1
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2025; 287:1-31. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Hailati S, Han MY, Dilimulati D, Nueraihemaiti N, Baishan A, Aikebaier A, Zhou WT. Searching for Hub Genes of Quince-Basil Co-Administration Against Atherosclerosis Using Bioinformatics Analysis and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:1433. [PMID: 39598345 PMCID: PMC11597616 DOI: 10.3390/ph17111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) has one of the highest rates of morbidity and death globally. Cydonia oblonga Mill. (quince, COM) and Ocimum basilicum L. (basil, OB) are Uyghur medicines that are often used for anti-inflammatory, anti-tumor, and cardiovascular disease treatment. This study aimed to uncover the hub genes of the quince-basil co-administration against AS and validate them. METHODS Network pharmacology analysis and bioinformatics analysis methods were utilized to map the network and obtain four hub genes. Experiments were performed in vivo and in vitro using HUVEC and zebrafish to validate the therapeutic effect of COM-OB co-administration against AS. Finally, the hub genes were validated by Western blot. RESULTS Screening by network pharmacology analysis and bioinformatics analysis obtained a total of 3302 drug targets, 1963 disease targets, and 1630 DEGs. A series of bioinformatic analyses were utilized to ultimately screen four hub genes, and the stability was also verified by molecular docking and molecular dynamics. COM-OB total flavonoids co-administration significantly decreased PA-induced lipid deposition in HUVEC and reduced high cholesterol-induced fat accumulation in zebrafish. Western blot results showed that COM-OB co-administration significantly affected the expression of hub genes. CONCLUSIONS The study identified and validated four hub genes, COL1A1, COL3A1, BGLAP, and NOX4, thus providing a rationale for the treatment of AS with COM and OB co-administration.
Collapse
Affiliation(s)
- Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Meng-Yuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alifeiye Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Wen-Ting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
3
|
Tahmasebi A, Jamali B, Atabaki V, Sarker SD, Nahar L, Min HJ, Lee CW. A comprehensive review of the botany, ethnopharmacology, phytochemistry, and pharmacological activities of two Iranian Rydingia species (Lamiaceae). Fitoterapia 2024; 176:106026. [PMID: 38768794 DOI: 10.1016/j.fitote.2024.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Rydingia michauxii and R. persica, respectively, known as Kase Gol and Goldar in Persian, belong to the family Lamiaceae and they are well known herbal medicine in Iran for the treatment of various diseases, particularly diabetes. This review aims to appraise the phytochemistry, ethnopharmacology, and pharmacological activities of Rydingia species growing in Iran and assess their potential in clinical applications. Besides, it critically evaluates existing literature and looks into the perspective for further research and utilization. All available scientific literature was consulted using the database searches involving Google Scholar, PubMed, and Web of Science applying the keyword Rydingia and its Syn; Otostegia. Only the search results that are associated with the Iranian species R. michauxii and R. persica are included in this review. α-pinene, carvacrol, caryophyllene oxide, diisooctyl phthalate, dillapiole, eugenol, hexadecanoic acid, and pentacosane are the major constituents of the essential oils of the Rydingia species. Additionally, these species produce bioactive flavonoids, phenolic acids, steroids, and terpenoids. Extracts and active compounds from Rydingia species have been reported to possess various pharmacological activities including antidiabetic, anti-inflammatory, antimalarial, antimicrobial, antioxidant, cytotoxic, and lipid-lowering properties. Based on the information available to date on the Iranian Rydingia species, it will be worth subjecting these species to further developmental work involving preclinical and clinical trials.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran; Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran; Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| | - Babak Jamali
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Vahideh Atabaki
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women's University, Gwangju 62396, Republic of Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
4
|
Chen M, Xiao J, El-Seedi HR, Woźniak KS, Daglia M, Little PJ, Weng J, Xu S. Kaempferol and atherosclerosis: From mechanism to medicine. Crit Rev Food Sci Nutr 2022; 64:2157-2175. [PMID: 36099317 DOI: 10.1080/10408398.2022.2121261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products possess pleiotropic cardiovascular protective effects owing to their anti-oxidation, anti-inflammation and anti-thrombotic properties. Kaempferol, (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), is a kind of naturally occurring flavonoid existing in many common fruits and vegetables (e.g., onions, broccoli, strawberries and grapes) and particularly in traditional Chinese medicine as exemplified by Ginkgo biloba. Epidemiological, preclinical and clinical studies have revealed an inverse association between the consumption of kaempferol-containing foods and medicines and the risk of developing cardiovascular diseases. Numerous translational studies in experimental animal models and cultured cells have demonstrated a wide range of pharmacological activities of kaempferol. In this article, we reviewed the antioxidant, anti-inflammatory and cardio-protective activities of kaempferol and elucidated the potential molecular basis of the therapeutic capacity of kaempferol by focusing on its anti-atherosclerotic effects. Overall, the review presents the health benefits of kaempferol-containing plants and medicines and reflects on the potential of kaempferol as a possible drug candidate to prevent and treat atherosclerosis, the underlying pathology of most cardiovascular diseases.
Collapse
Affiliation(s)
- Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
5
|
Das M, Devi KP, Belwal T, Devkota HP, Tewari D, Sahebnasagh A, Nabavi SF, Khayat Kashani HR, Rasekhian M, Xu S, Amirizadeh M, Amini K, Banach M, Xiao J, Aghaabdollahian S, Nabavi SM. Harnessing polyphenol power by targeting eNOS for vascular diseases. Crit Rev Food Sci Nutr 2021; 63:2093-2118. [PMID: 34553653 DOI: 10.1080/10408398.2021.1971153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kiumarth Amini
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Poland
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Safieh Aghaabdollahian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
El Menyiy N, Guaouguaou FE, El Baaboua A, El Omari N, Taha D, Salhi N, Shariati MA, Aanniz T, Benali T, Zengin G, El-Shazly M, Chamkhi I, Bouyahya A. Phytochemical properties, biological activities and medicinal use of Centaurium erythraea Rafn. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114171. [PMID: 33940085 DOI: 10.1016/j.jep.2021.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centaurium erythraea is an important medicinal plant in many countries, e.g. Morocco, Algeria, Italy, Spain, Portugal, and countries of Balkan Peninsula. It is used in folk medicine to treat various illnesses. It is also used as an antiapoplectic, anticoagulant, anticholagogue, antipneumonic, hematocathartic, and as a hypotensive agent. AIM OF THE REVIEW In this review, previous reports on the taxonomy, botanical description, geographic distribution, ethnomedicinal applications, phytochemistry, pharmacological properties, and toxicity of Centaurium erythraea were critically summarized. MATERIALS AND METHODS Scientific search engines including PubMed, ScienceDirect, SpringerLink, Web of Science, Scopus, Wiley Online, SciFinder, and Google Scholar were consulted to collect data on C. erythraea. The data presented in this work summarized the main reports on C. erythraea phytochemical compounds, ethnomedicinal uses, and pharmacological activities. RESULTS C. erythraea is used in traditional medicine to treat various diseases such as diabetes, fever, rhinitis, stomach ailments, urinary tract infections, dyspeptic complaints, loss of appetite, and hemorrhoids, and as diuretic. The essential oils and extracts of C. erythraea exhibited numerous biological properties such as antibacterial, antioxidant, antifungal, antileishmanial, anticancer, antidiabetic, anti-inflammatory, insecticidal, diuretic, gastroprotective, hepatoprotective, dermatoprotective, neuroprotective, and inhibitory agent for larval development. Phytochemical characterization of C. erythraea revealed the presence of several classes of secondary metabolites such as xanthonoids, terpenoids, flavonoids, phenolic acids, and fatty acids. CONCLUSIONS Ethnomedicinal studies demonstrated the use of C. erythraea for the treatment of various disorders. Pharmacological reports showed that C. erythraea especially its aerial parts and roots exhibited potent, and beneficial activities. These findings confirmed the link between the traditional medicinal use and the results of the scientific biological experiments. Considering these results, further investigation using diverse in vivo pharmacological assays are strongly recommended to validate the results of its traditional use. Toxicological tests and pharmacokinetic studies are also required to validate the safety and efficacy of C. erythraea and its bioactive contents.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco.
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Université Mohammed V, Rabat, Morocco.
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Mohammad Ali Shariati
- Departement of Technology of Food Production, K.G. Razumoysky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation.
| | - Tarik Aanniz
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, Morocco.
| | - Taoufiq Benali
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203, Rabat, Morocco.
| | - Gokhan Zengin
- Biochemistry and Physiology Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Imane Chamkhi
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco; Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de, Institut Scientifique Rabat, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
7
|
Flavonoids in adipose tissue inflammation and atherosclerosis: one arrow, two targets. Clin Sci (Lond) 2020; 134:1403-1432. [PMID: 32556180 DOI: 10.1042/cs20200356] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Collapse
|
8
|
Pérez-Manríquez J, Escalona N, Pérez-Correa J. Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beer, one of the most commonly consumed alcoholic beverages, is rich in polyphenols
and is the main dietary source of xanthohumol and related prenylflavonoids. However, to avoid haze
formation caused by the interaction between polyphenols and proteins, most phenolic compounds are
removed from beer and lost in the brewery waste stream via polyvinylpolypyrrolidone (PVPP)
adsorption. This waste stream contains several polyphenols with high antioxidant capacity and pharmacological
effects; that waste could be used as a rich, low-cost source of these compounds, though
little is known about its composition and potential attributes. This work aims to review the polyphenols
present in this brewery waste stream, as well as the health benefits associated with their consumption.
Collapse
Affiliation(s)
- J. Pérez-Manríquez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - N. Escalona
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - J.R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
9
|
Liu H, Tan LP, Huang X, Liao YQ, Zhang WJ, Li PB, Wang YG, Peng W, Wu Z, Su WW, Yao HL. Chromatogram-Bioactivity Correlation-Based Discovery and Identification of Three Bioactive Compounds Affecting Endothelial Function in Ginkgo Biloba Extract. Molecules 2018; 23:molecules23051071. [PMID: 29751521 PMCID: PMC6102599 DOI: 10.3390/molecules23051071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 11/16/2022] Open
Abstract
Discovery and identification of three bioactive compounds affecting endothelial function in Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS. Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE samples was conducted. The analysis results indicated that three bioactive compounds had close relevance to ET-1: Kaempferol-3-O-α-l-glucoside, 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3-O-{2-O-{6-O-[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide references for the quality control and novel pharmaceuticals development of GRE. The present work proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds and define their bioactivities for the complex multi-component systems.
Collapse
Affiliation(s)
- Hong Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Li-Ping Tan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
- Medical College, Shaoguan University, 1 Xinhuanan Road, Shaoguan 512026, China.
| | - Xin Huang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Yi-Qiu Liao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Wei-Jian Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Pei-Bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Yong-Gang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Wei Peng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Zhong Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Wei-Wei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| | - Hong-Liang Yao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingangxi Road, Guangzhou 510275, China.
| |
Collapse
|
10
|
Che J, Liang B, Zhang Y, Wang Y, Tang J, Shi G. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of autophagy via inhibiting PI3K/Akt/mTOR pathway in human endothelial cells. Cardiovasc Pathol 2017; 31:57-62. [DOI: 10.1016/j.carpath.2017.08.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/13/2023] Open
|
11
|
Han JM, Li H, Cho MH, Baek SH, Lee CH, Park HY, Jeong TS. Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules. Int J Mol Sci 2017; 18:E373. [PMID: 28208647 PMCID: PMC5343908 DOI: 10.3390/ijms18020373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR-/-) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR-/- mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively.
Collapse
Affiliation(s)
- Jong-Min Han
- Division of Life Science, Daejeon University, Daejeon 300-716, Korea.
| | - Hua Li
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Moon-Hee Cho
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Seung-Hwa Baek
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, KRIBB, Daejeon 305-806, Korea.
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
| | - Tae-Sook Jeong
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea.
- Department of Biomolecular Science, Korea University of Science and Technology, KRIBB, Daejeon 305-806, Korea.
| |
Collapse
|
12
|
Harasstani OA, Tham CL, Israf DA. Kaempferol and Chrysin Synergies to Improve Septic Mice Survival. Molecules 2017; 22:molecules22010092. [PMID: 28067837 PMCID: PMC6155733 DOI: 10.3390/molecules22010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 01/13/2023] Open
Abstract
Previously, we reported the role of synergy between two flavonoids—namely, chrysin and kaempferol—in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW 264.7 cells. The present study aims to evaluate the effects of this combination on a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Severe sepsis was induced in male ICR mice (n = 7) via the CLP procedure. The effects of chrysin and kaempferol combination treatment on septic mice were investigated using a 7-day survival study. The levels of key proinflammatory mediators and markers—such as aspartate aminotransferase (AST), TNF-α, and NO—in the sera samples of the septic mice were determined via ELISA and fluorescence determination at different time point intervals post-CLP challenge. Liver tissue samples from septic mice were harvested to measure myeloperoxidase (MPO) levels using a spectrophotometer. Moreover, intraperitoneal fluid (IPF) bacterial clearance and total leukocyte count were also assessed to detect any antibacterial effects exerted by chrysin and kaempferol, individually and in combination. Kaempferol treatment improved the survival rate of CLP-challenged mice by up to 16%. During this treatment, kaempferol expressed antibacterial, antiapoptotic and antioxidant activities through the attenuation of bacterial forming units, AST and NO levels, and increased polymorphonuclear leukocyte (PMN) count in the IPF. On the other hand, the chrysin treatment significantly reduced serum TNF-α levels. However, it failed to significantly improve the survival rate of the CLP-challenged mice. Subsequently, the kaempferol/chrysin combination treatment significantly improved the overall 7-day survival rate by 2-fold—up to 29%. Kaempferol and chrysin revealed some synergistic effects by acting individually upon multiple pathophysiological factors involved during sepsis. Although the kaempferol/chrysin combination did not exhibit significant antibacterial effects, it did exhibit anti-inflammatory and antioxidant activities, which translate to significant improvement in the survival rate of septic animals. These findings suggest the potential application of this combination treatment as a beneficial adjuvant supplement strategy in sepsis control.
Collapse
Affiliation(s)
- Omar A Harasstani
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Daud A Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| |
Collapse
|
13
|
Lincha VR, Zhao BT, Woo MH, Yang IJ, Shin HM. Effects of Constituent Compounds of Smilax china on Nicotine-Induced Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells. Biol Pharm Bull 2016; 39:984-92. [DOI: 10.1248/bpb.b15-00997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Mi-Hee Woo
- College of Pharmacy, Catholic University of Daegu
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University
- Korea National Developing Institute of Korean Medicine
| |
Collapse
|
14
|
An M, Kim M. Protective effects of kaempferol against cardiac sinus node dysfunction via CaMKII deoxidization. Anat Cell Biol 2015; 48:235-43. [PMID: 26770873 PMCID: PMC4701696 DOI: 10.5115/acb.2015.48.4.235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 11/27/2022] Open
Abstract
Kaempferol exerts cardioprotective actions through incompletely understood mechanisms. This study investigated the molecular mechanisms underlying the cardioprotective effects of kaempferol in sinus node dysfunction (SND) heart. Here, we demonstrate that angiotensin II (Ang II) infusion causes SND through oxidized calmodulin kinase II (CaMKII). In contrast to this, kaempferol protects sinus node against Ang II-induced SND. Ang II evoked apoptosis with caspase-3 activation in sinus nodal cells. However, kaempferol lowered the CaMKII oxidization and the sinus nodal cell death. To block the CaMKII oxidization, gene of p47phox, a cytosolic subunit of NADPH oxidase, was deleted using Cas9 KO plasmid. In the absence of p47phox, sinus nodal cells were highly resistance to Ang II-induced apoptosis, suggesting that oxidized-CaMKII contributed to sinus nodal cell death. In Langendorff heart from Ang II infused mice, kaempferol preserved normal impulse formation at right atrium. These data suggested that kaempferol protects sinus node via inhibition of CaMKII oxidization and may be useful for preventing SND in high risk patients.
Collapse
Affiliation(s)
- Minae An
- Department of Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Minsuk Kim
- Department of Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Calvo MI, Cavero RY. Medicinal plants used for neurological and mental disorders in Navarra and their validation from official sources. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:263-268. [PMID: 25922267 DOI: 10.1016/j.jep.2015.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This paper provides important ethnopharmacological information on plants used in neurological and mental disorders in Navarra. MATERIAL AND METHODS Information was collected using semi-structured ethnobotanical interviews with 667 informants in 265 locations. In order to confirm the pharmacological validation of the uses claimed by the informants, monographs from Official International Agencies (ESCOP, Commission E, WHO and EMA) were reviewed. A literature review was conducted focusing on the plants that were widely used but had no published monograph. RESULTS A total of 172 pharmaceutical uses were reported, for 46 plants and 26 families, mainly represented by Lamiaceae (15%), Asteraceae (13%), Rosaceae and Rutaceae (7%, each one), and Clusiaceae, Malvaceae, Papaveraceae and Urticaceae (4%, each one). The most frequently used parts were inflorescence (39%), flowered aerial parts (16%), and aerial parts (13%), followed by inflorescence bract (8%) and leaves (7%). Nine out of 46 plants (20%) and 81 of 172 uses (47%), have already been pharmacologically validated. The remaining 37 plants (of total 46, 80%) have been reported for neurological and mental disorders and need to be screened through standard pharmacological and clinical procedures for their activities. The most used species are Chamaemelum nobile (L.) All., Jasonia glutinosa (L.) DC., and Santolina chamaecyparissus L. ssp. squarrosa (DC.) Nyman, in all cases the administration as infusion. CONCLUSIONS Data indicate a high degree of plants knowledge in Navarra regarding neurological and mental disorders. The present study constitutes a good basis for further phytochemical and pharmacological research of C. nobile, J. glutinosa and S. chamaecyparissus, which could be of interest in the design of new inexpensive, effective and safe drugs.
Collapse
Affiliation(s)
- María Isabel Calvo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Navarra, Irunlarrea s/n, 31008 Pamplona, Spain.
| | - Rita Yolanda Cavero
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Irunlarrea s/n, 31008 Pamplona, Spain
| |
Collapse
|
16
|
Wang SB, Jang JY, Chae YH, Min JH, Baek JY, Kim M, Park Y, Hwang GS, Ryu JS, Chang TS. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free Radic Biol Med 2015; 83:41-53. [PMID: 25645952 DOI: 10.1016/j.freeradbiomed.2015.01.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.
Collapse
Affiliation(s)
- Su Bin Wang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Ji Yong Jang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Yun Hee Chae
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Ji Hyun Min
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Jin Young Baek
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Myunghee Kim
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Yunjeong Park
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Gwi Seo Hwang
- Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University, Seongnam 461-701, Republic of Korea
| | - Jae-Sang Ryu
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea
| | - Tong-Shin Chang
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Women's University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
17
|
Hoang MH, Jia Y, Mok B, Jun HJ, Hwang KY, Lee SJ. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β. J Nutr Biochem 2015; 26:868-75. [PMID: 25959373 DOI: 10.1016/j.jnutbio.2015.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome.
Collapse
Affiliation(s)
- Minh-Hien Hoang
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Technology, Korea University, Seoul 136-713, Republic of Korea
| | - Yaoyao Jia
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Technology, Korea University, Seoul 136-713, Republic of Korea
| | - Boram Mok
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Technology, Korea University, Seoul 136-713, Republic of Korea
| | - Hee-jin Jun
- Life Science Institute, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kwang-Yeon Hwang
- Division of Biotechnology, College of Life Sciences and Technology, Korea University, Seoul 136-713, Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Technology, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
18
|
Mokhtari Z, Hosseini S, Miri R, Baghestani AR, Zahedirad M, Rismanchi M, Nasrollahzadeh J. Relationship between Dietary Approaches to Stop Hypertension score and Alternative Healthy Eating Index score with plasma asymmetrical dimethylarginine levels in patients referring for coronary angiography. J Hum Nutr Diet 2015; 28:350-6. [DOI: 10.1111/jhn.12311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Z. Mokhtari
- Department of Clinical Nutrition & Dietetics; Faculty of Nutrtiton Sciences and Food Technology; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - S. Hosseini
- Endocrinology and Metabolism Research Institute; Tehran University of Medical Sciences; Tehran Iran
| | - R. Miri
- Department of Cardiology; School of Medicine; Imam Hossein Hospital; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - A. R. Baghestani
- Department of Biostatistics; Faculty of Paramedical Sciences; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - M. Zahedirad
- Department of Nutrition Research; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - M. Rismanchi
- Faculty of Nutrition Sciences and Food Technology; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - J. Nasrollahzadeh
- Department of Clinical Nutrition & Dietetics; Faculty of Nutrition Sciences and Food Technology; National Nutrition and Food Technology Research Institute; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
19
|
Mir IA, Tiku AB. Chemopreventive and therapeutic potential of "naringenin," a flavanone present in citrus fruits. Nutr Cancer 2014; 67:27-42. [PMID: 25514618 DOI: 10.1080/01635581.2015.976320] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is one of the major causes of deaths in developed countries and is emerging as a major public health burden in developing countries too. Changes in cancer prevalence patterns have been noticed due to rapid urbanization and changing lifestyles. One of the major concerns is an influence of dietary habits on cancer rates. Approaches to prevent cancer are many and chemoprevention or dietary cancer prevention is one of them. Therefore, nutritional practices are looked at as effective types of dietary cancer prevention strategies. Attention has been given to identifying plant-derived dietary agents, which could be developed as a promising chemotherapeutic with minimal toxic side effects. Naringenin, a phytochemical mainly present in citrus fruits and tomatoes, is a frequent component of the human diet and has gained increasing interest because of its positive health effects not only in cancer prevention but also in noncancer diseases. In the last few years, significant progress has been made in studying the biological effects of naringenin at cellular and molecular levels. This review examines the cancer chemopreventive/therapeutic effects of naringenin in an organ-specific format, evaluating its limitations, and its considerable potential for development as a cancer chemopreventive/therapeutic agent.
Collapse
Affiliation(s)
- Irfan Ahmad Mir
- a Department of Clinical Biochemistry , University of Kashmir , Kashmir , India
| | | |
Collapse
|
20
|
Otunctemur A, Sahin S, Ozbek E, Cekmen M, İnal A, Tulubas F, Dursun M, Besiroglu H, Koklu I. Lipoprotein-associated phospholipase A2 levels are associated with erectile dysfunction in patients without known coronary artery disease. Andrologia 2014; 47:706-10. [PMID: 25091174 DOI: 10.1111/and.12322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2014] [Indexed: 12/22/2022] Open
Abstract
Endothelial dysfunction and microvascular damage play a crucial role in the pathogenesis of erectile dysfunction (ED). Lp-PLA2 is a calcium-independent member of the phospholipase A2 family and hydrolyses oxidised phospholipids on low-density lipoprotein (LDL) particles that plays a pivotal role in ox-LDL-induced endothelial dysfunction. The purpose of the current study was to determine the association between Lp-PLA2 levels and ED in patients without known coronary artery disease (CAD). All patients were evaluated for ED and divided into two groups: 88 patients suffering from ED for >1 year were enrolled as an experimental group and 88 patients without ED were enrolled as a control group in this study. Diagnosis of ED was based on the International Index of Erectile Function Score-5. Levels of Lp-PLA2 were measured in serum by colorimetric assay. The relationship between Lp-PLA2 levels and ED in patients was evaluated statistically. The mean age of patients with ED group was 59.4 ± 11.32 and 55.8 ± 9.67 in the control group. Plasma Lp-PLA2 levels were significantly higher in ED than in the control group (220.3 ± 66.90 and 174.8 ± 58.83 pg ml(-1) , respectively, P < 0.001). The Lp-PLA2 levels were negatively correlated with score of ED (r = -0.482, P < 0.05). In logistic regression analysis, enhanced plasma Lp-PLA2 levels result in approximately 1.2-fold increase in ED [1.22 (1.25-2.76)]. In this study, serum Lp-PLA2 levels were found to be associated with endothelial dysfunction predictive of ED. Serum Lp-PLA2 level appears to be a specific predictor of ED, and it may be used in early prediction of ED in the male population.
Collapse
Affiliation(s)
- A Otunctemur
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - S Sahin
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - E Ozbek
- Department of Urology, Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkey
| | - M Cekmen
- Department of biochemistry, Kocaeli University, Kocaeli, Turkey
| | - A İnal
- Istanbul Medical Application and Research Center, Baskent University, Istanbul, Turkey
| | - F Tulubas
- Department of Biochemistry, Namik Kemal University, Tekirdag, Turkey
| | - M Dursun
- Department of Urology, Bahcelievler Government Hospital, Istanbul, Turkey
| | - H Besiroglu
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - I Koklu
- Department of Urology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Antiartherosclerotic effects of plant flavonoids. BIOMED RESEARCH INTERNATIONAL 2014; 2014:480258. [PMID: 24971331 PMCID: PMC4058282 DOI: 10.1155/2014/480258] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
Collapse
|
22
|
Liu ZK, Xiao HB, Fang J. Anti-inflammatory properties of kaempferol via its inhibition of aldosterone signaling and aldosterone-induced gene expression. Can J Physiol Pharmacol 2014; 92:117-23. [DOI: 10.1139/cjpp-2013-0298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteopontin (OPN), also called cytokine Eta-1, is a pro-inflammatory cytokine. Recent studies have shown that aldosterone increases OPN gene expression in endothelial cells. As a flavonoid compound, kaempferol has potent anti-inflammatory properties, but whether kaempferol regulates aldosterone signaling and aldosterone-induced gene expression is still unknown. Human umbilical vein endothelial cells (HUVECs) were pretreated with kaempferol (0, 1, 3, or 10 μmol/L) for 1 h prior to exposure to aldosterone (10−6 mol/L) for 24 h. Aldosterone induced generation of reactive oxygen species; OPN and cluster of differentiation 44 gene expression; phospho-p38 MAPK and NF-κB binding activity. The effect of aldosterone was abrogated by kaempferol and spironolactone (10−6 mol/L). The present results suggest that kaempferol exerts its anti-inflammatory properties via its inhibition of aldosterone signaling and aldosterone-induced gene expression in HUVECs.
Collapse
Affiliation(s)
- Zi-Kui Liu
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Hong-Bo Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
23
|
Lin CW, Chen PN, Chen MK, Yang WE, Tang CH, Yang SF, Hsieh YS. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One 2013; 8:e80883. [PMID: 24278338 PMCID: PMC3835430 DOI: 10.1371/journal.pone.0080883] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/18/2013] [Indexed: 12/13/2022] Open
Abstract
Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (Y-SH); (S-FY)
| | - Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (Y-SH); (S-FY)
| |
Collapse
|
24
|
Woodcock ME, Hollands WJ, Konic-Ristic A, Glibetic M, Boyko N, Koçaoglu B, Kroon PA. Bioactive-rich extracts of persimmon, but not nettle, Sideritis, dill or kale, increase eNOS activation and NO bioavailability and decrease endothelin-1 secretion by human vascular endothelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3574-3580. [PMID: 23744813 DOI: 10.1002/jsfa.6251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/22/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND There is increasing evidence that consumption of plant bioactives such as polyphenols and glucosinolates reduces cardiovascular disease risk and improves endothelial function. In the Black Sea area, a number of plants are consumed alone and as ingredients in traditional foods, and dill, nettle, kale, Sideritis and persimmon were identified as bioactive-rich traditional food plants. The present study investigated the effects of plant extracts on cellular markers of endothelial function (eNOS activation and expression and ET-1 secretion). RESULTS Treatment of human umbilical vein endothelial cells with persimmon extract significantly increased Akt and eNOS phosphorylation and nitric oxide metabolites and significantly decreased secretion of ET-1 to the media after 24 h compared with a vehicle control (all P < 0.01). None of the other plant extracts significantly altered any markers of endothelial function. CONCLUSION These findings suggest that persimmon fruit contains bioactives that can improve endothelial function via activation of eNOS and reduction in ET-1 secretion, but that dill, kale, Sideritis and nettle do not.
Collapse
Affiliation(s)
- Mark E Woodcock
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br J Nutr 2013; 110:2234-41. [DOI: 10.1017/s000711451300161x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dietary polyphenols, such as those from grape products, may exert beneficial effects on cardiovascular health, including anti-hypertensive effects. We investigated the effect of a specific grape seed extract (GSE) rich in low-molecular-weight polyphenolic compounds on ambulatory blood pressure (ABP) in untreated subjects with pre- and stage I hypertension. In addition, potential mechanisms that could underlie the hypothesised effect of GSE on blood pressure (BP), and platelet aggregation, were explored. The study was designed as a double-blind, placebo-controlled, randomised, parallel-group intervention study including seventy healthy subjects with systolic BP between 120 and 159 mmHg. A 1-week run-in period was followed by an 8-week intervention period, during which subjects consumed capsules containing either 300 mg/d of GSE or a placebo (microcrystalline cellulose). Before and after the intervention, daytime ABP readings, 24 h urine samples and fasting and non-fasting blood samples were taken. The mean baseline systolic BP was 135·8 (se 1·3) mmHg and diastolic BP was 81·5 (se 0·9) mmHg. BP values were modestly, but not significantly, affected by the polyphenol-rich GSE treatment v. placebo with an effect of − 3·0 mmHg for systolic BP (95 % CI − 6·5, 0·5) and − 1·4 mmHg for diastolic BP (95 % CI − 3·5, 0·6). Vasoactive markers including endothelin-1, NO metabolites and asymmetric dimethylarginine, plasma renin activity and platelet aggregation were not affected by the GSE intervention. Our findings show that consumption of polyphenol-rich GSE does not significantly lower ABP in untreated subjects with pre- and stage I hypertension.
Collapse
|
26
|
Merwid-Ląd A, Trocha M, Chlebda-Sieragowska E, Sozański T, Magdalan J, Ksiądzyna D, Szuba A, Kopacz M, Kuźniar A, Nowak D, Pieśniewska M, Fereniec-Gołębiewska L, Szeląg A. Effect of cyclophosphamide and morin-5’-sulfonic acid sodium salt, alone or in combination, on ADMA/DDAH pathway in rats. Pharmacol Rep 2013; 65:201-7. [DOI: 10.1016/s1734-1140(13)70979-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/08/2012] [Indexed: 11/30/2022]
|
27
|
Xiao HB, Niu XW, Sun ZL. Kaempferol reduces angiopoietin-like protein 4 expression to improve carcass characteristics and meat quality traits in Holstein steers. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice. Toxicol Appl Pharmacol 2011; 257:405-11. [PMID: 22005275 DOI: 10.1016/j.taap.2011.09.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 11/20/2022]
Abstract
Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE(-/-)) mice treated or not with kaempferol (50 or 100mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE(-/-) mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE(-/-) mice.
Collapse
|
29
|
Gough MS, Morgan MAM, Mack CM, Darling DC, Frasier LM, Doolin KP, Apostolakos MJ, Stewart JC, Graves BT, Arning E, Bottiglieri T, Mooney RA, Frampton MW, Pietropaoli AP. The ratio of arginine to dimethylarginines is reduced and predicts outcomes in patients with severe sepsis. Crit Care Med 2011; 39:1351-8. [PMID: 21378552 PMCID: PMC3292345 DOI: 10.1097/ccm.0b013e318212097c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Arginine deficiency may contribute to microvascular dysfunction, but previous studies suggest that arginine supplementation may be harmful in sepsis. Systemic arginine availability can be estimated by measuring the ratio of arginine to its endogenous inhibitors, asymmetric and symmetric dimethylarginine. We hypothesized that the arginine-to-dimethylarginine ratio is reduced in patients with severe sepsis and associated with severity of illness and outcomes. DESIGN Case-control and prospective cohort study. SETTING Medical and surgical intensive care units of an academic medical center. PATIENTS AND SUBJECTS One hundred nine severe sepsis and 50 control subjects. MEASUREMENTS AND MAIN RESULTS Plasma and urine were obtained in control subjects and within 48 hrs of diagnosis in severe sepsis patients. The arginine-to-dimethylarginine ratio was higher in control subjects vs. sepsis patients (median, 95; interquartile range, 85-114; vs. median, 34; interquartile range, 24-48; p < .001) and in hospital survivors vs. nonsurvivors (median, 39; interquartile range, 26-52; vs. median, 27; interquartile range, 19-32; p = .004). The arginine-to-dimethylarginine ratio was correlated with Acute Physiology and Chronic Health Evaluation II score (Spearman's correlation coefficient [ρ] = - 0.40; p < .001) and organ-failure free days (ρ = 0.30; p = .001). A declining arginine-to-dimethylarginine ratio was independently associated with hospital mortality (odds ratio, 1.63 per quartile; 95% confidence interval, 1.00-2.65; p = .048) and risk of death over the course of 6 months (hazard ratio, 1.41 per quartile; 95% confidence interval, 1.01-1.98; p = .043). The arginine-to-dimethylarginine ratio was correlated with the urinary nitrate-to-creatinine ratio (ρ = 0.46; p < .001). CONCLUSIONS The arginine-to-dimethylarginine ratio is associated with severe sepsis, severity of illness, and clinical outcomes. The arginine-to-dimethylarginine ratio may be a useful biomarker, and interventions designed to augment systemic arginine availability in severe sepsis may still be worthy of investigation.
Collapse
Affiliation(s)
- Michael S. Gough
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Mary Anne M. Morgan
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Cynthia M. Mack
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
- Department of Nursing, University of Rochester Medical Center, Rochester, NY
| | - Denise C. Darling
- Department of Respiratory Care, University of Rochester Medical Center, Rochester, NY
| | - Lauren M. Frasier
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Kathleen P. Doolin
- Department of Nursing, University of Rochester Medical Center, Rochester, NY
| | - Michael J. Apostolakos
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Judith C. Stewart
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | - Brian T. Graves
- Department of Nursing, University of Rochester Medical Center, Rochester, NY
| | - Erland Arning
- Institute of Metabolic Diseases, Baylor University Medical Center, Dallas, TX
| | - Teodoro Bottiglieri
- Institute of Metabolic Diseases, Baylor University Medical Center, Dallas, TX
| | - Robert A. Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Mark W. Frampton
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY
| | - Anthony P. Pietropaoli
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
30
|
Immunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur J Nutr 2010; 50:163-72. [PMID: 20652710 DOI: 10.1007/s00394-010-0125-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 07/08/2010] [Indexed: 12/18/2022]
Abstract
PURPOSE Atherosclerosis is known to be an inflammatory disease. Dendritic cells (DCs) are essential for the regulation of the immune system. Up to 10% of the cells in atherosclerotic plaques are DCs. The cardiovascular protective effects of flavonoids (tea, wine) may be mediated by anti-inflammatory mechanisms that affect DC regulation. We aimed to characterize the impact of the flavonol quercetin on DC activity and differentiation in vitro and in vivo. METHODS For the in vitro experiments, we used murine DCs and endothelial cells to study adhesion properties. For all other experiments (DC phagocytosis capacity, DC maturation, DC differentiation (BDCA-1/-2) and NF-kB-activation), human monocyte-derived DCs were used. The cells were incubated with quercetin (10 μmol/L) ± oxLDL (10 μg/mL) between 24 and 48 h. For in vivo experiments, eight healthy male volunteers took 500 mg of quercetin twice daily over 4 weeks, five healthy male volunteers served as control. Before and after intake, blood samples were collected. Peripheral blood leukocytes were isolated (analyses of DC differentiation), and plasma was immediately frozen. RESULTS Quercetin reduced DC adhesion (-42%; p < 0.05) and expression of CD11a (-21%; p < 0.05). OxLDL-induced DC differentiation was partially inhibited by quercetin (BDCA-1-29%; BDCA-2-33%; p < 0.05). These effects were achieved by compensation of oxLDL-induced up-regulation of NF-kB by quercetin. The 4-week treatment with quercetin resulted in relevant plasma levels (2.47 μmol/L) and reduced BDCA-2 + DCs in the peripheral blood by 42% (p < 0.05) as well as systemic levels of the NO-synthase inhibitor asymmetric dimethylarginine (-31%, p < 0.05). CONCLUSION In vitro, quercetin reduced DC adhesion and oxLDL-induced DC differentiation. In vivo, quercetin reduced circulating plasmacytoid DCs and systemic ADMA-levels. The immunoregulatory effects of quercetin may contribute to the anti-atherosclerotic potential of flavonols.
Collapse
|
31
|
The DDAH/ADMA pathway in the control of endothelial cell migration and angiogenesis. Biochem Soc Trans 2009; 37:1243-7. [DOI: 10.1042/bst0371243] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ADMA (asymmetric dimethylarginine) is a cardiovascular risk factor and an endogenous inhibitor of NOS (nitric oxide synthase). ADMA is metabolized by DDAHs (dimethylarginine dimethylaminohydrolases). ADMA levels are increased in cardiovascular disorders associated with abnormal angiogenesis but the mechanisms are poorly understood. Recent studies show that altering ADMA metabolism in vivo and in vitro modulates the activity of Rho GTPases, key regulators of actin dynamics, endothelial cell motility and angiogenesis. In the present review, we consider this and other NO-dependent and -independent molecular mechanisms by which the DDAH/ADMA pathway regulates angiogenesis.
Collapse
|