1
|
Kozyreva TV, Orlov IV, Boyarskaya AR, Voronova IP. Hypothalamic TRPM8 and TRPA1 ion channel genes in the regulation of temperature homeostasis at water balance changes. Neurosci Lett 2024; 828:137763. [PMID: 38574849 DOI: 10.1016/j.neulet.2024.137763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The role of the hypothalamic cold-sensitive ion channels - transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) in homeostatic systems of thermoregulation and water-salt balance - is not clear. The interaction of homeostatic systems of thermoregulation and water-salt balance without additional temperature load did not receive due attention, too. On the models of water-balance disturbance, we tried to elucidate some aspect of these problems. Body temperature (Tbody), O2 consumption, CO2 excretion, electrical muscle activity (EMA), temperature of tail skin (Ttail), plasma osmolality, as well as gene expression of hypothalamic TRPM8 and TRPA1 have been registered in rats of 3 groups: control; water-deprived (3 days under dry-eating); and hyperhydrated (6 days without dry food, drinking liquid 4 % sucrose). No relationship was observed between plasma osmolality and gene expression of Trpm8 and Trpa1. In water-deprived rats, the constriction of skin vessels, increased fat metabolism by 10 % and increased EMA by 48 % allowed the animals to maintain Tbody unchanged. The hyperhydrated rats did not develop sufficient mechanisms, and their Tbody decreased by 0.8 °C. The development of reactions was correlated with the expression of genes of thermosensitive ion channels in the anterior hypothalamus. Ttail had a direct correlation with the expression of the Trpm8 gene, whereas EMA directly correlated with the expression of the Trpa1 gene in water-deprived group. The obtained data attract attention from the point of view of management and correction of physiological functions by modulating the ion channel gene expression.
Collapse
Affiliation(s)
- T V Kozyreva
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - I V Orlov
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - A R Boyarskaya
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| | - I P Voronova
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
2
|
Kawabata R, Shimoyama S, Ueno S, Yao I, Arata A, Koga K. TRPA1 as a O 2 sensor detects microenvironmental hypoxia in the mice anterior cingulate cortex. Sci Rep 2023; 13:2960. [PMID: 36807332 PMCID: PMC9941080 DOI: 10.1038/s41598-023-29140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a member of the TRP channel family and is expressed in peripheral and central nervous systems. In the periphery, TRPA1 senses cold and pain. However, the functions of TRPA1 in the CNS are unclear. Here, we examined the roles of TRPA1 on neural activity and synaptic transmission in layer II/III pyramidal neurons from mice anterior cingulate cortex (ACC) by whole-cell patch-clamp recordings. The activation of Cinnamaldehyde (CA), which is TRPA1 agonist produced inward currents and these were blocked by the TRPA1 antagonists. Furthermore, activating TRPA1 changed the properties of action potentials such as the firing rate, rise time and decay time. In contrast, stimulating TRPA1 did not alter the spontaneous synaptic transmission. Finally, we examined the functional role of TRPA1 on neurons in a hypoxic environment. We induced an acute hypoxia by substituting nitrogen (N2) gas for oxygen (O2) in the external solution. N2 produced biphasic effects that consisting of inward currents in the early phase and outward currents in the late phase. Importantly, blocking TRPA1 reduced inward currents, but not outward currents. In contrast, a KATP channel blocker completely inhibited outward currents. These results suggest that TRPA1 acts on postsynaptic neurons in the ACC as an acute O2 sensor.
Collapse
Affiliation(s)
- Ryo Kawabata
- grid.258777.80000 0001 2295 9421Department of Biomedical Chemistry major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo Japan ,grid.272264.70000 0000 9142 153XDepartment of Neurophysiology, Hyogo Medical University, Nishinomiya, Hyogo Japan
| | - Shuji Shimoyama
- grid.257016.70000 0001 0673 6172Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori Japan
| | - Shinya Ueno
- grid.257016.70000 0001 0673 6172Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori Japan
| | - Ikuko Yao
- grid.258777.80000 0001 2295 9421Department of Biomedical Chemistry major, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo Japan
| | - Akiko Arata
- Department of Physiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
| | - Kohei Koga
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
3
|
Heydari FS, Gorji Valokola M, Mehri S, Abnous K, Roohbakhsh A. The blockade of transient receptor potential ankyrin 1 (TRPA1) protects against PTZ-induced seizure. Metab Brain Dis 2023; 38:621-630. [PMID: 36399240 DOI: 10.1007/s11011-022-01123-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Treatment of epilepsy remains a major problem as some epileptic patients do not respond to the current therapeutics. Transient receptor potential ankyrin 1 (TRPA1) belongs to the TRP channels and has diverse physiological functions in the body. Considering its physiological properties, we aimed to evaluate its role in two experimental models of epilepsy, including pentylenetetrazol (PTZ)-induced acute seizure and PTZ-evoked kindling. Furthermore, the TRPA1 protein levels were assessed in the cerebral cortex, hippocampus, and cerebellum after seizure induction. Three groups of Wistar rats received acute intraperitoneal injection of pentylenetetrazol (PTZ, 85 mg/kg). The groups received intraventricular injections of vehicle (dimethyl sulfoxide, Tween 80, and sterile 0.9% saline), valproate (30 µg/rat), or HC030031 (TRPA1 antagonist, 14 µg/rat) before PTZ injection. In the PTZ-induced kindling model, PTZ was administrated 35 mg/kg every other day for 24 days. PTZ gradually provoked seizure-related behaviors. After experiments, the TRPA1 levels in the brain were assessed using western blot. The results showed that HC030031 reduced the median of seizure scores and S5 duration while increasing S2 and S5 latencies in acute and kindling models. The anticonvulsant effect of HC030031 was comparable with valproate as a standard anticonvulsant drug. Furthermore, induction of seizure, either acute or kindling, enhanced TRPA1 levels in the cerebral cortex, hippocampus, and cerebellum that were prevented by HC030031 or valproate administration. The results of this study showed that HC030031 as a TRPA1 receptor antagonist promoted a significant anticonvulsant effect comparable with valproate. Both drugs prevented TRPA1 upregulation during seizures. These findings imply that TRPA1 is a potential target in treating epilepsy.
Collapse
Affiliation(s)
- Fatemeh Sadat Heydari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Gorji Valokola
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Brain and Spinal Injury Repair Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Qian D, Wang Q, Lin S, Li Y, Gu X, Xia C, Xu Y, Zhang T, Yang L, Wu Q, Sun J, Liu Y, Zhou M. Identification of potential targets of cinnamon for treatment against Alzheimer's disease-related GABAergic synaptic dysfunction using network pharmacology. Sci Rep 2022; 12:19959. [PMID: 36402912 PMCID: PMC9675738 DOI: 10.1038/s41598-022-24378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Cinnamon aqueous extract's active substance base remains unclear and its mechanisms, mainly the therapeutic target of anti-Alzheimer's disease (AD)-related GABAergic synaptic dysfunction, remain unclear. Here, 30 chemical components were identified in the aqueous extract of cinnamon using LC/MS; secondly, we explored the brain-targeting components of the aqueous extract of cinnamon, and 17 components had a good absorption due to the blood-brain barrier (BBB) limitation; thirdly, further clustering analysis of active ingredient targets by network pharmacology showed that the GABA pathway with GABRG2 as the core target was significantly enriched; then, we used prominent protein-protein interactions (PPI), relying on a protein-metabolite network, and identified the GABRA1, GABRB2 and GABRA5 as the closest targets to GABRG2; finally, the affinity between the target and its cognate active compound was predicted by molecular docking. In general, we screened five components, methyl cinnamate, propyl cinnamate, ( +)-procyanidin B2, procyanidin B1, and myristicin as the brain synapse-targeting active substances of cinnamon using a systematic strategy, and identified GABRA1, GABRB2, GABRA5 and GABRG2 as core therapeutic targets of cinnamon against Alzheimer's disease-related GABAergic synaptic dysfunction. Exploring the mechanism of cinnamon' activities through multi-components and multiple targets strategies promise to reduce the threat of single- target and symptom-based drug discovery failure.
Collapse
Affiliation(s)
- Dongdong Qian
- grid.412540.60000 0001 2372 7462Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| | - Qixue Wang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203 China
| | - Siyuan Lin
- grid.412540.60000 0001 2372 7462School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ying Li
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203 China
| | - Xinyi Gu
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203 China
| | - Chenyi Xia
- grid.412540.60000 0001 2372 7462Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ying Xu
- grid.412540.60000 0001 2372 7462Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ting Zhang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203 China
| | - Li Yang
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203 China
| | - Qianfu Wu
- grid.412540.60000 0001 2372 7462Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| | - Jijia Sun
- grid.412540.60000 0001 2372 7462Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yi Liu
- grid.412540.60000 0001 2372 7462Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| | - Mingmei Zhou
- grid.412540.60000 0001 2372 7462Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai, 201203 China
| |
Collapse
|
5
|
Mahajan N, Khare P, Kondepudi KK, Bishnoi M. TRPA1: Pharmacology, natural activators and role in obesity prevention. Eur J Pharmacol 2021; 912:174553. [PMID: 34627805 DOI: 10.1016/j.ejphar.2021.174553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is a calcium permeable, non-selective cation channel, expressed in the sensory neurons and non-neuronal cells of different tissues. Initially studied for its role in pain and inflammation, TRPA1 has now functionally involved in multiple other physiological functions. TRPA1 channel has been extensively studied for modulation by pungent compounds present in the spices and herbs. In the last decade, the role of TRPA1 agonism in body weight reduction, secretion of hunger and satiety hormones, insulin secretion and thermogenesis, has unveiled the potential of the TRPA1 channel to be used as a preventive target to tackle obesity and associated comorbidities including insulin resistance in type 2 diabetes. In this review, we summarized the recent findings of TRPA1 based dietary/non-dietary modulation for its role in obesity prevention and therapeutics.
Collapse
Affiliation(s)
- Neha Mahajan
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Pragyanshu Khare
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
6
|
The Hypothermic Effect of Hydrogen Sulfide Is Mediated by the Transient Receptor Potential Ankyrin-1 Channel in Mice. Pharmaceuticals (Basel) 2021; 14:ph14100992. [PMID: 34681216 PMCID: PMC8538668 DOI: 10.3390/ph14100992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown in previous studies to cause hypothermia and hypometabolism in mice, and its thermoregulatory effects were subsequently investigated. However, the molecular target through which H2S triggers its effects on deep body temperature has remained unknown. We investigated the thermoregulatory response to fast-(Na2S) and slow-releasing (GYY4137) H2S donors in C57BL/6 mice, and then tested whether their effects depend on the transient receptor potential ankyrin-1 (TRPA1) channel in Trpa1 knockout (Trpa1−/−) and wild-type (Trpa1+/+) mice. Intracerebroventricular administration of Na2S (0.5–1 mg/kg) caused hypothermia in C57BL/6 mice, which was mediated by cutaneous vasodilation and decreased thermogenesis. In contrast, intraperitoneal administration of Na2S (5 mg/kg) did not cause any thermoregulatory effect. Central administration of GYY4137 (3 mg/kg) also caused hypothermia and hypometabolism. The hypothermic response to both H2S donors was significantly (p < 0.001) attenuated in Trpa1−/− mice compared to their Trpa1+/+ littermates. Trpa1 mRNA transcripts could be detected with RNAscope in hypothalamic and other brain neurons within the autonomic thermoeffector pathways. In conclusion, slow- and fast-releasing H2S donors induce hypothermia through hypometabolism and cutaneous vasodilation in mice that is mediated by TRPA1 channels located in the brain, presumably in hypothalamic neurons within the autonomic thermoeffector pathways.
Collapse
|
7
|
Nakao A, Matsunaga Y, Hayashida K, Takahashi N. Role of Oxidative Stress and Ca 2+ Signaling in Psychiatric Disorders. Front Cell Dev Biol 2021; 9:615569. [PMID: 33644051 PMCID: PMC7905097 DOI: 10.3389/fcell.2021.615569] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Psychiatric disorders are caused by complex and diverse factors, and numerous mechanisms have been proposed for the pathogenesis of these disorders. Accumulating evidence suggests that oxidative stress is one of the general factors involved in the pathogenesis/pathophysiology of major psychiatric disorders, including bipolar disorder, depression, anxiety disorder, and schizophrenia. Indeed, some clinical trials have shown improvement of the symptoms of these disorders by antioxidant supplementation. However, the molecular basis for the relationship between oxidative stress and the pathogenesis of psychiatric disorders remains largely unknown. In general, Ca2+ channels play central roles in neuronal functions, including neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation, and genes that encode Ca2+ channels have been found to be associated with psychiatric disorders. Notably, a class of Ca2+-permeable transient receptor potential (TRP) cation channels is activated by changes in cellular redox status, whereby these TRP channels can link oxidative stress to Ca2+ signals. Given the unique characteristic of redox-sensitive TRP channels, these channels could be a target for delineating the pathogenesis or pathophysiology of psychiatric disorders. In this review, we summarize the outcomes of clinical trials for antioxidant treatment in patients with psychiatric disorders and the current insights into the physiological/pathological significance of redox-sensitive TRP channels in the light of neural functions, including behavioral phenotypes, and discuss the potential role of TRP channels in the pathogenesis of psychiatric disorders. Investigation of redox-sensitive TRP channels may lead to the development of novel therapeutic strategies for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yoshihiro Matsunaga
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsumi Hayashida
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Nobuaki Takahashi
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Sodhi RK, Singh R, Bansal Y, Bishnoi M, Parhar I, Kuhad A, Soga T. Intersections in Neuropsychiatric and Metabolic Disorders: Possible Role of TRPA1 Channels. Front Endocrinol (Lausanne) 2021; 12:771575. [PMID: 34912298 PMCID: PMC8666658 DOI: 10.3389/fendo.2021.771575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) are a huge burden to the patient, their family, and society. NPDs have been greatly associated with cardio-metabolic comorbidities such as obesity, type-2 diabetes mellitus, dysglycaemia, insulin resistance, dyslipidemia, atherosclerosis, and other cardiovascular disorders. Antipsychotics, which are frontline drugs in the treatment of schizophrenia and off-label use in other NPDs, also add to this burden by causing severe metabolic perturbations. Despite decades of research, the mechanism deciphering the link between neuropsychiatric and metabolic disorders is still unclear. In recent years, transient receptor potential Ankyrin 1 (TRPA1) channel has emerged as a potential therapeutic target for modulators. TRPA1 agonists/antagonists have shown efficacy in both neuropsychiatric disorders and appetite regulation and thus provide a crucial link between both. TRPA1 channels are activated by compounds such as cinnamaldehyde, allyl isothiocyanate, allicin and methyl syringate, which are present naturally in food items such as cinnamon, wasabi, mustard, garlic, etc. As these are present in many daily food items, it could also improve patient compliance and reduce the patients' monetary burden. In this review, we have tried to present evidence of the possible involvement of TRPA1 channels in neuropsychiatric and metabolic disorders and a possible hint towards using TRPA1 modulators to target appetite, lipid metabolism, glucose and insulin homeostasis and inflammation associated with NPDs.
Collapse
Affiliation(s)
- Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, University Grants Commission, Center of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India
| | - Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Punjab, India
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, University Grants Commission, Center of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, India
- *Correspondence: Anurag Kuhad, ; Tomoko Soga,
| | - Tomoko Soga
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Anurag Kuhad, ; Tomoko Soga,
| |
Collapse
|
9
|
Espiritu MJ, Chen J, Yadav J, Larkin M, Pelletier RD, Chan JM, Gc JB, Natesan S, Harrelson JP. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metab Dispos 2020; 48:1028-1043. [PMID: 32788161 PMCID: PMC7543486 DOI: 10.1124/dmd.120.000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.
Collapse
Affiliation(s)
- Michael J Espiritu
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Justin Chen
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jaydeep Yadav
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Michael Larkin
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Robert D Pelletier
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeannine M Chan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeevan B Gc
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Senthil Natesan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - John P Harrelson
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| |
Collapse
|
10
|
Afshari AR, Fanoudi S, Rajabian A, Sadeghnia HR, Mollazadeh H, Hosseini A. Potential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1113-1123. [PMID: 32963732 PMCID: PMC7491505 DOI: 10.22038/ijbms.2020.43687.10259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/17/2020] [Indexed: 01/12/2023]
Abstract
Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)1/2, and autophagy that are involved in neurodegenerative diseases pathophysiology. There are numerous findings on curcumin, astaxanthin, thymoquinone, and berberine, as natural products, which have outstanding effects in cell signaling far beyond their anti-oxidant activity, considering as a potential therapeutic target for glutamate excitotoxicity. Herein, we address the role of glutamate as a potential target in neurodegenerative diseases and discuss the protective effects of certain phytochemicals on glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R. Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Günaydın C, Arslan G, Bilge SS. Proconvulsant effect of trans-cinnamaldehyde in pentylenetetrazole-induced kindling model of epilepsy: The role of TRPA1 channels. Neurosci Lett 2020; 721:134823. [PMID: 32035165 DOI: 10.1016/j.neulet.2020.134823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily, is widely distributed in the central nervous system (CNS) and plays an important role in pain and inflammation. However, no data has been reported regarding the effects of TRPA1 on epileptic seizures. Thus, this study was designed to investigate the sub-chronic effect of trans-cinnamaldehyde (TCA), an agonist of TRPA1, in pentylenetetrazole (PTZ) induced kindling model via electrocorticography (ECoG). Furthermore, the expressions of cAMP response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), and NMDA receptor subunit NR2B were measured using Western blotting. Rats were kindled by intraperitoneal (i.p.) PTZ (35 mg/kg) injections. After electrode implantation and healing period, 10 and 30 mg/kg TCA was given i.p. for 14 consecutive days. On the next day, ECoG recordings were obtained after the injection of PTZ (35 mg/kg, i.p.), and twenty-four hours later, rats were decapitated for molecular analyses. TCA, at a dose of 30 mg/kg, decreased the first myoclonic jerk latency and increased seizure duration and total spike activity. Additionally, both doses of TCA enhanced CREB, BDNF, and NR2B expressions, which were increased by the kindling. The evidence from this study suggests that long term activation of TRPA1 channels causes an exacerbated seizure activity. Moreover, PTZ-induced increases in CREB, BDNF, and NR2B levels were enhanced by the repeated administrations of TCA.
Collapse
Affiliation(s)
- Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gökhan Arslan
- Department of Physiology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - S Sırrı Bilge
- Department of Pharmacology, School of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
12
|
Borbély É, Payrits M, Hunyady Á, Mező G, Pintér E. Important regulatory function of transient receptor potential ankyrin 1 receptors in age-related learning and memory alterations of mice. GeroScience 2019; 41:643-654. [PMID: 31327098 PMCID: PMC6885083 DOI: 10.1007/s11357-019-00083-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of the transient receptor potential ankyrin 1 (TRPA1) receptor has been demonstrated not only in the dorsal root and trigeminal ganglia but also in different brain regions (e.g., hippocampus, hypothalamus, and cortex). However, data concerning their role in neurodegenerative and age-related diseases of the CNS is still indistinct. The aim of our study was to investigate the potential role of TRPA1 in a mouse model of senile dementia. For the investigation of changes during aging, we used male young (3-4-month-old) and old (18-month-old) wild-type (TRPA1+/+;WT) and TRPA1 receptor gene-deleted (TRPA1-/-) mice. Novel object recognition (NOR) test as well as Y maze (YM), radial arm maze (RAM), and Morris water maze (MWM) tests were used to assess the decline of memory and learning skills. In the behavioral studies, significant memory loss was detected in aged TRPA1+/+ mice with the NOR and RAM, but there was no difference measured by YM and MWM tests regarding the age and gene. TRPA1-/- showed significantly reduced memory loss, which could be seen as higher discrimination index in the NOR and less exploration time in the RAM. Furthermore, young TRPA1-/- animals showed significantly less reference memory error in the RAM and notably higher mobility in NOR, RAM, and YM compared with the age-matched WTs. Our present work has provided the first evidence that TRPA1 receptors mediate deteriorating effects in the old age memory decline. Understanding the underlying mechanisms could open new perspectives in the pharmacotherapy of dementia.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Gréta Mező
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary.
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary.
| |
Collapse
|
13
|
Calcium Signaling Pathways: Key Pathways in the Regulation of Obesity. Int J Mol Sci 2019; 20:ijms20112768. [PMID: 31195699 PMCID: PMC6600289 DOI: 10.3390/ijms20112768] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, high epidemic obesity-triggered hypertension and diabetes seriously damage social public health. There is now a general consensus that the body's fat content exceeding a certain threshold can lead to obesity. Calcium ion is one of the most abundant ions in the human body. A large number of studies have shown that calcium signaling could play a major role in increasing energy consumption by enhancing the metabolism and the differentiation of adipocytes and reducing food intake through regulating neuronal excitability, thereby effectively decreasing the occurrence of obesity. In this paper, we review multiple calcium signaling pathways, including the IP3 (inositol 1,4,5-trisphosphate)-Ca2+ (calcium ion) pathway, the p38-MAPK (mitogen-activated protein kinase) pathway, and the calmodulin binding pathway, which are involved in biological clock, intestinal microbial activity, and nerve excitability to regulate food intake, metabolism, and differentiation of adipocytes in mammals, resulting in the improvement of obesity.
Collapse
|
14
|
Expression and Function of Transient Receptor Potential Ankyrin 1 Ion Channels in the Caudal Nucleus of the Solitary Tract. Int J Mol Sci 2019; 20:ijms20092065. [PMID: 31027359 PMCID: PMC6539857 DOI: 10.3390/ijms20092065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
The nucleus of the solitary tract (NTS) receives visceral information via the solitary tract (ST) that comprises the sensory components of the cranial nerves VII, IX and X. The Transient Receptor Potential Ankyrin 1 (TRPA1) ion channels are non-selective cation channels that are expressed primarily in pain-related sensory neurons and nerve fibers. Thus, TRPA1 expressed in the primary sensory afferents may modulate the function of second order NTS neurons. This hypothesis was tested and confirmed in the present study using acute brainstem slices and caudal NTS neurons by RT-PCR, immunostaining and patch-clamp electrophysiology. The expression of TRPA1 was detected in presynaptic locations, but not the somata of caudal NTS neurons that did not express TRPA1 mRNA or proteins. Moreover, caudal NTS neurons did not show somatodendritic responsiveness to TRPA1 agonists, while TRPA1 immunostaining was detected only in the afferent fibers. Electrophysiological recordings detected activation of presynaptic TRPA1 in glutamatergic terminals synapsing on caudal NTS neurons evidenced by the enhanced glutamatergic synaptic neurotransmission in the presence of TRPA1 agonists. The requirement of TRPA1 for modulation of spontaneous synaptic activity was confirmed using TRPA1 knockout mice where TRPA1 agonists failed to alter synaptic efficacy. Thus, this study provides the first evidence of the TRPA1-dependent modulation of the primary afferent inputs to the caudal NTS. These results suggest that the second order caudal NTS neurons act as a TRPA1-dependent interface for visceral noxious-innocuous integration at the level of the caudal brainstem.
Collapse
|
15
|
Sun B, Tian YX, Chen Q, Zhang Y, Luo Y, Wang Y, Li MY, Gong RG, Wang XR, Zhang F, Tang HR. Variations in the glucosinolates of the individual edible parts of three stem mustards ( Brassica juncea). ROYAL SOCIETY OPEN SCIENCE 2019; 6:182054. [PMID: 30891304 PMCID: PMC6408409 DOI: 10.1098/rsos.182054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
The composition and content of glucosinolates were investigated in the edible parts (petioles, peel and flesh) of tuber mustard, bamboo shoots mustard and baby mustard by high-performance liquid chromatography to reveal the association between the different cooking methods and their glucosinolate profiles. Eight glucosinolates were identified from tuber mustard and baby mustard, including three aliphatic glucosinolates, four indole glucosinolates and one aromatic glucosinolate. Only six of the eight glucosinolates were detected in bamboo shoots mustard. The results show that the distribution and content of glucosinolates varied widely among the different tissues and species. The highest contents of glucosinolates in tuber mustard, bamboo shoots mustard and baby mustard were found in flesh, petioles and peel, respectively. The content of total glucosinolates ranged from 5.21 µmol g-1 dry weight in bamboo shoots mustard flesh to 25.64 µmol g-1 dry weight in baby mustard peel. Aliphatic glucosinolates were predominant in the three stem mustards, followed by indole and aromatic glucosinolates. Sinigrin was the predominant glucosinolate in the three stem mustards. Sinigrin content in tuber mustard was slightly higher than that in baby mustard and much higher than that in bamboo shoots mustard, suggesting that the pungent-tasting stem mustards contained more sinigrin. In addition, a principal components analysis showed that bamboo shoots mustard was distinguishable from the other two stem mustards. A variance analysis indicated that the glucosinolates were primarily influenced by a species × tissue interaction. The correlations among glucosinolates were also analysed.
Collapse
Affiliation(s)
- Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yu-Xiao Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Meng-Yao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Rong-Gao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Xiao-Rong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Authors for correspondence: Fen Zhang e-mail:
| | - Hao-Ru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Authors for correspondence: Hao-Ru Tang e-mail:
| |
Collapse
|
16
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
17
|
Kheradpezhouh E, Choy JMC, Daria VR, Arabzadeh E. TRPA1 expression and its functional activation in rodent cortex. Open Biol 2017; 7:rsob.160314. [PMID: 28424320 PMCID: PMC5413904 DOI: 10.1098/rsob.160314] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/13/2017] [Indexed: 12/30/2022] Open
Abstract
TRPA1 is a non-selective cation channel involved in pain sensation and neurogenic inflammation. Although TRPA1 is well established in a number of organs including the nervous system, its presence and function in the mammalian cortex remains unclear. Here, we demonstrate the expression of TRPA1 in rodent somatosensory cortex through immunostaining and investigate its functional activation by whole-cell electrophysiology, Ca2+ imaging and two-photon photoswitching. Application of TRPA1 agonist (AITC) and antagonist (HC-030031) produced significant modulation of activity in layer 5 (L5) pyramidal neurons in both rats and mice; AITC increased intracellular Ca2+ concentrations and depolarized neurons, and both effects were blocked by HC-030031. These modulations were absent in the TRPA1 knockout mice. Next, we used optovin, a reversible photoactive molecule, to activate TRPA1 in individual L5 neurons of rat cortex. Optical control of activity was established by applying a tightly focused femtosecond-pulsed laser to optovin-loaded neurons. Light application depolarized neurons (n = 17) with the maximal effect observed at λ = 720 nm. Involvement of TRPA1 was further confirmed by repeating the experiment in the presence of HC-030031, which diminished the light modulation. These results demonstrate the presence of TRPA1 in L5 pyramidal neurons and introduce a highly specific approach to further understand its functional significance.
Collapse
Affiliation(s)
- Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia .,The Australian Research Council Centre of Excellence for Integrative Brain Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| | - Julian M C Choy
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| | - Vincent R Daria
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia.,The Australian Research Council Centre of Excellence for Integrative Brain Research, Australian National University Node, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
18
|
Derbenev AV, Zsombok A. Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin Immunopathol 2016; 38:397-406. [PMID: 26403087 PMCID: PMC4808497 DOI: 10.1007/s00281-015-0529-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
Diabetes mellitus and obesity, which is a major risk factor in the development of type 2 diabetes mellitus, have reached epidemic proportions worldwide including the USA. The current statistics and forecasts, both short- and long-term, are alarming and predict severe problems in the near future. Therefore, there is a race for developing new compounds, discovering new receptors, or finding alternative solutions to prevent and/or treat the symptoms and complications related to obesity and diabetes mellitus. It is well demonstrated that members of the transient receptor potential (TRP) superfamily play a crucial role in a variety of biological functions both in health and disease. In the recent years, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) were shown to have beneficial effects on whole body metabolism including glucose homeostasis. TRPV1 and TRPA1 have been associated with control of weight, pancreatic function, hormone secretion, thermogenesis, and neuronal function, which suggest a potential therapeutic value of these channels. This review summarizes recent findings regarding TRPV1 and TRPA1 in association with whole body metabolism with emphasis on obese and diabetic conditions.
Collapse
Affiliation(s)
- Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
- Department of Medicine, Endocrinology Section, School of Medicine, Tulane University, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| |
Collapse
|
19
|
Voronova IP, Tuzhikova AA, Kozyreva TV. Expression of Genes for Temperature-Sensitive TRP Channels in the Rat Hypothalamus in Normal Conditions and on Adaptation to Cold. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11055-014-9952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Abstract
The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.
Collapse
Affiliation(s)
- Peter M Zygmunt
- Clinical and Experimental Pharmacology, Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, SE-221 85, Lund, Sweden,
| | | |
Collapse
|
21
|
Voronova IP, Tuzhikova AA, Kozyreva TV. Gene expression of thermosensitive TRP ion channels in the rat brain structures: Effect of adaptation to cold. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 2013; 164:1-76. [PMID: 23605179 DOI: 10.1007/112_2013_11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spicy food does not only provide an important hedonic input in daily life, but has also been anedoctically associated to beneficial effects on our health. In this context, the discovery of chemesthetic trigeminal receptors and their spicy ligands has provided the mechanistic basis and the pharmacological means to investigate this enticing possibility. This review discusses in molecular terms the connection between the neurophysiology of pungent spices and the "systemic" effects associated to their trigeminality. It commences with a cultural and historical overview on the Western fascination for spices, and, after analysing in detail the mechanisms underlying the trigeminality of food, the main dietary players from the transient receptor potential (TRP) family of cation channels are introduced, also discussing the "alien" distribution of taste receptors outside the oro-pharingeal cavity. The modulation of TRPV1 and TRPA1 by spices is next described, discussing how spicy sensations can be turned into hedonic pungency, and analyzing the mechanistic bases for the health benefits that have been associated to the consumption of spices. These include, in addition to a beneficial modulation of gastro-intestinal and cardio-vascular function, slimming, the optimization of skeletal muscle performance, the reduction of chronic inflammation, and the prevention of metabolic syndrome and diabetes. We conclude by reviewing the role of electrophilic spice constituents on cancer prevention in the light of their action on pro-inflammatory and pro-cancerogenic nuclear factors like NFκB, and on their interaction with the electrophile sensor protein Keap1 and the ensuing Nrf2-mediated transcriptional activity. Spicy compounds have a complex polypharmacology, and just like any other bioactive agent, show a balance of beneficial and bad actions. However, at least for moderate consumption, the balance seems definitely in favour of the positive side, suggesting that a spicy diet, a caveman-era technology, could be seriously considered in addition to caloric control and exercise as a measurement to prevent and control many chronic diseases associate to malnutrition from a Western diet.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Leuven, Belgium,
| | | |
Collapse
|
23
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
24
|
Murakami A, Ohnishi K. Target molecules of food phytochemicals: food science bound for the next dimension. Food Funct 2012; 3:462-76. [PMID: 22377900 DOI: 10.1039/c2fo10274a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phytochemicals are generally defined as secondary metabolites in plants that play crucial roles in their adaptation to a variety of environmental stressors. There is a great body of compelling evidence showing that these metabolites have pronounced potentials for regulating and modulating human health and disease onset, as shown by both experimental and epidemiological approaches. Concurrently, enormous efforts have been made to elucidate the mechanism of actions underlying their biological and physiological functions. For example, the pioneering work of Tachibana et al. uncovered the receptor for (-)-epigallocatechin-3-gallate (EGCg) as the 67 kDa laminin receptor, which was shown to partially mediate the functions of EGCg, such as anti-inflammatory, anti-allergic, and anti-proliferative activities. Thereafter, several protein kinases were identified as binding proteins of flavonoids, including myricetin, quercetin, and kaempferol. Isothiocyanates, sulfur-containing phytochemicals present in cruciferous plants, are well known to target Keap1 for activating the transcription factor Nrf2 for inducing self-defensive and anti-oxidative gene expression. In addition, we recently identified CD36 as a cell surface receptor for ursolic acid, a triterpenoid ubiquitously occurring in plants. Importantly, the above mentioned target proteins are indispensable for phytochemicals to exhibit, at least in part, their bioactivities. Nevertheless, it is reasonable to assume that some of the activities and potential toxicities of metabolites are exerted via their interactions with unidentified, off-target proteins. This notion may be supported by the fact that even rationally designed drugs occasionally display off-target effects and induce unexpected outcomes, including toxicity. Here we update the current status and future directions of research related to target molecules of food phytochemicals.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | |
Collapse
|
25
|
Abstract
The Transient receptor potential (TRP) family of cation channels is a large protein family, which is mainly structurally uniform. Proteins consist typically of six transmembrane domains and mostly four subunits are necessary to form a functional channel. Apart from this, TRP channels display a wide variety of activation mechanisms (ligand binding, G-protein coupled receptor dependent, physical stimuli such as temperature, pressure, etc.) and ion selectivity profiles (from highly Ca(2+) selective to non-selective for cations). They have been described now in almost every tissue of the body, including peripheral and central neurons. Especially in the sensory nervous system the role of several TRP channels is already described on a detailed level. This review summarizes data that is currently available on their role in the central nervous system. TRP channels are involved in neurogenesis and brain development, synaptic transmission and they play a key role in the development of several neurological diseases.
Collapse
|
26
|
|