significantly attenuated pulmonary edema during ALI, an effect that was associated with enhanced AFC and increased ENaC expression. The regulatory effects of A2BAR on ENaC-α expression were further verified in cultured alveolar epithelial type II (ATII) cells. More importantly, activation of A2BAR dramatically increased amiloride-sensitive Na+ currents in ATII cells. Moreover, we observed that A2BAR activation stimulated cAMP accumulation, whereas the cAMP inhibitor abolished the regulatory effect of A2BAR on ENaC-α expression, suggesting that A2BAR activation regulates ENaC-α expression via cAMP-dependent mechanism. Together, these findings suggest that signaling through alveolar epithelial A2BAR promotes alveolar fluid balance during endotoxin-induced ALI by regulating ENaC via cAMP pathway, raising the hopes for treatment of pulmonary edema due to ALI.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiaoxia Guo
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jie Lv
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huixia Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
23
|
Kesby JP, Chang A, Najera JA, Marcondes MCG, Semenova S. Brain Reward Function after Chronic and Binge Methamphetamine Regimens in Mice Expressing the HIV-1 TAT Protein. Curr HIV Res 2020; 17:126-133. [PMID: 31269883 DOI: 10.2174/1570162x17666190703165408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Methamphetamine abuse and human immunodeficiency virus (HIV) are common comorbidities. HIV-associated proteins, such as the regulatory protein TAT, may contribute to brain reward dysfunction, inducing an altered sensitivity to methamphetamine reward and/or withdrawal in this population. OBJECTIVE These studies examined the combined effects of TAT protein expression and, chronic and binge methamphetamine regimens on brain reward function. METHODS Transgenic mice with inducible brain expression of the TAT protein were exposed to either saline, a chronic, or a binge methamphetamine regimen. TAT expression was induced via doxycycline treatment during the last week of methamphetamine exposure. Brain reward function was assessed daily throughout the regimens, using the intracranial self-stimulation procedure, and after a subsequent acute methamphetamine challenge. RESULTS Both methamphetamine regimens induced withdrawal-related decreases in reward function. TAT expression substantially, but not significantly increased the withdrawal associated with exposure to the binge regimen compared to the chronic regimen, but did not alter the response to acute methamphetamine challenge. TAT expression also led to persistent changes in adenosine 2B receptor expression in the caudate putamen, regardless of methamphetamine exposure. These results suggest that TAT expression may differentially affect brain reward function, dependent on the pattern of methamphetamine exposure. CONCLUSION The subtle effects observed in these studies highlight that longer-term TAT expression, or its induction at earlier stages of methamphetamine exposure, may be more consequential at inducing behavioral and neurochemical effects.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States.,Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia.,UQ Centre for Clinical Research, The University of Queensland, Brisbane, Qld, Australia
| | - Ariel Chang
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Julia A Najera
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Maria Cecilia G Marcondes
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States.,San Diego Biomedical Research Institute, San Diego, CA 92121, United States
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Zyma M, Pawliczak R. Characteristics and the role of purinergic receptors in pathophysiology with focus on immune response. Int Rev Immunol 2020; 39:97-117. [PMID: 32037918 DOI: 10.1080/08830185.2020.1723582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleotide adenosine-5'-triphosphate (ATP) is mostly thought to be energy carrier, but evidence presented in multiple studies proves ATP involvement into variety of processes, due to its neuromodulatory capabilities. ATP and its metabolite-adenosine, bind to the purinergic receptors, which are divided into two types: adenosine binding P1 receptor and ADP/ATP binding P2 receptor. These receptors are expressed in different tissues and organs. Recent studies report their immunomodulatory characteristics, connected with varying immunological processes, such as immunological response or antigen presentation. Besides, they seem to play an important role in medical conditions such as bronchial asthma or variety of cancers. In this article, we would like to review recent discoveries on the field of purinergic receptors research focusing on their role in immunological system, and shed a new light upon the importance of these receptors in modern medicine development.
Collapse
Affiliation(s)
- Marharyta Zyma
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Titanji B, Gavegnano C, Hsue P, Schinazi R, Marconi VC. Targeting Inflammation to Reduce Atherosclerotic Cardiovascular Risk in People With HIV Infection. J Am Heart Assoc 2020; 9:e014873. [PMID: 31973607 PMCID: PMC7033865 DOI: 10.1161/jaha.119.014873] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Boghuma Titanji
- Division of Infectious Diseases Emory University School of Medicine Atlanta GA
| | - Christina Gavegnano
- Center for AIDS Research Laboratory of Biochemical Pharmacology Department of Pediatrics Emory University Atlanta GA
| | - Priscilla Hsue
- Department of Cardiology Zuckerberg San Francisco General Hospital University of California-San Francisco CA
| | - Raymond Schinazi
- Center for AIDS Research Laboratory of Biochemical Pharmacology Department of Pediatrics Emory University Atlanta GA
| | - Vincent C Marconi
- Division of Infectious Diseases Emory University School of Medicine Atlanta GA.,Emory Vaccine Center Atlanta GA.,Rollins School of Public Health Emory University Atlanta GA.,Atlanta VA Medical Center Decatur GA
| |
Collapse
|
26
|
Soh KY, Loh JMS, Proft T. Cell wall-anchored 5'-nucleotidases in Gram-positive cocci. Mol Microbiol 2020; 113:691-698. [PMID: 31872460 DOI: 10.1111/mmi.14442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022]
Abstract
5'-nucleotidases (5'-NTs) are enzymes that catalyze the hydrolysis of nucleoside monophosphates to produce nucleosides and phosphate. Since the identification of adenosine synthase A (AdsA) in Staphylococcus aureus in 2009, several other 5'-NTs have been discovered in Gram-positive cocci, mainly in streptococci. Despite some differences in substrate specificity, pH range and metal ion requirements, all characterized 5'-NTs use AMP and ADP, and in some cases ATP, to produce the immunosuppressive adenosine, which dampens pro-inflammatory immune responses. Several 5'-NTs are also able to use dAMP as substrate to generate deoxy-adenosine which is cytotoxic for macrophages. A synergy between 5'-NTs and exonucleases which are commonly expressed in Gram-positive cocci has been described, where the nucleases provide dAMP as a cleavage product from DNA. Some of these nucleases produce dAMP by degrading the DNA backbone of neutrophil extracellular traps (NETs) resulting in a "double hit" strategy of immune evasion. This Micro Review provides an overview of the biochemical properties of Gram-positive cell wall-anchored 5'-NTs and their role as virulence factors. A potential use of 5'-NTs for vaccine development is also briefly discussed.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Sutton NR, Bouïs D, Mann KM, Rashid IM, McCubbrey AL, Hyman MC, Goldstein DR, Mei A, Pinsky DJ. CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:61-71. [PMID: 31619062 PMCID: PMC7956240 DOI: 10.1161/atvbaha.119.313002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CD73 is an ectonucleotidase which catalyzes the conversion of AMP (adenosine monophosphate) to adenosine. Adenosine has been shown to be anti-inflammatory and vasorelaxant. The impact of ectonucleotidases on age-dependent atherosclerosis remains unclear. Our aim was to investigate the role of CD73 in age-dependent accumulation of atherosclerosis. Approach and results: Mice doubly deficient in CD73 and ApoE (apolipoprotein E; (cd73-/-/apoE-/-) were generated, and the extent of aortic atherosclerotic plaque was compared with apoE-/- controls at 12, 20, 32, and 52 weeks. By 12 weeks of age, cd73-/-/apoE-/- mice exhibited a significant increase in plaque (1.4±0.5% of the total vessel surface versus 0.4±0.1% in apoE-/- controls, P<0.005). By 20 weeks of age, this difference disappeared (2.9±0.4% versus 3.3±0.7%). A significant reversal in phenotype emerged at 32 weeks (9.8±1.2% versus 18.3±1.4%; P<0.0001) and persisted at the 52 week timepoint (22.4±2.1% versus 37.0±2.1%; P<0.0001). The inflammatory response to aging was found to be comparable between cd73-/-/apoE-/- mice and apoE-/- controls. A reduction in lipolysis in CD73 competent mice was observed, even with similar plasma lipid levels (cd73-/-/apoE-/- versus apoE-/- at 12 weeks [16.2±0.7 versus 9.5±1.4 nmol glycerol/well], 32 weeks [24.1±1.5 versus 7.4±0.4 nmol/well], and 52 weeks [13.8±0.62 versus 12.7±2.0 nmol/well], P<0.001). CONCLUSIONS At early time points, CD73 exerts a subtle antiatherosclerotic influence, but with age, the pattern reverses, and the presence of CD73 promoted suppression of lipid catabolism.
Collapse
Affiliation(s)
- Nadia R. Sutton
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Diane Bouïs
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Kris M. Mann
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Imran M. Rashid
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Alexandra L. McCubbrey
- Division of Pulmonary and Critical Care (A.L.M.), University of Michigan Medical Center, Ann Arbor
| | - Matt C. Hyman
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Daniel R. Goldstein
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Annie Mei
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - David J. Pinsky
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
28
|
Cruz FF, Pereira TCB, Altenhofen S, da Costa KM, Bogo MR, Bonan CD, Morrone FB. Characterization of the adenosinergic system in a zebrafish embryo radiotherapy model. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108572. [PMID: 31306805 DOI: 10.1016/j.cbpc.2019.108572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Adenosine is a nucleoside that acts as a signaling molecule by activating P1 purinergic receptors (A1, A2A, A2B and A3). This activation is involved in immune responses, inflammation, and tissue remodeling and tumor progression. Gamma rays are a type of ionizing radiation widely adopted in radiotherapy of tumors. Although it brings benefits to the success of the therapeutic scheme, it can trigger cellular damages, inducing a perpetual inflammatory response that culminates in adverse effects and severe toxicity. Our study aims to characterize the adenosinergic system in a zebrafish embryo radiotherapy model, relating the adenosine signaling to the changes elicited by radiation exposure. To standardize the radiotherapy procedure, we established a toxicological profile after exposure. Zebrafish were irradiated with different doses of gamma rays (2, 5, 10, 15 and 20 Gy) at 24 hpf. Survival, hatching rate, heartbeats, locomotor activity and morphological changes were determined during embryos development. Although without significant difference in survival, gamma-irradiated embryos had their heartbeats increased and presented decreased hatching time, changes in locomotor activity and important morphological alterations. The exposure to 10 Gy disrupted the ecto-5'-nucleotidase/CD73 and adenosine deaminase/ADA enzymatic activity, impairing adenosine metabolism. We also demonstrated that radiation decreased A2B receptor gene expression, suggesting the involvement of extracellular adenosine in the changes prompted by radiotherapy. Our results indicate that the components of the adenosinergic system may be potential targets to improve radiotherapy and manage the tissue damage and toxicity of ionizing radiation.
Collapse
Affiliation(s)
- Fernanda Fernandes Cruz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kesiane Mayra da Costa
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Biologia Genômica e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019; 141:1246-1257. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase is a critical enzyme in purine metabolism that regulates intra and extracellular adenosine concentrations by converting it to inosine. Adenosine is an important purine that regulates numerous physiological functions by interacting with its receptors. Adenosine and consequently adenosine deaminase can have pro or anti-inflammatory effects on tissues depending on how much time has passed from the start of the injury. In addition, an increase in adenosine deaminase activity has been reported for various diseases and the significant effect of deaminase inhibition on the clinical course of different diseases has been reported. However, the use of inhibitors is limited to only a few medical indications. Data on the increase of adenosine deaminase activity in different diseases and the impact of its inhibition in various cases have been collected and are discussed in this review. Overall, the evidence shows that many studies have been done to introduce inhibitors, however, in vivo studies have been much less than in vitro, and often have not been expanded for clinical use.
Collapse
Affiliation(s)
- S Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
30
|
Mierzejewska P, Zabielska MA, Kutryb-Zajac B, Tomczyk M, Koszalka P, Smolenski RT, Slominska EM. Impaired L-arginine metabolism marks endothelial dysfunction in CD73-deficient mice. Mol Cell Biochem 2019; 458:133-142. [PMID: 31093850 PMCID: PMC6616215 DOI: 10.1007/s11010-019-03537-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
Changes in the ecto-5'-nucleotidase activity-an extracellular nucleotide catabolic enzyme may lead to the inflammation and endothelial dysfunction. We investigated the effect of CD73 deletion on the endothelial function and L-arginine metabolism in various age groups of mice. 1-,3-,6-, and 12-month-old, male C57BL/6 J wild type (WT) and C57BL/6 J CD73-/- (CD73-/-) mice were used. Blood samples were used for the analysis of adenine nucleotide concentrations. Serum samples were analyzed for the concentration of amino acids, Interleukin 6 (IL-6), Intercellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), and endothelial nitric oxide synthase (eNOS) level. Serum and aortic nitrate/nitrite, as well as aortic arginase and NOS activity in endothelial cells (EC) were evaluated. CD73 deletion led to age-dependent increase in IL-6, ICAM-1, and VCAM-1 concentration compared to WT. All CD73-/- mice age groups were characterized by reduced L-Arginine concentration and eNOS level. Significantly lower NOS activity was noticed in EC isolated from CD73-/- mice lungs in comparison to EC isolated from WT lungs. The L-Arginine/ADMA ratio in the CD73-/- decreased in age-dependent manner in comparison to WT. The nitrate/nitrite ratio was reduced in serum and in aortas of 6-month-old CD73-/- mice as compared to WT. The ornithine/arginine and ornithine/citrulline ratios were increased in CD73-/- compared to controls. Blood (erythrocyte) Adenosine-5'-triphosphate and Adenosine-5'-diphosphate levels were reduced in favor to higher blood Adenosine-5'-monophosphate concentration in CD73-/- mice in comparison to WT. The CD73 deletion leads to the development of age-dependent endothelial dysfunction in mice, associated with impaired L-arginine metabolism. CD73 activity seems to protect endothelium.
Collapse
Affiliation(s)
- P Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - M A Zabielska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
- Department of Physiology, Medical University of Gdansk, Gdańsk, Poland
| | - B Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - M Tomczyk
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - P Koszalka
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, Gdańsk, Poland
| | - R T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland
| | - E M Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdańsk, Poland.
| |
Collapse
|
31
|
Hoogduijn MJ, Lombardo E. Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells Transl Med 2019; 8:1126-1134. [PMID: 31282113 PMCID: PMC6811696 DOI: 10.1002/sctm.19-0073] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
2018 was the year of the first marketing authorization of an allogeneic stem cell therapy by the European Medicines Agency. The authorization concerns the use of allogeneic adipose tissue-derived mesenchymal stromal cells (MSCs) for treatment of complex perianal fistulas in Crohn's disease. This is a breakthrough in the field of MSC therapy. The last few years have, furthermore, seen some breakthroughs in the investigations into the mechanisms of action of MSC therapy. Although the therapeutic effects of MSCs have largely been attributed to their secretion of immunomodulatory and regenerative factors, it has now become clear that some of the effects are mediated through host phagocytic cells that clear administered MSCs and in the process adapt an immunoregulatory and regeneration supporting function. The increased interest in therapeutic use of MSCs and the ongoing elucidation of the mechanisms of action of MSCs are promising indicators that 2019 may be the dawn of the therapeutic era of MSCs and that there will be revived interest in research to more efficient, practical, and sustainable MSC-based therapies. Stem Cells Translational Medicine 2019;8:1126-1134.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
32
|
Neurath MF, Leppkes M. Resolution of ulcerative colitis. Semin Immunopathol 2019; 41:747-756. [DOI: 10.1007/s00281-019-00751-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
33
|
Wolkmer P, Pereira AB, da Silva CB, Paim FC, Palma HE, Bueno A, Emanuelli MP, Siqueira LC, Monteiro SG, Andrade CM. Curcumin pre-treatment modulate the activities of adenine nucleotide and nucleoside degradation enzymes in lymphocyte of rats infected with Trypanosoma evansi. Parasitol Int 2019; 73:101948. [PMID: 31247308 DOI: 10.1016/j.parint.2019.101948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/05/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
This study aimed to evaluate nucleoside triphosphate diphosphohydrolase (NTPDase) and adenosine deaminase (ADA) activities in lymphocytes from rats supplemented or not with curcumin 30 days prior to experimental infection with Trypanosoma evansi. Thirty-two adult male Wistar rats were divided in four groups. The pre-infection group 20 (PreI20) received orally 20 mg/kg of curcumin and pre-infection group 60 (PreI60) received orally 60 mg/kg of curcumin for 30 days prior inoculation with T. evansi. The infected e non-infected control groups received only oral vehicle for 30 days. Trypanosoma evansi infected groups were inoculated intraperitoneally with 0.2 ml of blood with 1 × 106 parasites. After inoculation the treatment of the groups continued until the day of euthanasia (15 days). The results showed that curcumin pre-treatment, with both doses, reduced (P < .05) NTPDase and increased (P < .05) ADA activity in lymphocytes of treated groups when compared to untreated and infected animals (control). The results of this study support the evidence that the regulation of ATP and adenosine levels by NTPDase and ADA activities appear to be important to modulate the immune response in T. evansi infection, once the treatment with curcumin maintained the NTPDase activity reduced and enhanced ADA activity in lymphocytes. It is possible to conclude that the use of curcumin prior to infection with T. evansi induces immunomodulatory effects, favoring the response against the parasite.
Collapse
Affiliation(s)
- Patrícia Wolkmer
- Veterinary Medicine, University of Cruz Alta, Rio Grande do Sul, Brazil.
| | - Andreia B Pereira
- Department of Small Animals, Federal University of Santa Maria, Brazil
| | - Cássia B da Silva
- Department of Small Animals, Federal University of Santa Maria, Brazil
| | - Francine C Paim
- Department of Small Animals, Federal University of Santa Maria, Brazil
| | - Heloisa E Palma
- Veterinary Medicine, University of Cruz Alta, Rio Grande do Sul, Brazil
| | - Andressa Bueno
- Department of Small Animals, Federal University of Santa Maria, Brazil
| | | | - Lucas C Siqueira
- Rural Development post-graduation program, University of Cruz Alta, Rio Grande do Sul, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Brazil
| | - Cinthia M Andrade
- Veterinary Medicine, University of Cruz Alta, Rio Grande do Sul, Brazil
| |
Collapse
|
34
|
Li X, Wang X, Hua M, Yu H, Wei S, Wang A, Zhou J. Photothermal-Triggered Controlled Drug Release from Mesoporous Silica Nanoparticles Based on Base-Pairing Rules. ACS Biomater Sci Eng 2019; 5:2399-2408. [PMID: 33405748 DOI: 10.1021/acsbiomaterials.9b00478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Base-pairing is stable under physiological temperature but broken by heating, which is the basic mechanism for nucleic acid amplification in biology. In this manuscript, a simple controlled-drug-release system was prepared on the basis of this rule and its in vivo activity was studied. Poly adenine (poly A), the tail of the synthesized RNA chain, was exploited as gatekeeper of thymine (T)-modified mesoporous silica nanoparticles (MSN-T) based on the simple A-T base-pairing rules. The gate keeper maintains stability to avoid drug (chemotherapy and photothermal therapy drugs) release during the delivery process but is effectively removed by a photothermal effect to trigger drug release at the tumor tissue by near-infrared (NIR) laser irradiation. In vitro and in vivo experiments indicated that the prepared nanomedicine could effectively suppress tumor growth and activate antitumor immunity.
Collapse
Affiliation(s)
- Xiaoting Li
- College of Life Sciences, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Xinhui Wang
- College of Life Sciences, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Mingli Hua
- College of Life Sciences, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Haohan Yu
- College of Life Sciences, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Shaohua Wei
- College of Life Sciences, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Ao Wang
- Key Lab of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. For Biomass Chemical Utilization, Key and Open Lab. of Forest Chemical Engineering, SFA, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Suojin Fifth Village, Nanjing, Jiangsu 210042, China
| | - Jiahong Zhou
- College of Life Sciences, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road, Nanjing, Jiangsu 210023, China
| |
Collapse
|
35
|
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58:208-218. [PMID: 30382602 DOI: 10.1002/gcc.22698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté (EA 7270), Dijon, France.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Emily C Fortman
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alexander A Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
Nedeljkovic N. Complex regulation of ecto-5'-nucleotidase/CD73 and A 2AR-mediated adenosine signaling at neurovascular unit: A link between acute and chronic neuroinflammation. Pharmacol Res 2019; 144:99-115. [PMID: 30954629 DOI: 10.1016/j.phrs.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
The review summarizes available data regarding the complex regulation of CD73 at the neurovascular unit (NVU) during neuroinflammation. Based on available data we propose the biphasic pattern of CD73 regulation at NVU, with an early attenuation and a postponed up-regulation of CD73 activity. Transient attenuation of CD73 activity on leukocyte/vascular endothelium and leukocyte/astrocyte surface, required for the initiation of a neuroinflammatory response, may be effectuated either by catalytic inhibition of CD73 and/or by shedding of the CD73 molecule from the cell surface, while postponed induction of CD73 is effectuated by transcriptional up-regulation of Nt5e and posttranslational modifications. Neuroinflammatory conditions are also associated with significant enhancement and gain-of-function of A2AR-mediated adenosine signaling. However, in contrast to the temporary prevalence of A2AR over A1R signaling during an acute inflammatory response, prolonged induction of A2AR and resulting perpetual CD73/A2AR coupling may be a contributing factors in the transition between acute and chronic neuroinflammation. Thus, pharmacological targeting of the CD73/A2AR axis may attenuate inflammatory response and ameliorate neurological deficits in chronic neuroinflammatory conditions.
Collapse
Affiliation(s)
- Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Studentski trg 3, Belgrade 11001, Serbia.
| |
Collapse
|
37
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
38
|
Abstract
INTRODUCTION Epilepsy is one of the most serious neurological conditions, affecting almost 50 million people around the world. Despite more than 20 antiepileptic drugs (AEDs) available, seizures are still uncontrolled in one third of patients. Areas covered: The present paper reviews current compounds in preclinical and clinical development for the treatment of focal epilepsies and new potential molecular targets recently identified. Expert opinion: 1OP-2198, Cannabidavirin, Everolimus, FV-082, Ganaxolone, Minocycline, NAX 810-2, Padsevonil and Selurampanel seem to be particularly promising in focal epilepsy. Some of them, Everolimus and Ganaxolone, are already completing Phase III development while others are still at a preclinical stage. Everolimus represents the first example of precision-medicine in epilepsy and the first generation of disease-modifying agents but data on long-term safety are needed. Among AEDs in Phase II development, Cannabidavirin, Padsevonil and Selurampanel may represent a promising fourth generation of compounds for focal epilepsies if they successfully proceed to subsequent stages. Data on general tolerability, effects of cognition and behavior as well as the potential for interactions in polytherapy will be key element for the success or decline of these drugs.
Collapse
Affiliation(s)
- Marco Mula
- a Institute of Medical and Biomedical Education , St George's University of London , London , UK.,b Atkinson Morley Regional Neuroscience Centre , St George's University Hospitals NHS Foundation Trust , London , UK
| |
Collapse
|
39
|
Sun X, Dong Z, Li N, Feng X, Liu Y, Li A, Zhu X, Li C, Zhao Z. Nucleosides isolated from Ophiocordyceps sinensis inhibit cigarette smoke extract-induced inflammation via the SIRT1-nuclear factor-κB/p65 pathway in RAW264.7 macrophages and in COPD mice. Int J Chron Obstruct Pulmon Dis 2018; 13:2821-2832. [PMID: 30237706 PMCID: PMC6136406 DOI: 10.2147/copd.s172579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Ophiocordyceps sinensis (C. sinensis) extracts have been found to have a therapeutic effect on patients with chronic obstructive pulmonary disease (COPD). Silent information regulator 1 (SIRT1) plays an important role in the regulation of inflammatory mediators and correlates with lung function and COPD exacerbations. The objective of this work was to explore the anti-inflammatory effect and preliminary pathways of nucleosides from cultured C. sinensis on RAW264.7 macrophages and COPD mice. Materials and methods The nucleosides were extracted from cultured C. sinensis powder and further purified by macroporous resin D101 and glucan G10 columns. Inflammation and oxidative stress models in RAW264.7 macrophages and in mice were established by injection of cigarette smoke extract (CSE). We then examined how the isolated nucleosides regulated the production of the associated inflammatory mediators in vitro and in vivo by enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and Western blot. Results The nucleosides inhibited inflammatory mediator expression of tumor necrosis factor-α, interleukin-6, interleukin-1β, and nitric oxide in both the CSE-stimulated RAW264.7 macrophages and mice. Moreover, the nucleosides elevated SIRT1 activation and suppressed nuclear factor-κB (NF-κB)/p65 activation in vitro and in vivo. Nucleoside treatment significantly decreased the levels of the inflammatory mediators in the bronchoalveolar lavage fluid (BALF) and serum of the CSE-induced mice. The nucleosides also altered the recruitment of inflammatory cells in BALF and improved characteristic features of the lungs in the CSE-induced mice. Conclusion These results show that the nucleosides suppressed COPD inflammation through the SIRT1–NF-κB/p65 pathway, suggesting that the nucleosides may be partly responsible for the therapeutic effects of cultured C. sinensis on COPD patients.
Collapse
Affiliation(s)
- Xiao Sun
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Nan Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Xiuli Feng
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Yan Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Ang Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Chunyan Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China, .,Shandong Engineering and Technology Research Center for Jujube Food and Drug, Jinan, People's Republic of China, .,Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, Jinan, People's Republic of China,
| |
Collapse
|
40
|
Adenosine signaling and adenosine deaminase regulation of immune responses: impact on the immunopathogenesis of HIV infection. Purinergic Signal 2018; 14:309-320. [PMID: 30097807 DOI: 10.1007/s11302-018-9619-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Infection by human immunodeficiency virus (HIV) causes the acquired immune deficiency syndrome (AIDS), which has devastating effects on the host immune system. HIV entry into host cells and subsequent viral replication induce a proinflammatory response, hyperactivating immune cells and leading them to death, disfunction, and exhaustion. Adenosine is an immunomodulatory molecule that suppresses immune cell function to protect tissue integrity. The anti-inflammatory properties of adenosine modulate the chronic inflammation and immune activation caused by HIV. Lack of adenosine contributes to pathogenic events in HIV infection. However, immunosuppression by adenosine has its shortcomings, such as impairing the immune response, hindering the elimination of the virus and control of viral replication. By attempting to control inflammation, adenosine feeds a pathogenic cycle affecting immune cells. Deamination of adenosine by ADA (adenosine deaminase) counteracts the negative effects of adenosine in immune cells, boosting the immune response. This review comprises the connection between adenosinergic system and HIV immunopathogenesis, exploring defects in immune cell function and the role of ADA in protecting these cells against damage.
Collapse
|
41
|
Wang J, Matosevic S. Adenosinergic signaling as a target for natural killer cell immunotherapy. J Mol Med (Berl) 2018; 96:903-913. [PMID: 30069747 DOI: 10.1007/s00109-018-1679-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 01/21/2023]
Abstract
Purinergic signaling through adenosine plays a key role in immune regulation. Hypoxia-driven accumulation of extracellular adenosine results in the generation of an immunosuppressive niche that fuels tumor development. Such immunometabolic modulation has shown to be a promising therapeutic target through blockade of adenosine receptors which mediate adenosine's immunosuppressive function, or cancer-associated ectonucleotidases CD39 and CD73 that catalyze the synthesis of adenosine. Adenosinergic signaling heavily implicates natural killer cells through both direct and indirect effects on their cytolytic activity, expression of cytotoxic granules, interferon-γ, and activating receptors. Continuing work has uncovered multiple checkpoints linked to adenosine within the purinergic signaling cascade as contributing to immune evasion from NK cell effector function. Here, we discuss these checkpoints and the recent body of work that focuses on adenosinergic signaling as a target for natural killer cell of cancer.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
42
|
Dörsam B, Reiners KS, von Strandmann EP. Cancer-derived extracellular vesicles: friend and foe of tumour immunosurveillance. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0481. [PMID: 29158311 PMCID: PMC5717436 DOI: 10.1098/rstb.2016.0481] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are important players of intercellular signalling mechanisms, including communication with and among immune cells. EVs can affect the surrounding tissue as well as peripheral cells. Recently, EVs have been identified to be involved in the aetiology of several diseases, including cancer. Tumour cell-released EVs or exosomes have been shown to promote a tumour-supporting environment in non-malignant tissue and, thus, benefit metastasis. The underlying mechanisms are numerous: loss of antigen expression, direct suppression of immune effector cells, exchange of nucleic acids, alteration of the recipient cells' transcription and direct suppression of immune cells. Consequently, tumour cells can subvert the host's immune detection as well as suppress the immune system. On the contrary, recent studies reported the existence of EVs able to activate immune cells, thus promoting the tumour-directed immune response. In this article, the immunosuppressive capabilities of EVs, on the one hand, and their potential use in immunoactivation and therapeutic potential, on the other hand, are discussed. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.
Collapse
Affiliation(s)
- Bastian Dörsam
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Kathrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center, University Hospital, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| |
Collapse
|
43
|
Jankowski J, Perry HM, Medina CB, Huang L, Yao J, Bajwa A, Lorenz UM, Rosin DL, Ravichandran KS, Isakson BE, Okusa MD. Epithelial and Endothelial Pannexin1 Channels Mediate AKI. J Am Soc Nephrol 2018; 29:1887-1899. [PMID: 29866797 DOI: 10.1681/asn.2017121306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background Pannexin1 (Panx1), an ATP release channel, is present in most mammalian tissues, but the role of Panx1 in health and disease is not fully understood. Panx1 may serve to modulate AKI; ATP is a precursor to adenosine and may function to block inflammation, or ATP may act as a danger-associated molecular pattern and initiate inflammation.Methods We used pharmacologic and genetic approaches to evaluate the effect of Panx1 on kidney ischemia-reperfusion injury (IRI), a mouse model of AKI.Results Pharmacologic inhibition of gap junctions, including Panx1, by administration of carbenoxolone protected mice from IRI. Furthermore, global deletion of Panx1 preserved kidney function and morphology and diminished the expression of proinflammatory molecules after IRI. Analysis of bone marrow chimeric mice revealed that Panx1 expressed on parenchymal cells is necessary for ischemic injury, and both proximal tubule and vascular endothelial Panx1 tissue-specific knockout mice were protected from IRI. In vitro, Panx1-deficient proximal tubule cells released less and retained more ATP under hypoxic stress.Conclusions Panx1 is involved in regulating ATP release from hypoxic cells, and reducing this ATP release may protect kidneys from AKI.
Collapse
Affiliation(s)
- Jakub Jankowski
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Heather M Perry
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Christopher B Medina
- Pharmacology.,Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology.,Center for Cell Clearance, University of Virginia, Charlottesville, Virginia
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| | - Ulrike M Lorenz
- Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology
| | | | - Kodi S Ravichandran
- Microbiology, Immunology, and Cancer Biology, and.,Beirne Carter Center for Immunology.,Center for Cell Clearance, University of Virginia, Charlottesville, Virginia
| | - Brant E Isakson
- Molecular Physiology and Biological Physics.,Robert M. Berne Cardiovascular Research Center, and
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, Departments of
| |
Collapse
|
44
|
Street JM, Koritzinsky EH, Bellomo TR, Hu X, Yuen PST, Star RA. The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis. Am J Physiol Renal Physiol 2018; 314:F788-F797. [PMID: 29117994 PMCID: PMC6031909 DOI: 10.1152/ajprenal.00051.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 01/12/2023] Open
Abstract
Sepsis and acute kidney injury (AKI) synergistically increase morbidity and mortality in the ICU. How sepsis reduces glomerular filtration rate (GFR) and causes AKI is poorly understood; one proposed mechanism includes tubuloglomerular feedback (TGF). When sodium reabsorption by the proximal tubules is reduced in normal animals, the macula densa senses increased luminal sodium chloride, and then adenosine-1a receptor (A1aR) signaling triggers tubuloglomerular feedback, reducing GFR through afferent arteriole vasoconstriction. We measured GFR and systemic hemodynamics early during cecal ligation and puncture-induced sepsis in wild-type and A1aR-knockout mice. A miniaturized fluorometer was attached to the back of each mouse and recorded the clearance of FITC-sinistrin via transcutaneous fluorescence to monitor GFR. Clinical organ injury markers and cytokines were measured and hemodynamics monitored using implantable transducer telemetry devices. In wild-type mice, GFR was stable within 1 h after surgery, declined by 43% in the next hour, and then fell to less than 10% of baseline after 2 h and 45 min. In contrast, in A1aR-knockout mice GFR was 37% below baseline immediately after surgery and then gradually declined over 4 h. A1aR-knockout mice had similar organ injury and inflammatory responses, albeit with lower heart rate. We conclude that transcutaneous fluorescence can accurately monitor GFR and detect changes rapidly during sepsis. Tubuloglomerular feedback plays a complex role in sepsis; initially, TGF helps maintain GFR in the 1st hour, and over the subsequent 3 h, TGF causes GFR to plummet. By 18 h, TGF has no cumulative effect on renal or extrarenal organ damage.
Collapse
Affiliation(s)
- Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Tiffany R Bellomo
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
45
|
Shin EY, Wang L, Zemskova M, Deppen J, Xu K, Strobel F, García AJ, Tirouvanziam R, Levit RD. Adenosine Production by Biomaterial-Supported Mesenchymal Stromal Cells Reduces the Innate Inflammatory Response in Myocardial Ischemia/Reperfusion Injury. J Am Heart Assoc 2018; 7:e006949. [PMID: 29331956 PMCID: PMC5850147 DOI: 10.1161/jaha.117.006949] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND During myocardial ischemia/reperfusion (MI/R) injury, there is extensive release of immunogenic metabolites that activate cells of the innate immune system. These include ATP and AMP, which upregulate chemotaxis, migration, and effector function of early infiltrating inflammatory cells. These cells subsequently drive further tissue devitalization. Mesenchymal stromal cells (MSCs) are a potential treatment modality for MI/R because of their powerful anti-inflammatory capabilities; however, the manner in which they regulate the acute inflammatory milieu requires further elucidation. CD73, an ecto-5'-nucleotidase, may be critical in regulating inflammation by converting pro-inflammatory AMP to anti-inflammatory adenosine. We hypothesized that MSC-mediated conversion of AMP into adenosine reduces inflammation in early MI/R, favoring a micro-environment that attenuates excessive innate immune cell activation and facilitates earlier cardiac recovery. METHODS AND RESULTS Adult rats were subjected to 30 minutes of MI/R injury. MSCs were encapsulated within a hydrogel vehicle and implanted onto the myocardium. A subset of MSCs were pretreated with the CD73 inhibitor, α,β-methylene adenosine diphosphate, before implantation. Using liquid chromatography/mass spectrometry, we found that MSCs increase myocardial adenosine availability following injury via CD73 activity. MSCs also reduce innate immune cell infiltration as measured by flow cytometry, and hydrogen peroxide formation as measured by Amplex Red assay. These effects were dependent on MSC-mediated CD73 activity. Finally, through echocardiography we found that CD73 activity on MSCs was critical to optimal protection of cardiac function following MI/R injury. CONCLUSIONS MSC-mediated conversion of AMP to adenosine by CD73 exerts a powerful anti-inflammatory effect critical for cardiac recovery following MI/R injury.
Collapse
Affiliation(s)
- Eric Y Shin
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Marina Zemskova
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Otolaryngology, College of Medicine, University of Arizona, Tucson, AZ
| | - Juline Deppen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kai Xu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Cardiology, Xiangya Hospital of Central South University, Changsha, China
| | | | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | | | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
46
|
Kandalkar SR, Ramaiah PA, Joshi M, Wavhal A, Waman Y, Raje AA, Tambe A, Ansari S, De S, Palle VP, Mookhtiar KA, Deshpande AM, Barawkar DA. Modifications of flexible nonyl chain and nucleobase head group of (+)-erythro-9-(2's-hydroxy-3's-nonyl)adenine [(+)-EHNA] as adenosine deaminase inhibitors. Bioorg Med Chem 2017; 25:5799-5819. [PMID: 28951094 DOI: 10.1016/j.bmc.2017.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
A series of terminal nonyl chain and nucleobase modified analogues of (+)-EHNA (III) were synthesized and evaluated for their ability to inhibit adenosine deaminase (ADA). The constrained carbon analogues of (+)-EHNA, 7a-7h, 10a-c, 12, 13, 14 and 17a-c appeared very potent with Ki values in the low nanomolar range. Thio-analogues of (+)-EHNA 24a-e wherein 5'C of nonyl chain replaced by sulfur atom found to be less potent compared to (+)-EHNA. Docking of the representative compounds into the active site of ADA was performed to understand structure-activity relationships. Compounds 7a (Ki: 1.1nM) 7b (Ki: 5.2nM) and 26a (Ki: 5.9nM) showed suitable balance of potency, microsomal stability and demonstrated better pharmacokinetic properties as compared to (+)-EHNA and therefore may have therapeutic potential for various inflammatory diseases, hypertension and cancer.
Collapse
Affiliation(s)
- Sachin R Kandalkar
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India; Department of Organic Chemistry, Andhra university, Visakhapatnam 530003, India
| | | | - Manoj Joshi
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Atul Wavhal
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Yogesh Waman
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Amol A Raje
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Ashwini Tambe
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Shariq Ansari
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Siddhartha De
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Venkata P Palle
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Kasim A Mookhtiar
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India
| | - Anil M Deshpande
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India.
| | - Dinesh A Barawkar
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjewadi, Pune 411 057, India.
| |
Collapse
|
47
|
Platelet reactivity in sepsis syndrome: results from the PRESS study. Eur J Clin Microbiol Infect Dis 2017; 36:2503-2512. [PMID: 28840345 DOI: 10.1007/s10096-017-3093-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023]
Abstract
Platelet activation mediates systemic inflammatory response during infection. However, data on platelet reactivity (PR) varies among different settings. We assessed PR along different stages of sepsis and tried to predict for determinants of its variance. In parallel, we evaluated it as an early bedside diagnostic biomarker. This was an observational prospective cohort study. Incoming patients were assorted to distinct groups of uncomplicated infection, sepsis, and severe sepsis/septic shock. A control group of healthy volunteers was used as comparison. PR was assessed using the bedside point-of-care VerifyNow assay, in P2Y12 reaction units (PRU) alongside with levels of major inflammatory markers and whole blood parameters. A total of 101 patients and 27 healthy volunteers were enrolled. PR significantly and reversibly increases during sepsis compared to uncomplicated infection and healthy controls (244 ± 66.7 vs 187.33 ± 60.98, p < 0.001 and 192.17 ± 47.51, p < 0.001, respectively). In severe sepsis, PR did not significantly differ compared to other groups. Sepsis stage uniquely accounts for 15.5% of PR in a linear regression prediction model accounting for 30% of the variance of PR (F = 8.836, p < 0.001). PRU >253 had specificity of 91.2% and sensitivity of 40.8% in discriminating septic from non-septic patients. The addition of PRU to SOFA and qSOFA scores significantly increased their c-statistic (AUC SOFA + PRU, 0.867 vs SOFA, 0.824, p < 0.003 and AUC qSOFA + PRU, 0.842 vs qSOFA, 0.739, p < 0.001), making them comparable (AUC SOFA + PRU vs qSOFA + PRU, p = 0.4). PR significantly and reversibly increases early in sepsis, but seems to exhaust while disease progresses. Bedside assessment of PR can provide robust discriminative accuracy in the early diagnosis of septic patients.
Collapse
|
48
|
Baldissera MD, Souza CF, Doleski PH, de Vargas AC, Duarte MM, Duarte T, Boligon AA, Leal DB, Baldisserotto B. Melaleuca alternifolia essential oil prevents alterations to purinergic enzymes and ameliorates the innate immune response in silver catfish infected with Aeromonas hydrophila. Microb Pathog 2017; 109:61-66. [DOI: 10.1016/j.micpath.2017.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
49
|
Hasby Saad MA, Radi DA, Hasby EA. Oral contraceptive pills: Risky or protective in case of Trichinella spiralis infection? Parasite Immunol 2017; 39. [PMID: 28524239 DOI: 10.1111/pim.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/16/2017] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate how Trichinella spiralis infection can be affected by contraceptive pills in vivo. Methods included six groups of female Wistar rats; healthy, Trichinella infected, receiving combined contraceptive pills (COCPs), receiving progestin only pills (POPs), infected receiving COCPs and infected receiving POPs. Parasite burden was measured; adult worm counts, gravidity, larvae and reproductive capacity index). Histopathological examination, immunohistochemical detection of C-kit+ mast cells and Foxp3+ T-reg. cells in intestinal sections, eosinophils muscle infiltration and CPK level were performed. Rats infected and receiving COCPs showed a significant increase in parasitic burden, and infected receiving POPs showed a significant reduction compared to infected only, with a significant increase in nongravid females (Mean total worms=964.40±55.9, 742±52.63, 686±31.68, larvae/g=5030±198.75, 2490±143.18 and 4126±152,91, respectively). Intestinal sections from infected receiving COCPs showed intact mucosa (though the high inflammatory cells infiltrate), and significant increase in C-kit+ mast cells number and intensity (30.20±4.15 and 60.40±8.29), and Foxp3+ T-reg. cells (10±1.58). Infected receiving POPs showed a significantly less CPK (5886±574.40) and eosinophilic muscle infiltration (58±13.51). Oestrogen-containing pills established a favourable intestinal environment for Trichinella by enhancing Foxp+T-reg. cells and stabilizing C-kit+mast cells, while POPs gave a potential protection with less gravidity, larval burden and eosinophilic infiltrate.
Collapse
Affiliation(s)
- M A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - D A Radi
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - E A Hasby
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
50
|
da Silva AS, Baldissera MD, Bottari NB, Doleski PH, Carmo GM, Schwertz CI, Lucca NJ, Henker LC, Piva MM, Giacomin P, Stefani LM, Leal DB, Machado G, Mendes RE. Ectonucleotidase and adenosine deaminase as inflammatory marker in dairy cows naturally infected by Dictyocaulus viviparus. Comp Immunol Microbiol Infect Dis 2017; 51:9-13. [DOI: 10.1016/j.cimid.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022]
|