1
|
Aitella E, Romano C, Ginaldi L, Cozzolino D. Mast Cells at the Crossroads of Hypersensitivity Reactions and Neurogenic Inflammation. Int J Mol Sci 2025; 26:927. [PMID: 39940696 PMCID: PMC11817554 DOI: 10.3390/ijms26030927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Although mast cells have long been known, they are not yet fully understood. They are traditionally recognized for their role in allergic reactions through the IgE/FcεRI axis, but different groups of surface receptors have since been characterized, which appear to be involved in the manifestation of peculiar clinical features. In particular, MRGPRX2 has emerged as a crucial receptor involved in degranulating human skin mast cells. Because of mast cells' close proximity to peripheral nerve endings, it may play a key role in neuroimmune interactions. This paper provides an overview of mast cell contributions to hypersensitivity and so-called "pseudoallergic" reactions, as well as an update on neuroinflammatory implications in the main models of airway and skin allergic diseases. In particular, the main cellular characteristics and the most relevant surface receptors involved in MC pathophysiology have been reappraised in light of recent advancements in MC research. Molecular and clinical aspects related to MC degranulation induced by IgE or MRGPRX2 have been analyzed and compared, along with their possible repercussions and limitations on future therapeutic perspectives.
Collapse
Affiliation(s)
- Ernesto Aitella
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (L.G.)
- Allergy and Clinical Immunology Unit, “G. Mazzini” Hospital, ASL Teramo, 64100 Teramo, Italy
| | - Ciro Romano
- Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy;
| | - Lia Ginaldi
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.A.); (L.G.)
- Allergy and Clinical Immunology Unit, “G. Mazzini” Hospital, ASL Teramo, 64100 Teramo, Italy
| | - Domenico Cozzolino
- Division of Internal Medicine, Department of Precision Medicine, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy
| |
Collapse
|
2
|
Li Q, Wang B, Yang J, Wang Y, Duan F, Luo M, Zhao C, Wei W, Wang L, Liu S. Preliminary Analysis of Aging-Related Genes in Intracerebral Hemorrhage by Integration of Bulk and Single-Cell RNA Sequencing Technology. Int J Gen Med 2024; 17:2719-2740. [PMID: 38883702 PMCID: PMC11180471 DOI: 10.2147/ijgm.s457480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
Background Aging is recognized as the key risk for intracerebral hemorrhage (ICH). The detailed mechanisms of aging in ICH warrant exploration. This study aimed to identify potential aging-related genes associated with ICH. Methods ICH-specific aging-related genes were determined by the intersection of differentially expressed genes (DEGs) between perihematomal tissues and corresponding contralateral parts of four patients with ICH (GSE24265) and 349 aging-related genes obtained from the Aging Atlas database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) analyses were performed to identify the potential biological functions and pathways in which these ICH-specific aging-related genes may be involved. Then, PPI network was established to identify the hub genes of ICH-specific aging-related genes. Meanwhile, miRNA-mRNA and transcription factor (TF)-mRNA regulatory networks were constructed to further explore the ICH-specific aging-related genes regulation. The relationship between these hub genes and immune infiltration was also further explored. Additional single-cell RNA-seq analysis (scRNA-seq, GSE167593) was used to locate the hub genes in different cell types. Besides, expression levels of the hub genes were validated using clinical samples from our institute and another GEO dataset (GSE206971). Results This study identified 24 ICH-specific aging-related genes, including 22 up-regulated and 2 down-regulated genes. The results of GO and KEGG suggested that the ICH-specific aging-related genes mainly enriched in immunity and inflammation-related pathways, suggesting that aging may affect the ich pathogenesis by regulating inflammatory and immune-related pathways. Conclusion Our study revealed 24 ICH-specific aging-related genes and their functions highly pertinent to ICH pathogenesis, providing new insights into the impact of aging on ICH.
Collapse
Affiliation(s)
- Qianfeng Li
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jun Yang
- Huanggang Central Hospital of Yangtze University, Huanggang, People's Republic of China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Faliang Duan
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Ming Luo
- Department of Neurosurgery, Wuhan No.1 Hospital, Wuhan, People's Republic of China
| | - Chungang Zhao
- Jilin Jianda Modern Agricultural Research Institute, Changchun, People's Republic of China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lei Wang
- Huanggang Central Hospital of Yangtze University, Huanggang, People's Republic of China
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
3
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
4
|
Branković M, Gmizić T, Dukić M, Zdravković M, Daskalović B, Mrda D, Nikolić N, Brajković M, Gojgić M, Lalatović J, Kralj Đ, Pantić I, Vojnović M, Milovanović T, Đurašević S, Todorović Z. Therapeutic Potential of Palmitoylethanolamide in Gastrointestinal Disorders. Antioxidants (Basel) 2024; 13:600. [PMID: 38790705 PMCID: PMC11117950 DOI: 10.3390/antiox13050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Palmitoylethanolamide (PEA) is an endocannabinoid-like bioactive lipid mediator belonging to the family of N-acylethanolamines, most abundantly found in peanuts and egg yolk. When the gastrointestinal (GI) effects of PEA are discussed, it must be pointed out that it affects intestinal motility but also modulates gut microbiota. This is due to anti-inflammatory, antioxidant, analgesic, antimicrobial, and immunomodulatory features. Additionally, PEA has shown beneficial effects in several GI diseases, particularly irritable bowel syndrome and inflammatory bowel diseases, as various studies have shown, and it is important to emphasize its relative lack of toxicity, even at high dosages. Unfortunately, there is not enough endogenous PEA to treat disturbed gut homeostasis, even though it is produced in the GI tract in response to inflammatory stimuli, so exogenous intake is mandatory to achieve homeostasis. Intake of PEA could be through animal and/or vegetable food, but bearing in mind that a high dosage is needed to achieve a therapeutic effect, it must be compensated through dietary supplements. There are still open questions pending to be answered, so further studies investigating PEA's effects and mechanisms of action, especially in humans, are crucial to implementing PEA in everyday clinical practice.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | | | - Davor Mrda
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Gojgić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Jovana Lalatović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Đorđe Kralj
- University Hospital Medical Center Zvezdara, 11000 Belgrade, Serbia;
| | - Ivana Pantić
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Siniša Đurašević
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Zoran Todorović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Iding J, Agarwal P, Zhang S, Odin R, Bernstein JA, Zimmermann N. Standardized Quantification of Mast Cells in the Gastrointestinal Tract in Adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:472-481. [PMID: 37918653 DOI: 10.1016/j.jaip.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Current data on the normal quantity of mast cells throughout the adult gastrointestinal tract are limited in several domains. These include microanatomic localization of mast cells, standardization of staining and counting methods, and reporting of microscope field of view. OBJECTIVE To address this lack of reliable reference ranges to facilitate the study of and diagnosis of emerging mast cell-mediated diseases. METHODS We examined biopsies obtained from the esophagus, stomach, duodenum, and colon from an unselected cohort. Mean and peak mast cell density were determined on slides stained for tryptase and CD117, and were expressed per high power field (hpf) and surface area (mm2), thus deriving reference ranges (average ± 2 SDs). RESULTS For the most common hpf surface area (0.238 mm2), upper limits of the derived reference ranges for average/peak mast cells were 0.15/3.67 (esophagus, tryptase), 0.70/5.98 (esophagus, CD117), 22.56/35.30 (stomach, tryptase), 31.32/53.10 (stomach, CD117), 30.28/49.77 (duodenal crypts, tryptase), 41.96/65.26 (duodenal crypts, CD117), 4.98/11.56 (duodenal villi, tryptase), 8.38/14.17 (duodenal villi, CD117), 26.58/41.08 (colon, tryptase), and 35.57/57.92 (colon, CD117). Interobserver variability was moderate to good. There was significant correlation between average and peak mast cell counts. CONCLUSIONS These data help standardize mast cell reference ranges throughout the gastrointestinal tract in adults, which can be used to determine whether abnormal levels of mast cells are present in patients with suspected mast cell-mediated disease. Our data show that the commonly used cutoff of 20 mast cells per hpf irrespective of the gastrointestinal tract segment is an underestimate of an appropriate cutoff in stomach, duodenum (crypt area), and colon.
Collapse
Affiliation(s)
- Jared Iding
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Pooja Agarwal
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Simin Zhang
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Pediatrics, Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rachel Odin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nives Zimmermann
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Pediatrics, Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
6
|
Ribatti D. Mast cells are at the interface between the external environment and the inner organism. Front Med (Lausanne) 2024; 10:1332047. [PMID: 38239615 PMCID: PMC10794488 DOI: 10.3389/fmed.2023.1332047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
Mast cells localized at the level of the mucosal barrier in the skin, lung, and gastrointestinal tract, intervene in the modulation of the function of the epithelial cells and are involved in innate and adaptive defensive responses. In this context, mast cells intervene in the recognition and clearance of microbial pathogens. This mini-review article discusses the role of mast cells in these barrier systems.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
7
|
Tóth Š, Fagová Z, Holodová M, Zeidan D, Hartel P, Čurgali K, Mechírová E, Maretta M, Nemcová R, Gancarčíková S, Danková M. Influence of Escherichia coli infection on intestinal mucosal barrier integrity of germ-free piglets. Life Sci 2023; 331:122036. [PMID: 37633417 DOI: 10.1016/j.lfs.2023.122036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
AIMS We focused on investigating the influence of Escherichia coli (E. coli) on the intestinal barrier. MATERIAL AND METHODS We studied changes in the distribution and secretory activities of goblet cells and enteroendocrine cells (EECs), as well as changes in the population of mast cells (MCs) in the jejunal and colonic mucosa of germ-free (GF) piglets as a healthy control group and GF piglets whose intestines were colonised with E. coli bacteria on day 5. KEY FINDINGS The results suggest that the colon of GF piglets is more resistant and less prone to coliform bacterial infection compared to the jejunum. This can be confirmed by a lower degree of histopathological injury index as well as an improvement of the morphometric parameters of the colonic mucosa, together with a significantly increased (p < 0.05) expression of MUC1/EMA, and ZO-3. We also observed a significant decrease in the population of activated MCs (p < 0.001) and EECs (p < 0.001). These findings may indicate a rapid response and better preparation of the intestinal barrier for possible pathological attacks and the subsequent development of mucosal lesions during the development and progression of the intestinal diseases. SIGNIFICANCE To date, gut-targeted therapeutic approaches that can modulate bacterial translocation and chronic inflammation are still in their infancy but represent one of the most promising areas of research for the development of new effective treatments or clinical strategies in the future. Therefore, a better understanding of these processes can significantly contribute to the development of these targeted strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Štefan Tóth
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Zuzana Fagová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Monika Holodová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Dema Zeidan
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Patrick Hartel
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Kristína Čurgali
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Eva Mechírová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Milan Maretta
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Neurology and L. Pasteur University Hospital, Trieda SNP 1, 040 01 Košice, Slovak Republic
| | - Radomíra Nemcová
- University of Veterinary Medicine and Pharmacy in Košice, Department of Microbiology and Immunology, Komenského 73, 041 70 Košice, Slovak Republic
| | - Soňa Gancarčíková
- University of Veterinary Medicine and Pharmacy in Košice, Department of Microbiology and Immunology, Komenského 73, 041 70 Košice, Slovak Republic
| | - Marianna Danková
- Comenius University in Bratislava, Faculty of Medicine, Institute of Histology and Embryology, Sasinkova 4, 811 04 Bratislava, Slovak Republic.
| |
Collapse
|
8
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
9
|
Li J, Huang J, Zhang R, Lin Y, Chen Q, Gan X. Pretreatment with propofol restores intestinal epithelial cells integrity disrupted by mast cell degranulation in vitro. Physiol Res 2022. [DOI: 10.33549/physiolres.934933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Propofol has been shown to against intestinal reperfusion injury when treated either before or after ischemia, during which mast cell could be activated. The aim of this study was to evaluate the role of propofol in restoring the intestinal epithelial cells integrity disrupted by mast cell activation or the released tryptase after activation in vitro. We investigated the effect of: (1) tryptase on Caco-2 monolayers in the presence of PAR-2 inhibitor or propofol, (2) mast cell degranulation in a Caco-2/LAD-2 co-culture model in the presence of propofol, and (3) propofol on mast cell degranulation. Epithelial integrity was detected using transepithelial resistance (TER) and permeability to fluorescein isothiocyanate (FITC)-dextran (the apparent permeability coefficient, Papp). The expression of junctional proteins zonula occludens-1 (ZO-1/TJP1) and occludin were determined using western blot analysis and immunofluorescence microscopy. The intracellular levels of reactive oxidative species (ROS) and Ca2+ were measured using flow cytometry. Tryptase directly enhanced intestinal barrier permeability as demonstrated by significant reductions in TER, ZO-1, and occludin protein expression and concomitant increases in Papp. The intestinal barrier integrity was restored by PAR-2 inhibitor but not by propofol. Meanwhile, mast cell degranulation resulted in epithelial integrity disruption in the Caco-2/LAD-2 co-culture model, which was dramatically attenuated by propofol. Mast cell degranulation caused significant increases in intracellular ROS and Ca2+ levels, which were blocked by propofol and NAC. Propofol pretreatment can inhibit mast cell activation via ROS/Ca2+ and restore the intestinal barrier integrity induced by mast cell activation, instead of by tryptase.
Collapse
Affiliation(s)
| | | | | | | | | | - X Gan
- Department of Anesthesiology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University.
| |
Collapse
|
10
|
Krysko O, Bourne JH, Kondakova E, Galova EA, Whitworth K, Newby ML, Bachert C, Hill H, Crispin M, Stamataki Z, Cunningham AF, Pugh M, Khan AO, Rayes J, Vedunova M, Krysko DV, Brill A. Severity of SARS-CoV-2 infection is associated with high numbers of alveolar mast cells and their degranulation. Front Immunol 2022; 13:968981. [PMID: 36225927 PMCID: PMC9548604 DOI: 10.3389/fimmu.2022.968981] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elena Kondakova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Elena A. Galova
- University Clinic of Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Katharine Whitworth
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Harriet Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Zhang Z, Ernst PB, Kiyono H, Kurashima Y. Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases. Front Immunol 2022; 13:937120. [PMID: 36189267 PMCID: PMC9518231 DOI: 10.3389/fimmu.2022.937120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells widely distributed in the body, accompanied by diverse phenotypes and functions. Committed mast cell precursors (MCPs) leave the bone marrow and enter the blood circulation, homing to peripheral sites under the control of various molecules from different microenvironments, where they eventually differentiate and mature. Partly attributable to the unique maturation mechanism, MCs display high functional heterogeneity and potentially plastic phenotypes. High plasticity also means that MCs can exhibit different subtypes to cope with different microenvironments, which we call “the peripheral immune education system”. Under the peripheral immune education system, MCs showed a new character from previous cognition in some cases, namely regulation of allergy and inflammation. In this review, we focus on the mucosal tissues, such as the gastrointestinal tract, to gain insights into the mechanism underlying the migration of MCs to the gut or other organs and their heterogeneity, which is driven by different microenvironments. In particular, the immunosuppressive properties of MCs let us consider that positively utilizing MCs may be a new way to overcome inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, San Diego, CA, United States
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Empowering Next Generation Allergist/immunologist toward Global Excellence Task Force toward 2030 (ENGAGE)-Task Force, Tokyo, Japan
| |
Collapse
|
12
|
West PW, Bulfone-Paus S. Mast cell tissue heterogeneity and specificity of immune cell recruitment. Front Immunol 2022; 13:932090. [PMID: 35967445 PMCID: PMC9374002 DOI: 10.3389/fimmu.2022.932090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells occupy a unique niche within tissues as long lived perpetrators of IgE mediated hypersensitivity and anaphylaxis, as well as other immune responses. However, mast cells are not identical in different tissues and the impact of this tissue heterogeneity on the interaction with other immune cells and on defined immune responses is still unclear. In this review, we synthesize the characteristics of mast cell heterogeneity in the gut and the skin. Furthermore, we attempt to connect mast cell heterogeneity with functional diversity by exploring differences in mast cell-induced immune cell recruitment in these two model organs. The differential expression of certain receptors on mast cells of different tissues, notably tissue-specific expression patterns of integrins, complement receptors and MRGPRX2, could indicate that tissue environment-dependent factors skew mast cell-immune cell interactions, for example by regulating the expression of these receptors.
Collapse
Affiliation(s)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
13
|
Elucidating the Role of Innate and Adaptive Immune Responses in the Pathogenesis of Canine Chronic Inflammatory Enteropathy-A Search for Potential Biomarkers. Animals (Basel) 2022; 12:ani12131645. [PMID: 35804545 PMCID: PMC9264988 DOI: 10.3390/ani12131645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Canine chronic inflammatory enteropathy (CIE) is a chronic disease affecting the small or large intestine and, in some cases, the stomach of dogs. This gastrointestinal disorder is common and is characterized by recurrent vomiting, diarrhea, and weight loss in affected dogs. The pathogenesis of IBD is not completely understood. Similar to human IBD, potential disease factors include genetics, environmental exposures, and dysregulation of the microbiota and the immune response. Some important components of the innate and adaptive immune response involved in CIE pathogenesis have been described. However, the immunopathogenesis of the disease has not been fully elucidated. In this review, we summarized the literature associated with the different cell types and molecules involved in the immunopathogenesis of CIE, with the aim of advancing the search for biomarkers with possible diagnostic, prognostic, or therapeutic utility. Abstract Canine chronic inflammatory enteropathy (CIE) is one of the most common chronic gastrointestinal diseases affecting dogs worldwide. Genetic and environmental factors, as well as intestinal microbiota and dysregulated host immune responses, participate in this multifactorial disease. Despite advances explaining the immunological and molecular mechanisms involved in CIE development, the exact pathogenesis is still unknown. This review compiles the latest reports and advances that describe the main molecular and cellular mechanisms of both the innate and adaptive immune responses involved in canine CIE pathogenesis. Future studies should focus research on the characterization of the immunopathogenesis of canine CIE in order to advance the establishment of biomarkers and molecular targets of diagnostic, prognostic, or therapeutic utility.
Collapse
|
14
|
Bilotta S, Arbogast J, Schart N, Frei M, Lorentz A. Resveratrol Treatment Prevents Increase of Mast Cells in Both Murine OVA Enteritis and IL-10 -/- Colitis. Int J Mol Sci 2022; 23:ijms23031213. [PMID: 35163137 PMCID: PMC8836010 DOI: 10.3390/ijms23031213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells are involved in allergic and other inflammatory diseases. The polyphenol resveratrol is known for its anti-inflammatory properties and may be used as nutraceutical in mast cell associated diseases. We analyzed the effect of resveratrol on mast cells in vivo in ovalbumin-induced allergic enteritis as well as experimental colitis in IL-10−/− mice which received resveratrol via drinking water. Treatment with resveratrol prevented the increase in mast cells in both allergic enteritis and chronic colitis in duodenum as well as in colon. Further, it delayed the onset of diseases symptoms and ameliorated diseases associated parameters such as tissue damage as well as inflammatory cell infiltration in affected colon sections. In addition to the findings in vivo, resveratrol inhibited IgE-dependent degranulation and expression of pro-inflammatory cytokines such as TNF-α in IgE/DNP-activated as well as in LPS-activated bone marrow-derived mast cells. These results indicate that resveratrol may be considered as an anti-allergic and anti-inflammatory plant-derived component for the prevention or treatment of mast cell-associated disorders of the gastrointestinal tract.
Collapse
|
15
|
Mucosal Mast Cell Distribution in the Gastrointestinal Tract of Children: A Preliminary Study for Establishing Reference Values. J Pediatr Gastroenterol Nutr 2022; 74:46-53. [PMID: 34694267 DOI: 10.1097/mpg.0000000000003338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The physiological number and distribution of mast cells (MCs) in the pediatric gastrointestinal (GI) tract is not well defined and reference values of normality are missing. To define a physiological and disease defining cut-off, a systematic histological exploration of MC distribution from the esophagus to the rectum in healthy as well as in patients with gastrointestinal food allergies (GFA) was performed. METHODS Nine pediatric subjects that exhibited unremarkable histopathological evaluations or underwent endoscopy for surveillance reasons after a previous polypectomy of single colonic juvenile polyps served as reference cohort. In all of these subjects, a chronic inflammatory disease (eg, inflammatory bowel disease, celiac disease) or allergy was excluded. In addition, a group of 15 patients with gastrointestinal complaints suspected to be caused by a GFA were investigated. Immunohistochemistry was performed from all biopsies using CD117 (c-Kit) as a reliable marker to identify MCs in the lamina propria. RESULTS There were distinct differences of MC counts in all parts of the pediatric GI tract. The highest counts of MCs in both symptomatic patients and control cohort, were found in the duodenum, terminal ileum, cecum and ascending colon. The lowest counts were found in the esophagus. Significant disparities between GFA and healthy subjects were found in the gastric corpus (22.1 ± 4.0/ high power field [HPF] vs 32.0 ± 10.1/HPF; P = 0.034) and ascending colon (44.8 ± 10.4/HPF vs 60.4 ± 24.3/HPF; P = 0.047). CONCLUSIONS Mucosal MC counts in the pediatric GI tract are higher than previously reported, with a considerable overlap between healthy and GFA patients. These results provide detailed information on distribution and numbers of MCs in pediatric allergic patients while allowing estimates of physiological values in childhood for the first time. With regard to diagnostic procedures in GFA further laboratory parameters have to be integrated.
Collapse
|
16
|
Struffert M, Maier C, Neid M, Schäfer HL, Tannapfel A, Schmidt-Choudhury A. Duodenal mast cells and eosinophils in children with celiac disease: occurrence and distribution pattern. Scand J Gastroenterol 2022; 57:22-30. [PMID: 34618623 DOI: 10.1080/00365521.2021.1985601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of this study was to characterize duodenal mast cell (MC) and eosinophil (EO) numbers, their distribution within the lamina propria and possible impact on disease severity of paediatric celiac patients compared to children without celiac disease (CD). METHODS We analysed duodenal samples of 215 children (109 CD, 106 controls) who underwent esophagogastroduodenoscopy from 2010 to 2018. After immunohistochemical staining, average MC and EO counts were histologically examined in ten high-power-fields. Additionally, cell-distribution within the lamina propria was analysed. Possible influence of relevant clinical parameters was evaluated. STATISTICS Student's-t-test, Mann-Whitney U-test, Chi-square-test, ANOVA, significance-level <.05. Trial registration-number: DRKS00024669. RESULTS MC-density was higher in CD-patients compared to the control-group (23.7 (±12.1)/HPF versus 19.7 (±9.1)/HPF; p = .008), varying in number interindividually. Eosinophils were also increased in the duodenum of celiac patients (23.3 (±9.3)/HPF versus 12.2 (±6.3)/HPF; p= <.001). MCs were distributed more often homogenously in all parts of CD lamina propria (44 biopsies (40.4%), residing more distant from the intestinal lumen in controls (0 biopsies with homogenous distribution-pattern (0%); p= <.001). Regarding EOs no polarity was observable. Atopic diseases did not occur significantly more often in patients with elevated EO-counts. CONCLUSION MC- and EO-numbers were increased in the duodenum of CD-patients and MCs showed a different distribution-pattern in the lamina propria of celiac patients. These findings support the concept that both cell-types contribute to disease-pathogenesis. However, functional studies highlighting both cell-types' and their mediators' role regarding mucosal alterations during the course of the inflammatory process in celiac patients are needed. TRIAL REGISTRATION NUMBER AND URL DRKS00024669; https://www.drks.de/drks_web/.
Collapse
Affiliation(s)
- Marie Struffert
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| | - Christoph Maier
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| | - Matthias Neid
- Institute of Pathology, Ruhr-University, Bochum, Germany
| | - Hannah-Lena Schäfer
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| | | | - Anjona Schmidt-Choudhury
- Department of Pediatric Gastroenterology, St. Josef-Hospital, University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University, Bochum, Germany
| |
Collapse
|
17
|
Siddiqui MT, Cresci GAM. The Immunomodulatory Functions of Butyrate. J Inflamm Res 2021; 14:6025-6041. [PMID: 34819742 PMCID: PMC8608412 DOI: 10.2147/jir.s300989] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) system contains many different types of immune cells, making it a key immune organ system in the human body. In the last decade, our knowledge has substantially expanded regarding our understanding of the gut microbiome and its complex interaction with the gut immune system. Short chain fatty acids (SCFA), and specifically butyrate, play an important role in mediating the effects of the gut microbiome on local and systemic immunity. Gut microbial alterations and depletion of luminal butyrate have been well documented in the literature for a number of systemic and GI inflammatory disorders. Although a substantial knowledge gap exists requiring the need for further investigations to determine cause and effect, there is heightened interest in developing immunomodulatory therapies by means of reprogramming of gut microbiome or by supplementing its beneficial metabolites, such as butyrate. In the current review, we discuss the role of endogenous butyrate in the inflammatory response and maintaining immune homeostasis within the intestine. We also present the experimental models and human studies which explore therapeutic potential of butyrate supplementation in inflammatory conditions associated with butyrate depletion.
Collapse
Affiliation(s)
- Mohamed Tausif Siddiqui
- Department of Gastroenterology, Hepatology and Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gail A M Cresci
- Department of Gastroenterology, Hepatology and Human Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
18
|
Ogasawara H, Noguchi M. Therapeutic Potential of MRGPRX2 Inhibitors on Mast Cells. Cells 2021; 10:cells10112906. [PMID: 34831128 PMCID: PMC8616451 DOI: 10.3390/cells10112906] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) act as primary effectors in inflammatory and allergic reactions by releasing intracellularly-stored inflammatory mediators in diseases. The two major pathways for MC activation are known to be immunoglobulin E (IgE)-dependent and -independent. Although IgE-dependent signaling is the main pathway to MC activation, IgE-independent pathways have also been found to serve pivotal roles in the pathophysiology of various inflammatory conditions. Recent studies have shown that human and mouse MCs express several regulatory receptors such as toll-like receptors (TLRs), CD48, C300a, and GPCRs, including mas-related GPCR-X2 (MRGPRX2). MRGPRX2 has been reported as a novel GPCR that is expressed in MCs activated by basic secretagogues, neurokinin peptides, host defense antimicrobial peptides, and small molecule compounds (e.g., neuromuscular blocking agents) and leads to MC degranulation and eicosanoids release under in vitro experimental condition. Functional analyses of MRGPRX2 and Mrgprb2 (mouse ortholog) indicate that MRGPRX2 is involved in MC hypersensitivity reactions causing neuroinflammation such as postoperative pain, type 2 inflammation, non-histaminergic itch, and drug-induced anaphylactic-like reactions. In this review, we discuss the roles in innate immunity through functional studies on MRGPRX2-mediated IgE-independent MC activation and also the therapeutic potential of MRGPRX2 inhibitors on allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-45-786-7690
| | - Masato Noguchi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Office of Research Development and Sponsored Projects, Shinanomachi Campus, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Mast Cells Modulate the Immune Response and Redox Status of the Gastrointestinal Tract in Induced Venom Pathogenesis. Inflammation 2021; 45:509-527. [PMID: 34608585 DOI: 10.1007/s10753-021-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The pathogenesis of Androctonus autralis hector (Aah) scorpion venom involved cellular and molecular mechanisms resulting in multi-organ dysfunction. However, little is reported about the effects of venom on the gastrointestinal axis. Mast cells (MCs) are known to play a crucial role in modulating immune response of the gut. This study aims to investigate the involvement of this cell type in venom-induced gastric and intestinal disorders in a time course (3 and 24h). The obtained results revealed that Aah scorpion venom induced inflammatory cell infiltration as shown by the increase of the myeloperoxidase and eosinophil peroxidase activities. Overexpression of the c-kit receptor (CD117) severely imbalanced the redox status with depletion of antioxidant systemic accompanied by gastrointestinal tissue damage. Moreover, an increased level of lactate dehydrogenase in the serum was correlated with tissue injuries. Pharmacological inhibition of MCs targeting tyrosine kinase (TK) reduces the generation of reactive oxygen species and normalizes catalase, and gluthation S-transferase activities to their physiological levels. In addition, histopathological alterations were restored after pretreatment with c-kit receptor inhibitor associated with a considerable reduction of MC density. Interestingly, obtained results indicate that MCs might be involved in gastric modulation and intestinal inflammation through c-kit signaling following sub-cutaneous Aah venom injection.
Collapse
|
20
|
Oliveira MP, Prates J, Gimenes AD, Correa SG, Oliani SM. Annexin A1 Mimetic Peptide Ac 2-26 Modulates the Function of Murine Colonic and Human Mast Cells. Front Immunol 2021; 12:689484. [PMID: 34557187 PMCID: PMC8452975 DOI: 10.3389/fimmu.2021.689484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
Mast cells (MCs) are main effector cells in allergic inflammation and after activation, they release stored (histamine, heparin, proteases) and newly synthesized (lipid mediators and cytokines) substances. In the gastrointestinal tract the largest MC population is located in the lamina propria and submucosa whereas several signals such as the cytokine IL-4, seem to increase the granule content and to stimulate a remarkable expansion of intestinal MCs. The broad range of MC-derived bioactive molecules may explain their involvement in many different allergic disorders of the gastrointestinal tract. Annexin A1 (AnxA1) is a 37 KDa glucocorticoid induced monomeric protein selectively distributed in certain tissues. Its activity can be reproduced by mimetic peptides of the N-terminal portion, such as Ac2-26, that share the same receptor FPR-L1. Although previous reports demonstrated that AnxA1 inhibits MC degranulation in murine models, the effects of exogenous peptide Ac2-26 on intestinal MCs or the biological functions of the Ac2-26/FPR2 system in human MCs have been poorly studied. To determine the effects of Ac2-26 on the function of MCs toward the possibility of AnxA1-based therapeutics, we treated WT and IL-4 knockout mice with peptide Ac2-26, and we examined the spontaneous and compound 48/80 stimulated colonic MC degranulation and cytokine production. Moreover, in vitro, using human mast cell line HMC-1 we demonstrated that exogenous AnxA1 peptide is capable of interfering with the HMC-1 degranulation in a direct pathway through formyl peptide receptors (FPRs). We envisage that our results can provide therapeutic strategies to reduce the release of MC mediators in inflammatory allergic processes.
Collapse
Affiliation(s)
- Marcia Pereira Oliveira
- Laboratory of Interdisciplinary Medical Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Janesly Prates
- Department of Biology, Institute of Bioscience, Humanities and Exact Science, São Paulo State University (Unesp), São José do Rio Preto, Brazil
| | | | - Silvia Graciela Correa
- Departamento de Bioquímica Clinica-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI - CONICET) - Facultad de Ciencias Quimicas- Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Sonia Maria Oliani
- Department of Biology, Institute of Bioscience, Humanities and Exact Science, São Paulo State University (Unesp), São José do Rio Preto, Brazil
- Advanced Research Center in Medicine, CEPAM –Unilago, São José do Rio Preto, Brazil
- Federal University of São Paulo, Post Graduate Program in Structural and Functional Biology, Escola Paulista de Medicina (Unifesp-EPM), São Paulo, Brazil
| |
Collapse
|
21
|
Pastre MJ, Gois MB, Casagrande L, Pereira-Severi LS, de Lima LL, Trevizan AR, Miqueloto CA, Garcia JL, Costa SL, Nogueira-Melo GDA, Sant'Ana DDMG. Acute infection with Toxoplasma gondii oocysts preferentially activates non-neuronal cells expressing serotonin in the jejunum of rats. Life Sci 2021; 283:119872. [PMID: 34352261 DOI: 10.1016/j.lfs.2021.119872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
The interaction of Toxoplasma gondii with the gastrointestinal tract of its host is highly regulated. Once ingested, the parasite crosses the epithelium without altering the permeability of the intestinal barrier. Nevertheless, many studies report alterations ranging from structural to functional damage in cells and tissues that make up the wall of the small and large intestine. Although the immune response to the parasite has been extensively studied, the role of serotonin (5-HT) in toxoplasmosis is poorly understood. Here we investigate the distribution of cells expressing 5-HT and its effects on cells and tissues of the jejunal wall of rats after 2, 3, or 7 days of T. gondii infection. KEY RESULTS: Our results show that transposition of the jejunal epithelium by T. gondii leads to ruptures in the basement membrane and activation of the immune system, as confirmed by the decrease in laminin immunostaining and the increase in the number of mast cells, respectively. CONCLUSIONS AND INFERENCES: We showed an increase in the number of enterochromaffin cells and mast cells expressing 5-HT in the jejunal wall. We also observed that the percentage of serotonergic mast cells increased in the total population. Thus, we can suggest that oral infection by T. gondii oocysts preferentially activates non-neuronal cells expressing 5-HT. Together, these results may explain both the changes in the extracellular matrix and the morphology of the enteric ganglia.
Collapse
Affiliation(s)
- Maria José Pastre
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Marcelo Biondaro Gois
- Instituto de Ciências da Saúde, Universidade Federal da Bahia and Centro de Ciências da Saúde, Universidade Federal do Recôncavo da Bahia, Santo Antônio de Jesus, BA, Brazil.
| | - Lucas Casagrande
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Lainy Leiny de Lima
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Aline Rosa Trevizan
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - João Luís Garcia
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Silvia Lima Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, Brazil
| | | | | |
Collapse
|
22
|
Vera ME, Mariani ML, Aguilera C, Penissi AB. Effect of a Cytoprotective Dose of Dehydroleucodine, Xanthatin, and 3-Benzyloxymethyl-5 H-furan-2-one on Gastric Mucosal Lesions Induced by Mast Cell Activation. Int J Mol Sci 2021; 22:5983. [PMID: 34205991 PMCID: PMC8198283 DOI: 10.3390/ijms22115983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to determine whether the lactones dehydroleucodine, xanthatin and 3-benzyloxymethyl-5H-furan-2-one, would be effective in an animal model of gastric ulcer induced by mast cell activation. Rats were divided into ten groups. Treatments were repeated for four days. The degree of gastric erosion was assessed with a scoring system and histological preparations. Gastric mast cell morphology was analyzed by histological procedures. Serum serotonin levels were determined as markers of mast cell activation. Statistical analyses were done using ANOVA and Tukey-Kramer test. We demonstrated that the repeated administration of compound 48/80 results in extensive mucosal lesions in the gastric mucosa and that such lesions occurred in association with mast cell degranulation and a significant increase of serum serotonin. We showed that these lesions were prevented by dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one and that this effect was similar to that obtained with sodium cromoglycate. In conclusion, the results of the present study indicate that the optimal gastric cytoprotective dose of dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one is efficacious in an animal model of gastric ulcer induced by mast cell activation. Our findings suggest that these lactones could be valuable tools for designing novel therapeutic agents for digestive disorders associated with inappropriate mast cell activation.
Collapse
Affiliation(s)
| | | | | | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología “Dr. Mario H. Burgos” (IHEM-CCT Mendoza-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina; (M.E.V.); (M.L.M.); (C.A.)
| |
Collapse
|
23
|
Oliveira RGD, Damazo AS, Antonielli LF, Miyajima F, Pavan E, Duckworth CA, Lima JCDS, Arunachalam K, Martins DTDO. Dilodendron bipinnatum Radlk. extract alleviates ulcerative colitis induced by TNBS in rats by reducing inflammatory cell infiltration, TNF-α and IL-1β concentrations, IL-17 and COX-2 expressions, supporting mucus production and promotes an antioxidant effect. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113735. [PMID: 33359865 DOI: 10.1016/j.jep.2020.113735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dilodendron bipinnatum (Sapindaceae) stem bark decoction and macerate were used to treat uterine inflammation, pain in general, dermatitis and bone fractures. These homemade preparations also have diuretic, stimulant, expectorants and sedative effects and are effective in treating worm infections in the Brazilian Pantanal population. Our previous research confirmed the anti-inflammatory activity of the hydroethanolic extract of inner stem bark of D. bipinnatum (HEDb). AIM This work aimed to investigate the efficacy of HEDb in ameliorating experimental colitis in rats and to elucidate the possible mechanisms involved in the anti-ulcerative colitis properties of HEDb in rats and Caco-2 cell line. MATERIALS AND METHODS The effects on cell viability, IL-8 and TNF-α in human colon adenocarcinoma (Caco-2) were determined by flow cytometer and ELISA. Wistar rats (n = 6-7) were orally gavaged with, vehicle (0.9% saline), HEDb at doses of 20, 100 or 500 mg/kg, or mesalazine at a dose of 500 mg/kg, at 48, 24 and 1 h prior to the administration of trinitrobenzene sulfonic acid via rectal administration to induce colitis. The anti-inflammatory effects of HEDb were assessed macroscopically, by myeloperoxidase (MPO) activity and for glutathione (GSH) concentration in the colon. Additionally, colonic histopathological analyses of UC severity were conducted by different staining methods (H&E, PAS and toluidine blue). Pro-inflammatory cytokines TNF-α and IL-1β were quantified in colonic tissue by ELISA and colonic expressions of COX-2 and IL-17 were analyzed by western blotting. RESULTS HEDb was shown to be non-cytotoxic with mean viability of 80% in Caco-2 cells. HEDb pre-treatments of 1, 5 or 20 μg/mL significantly reduced TNF-α production in Caco-2 cells by 21.8% (p < 0.05), 60.5 and 82.1% (p < 0.001) respectively following LPS treatment compared to LPS alone. However, no change in IL-8 production was observed. HEDb pre-treatment of rats subjected to TNBS significantly (p < 0.001) reduced colonic lesion score. Higher doses (100 and 500 mg/kg) caused a sharp downregulation of haemorrhagic damage, leukocyte infiltration, edema and restoration of mucus production. Moreover, mast cell degranulation was inhibited. Colonic MPO activity was reduced following all doses of HEDb, reaching 51.1% ± 1.51 (p < 0.05) with the highest dose. GSH concentration was restored by 58% and 70% following 100 and 500 mg/kg of HEDb, respectively. The oral treatment of HEDb at doses 20, 100 and 500 mg/kg decreased the concentrations of TNF-α and IL-1β at all doses in comparison to vehicle treated control. In addition, HEDb inhibited the COX-2 and IL-17 expressions with maximal effect at 500 mg/kg (60.3% and 65% respectively; p < 0.001). In all trials, the effect of HEDb at all doses being 20, 100 and 500 mg/kg was statistically comparable to mesalazine (500 mg/kg). CONCLUSIONS HEDb reduces colonic damage in the TNBS colitis model and relieves oxidative and inflammatory events, at least in part, by increasing mucus production, reducing leukocyte migration and reducing TNF-α (in vivo and in vitro), IL-1β, IL-17 and COX-2 expression. Therefore, HEDb requires further investigation as a candidate for treating IBD.
Collapse
Affiliation(s)
- Ruberlei Godinho de Oliveira
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil; Faculdade de Farmácia, Universidade de Cuiabá (UNIC), Cuiabá, MT, Brazil; Programa de Pós-Graduação Em Ciências Aplicadas à Atenção Hospitalar, Hospital Universitário Júlio Muller (HUJM), Cuiabá, MT, Brazil.
| | - Amílcar Sabino Damazo
- Área de Histologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), MT, Cuiabá, MT, Brazil.
| | | | - Fábio Miyajima
- Oswaldo Cruz Foundation (Fiocruz), Brench Ceará, Eusébio, Brazil.
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Carrie A Duckworth
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil; Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas Em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
24
|
Cheng L, Luo QQ, Chen SL. The role of intestinal mast cell infiltration in irritable bowel syndrome. J Dig Dis 2021; 22:143-151. [PMID: 33511763 DOI: 10.1111/1751-2980.12971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
As an essential part of the immune system, mast cells (MCs) play an important role in the pathogenesis of irritable bowel syndrome (IBS). Accumulating evidence has identified altered MC count and density in intestinal mucosa of patients with IBS; however, conflicting findings yield inconsistent conclusions. Currently, most studies have suggested intestinal MC infiltration in IBS patients. Considering the pivotal role of MCs in IBS, it is necessary to achieve a better understanding about the pathological changes in the intestine. The risk factors for IBS, including dietary habits, psychological factors, infection, and dysbiosis, are implicated to induce intestinal MC infiltration. Mechanistically, food may trigger immune-related allergic reactions and affect the intestinal microbiota activity. Some exogenous pathogens and altered profile of commensal bacteria promote intestinal MC recruitment through promoted release of chemokines from epithelial cells or direct activation of the immune system. In addition, psychological factors may affect the microenvironment where MCs live. MCs have been proven to interact with the enteric neurons and other immunocytes, evidenced by the close proximity of MCs to neurons and regional altered immune system components. A variety of mediators released by the enteric neurons, immunocytes, and MCs per se, such as neurotrophins, neuropeptides, cytokines, and chemokines, may have stimulant effects on MCs by modulating the survival, proliferation, and recruitment process of MCs in the intestine. In this review, the associations between IBS and intestinal MC density and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qing Qing Luo
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Sheng Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
25
|
Ciriza de Los Ríos C, Castel de Lucas I, Canga Rodríguez-Valcárcel F, Diéguez Pastor MDC, de Las Cuevas Moreno N, Rey Díaz-Rubio E. IRRITABLE BOWEL SYNDROME AND BASAL SERUM TRYPTASE: THE CORRELATION BETWEEN SUBTYPE, SEVERITY AND COMORBIDITIES. A PILOT STUDY. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2021; 114:22-27. [PMID: 33562988 DOI: 10.17235/reed.2021.7697/2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Activation of mast cells causes alteration in epithelial and neuromuscular function, and is involved in visceral hypersensitivity and dysmotility in gastrointestinal functional disorders. OBJECTIVES Primary: Evaluate differences in basal serum tryptase (BST) between patients with irritable bowel syndrome (IBS) and healthy controls. Secondary: BST depending on IBS subtype (diarrhea: IBS-D; constipation: IBS-C), comorbidities and correlations with IBS severity and quality of life. MATERIAL AND METHODS Prospective control-case study in IBS patients (Rome IV criteria). BST was determined (ImmunoCAP-Phadia, Sweden®) IBS Severity Score (IBSSS), pain, bloating and flatulence analogue scales, IBS quality of life (IBSQOL) and patient health status (PHQ-9) were performed. BST is the primary variable in achieving the primary end-point. RESULTS Thirty-two patients, 21 (65.6%) IBS-D, 11 (34.4%) IBS-C and 32 controls were included. Mean IBSSSS: 326.6 (± 71.4), IBSQOL: 76 (± 20.3) and PHQ9: 10.2 (± 5.9). BST was 4.8 ± 2.6 in IBS and 4.7± 2.6 in controls (p=0.875). There was no difference in BST between IBS subtypes (4.7 ± 2.9 in IBS-D and 5± 1.8 in IBS-C; p =0.315) or IBS severity (p=0.662). However, BST was higher in patients with IBS and extraintestinal comorbidities compared to other patients and controls (p=0.029). This subgroup also has more severe bloating (p=0.021). There was no correlation between BST, quality of life (p=0.9260) and health status (p=0.3985). CONCLUSION BST does not discriminate between IBS patients and controls. However, BST was higher in patients with IBS with extraintestinal comorbidities which have more severe bloating. This finding is worthy of investigation.
Collapse
Affiliation(s)
- Constanza Ciriza de Los Ríos
- Aparato Digestivo, Hospital Clínico San Carlos. Instituto de Investigacion Sanitaria San Carlos (IdISSC). , España
| | | | | | | | | | - Enrique Rey Díaz-Rubio
- Aparato Digestivo, Hospital Clínico San Carlos. Instituto de Investigacion Sanitaria San Carlos (IdISSC), España
| |
Collapse
|
26
|
Losso JN. Food Processing, Dysbiosis, Gastrointestinal Inflammatory Diseases, and Antiangiogenic Functional Foods or Beverages. Annu Rev Food Sci Technol 2021; 12:235-258. [PMID: 33467906 DOI: 10.1146/annurev-food-062520-090235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Foods and beverages provide nutrients and alter the gut microbiota, resulting in eubiosis or dysbiosis. Chronic consumption of a diet that is high in saturated or trans fats, meat proteins, reducing sugars, and salt and low in fiber induces dysbiosis. Dysbiosis, loss of redox homeostasis, mast cells, hypoxia, angiogenesis, the kynurenine pathway, transglutaminase 2, and/or the Janus kinase pathway are implicated in the pathogenesis and development of inflammatory bowel disease, celiac disease, and gastrointestinal malignancy. This review discusses the effects of oxidative, carbonyl, or glycative stress-inducing dietary ingredients or food processing-derived compounds on gut microbiota and gastrointestinal epithelial and mast cells as well as on the development of associated angiogenic diseases, including key signaling pathways. The preventive or therapeutic potential and the biochemical pathways of antiangiogenic or proangiogenic foods or beverages are also described. The outcomes of the interactions between disease pathways and components of food are critical for the design of foods and beverages for healthy lives.
Collapse
Affiliation(s)
- Jack N Losso
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA;
| |
Collapse
|
27
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
28
|
Valeri V, Tonon S, Vibhushan S, Gulino A, Belmonte B, Adori M, Karlsson Hedestam GB, Gautier G, Tripodo C, Blank U, Mion F, Pucillo CEM. Mast cells crosstalk with B cells in the gut and sustain IgA response in the inflamed intestine. Eur J Immunol 2020; 51:445-458. [PMID: 32920851 DOI: 10.1002/eji.202048668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Viviana Valeri
- Department of Medicine, University of Udine, Udine, Italy
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Shamila Vibhushan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Alessandro Gulino
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Gregory Gautier
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Claudio Tripodo
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
29
|
Ghafouri Z, Seyyedian S, Nikbakht J, Kouhsari E, Bayat S, Zargar H, Houshmand G. Effect of Sodium Cromoglycate on Acetic Acid-induced Ulcerative Colitis in Mice. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 75:39-45. [PMID: 31986572 DOI: 10.4166/kjg.2020.75.1.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022]
Abstract
Background/Aims Ulcerative colitis (UC) is a type of inflammatory bowel disease that mainly involves the colon. Thus far, glucocorticoids and amino-salicylate have been the main treatment. Methods To assess drugs with fewer side effects, this study evaluated the effects of sodium cromoglycate (SCG) on acetic acid-induced UC in rats. The treatment groups included SCG receivers (50 and 100 mg/kg, intra-orally) and sulfasalazine (SSZ) receivers (100 mg/kg, intra-orally). The colonic mucosal injury was assessed by clinical, macroscopic, and histopathological examinations. Results In the treatment groups with 50 and 100 mg/kg of SCG, the clinical activity score decreased to 2.67±0.18 and 1.73±0.21 (p<0.05), respectively, compared to the UC control group (3.21±0.31), and were higher than that of the group given the standard treatment of 100 mg/kg SSZ (1.10±0.09). The treatment groups with 50 and 100 mg/kg of SCG showed a lower clinical gross lesion score than the UC control group (2.91±0.28 and 2.10±0.43, vs. 4.49±0.61, p<0.05) and were higher than the standard group (0.95±0.18). Treatment with SCG (100 mg/kg) decreased the macroscopic scores significantly compared to the UC control group (p<0.05) on the 8th day. Conclusions SCG (100mg/kg) decreased significantly the clinical activity score, gross lesion, and percentage-affected area compared to the UC controls on the 8th day.
Collapse
Affiliation(s)
- Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Seyyedian
- Department of Internal Medicine, School of Medicine, Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Nikbakht
- Department of Pharmacology, School of Medicine, Yasuj University of Medical Science, Yasuj, Iran
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sara Bayat
- Department of Internal Medicine, School of Medicine, Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Zargar
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Gut and Liver Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Eissmann MF, Buchert M, Ernst M. IL33 and Mast Cells-The Key Regulators of Immune Responses in Gastrointestinal Cancers? Front Immunol 2020; 11:1389. [PMID: 32719677 PMCID: PMC7350537 DOI: 10.3389/fimmu.2020.01389] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The Interleukin (IL-)1 family IL33 is best known for eliciting type 2 immune responses by stimulating mast cells (MCs), regulatory T-cells (Tregs), innate lymphoid cells (ILCs) and other immune cells. MCs and IL33 provide critical control of immunological and epithelial homeostasis in the gastrointestinal (GI) tract. Meanwhile, the role of MCs in solid malignancies appears tissue-specific with both pro and anti-tumorigenic activities. Likewise, IL33 signaling significantly shapes immune responses in the tumor microenvironment, but these effects remain often dichotomous when assessed in experimental models of cancer. Thus, the balance between tumor suppressing and tumor promoting activities of IL33 are highly context dependent, and most likely dictated by the mixture of cell types responding to IL33. Adding to this complexity is the promiscuous nature by which MCs respond to cytokines other than IL33 and release chemotactic factors that recruit immune cells into the tumor microenvironment. In this review, we integrate the outcomes of recent studies on the role of MCs and IL33 in cancer with our own observations in the GI tract. We propose a working model where the most abundant IL33 responsive immune cell type is likely to dictate an overall tumor-supporting or tumor suppressing outcome in vivo. We discuss how these opposing responses affect the therapeutic potential of targeting MC and IL33, and highlight the caveats and challenges facing our ability to effectively harness MCs and IL33 biology for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
31
|
Yamanaka-Takaichi M, Sugawara K, Sumitomo R, Tsuruta D. The Mast Cell-SCF-CB1 Interaction Is a Key Player in Seborrheic Keratosis. J Histochem Cytochem 2020; 68:461-471. [PMID: 32578480 DOI: 10.1369/0022155420938031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mast cell (MC) is an important player in the development of skin diseases, including atopic dermatitis, psoriasis, and urticaria. It is reported that MC infiltration and activation are observed around various types of tumors and speculated that MCs play key roles in their pathogenesis. As MCs in human seborrheic keratosis (SK) have not been well investigated, here we focused on the MCs in SK. The number of c-Kit and tryptase-positive MCs was significantly increased around the SK compared with the marginal lesion. Degranulated MCs were also increased around the tumors. Furthermore, MC growth factor, stem cell factor (SCF), expression within the SK was significantly upregulated compared with the marginal lesion. Interestingly, one of the cognitive regulators of SCF expression, cannabinoid receptor type 1 (CB1) immunoreactivity was downregulated within the SK. Our results suggest that MCs play important roles in the pathogenesis of SK and that SCF can be also deeply involved in the development of SKs. Our current results highlight the CB1-SCF-MC interaction as a novel mechanism of SK development and this also will be utilized for developing a novel treatment.
Collapse
Affiliation(s)
- Mika Yamanaka-Takaichi
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Koji Sugawara
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Rieko Sumitomo
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan (MY-T, KS, RS, DT)
| |
Collapse
|
32
|
de Brito TV, Júnior GJD, da Cruz Júnior JS, Silva RO, da Silva Monteiro CE, Franco AX, Vasconcelos DFP, de Oliveira JS, da Silva Costa DV, Carneiro TB, Gomes Duarte AS, de Souza MHLP, Soares PMG, Barbosa ALDR. Gabapentin attenuates intestinal inflammation: Role of PPAR-gamma receptor. Eur J Pharmacol 2020; 873:172974. [PMID: 32027888 DOI: 10.1016/j.ejphar.2020.172974] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Gabapentin is an anticonvulsant drug that is also used for post-herpetic neuralgia and neuropathic pain. Recently, gabapentin showed anti-inflammatory effect. Nuclear factor kappa B (NFκB) is a regulator of the inflammatory process, and Peroxisome Proliferator-activated Receptor gamma (PPAR-gamma) is an important receptor involved in NFκB regulation. The aim of the present work was to study the potential role of PPAR-gamma receptor in gabapentin-mediated anti-inflammatory effects in a colitis experimental model. We induced colitis in rats using trinitrobenzenosulfonic acid and treated them with gabapentin and bisphenol A dicyldidyl ether (PPAR-gamma inhibitor). Macroscopic lesion scores, wet weight, histopathological analysis, mast cell count, myeloperoxidase, malondialdehyde acid, glutathione, nitrate/nitrite, and interleukin levels in the intestinal mucosa were determined. In addition, western blots were performed to determine the expression of Cyclooxygenase-2 (COX-2) and NFκB; Nitric Oxide Inducible Synthase (iNOS) and Interleukin 1 beta (IL-1β) levels were also determined. Gabapentin was able to decrease all inflammatory parameters macroscopic and microscopic in addition to reducing markers of oxidative stress and cytokines such as IL-1β and Tumor Necrosis Factor alpha (TNF-α) as well as enzymes inducible nitric oxide synthase and cyclooxygenase 2 and inflammatory genic regulator (NFκB). These effect attributed to gabapentin was observed to be lost in the presence of the specific inhibitor of PPAR-gamma. Gabapentin inhibits bowel inflammation by regulating mast cell signaling. Furthermore, it activates the PPAR-gamma receptor, which in turn inhibits the activation of NFκB, and consequently results in reduced activation of inflammatory genes involved in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tarcisio Vieira de Brito
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Genilson José Dias Júnior
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - José Simião da Cruz Júnior
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Renan Oliveira Silva
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, 50670-901, Recife, Pernambuco, Brazil
| | | | - Alvaro Xavier Franco
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Fernando Pereira Vasconcelos
- LAPHIS - Laboratory of Analysis and Histological Processing, Department of Biomedicine, Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry and Biology of Microorganisms and Plants (BIOMIC), Federal University of Piauí, Campus Minister Reis Velloso. Av. São Sebastião, 2819, CEP: 64202-020, Parnaíba, Piauí, Brazil
| | - Deiziane Viana da Silva Costa
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | - Theides Batista Carneiro
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | - Antoniella Souza Gomes Duarte
- NEMPI - Nucleus of Study in Microscopy and Image Processing, Faculty of Medicine, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, CEP: 60430270, Fortaleza, Ceará, Brazil
| | | | - Pedro Marcos Gomes Soares
- LEFFAG - Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Dos Reis Barbosa
- LAFFEX - Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, 64202-020, PI, Brazil.
| |
Collapse
|
33
|
Killer Immunoglobulin-Like Receptor 2DL4 (CD158d) Regulates Human Mast Cells both Positively and Negatively: Possible Roles in Pregnancy and Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21030954. [PMID: 32023940 PMCID: PMC7037260 DOI: 10.3390/ijms21030954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Killer immunoglobulin-like receptor (KIR) 2DL4 (CD158d) was previously thought to be a human NK cell-specific protein. Mast cells are involved in allergic reactions via their KIT-mediated and FcɛRI-mediated responses. We recently detected the expression of KIR2DL4 in human cultured mast cells established from peripheral blood of healthy volunteers (PB-mast), in the human mast cell line LAD2, and in human tissue mast cells. Agonistic antibodies against KIR2DL4 negatively regulate the KIT-mediated and FcɛRI-mediated responses of PB-mast and LAD2 cells. In addition, agonistic antibodies and human leukocyte antigen (HLA)-G, a natural ligand for KIR2DL4, induce the secretion of leukemia inhibitory factor and serine proteases from human mast cells, which have been implicated in pregnancy establishment and cancer metastasis. Therefore, KIR2DL4 stimulation with agonistic antibodies and recombinant HLA-G protein may enhance both processes, in addition to suppressing mast-cell-mediated allergic reactions.
Collapse
|
34
|
Mast Cells: Fascinating but Still Elusive after 140 Years from Their Discovery. Int J Mol Sci 2020; 21:ijms21020464. [PMID: 31940755 PMCID: PMC7013937 DOI: 10.3390/ijms21020464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
|
35
|
Kakinoki A, Kameo T, Yamashita S, Furuta K, Tanaka S. Establishment and Characterization of a Murine Mucosal Mast Cell Culture Model. Int J Mol Sci 2019; 21:ijms21010236. [PMID: 31905768 PMCID: PMC6982154 DOI: 10.3390/ijms21010236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence suggests that mast cells play critical roles in disruption and maintenance of intestinal homeostasis, although it remains unknown how they affect the local microenvironment. Interleukin-9 (IL-9) was found to play critical roles in intestinal mast cell accumulation induced in various pathological conditions, such as parasite infection and oral allergen-induced anaphylaxis. Newly recruited intestinal mast cells trigger inflammatory responses and damage epithelial integrity through release of a wide variety of mediators including mast cell proteases. We established a novel culture model (IL-9-modified mast cells, MCs/IL-9), in which murine IL-3-dependent bone-marrow-derived cultured mast cells (BMMCs) were further cultured in the presence of stem cell factor and IL-9. In MCs/IL-9, drastic upregulation of Mcpt1 and Mcpt2 was found. Although histamine storage and tryptase activity were significantly downregulated in the presence of SCF and IL-9, this was entirely reversed when mast cells were cocultured with a murine fibroblastic cell line, Swiss 3T3. MCs/IL-9 underwent degranulation upon IgE-mediated antigen stimulation, which was found to less sensitive to lower concentrations of IgE in comparison with BMMCs. This model might be useful for investigation of the spatiotemporal changes of newly recruited intestinal mast cells.
Collapse
Affiliation(s)
- Aya Kakinoki
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Tsuyoshi Kameo
- Department of Immunobiology, Faculty of Pharmacy and Pharmaceutical Sciences, Okayama University, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Shoko Yamashita
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan (K.F.)
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4667
| |
Collapse
|
36
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double-Edged Sword in Immunity: Their Function in Health and Disease. First of Two Parts. Endocr Metab Immune Disord Drug Targets 2019; 20:654-669. [PMID: 31789135 DOI: 10.2174/1871530319666191202120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
Mast cells (MCs) have recently been re-interpreted in the context of the immune scenario in the sense that their pro-allergic role is no longer exclusive. In fact, MCs even in steady state conditions maintain homeostatic functions, producing mediators and intensively cross-talking with other immune cells. Here, emphasis will be placed on the array of receptors expressed by MCs and the variety of cytokines they produce. Then, the bulk of data discussed will provide readers with a wealth of information on the dual ability of MCs not only to defend but also to offend the host. This double attitude of MCs relies on many variables, such as their subsets, tissues of residency and type of stimuli ranging from microbes to allergens and food antigens. Finally, the relationship between MCs with basophils and eosinophils will be discussed.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
37
|
Loo EXL, Wang DY, Siah KTH. Association between Irritable Bowel Syndrome and Allergic Diseases: To Make a Case for Aeroallergen. Int Arch Allergy Immunol 2019; 181:31-42. [PMID: 31694023 DOI: 10.1159/000503629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/21/2019] [Indexed: 11/19/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disease and the most common cause of prolonged abdominal pain and bowel disturbances in the developed world. While initially thought to be functional or psychosomatic in nature, IBS is now recognized as a heterogeneous group of conditions. A subset of IBS patients and patients with allergic diseases share some characteristic inflammatory features. In fact, atopic children show an increased likelihood of developing IBS as adults. Given these findings, a subset of IBS may be suffering from allergy-related gut diseases. In this review, we present the allergy-related comorbidities of IBS, including genetic, environmental, and immunologic factors. We discuss studies demonstrating an increased sensitization of IBS patients to aeroallergens compared to food allergens. We then postulate potential pathophysiological mechanisms underlying both IBS and aeroallergens in the gut, followed by potential implications in the screening and treatment of allergies in IBS patients.
Collapse
Affiliation(s)
- Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Pediatrics, Yong Loo School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kewin Tien Ho Siah
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore, Singapore, .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,
| |
Collapse
|
38
|
Christerson U, Keita ÅV, Winberg ME, Söderholm JD, Gustafson-Svärd C. Possible Involvement of Intracellular Calcium-Independent Phospholipase A 2 in the Release of Secretory Phospholipases from Mast Cells-Increased Expression in Ileal Mast Cells of Crohn's Disease. Cells 2019; 8:cells8070672. [PMID: 31277247 PMCID: PMC6678282 DOI: 10.3390/cells8070672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Increased activity of secretory phospholipases A2 (sPLA2) type-II was previously observed in ileum of Crohn’s disease (CD). Our aims were to explore the involvement of calcium-independent (i)PLA2β in the release of sPLA2s from the human mast cell (MC) line (HMC-1) and investigate expressions of cytosolic (c)PLA2α, iPLA2β, sPLA2-IIA and sPLA2-V in MCs of CD ileum. The release of sPLA2 was investigated in HMC-1 by immunocytochemistry and ELISA. The expression intensities of PLA2s in mucosal MCs, and the proportion of PLA2-positive MCs, were investigated in normal ileum and in ileum from patients with CD by immunohistochemistry. The calcium ionophore-stimulated release of sPLA2-IIA and sPLA2-V from HMC-1 was reduced by the iPLA2-inhibitor bromoenol lactone. All four PLA2s were detectable in mucosal MCs, both in normal ileum and in CD, but the proportion of iPLA2β-containing mucosal MCs and the expression intensity of sPLA2-IIA was increased in CD. Results indicate that iPLA2β is involved in the secretion of sPLA2s from HMC-1, and suggest that iPLA2β-mediated release of sPLA2 from intestinal MCs may contribute to CD pathophysiology. Ex vivo studies on isolated mucosal mast cells are however needed to clarify the precise role of MC PLA2s in the inflammatory processes of CD.
Collapse
Affiliation(s)
- Ulrika Christerson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden
| | - Åsa V Keita
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
| | - Martin E Winberg
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
- Department of Surgery, County Council of Östergötland, 581 85 Linköping, Sweden
| | - Christina Gustafson-Svärd
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
39
|
Abstract
Beyond their well-known role in embryonic development of the central and peripheral nervous system, neurotrophins, particularly nerve growth factor and brain-derived neurotrophic factor, exert an essential role in pain production and sensitization. This has mainly been studied within the framework of somatic pain, and even antibodies (tanezumab and fasinumab) have recently been developed for their use in chronic somatic painful conditions, such as osteoarthritis or low back pain. However, data suggest that neurotrophins also exert an important role in the occurrence of visceral pain and visceral sensitization. Visceral pain is a distressing symptom that prompts many consultations and is typically encountered in both 'organic' (generally inflammatory) and 'functional' (displaying no obvious structural changes in routine clinical evaluations) disorders of the gut, such as inflammatory bowel disease and irritable bowel syndrome, respectively. The present review provides a summary of neurotrophins as a molecular family and their role in pain in general and addresses recent investigations of the involvement of nerve growth factor and brain-derived neurotrophic factor in visceral pain, particularly that associated with inflammatory bowel disease and irritable bowel syndrome.
Collapse
|
40
|
Protective Effect of Cashew Gum (Anacardium occidentale L.) on 5-Fluorouracil-Induced Intestinal Mucositis. Pharmaceuticals (Basel) 2019; 12:ph12020051. [PMID: 30987265 PMCID: PMC6630449 DOI: 10.3390/ph12020051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1β) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis.
Collapse
|
41
|
Pastre MJ, Casagrande L, Gois MB, Pereira-Severi LS, Miqueloto CA, Garcia JL, de Alcântara Nogueira-Melo G, de Mello Gonçales Sant'Ana D. Toxoplasma gondii causes increased ICAM-1 and serotonin expression in the jejunum of rats 12 h after infection. Biomed Pharmacother 2019; 114:108797. [PMID: 30951950 DOI: 10.1016/j.biopha.2019.108797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To analyze the remodeling dynamics of total collagen, type I and III, the expression of ICAM-1 and 5-HT in the jejunum of rats. METHODS Twenty-eight Wistar rats were randomly assigned to two experimental groups: the control group (CG, n = 7) and the infected group (receiving 5,000 sporulated T. gondii oocysts - ME49 strain, genotype II, n = 21). Seven infected rats each at 6 (G6), 12 (G12), and 24 (G24) hours post infection were sacrificed and segments of jejunum were collected for standard histological, histochemical, and immunohistochemistry processing techniques. RESULTS The infection promoted ICAM-1 and 5-HT expression, type III collagen, and total mast cell increases. However, it also caused a reduction in the area occupied by type I collagen fibers, and in submucosa thickness, and caused ganglion and peri-ganglion alterations. CONCLUSION The structural damage caused by toxoplasmic infection is intense during the first 24 h post inoculation. At peak dissemination, from 12 to 24 h, there is an increase in ICAM-1 and 5-HT expression, with intense migration of mast cells to the site of infection. There was also a reduction in submucosa thickness, and an effective loss of extracellular matrix (ECM) organization, which included changes in the dynamics of type I and III total collagen deposition.
Collapse
Affiliation(s)
- Maria José Pastre
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Lucas Casagrande
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Marcelo Biondaro Gois
- Universidade Federal do Recôncavo da Bahia, Av. Carlos Amaral, Cajueiro, CEP 44574-490, Santo Antônio de Jesus, BA; and Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, Vale do Canela, Salvador, BA, Brazil.
| | - Letícia Sarturi Pereira-Severi
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Carlos Alberto Miqueloto
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, CEP: 86057-970, Londrina, Paraná, Brazil
| | - João Luís Garcia
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, CEP: 86057-970, Londrina, Paraná, Brazil
| | - Gessilda de Alcântara Nogueira-Melo
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Débora de Mello Gonçales Sant'Ana
- Programa de Pós-graduação em Biociências e Fisiopatologia, Universidade Estadual de Maringá, Av. Colombo, n° 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| |
Collapse
|
42
|
Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC. Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol 2019; 144:S31-S45. [PMID: 30772496 DOI: 10.1016/j.jaci.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - George K Ainooson
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Riedlinger
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
43
|
Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM. Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 2019; 282:35-46. [PMID: 29431204 DOI: 10.1111/imr.12636] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mast cells (MCs) are derived from committed precursors that leave the hematopoietic tissue, migrate in the blood, and colonize peripheral tissues where they terminally differentiate under microenvironment stimuli. They are distributed in almost all vascularized tissues where they act both as immune effectors and housekeeping cells, contributing to tissue homeostasis. Historically, MCs were classified into 2 subtypes, according to tryptic enzymes expression. However, MCs display a striking heterogeneity that reflects a complex interplay between different microenvironmental signals delivered by various tissues, and a differentiation program that decides their identity. Moreover, tissue-specific MCs show a trained memory, which contributes to shape their function in a specific microenvironment. In this review, we summarize the current state of our understanding of MC heterogeneity that reflects their different tissue experiences. We describe the discovery of unique cell molecules that can be used to distinguish specific MC subsets in vivo, and discuss how the improved ability to recognize these subsets provided new insights into the biology of MCs. These recent advances will be helpful for the understanding of the specific role of individual MC subsets in the control of tissue homeostasis, and in the regulation of pathological conditions such as infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | - Riccardo Sibilano
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, London, UK
| | | |
Collapse
|
44
|
Tikoo S, Barki N, Jain R, Zulkhernain NS, Buhner S, Schemann M, Weninger W. Imaging of mast cells. Immunol Rev 2019; 282:58-72. [PMID: 29431206 DOI: 10.1111/imr.12631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are a part of the innate immune system implicated in allergic reactions and the regulation of host-pathogen interactions. The distribution, morphology and biochemical composition of mast cells has been studied in detail in vitro and on tissue sections both at the light microscopic and ultrastructural level. More recently, the development of fluorescent reporter strains and intravital imaging modalities has enabled first glimpses of the real-time behavior of mast cells in situ. In this review, we describe commonly used imaging approaches to study mast cells in cell culture as well as within normal and diseased tissues. We further describe the interrogation of mast cell function via imaging by providing a detailed description of mast cell-nerve plexus interactions in the intestinal tract. Together, visualizing mast cells has expanded our view of these cells in health and disease.
Collapse
Affiliation(s)
- Shweta Tikoo
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | - Natasja Barki
- LS Human Biology, Technical University München, München, Germany
| | - Rohit Jain
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia
| | | | - Sabine Buhner
- LS Human Biology, Technical University München, München, Germany
| | - Michael Schemann
- LS Human Biology, Technical University München, München, Germany
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, Sydney Medical School, Sydney, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
45
|
De Zuani M, Dal Secco C, Frossi B. Mast cells at the crossroads of microbiota and IBD. Eur J Immunol 2018; 48:1929-1937. [PMID: 30411335 DOI: 10.1002/eji.201847504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/26/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
The human gut harbors a wide range of microorganisms that play a fundamental role in the well-being of their host. A dysregulation of the microbial composition can lead to the development or exacerbation of gastrointestinal (GI) disorders. Emerging evidence supports the hypothesis that mast cells (MCs) play a role in host-microbiota communication, modulating the mutual influence between the host and its microbiota through changes in their activation state. The ability of some bacteria to specifically affect MC functions and activation has been extensively studied, with different and sometimes conflicting results, while only little is known about MC-fungi interactions. In this review, the most recent advances in the field of MC-bacteria and MC-fungi interactions will be discussed, with a particular focus on the role of these interactions in the onset of GI disorders such as inflammatory bowel diseases (IBD). Moreover, the connection between some MC-targeting drugs and IBD was discussed, suggesting probiotics as reasonable and promising therapy in the management of IBD patients.
Collapse
Affiliation(s)
- Marco De Zuani
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
46
|
Costantini C, Renga G, Oikonomou V, Paolicelli G, Borghi M, Pariano M, De Luca A, Puccetti M, Stincardini C, Mosci P, Bartoli A, Zelante T, Romani L. The Mast Cell-Aryl Hydrocarbon Receptor Interplay at the Host-Microbe Interface. Mediators Inflamm 2018; 2018:7396136. [PMID: 30510489 PMCID: PMC6230381 DOI: 10.1155/2018/7396136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/19/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022] Open
Abstract
Mast cells are increasingly being recognized as crucial cells in the response of the organism to environmental agents. Interestingly, the ability of mast cells to sense and respond to external cues is modulated by the microenvironment that surrounds mast cells and influences their differentiation. The scenario that is emerging unveils a delicate equilibrium that balances the effector functions of mast cells to guarantee host protection without compromising tissue homeostasis. Among the environmental components able to mold mast cells and fine-tune their effector functions, the microorganisms that colonize the human body, collectively known as microbiome, certainly play a key role. Indeed, microorganisms can regulate not only the survival, recruitment, and maturation of mast cells but also their activity by setting the threshold required for the exploitation of their different effector functions. Herein, we summarize the current knowledge about the mechanisms underlying the ability of the microorganisms to regulate mast cell physiology and discuss potential deviations that result in pathological consequences. We will discuss the pivotal role of the aryl hydrocarbon receptor in sensing the environment and shaping mast cell adaptation at the host-microbe interface.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Vasilis Oikonomou
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Giuseppe Paolicelli
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Monica Borghi
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Marilena Pariano
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia 06132, Italy
| | - Claudia Stincardini
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Paolo Mosci
- Department of Veterinary Medicine, University of Perugia, Perugia 06132, Italy
| | - Andrea Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
47
|
Elieh Ali Komi D, Grauwet K. Role of Mast Cells in Regulation of T Cell Responses in Experimental and Clinical Settings. Clin Rev Allergy Immunol 2018; 54:432-445. [PMID: 28929455 DOI: 10.1007/s12016-017-8646-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mast cells secrete a wide spectrum of stored or newly synthesized pro-inflammatory, anti-inflammatory, and/or immunosuppressive mediators and express several costimulatory and inhibitory surface molecules. Mast cells finely tune activities of T cells, B cells, and regulatory cells and effectively contribute to the development of different T cell-associated responses by influencing their recruitment, activation, proliferation, and differentiation. The interaction between mast cells and T cells, with regard to cellular functionality and immune responses, can be assessed in both activating and inhibitory regulations. While Th2 cytokines, including IL-5 and IL-9, stimulate stem cell factor (SCF)-dependent proliferation of mast cells, Th1 cytokine IFN-γ suppresses SCF-mediated differentiation of mast cell progenitors. Mast cell mediators such as CCL5 have a role in the recruitment of CD8+ T cells to viral infection sites where their ability in clearance of viral reservoirs is needed. The capacity of mast cells in presenting antigens by classes I and II MHC molecules to CD4+ and CD8+ T cells respectively is considered one of the main antigen-dependent interactions of mast cells with T cells. Interestingly, Tregs recruit mast cells to different sites through secretion of IL-9, while the OX40L (expressed on mast cell)-OX40(expressed on T cell) interaction inhibits the extent of the mast cell degranulation. Recently, the capability of exosomes to carry regulatory receptors of the mast cell surface and their role in T cell activation has been investigated. Functional interplay between mast cells and T cell subsets has been suggested primarily by investigating their co-localization in inflamed tissues and involvement of mast cells in autoimmune diseases. In this review, the interactions of mast cells with T cells are reviewed in cell-to-cell, cytokine, and exosome categories.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Korneel Grauwet
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, BTM building Rm 08012, Boston, MA, 02115, USA.
| |
Collapse
|
48
|
Feng BS, Wu YJ, Zeng XH, Yu D, Liu ZQ, Zhou CJ, Liu ZG, Zheng PY, Yang PC. Bcl2L12 mediates effects of protease-activated receptor-2 on the pathogenesis of Th2-dominated responses of patients with ulcerative colitis. Arch Biochem Biophys 2018; 657:8-14. [PMID: 30217509 DOI: 10.1016/j.abb.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 02/06/2023]
Abstract
The immune dysregulation plays an important role in the pathogenesis of ulcerative colitis (UC). Bcl2 like protein-12 (Bcl2L12) and mast cells are involved in immune dysregulation of UC. This study aims to elucidate the role of Bcl2L12 in the contribution to the pathogenesis of T helper (Th)2-biased inflammation in UC patients. The results showed that Bcl2L12 was expressed by peripheral CD4+ T cells that was associated with Th2 polarization in UC patients. Bcl2L12 mediated the protease-activated receptor-2 (PAR2)-induced IL-4 expression in CD4+ cells. Activation of PAR2 increased expression of Bcl2L12 in CD4+ T cells. Bcl2L12 mRNA decayed spontaneously in CD4+ T cells after separated from UC patients which was prevented by activating PAR2. Bcl2L12 mediated the binding between GATA3 and the Il4 promoter in CD4+ T cells. Mice with Bcl2L12 deficiency failed to induce Th2-biased inflammation in the colon mucosa. We conclude that CD4+ T cells from UC patients expressed high levels of Bcl2L12; the latter plays an important role in the development of Th2-biased inflammation in the intestine. Bcl2L12 may be a novel therapeutic target in the treatment of Th2-biased inflammation.
Collapse
Affiliation(s)
- Bai-Sui Feng
- Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Yong-Jin Wu
- The Affiliated ENT Hospital and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xian-Hai Zeng
- The Affiliated ENT Hospital and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Dian Yu
- The Affiliated ENT Hospital and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhi-Qiang Liu
- The Affiliated ENT Hospital and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Cai-Jie Zhou
- Longgang Chinese Traditional Medical Hospital and Beijing University of Chinese Medicine Shenzhen Hospital, Shenzhen, China
| | - Zhi-Gang Liu
- The Affiliated ENT Hospital and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, The Fifth Hospital, Zhengzhou University, Zhengzhou, China.
| | - Ping-Chang Yang
- The Affiliated ENT Hospital and Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
49
|
Localization of cannabinoid receptors CB1, CB2, GPR55, and PPARα in the canine gastrointestinal tract. Histochem Cell Biol 2018; 150:187-205. [DOI: 10.1007/s00418-018-1684-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/26/2022]
|
50
|
Folkerts J, Stadhouders R, Redegeld FA, Tam SY, Hendriks RW, Galli SJ, Maurer M. Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Front Immunol 2018; 9:1067. [PMID: 29910798 PMCID: PMC5992428 DOI: 10.3389/fimmu.2018.01067] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Many mast cell-associated diseases, including allergies and asthma, have seen a strong increase in prevalence during the past decades, especially in Western(ized) countries. It has been suggested that a Western diet may contribute to the prevalence and manifestation of allergies and asthma through reduced intake of dietary fiber and the subsequent production of their metabolites. Indeed, dietary fiber and its metabolites have been shown to positively influence the development of immune disorders via changes in microbiota composition and the regulation of B- and T-cell activation. However, the effects of these dietary components on the activation of mast cells, key effector cells of the inflammatory response in allergies and asthma, remain poorly characterized. Due to their location in the gut and vascularized tissues, mast cells are exposed to high concentrations of dietary fiber and/or its metabolites. Here, we provide a focused overview of current findings regarding the direct effects of dietary fiber and its various metabolites on the regulation of mast cell activity and the pathophysiology of mast cell-associated diseases.
Collapse
Affiliation(s)
- Jelle Folkerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.,Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|