1
|
Lu Y, Gao L, Zhang W, Zeng Y, Hu J, Song K. Caffeic acid phenethyl ester restores mitochondrial homeostasis against peritoneal fibrosis induced by peritoneal dialysis through the AMPK/SIRT1 pathway. Ren Fail 2024; 46:2350235. [PMID: 38721924 PMCID: PMC11086008 DOI: 10.1080/0886022x.2024.2350235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFβ1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFβ1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.
Collapse
Affiliation(s)
- Ying Lu
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Luyan Gao
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenwen Zhang
- Department of Nephrology, Zibo City Hospital Combined of Traditional Chinese and Western Medicine, Zibo, China
| | - Ying Zeng
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Song
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
3
|
Lin Y, Wang Y, Zhang Q, Gao R, Chang F, Li B, Huang K, Cheng N, He X. Single-Atom Ce-N-C Nanozyme Ameliorates Type 2 Diabetes Mellitus by Improving Glucose Metabolism Disorders and Reducing Oxidative Stress. Biomolecules 2024; 14:1193. [PMID: 39334959 PMCID: PMC11430424 DOI: 10.3390/biom14091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) as a chronic metabolic disease has become a global public health problem. Insulin resistance (IR) is the main pathogenesis of T2DM. Oxidative stress refers to an imbalance between free radical production and the antioxidant system, causing insulin resistance and contributing to the development of T2DM via several molecular mechanisms. Besides, the reduction in hepatic glycogen synthesis also leads to a decrease in peripheral insulin sensitivity. Thus, reducing oxidative stress and promoting glycogen synthesis are both targets for improving insulin resistance and treating T2DM. The current study aims to investigate the pharmacological effects of single-atom Ce-N-C nanozyme (SACe-N-C) on the improvement of insulin resistance and to elucidate its underlying mechanisms using HFD/STZ-induced C57BL/6J mice and insulin-resistant HepG2 cells. The results indicate that SACe-N-C significantly improves hepatic glycogen synthesis and reduces oxidative stress, as well as pancreatic and liver injury. Specifically, compared to the T2DM model group, fasting blood glucose decreased by 29%, hepatic glycogen synthesis increased by 17.13%, and insulin secretion increased by 18.87%. The sod and GPx in the liver increased by 17.80% and 25.28%, respectively. In terms of mechanism, SACe-N-C modulated glycogen synthesis through the PI3K/AKT/GSK3β signaling pathway and activated the Keap1/Nrf2 pathway to alleviate oxidative stress. Collectively, this study suggests that SACe-N-C has the potential to treat T2DM.
Collapse
Affiliation(s)
- Yitong Lin
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Chang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boran Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of China, Beijing 100083, China
| | - Nan Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of China, Beijing 100083, China
| |
Collapse
|
4
|
Wang X, Lin L, Yao Q. Adiponectin receptors agonist alters microbiota to improve implant osseointegration in diabetic mice. Oral Dis 2024. [PMID: 39177011 DOI: 10.1111/odi.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Estimate the impact of Adiponectin receptors agonist (AdipoRon) on dental implant osseointegration in alveolar bone and explore the possible mechanism between saliva microbiota and AdipoRon in diabetic mice. MATERIALS AND METHODS Sixty C57BL/6 mice (male, 8 weeks old) were divided randomly into four groups according to different doses of AdipoRon: normoglycemic control group; DM control group; DM with a low dose of AdipoRon (5 mg/kg/day); and DM with a high dose of AdipoRon (50 mg/kg/day). Then, dental implants were placed in the palatal root socket in the first molar extraction mouse model. Micro-computed tomography, histology examination, immunohistochemical staining, and oral microbiota were explored to evaluate implant osseointegration. RESULTS AdipoRon treatment at 50 mg/kg markedly promoted dental implant osseointegration in diabetic mice, but AdipoRon treatment at 5 mg/kg was not effective. Moreover, distinct differences in the oral microbiota composition were shown between the diabetic mice and diabetic mice treated with AdipoRon at 50 mg/kg. CONCLUSION AdipoRon treatment at 50 mg/kg in diabetic mice could significantly increase dental implant osseointegration. The salivary microbiota might participate in the accelerated osseointegration progress of dental implants in AdipoRon treatment.
Collapse
Affiliation(s)
- Xia Wang
- Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, Hunan, China
| | - Linni Lin
- Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, Hunan, China
| | - Qianqian Yao
- Center of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, Hunan, China
| |
Collapse
|
5
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
6
|
Yang Y, Wen Z, Zhang Y, Li P, Zhao J, Sun Y, Wang P, Lin W. Berberine alleviates diabetic retinopathy by regulating the Th17/Treg ratio. Immunol Lett 2024; 267:106862. [PMID: 38702033 DOI: 10.1016/j.imlet.2024.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1β, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1β, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-β) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Zexin Wen
- Department of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Yanli Zhang
- Department of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, PR China
| | - Pengfei Li
- School of Medicine, Xinjiang Tarim University, Alar 843300, Xinjiang, PR China
| | - Junyao Zhao
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China
| | - Yujie Sun
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China
| | - Peng Wang
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China
| | - Wei Lin
- Department of Public scientific research platform, School of clinical and basic medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China; Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, Shandong, PR China; Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250017, Shandong, PR China.
| |
Collapse
|
7
|
Zhang S, Zhang Y, Wen Z, Chen Y, Bu T, Yang Y, Ni Q. Enhancing β-cell function and identity in type 2 diabetes: The protective role of Coptis deltoidea C. Y. Cheng et Hsiao via glucose metabolism modulation and AMPK signaling activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155396. [PMID: 38547617 DOI: 10.1016/j.phymed.2024.155396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormalities in glucose metabolism may be the underlying cause of β-cell dysfunction and identity impairment resulting from high glucose exposure. In China, Coptis deltoidea C. Y. Cheng et Hsiao (YL) has demonstrated remarkable hypoglycemic effects. HYPOTHESIS/PURPOSE To investigate the hypoglycemic effect of YL and determine the mechanism of YL in treating diabetes. METHODS A type 2 diabetes mouse model was used to investigate the pharmacodynamics of YL. YL was administrated once daily for 8 weeks. The hypoglycemic effect of YL was assessed by fasting blood glucose, an oral glucose tolerance test, insulin levels, and other indexes. The underlying mechanism of YL was examined by targeting glucose metabolomics, western blotting, and qRT-PCR. Subsequently, the binding capacity between predicted AMP-activated protein kinase (AMPK) and important components of YL (Cop, Ber, and Epi) were validated by molecular docking and surface plasmon resonance. Then, in AMPK knockdown MIN6 cells, the mechanisms of Cop, Ber, and Epi were inversely confirmed through evaluations encompassing glucose-stimulated insulin secretion, markers indicative of β-cell identity, and the examination of glycolytic genes and products. RESULTS YL (0.9 g/kg) treatment exerted notable hypoglycemic effects and protected the structural integrity and identity of pancreatic β-cells. Metabolomic analysis revealed that YL inhibited the hyperactivated glycolysis pathway in diabetic mice, thereby regulating the products of the tricarboxylic acid cycle. KEGG enrichment revealed the intimate relationship of this process with the AMPK signaling pathway. Cop, Ber, and Epi in YL displayed high binding affinities for AMPK protein. These compounds played a pivotal role in preserving the identity of pancreatic β-cells and amplifying insulin secretion. The mechanism underlying this process involved inhibition of glucose uptake, lowering intracellular lactate levels, and elevating acetyl coenzyme A and ATP levels through AMPK signaling. The use of a glycolytic inhibitor corroborated that attenuation of glycolysis restored β-cell identity and function. CONCLUSION YL demonstrates significant hypoglycemic efficacy. We elucidated the potential mechanisms underlying the protective effects of YL and its active constituents on β-cell function and identity by observing glucose metabolism processes in pancreatic tissue and cells. In this intricate process, AMPK plays a pivotal regulatory role.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yueying Zhang
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhige Wen
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yupeng Chen
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tianjie Bu
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanan Yang
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qing Ni
- Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
8
|
Yang Z, Zhang L, Liu J, Li D. Litchi Pericarp Extract Treats Type 2 Diabetes Mellitus by Regulating Oxidative Stress, Inflammatory Response, and Energy Metabolism. Antioxidants (Basel) 2024; 13:495. [PMID: 38671942 PMCID: PMC11047702 DOI: 10.3390/antiox13040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Litchi pericarp is rich in polyphenols, and demonstrates significant biological activity. This study assessed the therapeutic effects of litchi pericarp extract (LPE) on type 2 diabetes mellitus in db/db mice. The results showed that LPE ameliorated symptoms of glucose metabolism disorder, oxidative stress, inflammatory response, and insulin resistance in db/db mice. The mechanistic studies indicated that LPE activates adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and suppresses the protein expression of phosphoenolpyruvate carboxykinase (PEPCK), thereby reducing hepatic gluconeogenesis. Additionally, LPE facilitates the translocation of nuclear factor erythroid2-related factor 2 (Nrf2) into the cell nucleus, initiating the transcription of antioxidant factors superoxide dismutase (SOD) and NAD(P)H: quinone oxidoreductase 1 (NQO1), which alleviate oxidative stress and reduce oxidative damage. Furthermore, LPE blocks nuclear factor kappa-B (NF-κB) nuclear translocation and subsequent inflammatory response initiation, thereby reducing inflammation. These findings indicate that LPE addresses type 2 diabetes mellitus by activating the AMPK energy metabolic pathway and regulating the Nrf2 oxidative stress and NF-κB inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ziming Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Li Zhang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Jinlei Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Dianpeng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
9
|
Guan Y, Zhang M, Lacy C, Shah S, Epstein FH, Yan Z. Endurance Exercise Training Mitigates Diastolic Dysfunction in Diabetic Mice Independent of Phosphorylation of Ulk1 at S555. Int J Mol Sci 2024; 25:633. [PMID: 38203804 PMCID: PMC10779281 DOI: 10.3390/ijms25010633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Millions of diabetic patients suffer from cardiovascular complications. One of the earliest signs of diabetic complications in the heart is diastolic dysfunction. Regular exercise is a highly effective preventive/therapeutic intervention against diastolic dysfunction in diabetes, but the underlying mechanism(s) remain poorly understood. Studies have shown that the accumulation of damaged or dysfunctional mitochondria in the myocardium is at the center of this pathology. Here, we employed a mouse model of diabetes to test the hypothesis that endurance exercise training mitigates diastolic dysfunction by promoting cardiac mitophagy (the clearance of mitochondria via autophagy) via S555 phosphorylation of Ulk1. High-fat diet (HFD) feeding and streptozotocin (STZ) injection in mice led to reduced endurance capacity, impaired diastolic function, increased myocardial oxidative stress, and compromised mitochondrial structure and function, which were all ameliorated by 6 weeks of voluntary wheel running. Using CRISPR/Cas9-mediated gene editing, we generated non-phosphorylatable Ulk1 (S555A) mutant mice and showed the requirement of p-Ulk1at S555 for exercise-induced mitophagy in the myocardium. However, diabetic Ulk1 (S555A) mice retained the benefits of exercise intervention. We conclude that endurance exercise training mitigates diabetes-induced diastolic dysfunction independent of Ulk1 phosphorylation at S555.
Collapse
Affiliation(s)
- Yuntian Guan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, VA 24016, USA; (Y.G.); (C.L.)
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
- Departments of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Mei Zhang
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, VA 24016, USA; (Y.G.); (C.L.)
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
- Departments of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Christie Lacy
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, VA 24016, USA; (Y.G.); (C.L.)
| | - Soham Shah
- Departments of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA (F.H.E.)
| | - Frederick H. Epstein
- Departments of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA (F.H.E.)
| | - Zhen Yan
- Fralin Biomedical Research Institute, Center for Exercise Medicine Research at Virginia Tech Carilion, Roanoke, VA 24016, USA; (Y.G.); (C.L.)
- Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
- Departments of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Departments of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Departments of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA (F.H.E.)
- Departments of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Jin HJ, Wu ZH, Zhang BF, Deng J, Xu YD, Wang XY, Song ZY, Lu XW, Wang WT, Zheng XT. CDKN2B-AS1 mediates proliferation and migration of vascular smooth muscle cells induced by insulin. Cell Tissue Res 2023; 394:455-469. [PMID: 37907763 DOI: 10.1007/s00441-023-03836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.
Collapse
Affiliation(s)
- Hao-Jie Jin
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Zi-Heng Wu
- Department of Vascular Surgery, School of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Bao-Fu Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Jie Deng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Yin-Dong Xu
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Xin-Yu Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zheng-Yang Song
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin-Wu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wan-Tie Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Xiang-Tao Zheng
- Department of Vascular Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China.
| |
Collapse
|
11
|
He C, Wang K, Xia J, Qian D, Guo J, Zhong L, Tang D, Chen X, Peng W, Chen Y, Tang Y. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway. J Nanobiotechnology 2023; 21:349. [PMID: 37759297 PMCID: PMC10536756 DOI: 10.1186/s12951-023-02120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia and insulin resistance. Mung bean sprouts are traditionally considered a "folk" hypoglycemic food and their pharmacological effects and underlying mechanisms warrant further investigation. PURPOSE This study aimed to investigate the anti-diabetic effects of the exosomes-like nanoparticles in mung bean sprouts (MELNs) and explore the related molecular mechanisms. RESULTS MELNs were isolated using a differential centrifugation-polyethylene glycol (PEG) method, and the identification of MELNs were confirmed by PAGE gel electrophoresis, agarose gel electrophoresis, thin-layer chromatography (TLC), and transmission electron microscopy (TEM). In the high-fat diet/streptozotocin (HFD/STZ) mouse model, MELNs ameliorated the progression of T2DM by increasing oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) results, decreasing the fasting blood glucose level, and reducing the serum triglycerides (TG) and total cholesterol (TC). Histopathological examinations indicated MELNs diminished inflammatory infiltration of hepatocytes and amplified the area of islet B cells. In addition, MELNs decreased the oxidative stress levels in liver tissue and had good biocompatibility. In vitro experiments verified that MELNs improved the viability of glucosamine (GlcN) induced insulin-resistant hepatocytes. Furthermore, this study also revealed that MELNs upregulated GLUT4 & Nrf2 and down-regulated GSK-3β via activating the PI3K/Akt signaling pathway, promoting the production of antioxidant enzymes, such as HO-1 and SOD, to reduce oxidative stress. CONCLUSION MELNs mitigated the progression of type 2 diabetes in HFD/STZ mouse model. The underlying molecular mechanism is related to PI3K/Akt/GLUT4/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Chengxun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jun Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lian Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dandan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yunhui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, School of Health and Rehabilitation, CDUTCM-KEELE Joint Health and Medical Sciences Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
12
|
Tan Y, Tan S, Ren T, Yu L, Li P, Xie G, Chen C, Yuan M, Xu Q, Chen Z. Transcriptomics Reveals the Mechanism of Rosa roxburghii Tratt Ellagitannin in Improving Hepatic Lipid Metabolism Disorder in db/db Mice. Nutrients 2023; 15:4187. [PMID: 37836471 PMCID: PMC10574348 DOI: 10.3390/nu15194187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
A complex metabolic disorder, type 2 diabetes, was investigated to explore the impact of ellagitannin, derived from Rosa roxburghii Tratt (RTT), on liver lipid metabolism disorders in db/db mice. The findings demonstrated that both RTT ellagitannin (C1) and RTT ellagic acid (C4) considerably decelerated body mass gain in db/db mice, significantly decreased fasting blood glucose (FBG) levels, and mitigated the aggregation of hepatic lipid droplets. At LDL-C levels, C1 performed substantially better than the C4 group, exhibiting no significant difference compared to the P (positive control) group. An RNA-seq analysis further disclosed that 1245 differentially expressed genes were identified in the livers of experimental mice following the C1 intervention. The GO and KEGG enrichment analysis revealed that, under ellagitannin intervention, numerous differentially expressed genes were significantly enriched in fatty acid metabolic processes, the PPAR signaling pathway, fatty acid degradation, fatty acid synthesis, and other lipid metabolism-related pathways. The qRT-PCR and Western blot analysis results indicated that RTT ellagitannin notably upregulated the gene and protein expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ). In contrast, it downregulated the gene and protein expression levels of sterol regulatory element-binding protein (SREBP), recombinant fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC). Therefore, RTT ellagitannin can activate the PPAR signaling pathway, inhibit fatty acid uptake and de novo synthesis, and ameliorate hepatic lipid metabolism disorder in db/db mice, thus potentially aiding in maintaining lipid homeostasis in type 2 diabetes.
Collapse
Affiliation(s)
- Yunyun Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuming Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Tingyuan Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Yu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili 556018, China
| | - Guofang Xie
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Meng Yuan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qing Xu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Zhen Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Cheng L, Chen Y, Guo D, Zhong Y, Li W, Lin Y, Miao Y. mTOR-dependent TFEB activation and TFEB overexpression enhance autophagy-lysosome pathway and ameliorate Alzheimer's disease-like pathology in diabetic encephalopathy. Cell Commun Signal 2023; 21:91. [PMID: 37143104 PMCID: PMC10158341 DOI: 10.1186/s12964-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diabetic encephalopathy (DE) is a complication of type 2 diabetes mellitus (T2DM) that features Alzheimer's disease (AD)-like pathology, which can be degraded by the autophagy-lysosome pathway (ALP). Since transcription factor EB (TFEB) is a master regulator of ALP, TFEB-mediated ALP activation might have a therapeutic effect on DE, but this has yet to be investigated. METHODS We established T2DM mouse models and cultured HT22 cells under high-glucose (HG) conditions to confirm the role of ALP in DE. To further investigate this, both mice and HT22 cells were treated with 3-methyladenine (3-MA). We also analyzed the content of TFEB in the nucleus and cytoplasm to evaluate its role in ALP. To confirm the effect of TFEB activation at the post-translational level in DE, we used rapamycin to inhibit the mechanistic target of rapamycin (mTOR). We transduced both mice and cells with TFEB vector to evaluate the therapeutic effect of TFEB overexpression on DE. Conversely, we conducted TFEB knockdown to verify its role in DE in another direction. RESULTS We found that T2DM mice experienced compromised cognitive function, while HG-cultured HT22 cells exhibited increased cell apoptosis. Additionally, both T2DM mice and HG-cultured HT22 cells showed impaired ALP and heavier AD-like pathology. This pathology worsened after treatment with 3-MA. We also observed decreased TFEB nuclear translocation in both T2DM mice and HG-cultured HT22 cells. However, inhibiting mTOR with rapamycin or overexpressing TFEB increased TFEB nuclear translocation, enhancing the clearance of ALP-targeted AD-like pathology. This contributed to protection against neuronal apoptosis and alleviation of cognitive impairment. Conversely, TFEB knockdown lessened ALP-targeted AD-like pathology clearance and had a negative impact on DE. CONCLUSION Our findings suggest that impaired ALP is responsible for the aggravation of AD-like pathology in T2DM. We propose that mTOR-dependent TFEB activation and TFEB overexpression are promising therapeutic strategies for DE, as they enhance the clearance of ALP-targeted AD-like pathology and alleviate neuronal apoptosis. Our study provides insight into the underlying mechanisms of DE and offers potential avenues for the development of new treatments for this debilitating complication of T2DM. Video abstract.
Collapse
Affiliation(s)
- Lizhen Cheng
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Yixin Chen
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Donghao Guo
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
- Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Wei Li
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Yijia Lin
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Ya Miao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
14
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
15
|
Wang Y, Zhao R, Wu C, Liang X, He L, Wang L, Wang X. Activation of the sirtuin silent information regulator 1 pathway inhibits pathological myocardial remodeling. Front Pharmacol 2023; 14:1111320. [PMID: 36843938 PMCID: PMC9950519 DOI: 10.3389/fphar.2023.1111320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Myocardial remodeling refers to structural and functional disorders of the heart caused by molecular biological changes in the cardiac myocytes in response to neurological and humoral factors. A variety of heart diseases, such as hypertension, coronary artery disease, arrhythmia, and valvular heart disease, can cause myocardial remodeling and eventually lead to heart failure. Therefore, counteracting myocardial remodeling is essential for the prevention and treatment of heart failure. Sirt1 is a nicotinamide adenine dinucleotide+-dependent deacetylase that plays a wide range of roles in transcriptional regulation, energy metabolism regulation, cell survival, DNA repair, inflammation, and circadian regulation. It positively or negatively regulates myocardial remodeling by participating in oxidative stress, apoptosis, autophagy, inflammation, and other processes. Taking into account the close relationship between myocardial remodeling and heart failure and the involvement of SIRT1 in the development of the former, the role of SIRT1 in the prevention of heart failure via inhibition of myocardial remodeling has received considerable attention. Recently, multiple studies have been conducted to provide a better understanding of how SIRT1 regulates these phenomena. This review presents the progress of research involving SIRT1 pathway involvement in the pathophysiological mechanisms of myocardial remodeling and heart failure.
Collapse
Affiliation(s)
- Youheng Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Rusheng Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Chengyan Wu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Xuefei Liang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Lei He
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China,Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| | - Libo Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China,College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China,*Correspondence: Libo Wang, ; Xuehui Wang,
| | - Xuehui Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China,*Correspondence: Libo Wang, ; Xuehui Wang,
| |
Collapse
|
16
|
Quan H, Zuo X, Huan Y, Wang X, Yao Z, Wang C, Ren F, Wang H, Qin H, Hu X. A systematic morphology study on the effect of high glucose on intervertebral disc endplate degeneration in mice. Heliyon 2023; 9:e13295. [PMID: 36816302 PMCID: PMC9932476 DOI: 10.1016/j.heliyon.2023.e13295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
To explore the relationship between diabetes and intervertebral disc degeneration in mice and the associated underlying mechanism. Four-week-old male Kunming mice were used to model diabetes using a high-fat diet combined with streptozotocin injection. After 6 months, morphological and pathological changes in L4-L6 intervertebral discs were detected by magnetic resonance imaging, micro-CT and histological staining. Immunostaining of CD31, F4/80 and CD16/32 receptors was used to detect vascular invasion and inflammatory infiltration in endplates; the exact changes were then explored by the transmission electron microscopy. The nucleus pulposus of the control and the diabetic group had a clear boundary and regular shape without collapse, while endplate calcification and chondrocyte abnormality in the diabetic group were more obvious. Immunofluorescence confirmed that compared to control, expression levels of CD31 (vascular endothelial marker) and F4/80 (monocyte/macrophage marker) in the diabetic group were significantly increased (P < 0.05), with an elevated number of F4/80 (+)/CD16/32 (+) cells (P < 0.05). The morphology of endplates was observed by transmission electron microscopy, which showed monocytes/macrophage accumulation in the endplate of the diabetic group, accompanied by increased vascular density, collagen fiber distortion and chondrocyte abnormality. In a conclusion, diabetes promotes endplate degeneration with vascular invasion, monocyte/macrophage infiltration and inflammation in mice.
Collapse
Affiliation(s)
- Huilin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Chunmei Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Fang Ren
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Hong Wang
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Hongyan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032 Shaanxi China,Corresponding author.
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China,Corresponding author.
| |
Collapse
|
17
|
Lin L, Zhang Y. Chemical Constituents and Antidiabetic Activity of Dichloromethane Extract from Ficus carica Leaves. Diabetes Metab Syndr Obes 2023; 16:979-991. [PMID: 37041932 PMCID: PMC10083029 DOI: 10.2147/dmso.s405150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
PURPOSE To evaluate the dichloromethane extract of Ficus carica leaves (FCL) had a hypoglycemic impact in diabetic mice, as well as to identify the bioactive components in the extract and analyze their anti-hyperglycemia potential in HepG2 cells. MATERIAL AND METHODS The antidiabetic activity of dichloromethane extract of Ficus carica leaves was evaluated in diabetic mice induced by streptozotocin (STZ,100 mg/kg) combined with high-fat diet. The fasting blood glucose (FBG), blood lipids, oral glucose tolerance, glycated hemoglobin (HbA1c), and pathological change effects of the extract were measured after administering two doses of the extract (500 and 1000 mg/kg). On the other hand, we used column chromatography to isolate the dichloromethane extract, and we structurally identified the compounds based on 1H NMR and 3C NMR spectra. The hypoglycemic activity of isolated compounds was investigated in palmitic acid (PA)-induced HepG2 cells. RESULTS FCL extract lowers blood glucose and improves blood lipids and the pancreatic β-cell also tend to recover whether the psoralen is removed or not. Meanwhile, three coumarins except psoralen were isolated from dichloromethane extract: 3,4-dihydropsoralen, umbelliferone and 7-hydroxyl-6-methylcoumarin. Psoralen and umbelliferone promoted glucose uptake in HepG2 cells. DISCUSSION AND CONCLUSION In vivo experiments, dichloromethane extract of FCL has potential antidiabetic activity, mainly by lowering blood glucose, improving blood lipids, glucose tolerance and repairing pancreatic islet damage, which justifies its use in the treatment of diabetes in Spanish folklore. Additionally, in vitro experiments, psoralen and umbelliferone demonstrated substantial glucose-lowering activity.
Collapse
Affiliation(s)
- Limei Lin
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, People’s Republic of China
| | - Yin Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, People’s Republic of China
- Correspondence: Yin Zhang, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, People’s Republic of China, Tel +86 13328579972, Email
| |
Collapse
|
18
|
Castro-Castaneda CR, Altamirano-Lamarque F, Ortega-Macías AG, Santa Cruz-Pavlovich FJ, Gonzalez-De la Rosa A, Armendariz-Borunda J, Santos A, Navarro-Partida J. Nutraceuticals: A Promising Therapeutic Approach in Ophthalmology. Nutrients 2022; 14:5014. [PMID: 36501043 PMCID: PMC9740859 DOI: 10.3390/nu14235014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress represents one of the main factors driving the pathophysiology of multiple ophthalmic conditions including presbyopia, cataracts, dry eye disease (DED), glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Currently, different studies have demonstrated the role of orally administered nutraceuticals in these diseases. For instance, they have demonstrated to improve lens accommodation in presbyopia, reduce protein aggregation in cataracts, ameliorate tear film stability, break up time, and tear production in dry eye, and participate in the avoidance of retinal neuronal damage and a decrease in intraocular pressure in glaucoma, contribute to the delayed progression of AMD, or in the prevention or treatment of neuronal death in diabetic retinopathy. In this review, we summarized the nutraceuticals which have presented a positive impact in ocular disorders, emphasizing the clinical assays. The characteristics of the different types of nutraceuticals are specified along with the nutraceutical concentration used to achieve a therapeutic outcome in ocular diseases.
Collapse
Affiliation(s)
| | | | - Alan Gabriel Ortega-Macías
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
| | | | - Alejandro Gonzalez-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Department of Molecular Biology and Genomics, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| |
Collapse
|
19
|
Zhang ZT, He WJ, Deng SM, Xu SH, Zeng X, Qian ZM, Chen ZQ, Wang SM, Tang D. Trilobatin alleviates non-alcoholic fatty liver disease in high-fat diet plus streptozotocin-induced diabetic mice by suppressing NLRP3 inflammasome activation. Eur J Pharmacol 2022; 933:175291. [PMID: 36150533 DOI: 10.1016/j.ejphar.2022.175291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus (DM) is a factor with great risk in the course of non-alcoholic fatty liver disease (NAFLD) due to its high glucotoxicity and lipotoxicity. Trilobatin, a glycosylated dihydrochalcone derived from the leaves of the Chinese sweet tea Lithocarpus polystachyus Rehd, is reported to possess various pharmacological activities. Nevertheless, it is still unclear regarding if trilobatin can alleviate liver injury in diabetic mice with NAFLD and its mechanism. Our aim was to investigative the protective effects of trilobatin against DM with NAFLD and its mechanism of action. A DM mice model was established by high-fat diet (HFD) feeding with streptozocin (STZ) injections, and treated with trilobatin for 10 weeks. The biochemical results showed that trilobatin restored glucose metabolic disorder and liver function in diabetic mice. The histopathological evaluation revealed that trilobatin improved liver injury by alleviating lipid accumulation and liver fibrosis. Mechanistically, trilobatin decreased expression of NLRP3, p65 NF-κB, cleaved-Caspase-1 and N-GSDMD, as well as the release of IL-18 and IL-1β, leading to a alleviation of inflammation and pyroptosis. Taken together, we determined for the first time found that trilobatin could prevent liver injury in diabetic mice with NAFLD by suppressing NLRP3 inflammasome activation to reduce inflammation and pyroptosis.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Jiao He
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Si-Min Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Hong Xu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Zeng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | | | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Mulberry Leaf Flavonoids Inhibit Liver Inflammation in Type 2 Diabetes Rats by Regulating TLR4/MyD88/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3354062. [PMID: 35845591 PMCID: PMC9279020 DOI: 10.1155/2022/3354062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
The incidence of liver-related complications in type 2 diabetes mellitus (T2DM) is rapidly increasing, which affects the physical and mental health of T2DM patients. Mulberry leaf flavonoids (MLF) were confirmed to have certain effects on lowering blood glucose and anti-inflammation. In this study, the high-fat diet (HFD) + STZ method was used to establish T2DM rat model and the MLF was administered by gavage for eight weeks. During the experiment, body weight and blood glucose level were measured at different time points. The pathological changes of rat liver were observed by H&E staining. The serum glucolipid metabolic indicators of serum, fasting insulin (FINS), and inflammatory factors levels were detected by ELISA. The expression levels of toll-like receptor 4 (TLR4), TNF receptor-associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα, and nuclear factor kappa-B (NF-κB)/p65 protein in liver tissue were measured by Western Blot. After 8 weeks' MLF treatment, the blood glucose of rats showed a downward trend; glycolipid metabolism level and insulin resistance were improved, which suggested that MLF could improve the disorder of glucose and lipid metabolism. The pathological damage and inflammation of the liver in T2DM rats were significantly improved, the levels of related serum inflammatory factors were reduced, and the expression of liver tissue-related proteins was downregulated. Our results indicated that MLF could reduce blood glucose and inhibit the development of liver inflammation. The mechanisms may be associated with the activation of TLR4/MyD88/NF-κB signal pathway to reduce the levels of inflammatory factors in serum.
Collapse
|
21
|
Drewe J, Boonen G, Culmsee C. Treat more than heat-New therapeutic implications of Cimicifuga racemosa through AMPK-dependent metabolic effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154060. [PMID: 35338990 DOI: 10.1016/j.phymed.2022.154060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cimicifuga racemosa extracts (CRE) have obtained a "well-established use status" in the treatment of postmenopausal (i.e., climacteric) complaints, which predominantly include vasomotor symptoms such as hot flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although characteristic postmenopausal complaints are known for a very long time and the beneficial effects of CRE on climacteric symptoms are well accepted, both the pathophysiology of postmenopausal symptoms and the mechanism of action of CREs are not yet fully understood. In particular, current hypotheses suggest that changes in the α-adrenergic and serotonergic signaling pathways secondary to estrogen depletion are responsible for the development of hot flushes. PURPOSE Some of the symptoms associated with menopause cannot be explained by these hypotheses. Therefore, we attempted to extend our classic understanding of menopause by integrating of partly age-related metabolic impairments. METHODS A comprehensive literature survey was performed using the PubMed database for articles published through September 2021. The following search terms were used: (cimicifuga OR AMPK) AND (hot flush* OR hot flash* OR menopaus* OR osteoporos* OR cancer OR antioxida* OR cardiovasc*). No limits were set with respect to language, and the references cited in the articles retrieved were used to identify additional publications. RESULTS We found that menopause is a manifestation of the general aging process, with specific metabolic changes that aggravate menopausal symptoms, which are accelerated by estrogen depletion and associated neurotransmitter dysregulation. Cimicifuga extracts with their metabolic effects mitigate climacteric symptoms but may also modulate the aging process itself. Central to these effects are effects of CRE on the metabolic key regulator, the AMP-activated protein kinase (AMPK). CONCLUSIONS As an extension of this effect dimension, other off-label indications may appear attractive in the sense of repurposing of this herbal treatment.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland.
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, D-35043 Marburg, Germany; Center for Mind, Brain and Behavior, D-35032 Marburg, Germany
| |
Collapse
|
22
|
Zhang SS, Zhang NN, Guo S, Liu SJ, Hou YF, Li S, Ho CT, Bai NS. Glycosides and flavonoids from the extract of Pueraria thomsonii Benth leaf alleviate type 2 diabetes in high-fat diet plus streptozotocin-induced mice by modulating the gut microbiota. Food Funct 2022; 13:3931-3945. [PMID: 35289350 DOI: 10.1039/d1fo04170c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Twenty glycoside derivatives and nine flavonoids from the leaves of Pueraria (P. thomsonii) were isolated by column chromatography and characterized by nuclear magnetic resonance spectroscopy (NMR) and high performance liquid chromatography (HPLC). The contents of twenty glycosides and nine flavonoids from the extract of P. thomsonii leaf (PL) were 173.3 mg g-1 and 134.7 mg g-1, respectively. Two flavonoids with the highest content were robinin (49.28 mg g-1) and puerarin (42.87 mg g-1). Six flavonoids, i.e. puerarin, robinin, rutin, quercetin, quercitrin, and kaempferol showed more inhibitory effects against α-glucosidase than acarbose. PL could effectively increase the level of insulin, decrease the content of fasting blood glucose, reduce lipid accumulation in plasma, ameliorate oxidative injury and inflammation, and relieve liver and kidney damage in diabetic mice. Moreover, PL could increase intestinal probiotics to improve metabolic disorders caused by diabetes and decrease the level of Clostridium celatum to relieve inflammation. This study suggested that PL or its glycoside derivatives and flavonoids regulating glycolipid metabolism and inflammation levels might have the potential to be used to control type 2 diabetes.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.,College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Niu-Niu Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Sen Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Shao-Jing Liu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.,College of Pharmacy, Xi'an Medical University, 1 Xinwang Road, Shaanxi 710021, China
| | - Yu-Fei Hou
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Shiming Li
- College of Life Sciences, Huanggang Normal University, Hubei 438000, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Nai-Sheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| |
Collapse
|
23
|
Javrushyan H, Nadiryan E, Grigoryan A, Avtandilyan N, Maloyan A. Antihyperglycemic activity of L-norvaline and L-arginine in high-fat diet and streptozotocin-treated male rats. Exp Mol Pathol 2022; 126:104763. [DOI: 10.1016/j.yexmp.2022.104763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/05/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023]
|
24
|
Polyphenol from Rosaroxburghii Tratt Fruit Ameliorates the Symptoms of Diabetes by Activating the P13K/AKT Insulin Pathway in db/db Mice. Foods 2022; 11:foods11050636. [PMID: 35267269 PMCID: PMC8909201 DOI: 10.3390/foods11050636] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023] Open
Abstract
About 4% of the world’s population has type 2 diabetes mellitus (T2DM), and the available hypoglycemic drugs for treating diabetes have some side effects. Therefore, research on the extraction of hypoglycemic components from plants has gradually become popular. This study aimed to investigate the hypoglycemic effects of polyphenol-rich Rosa roxburghii Tratt extract (RP) isolated from Rosa roxburghii Tratt fruit and of four constituents (IRP 1–4 ) isolated from RP on db/db mice. The results indicated that the oral administration of RP and IRP 1–4 could markedly decrease the food intake, water intake, fasting blood glucose (FBG), and serum insulin levels in the db/db mice. Glucose intolerance, insulin resistance, and oxidative stress were ameliorated in the RP and IRP 1–4 groups. Histopathological observation revealed that RP and IRP 1–4 could effectively protect the liver fat against damage and dysfunction. RP and IRP 1–4 also increased the hepatic and muscle glycogen contents by increasing the phosphorylation and reducing the expression of glycogen synthase kinase 3β (GSK3β). The activities of glucokinase (GCK), phosphoenolpyruvate carboxylase (PEPCK), and glucose-6-phosphatase (G6PC) and their respective mRNA expression levels in the liver of db/db mice were simultaneously increased and decreased in the intervention groups. RP and IRP 1–4 significantly increased the expression of phosphatidylinositol 3-kinase (P13K) and the phosphorylation of protein kinase B (AKT). These results indicate that RP and IRP 1–4 exhibit good hypoglycemic effects by activating the P13K/AKT signaling pathway and regulating the expression of FOXO1 and p-GSK3β proteins, controlling hepatic gluconeogenesis and improving hepatic glycogen storage insulin resistance. Therefore, RP and IRP 1–4 could be utilized as the hypoglycemic functional component to alleviate the symptoms of T2DM.
Collapse
|
25
|
Ren Z, Okyere SK, Xie L, Wen J, Wang J, Chen Z, Ni X, Deng J, Hu Y. Oral Administration of Bacillus toyonensis Strain SAU-20 Improves Insulin Resistance and Ameliorates Hepatic Steatosis in Type 2 Diabetic Mice. Front Immunol 2022; 13:837237. [PMID: 35242140 PMCID: PMC8887768 DOI: 10.3389/fimmu.2022.837237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, the ameliorative effects of Bacillus toyonensis-SAU-20 (B. toyo SAU-20), a new probiotic strain isolated and identified by our laboratory from Ageratina adenophora, on the development of insulin resistance and hepatic steatosis in type 2 diabetic (T2DM) mice was investigated. Thirty Specific-pathogen free Kunming (SPFKM) mice were randomly allocated to three groups: control, high fat diet/streptozotocin (HFD/STZ), and HFD/STZ+B. toyo SAU-20 groups with oral administration of B. toyo SAU-20 for 35 days. Biochemistry parameters, glucose tolerance, and insulin resistance were measured in the blood whereas histological analysis, inflammatory cytokines and lipogenic genes in the liver tissues. The results showed that, the levels of serum glucose, lipid profile, mRNA expression of lipogenic related genes and pro-inflammatory cytokines were significantly increased in T2DM mice. However, after B. toyo SAU-20 administration, the elevation of these parameters was significantly suppressed (P<0.05). In addition, the feeding of B. toyo SAU-20 significantly improved the morphological changes of the liver with significant alleviation of dyslipidemia, oxidative stress status and inflammation (P<0.05) indicating the ameliorating effect of B. toyo SAU-20 in hepatic steatosis in T2DM. Therefore, we concluded that, B. toyo SAU-20 alleviated insulin resistance and hepatic steatosis by improving the lipid profiles, antioxidant status and downregulating lipogenic genes as well as pro-inflammation cytokines expression.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiayi Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- New Ruipeng Pet Healthcare Group Co., Ltd.Shenzhen, China
| |
Collapse
|
26
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
27
|
Hu XY, Chang Y, Xu ZZ, Wang Y, Dai MM, Yu KK, Sun CB, Dong MX, Zhang JX, Xu N, Liu WS, Chen ZA. Rubusoside Reduces Blood Glucose and Inhibits Oxidative Stress by Activating the AMPK Signaling Pathway in Type 2 Diabetes Mellitus Mice. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211069230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current study aimed at investigating the therapeutic effects of rubusoside on type 2 diabetes mellitus (T2DM) mice models as an alternative hypoglycemic candidate drug. T2DM mice models were established with a combination of streptozotocin (STZ) intraperitoneal injection and high-fat diet. After 10 weeks of rubusoside intragastric administration (100, 200 mg/kg/day) to the mice, the body weight, fasting blood glucose, glucose tolerance, and blood lipids were measured. The liver protein expression levels of p-AMPK, GLUT2, GLUT4 and total antioxidant capacity were also investigated. After 10 weeks of rubusoside administration, the levels of blood glucose and lipids were decreased in T2DM mice. Compared with the model group, rubusoside administration significantly decreased the liver mass-to-body weight ratio, upregulated p-AMPK and GLUT4, and downregulated GLUT2 expression levels in the liver. Activities of superoxide dismutase (SOD), catalase (CAT), and gluathione peroxidase (GSH-Px) were increased, and the concentration of malondialdehyde (MDA) was decreased to reduce oxidative stress in the liver. Liver hematoxylin and eosin (H&E) pathological analysis also showed that rubusoside had a protective effect on T2DM mice liver. These results demonstrate that rubusoside could be used as an anti-diabetic candidate drug, and that its hypoglycemic mechanism might be related to the activation of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) to modulate the expression of GLUT2 and GLUT4. Finally, rubusoside could also increase total antioxidant capacity to protect the liver from oxidative stress.
Collapse
Affiliation(s)
- Xi-yu Hu
- College of Medical, Yanbian University, Yanji, PR China
| | | | - Zheng-zhe Xu
- Affiliated Hospital of Yanbian University, Yanji Jilin 133002, China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Min-min Dai
- College of Medical, Yanbian University, Yanji, PR China
| | - Kai-kai Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Cheng-biao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Ming-xin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Jian-xu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Na Xu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
- Jilin Medical College, Jilin, China
| | - Wen-sen Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Science, Changchun, 130122, China
| | - Zheng-ai Chen
- College of Medical, Yanbian University, Yanji, PR China
| |
Collapse
|
28
|
Bacillus toyonensis SAU-19 Ameliorates Hepatic Insulin Resistance in High-Fat Diet/Streptozocin-Induced Diabetic Mice. Nutrients 2021; 13:nu13124512. [PMID: 34960064 PMCID: PMC8703646 DOI: 10.3390/nu13124512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance (IR) is a hallmark of type 2 diabetes mellitus (T2DM). This study was performed to investigate the antidiabetic effect of Bacillus toyonensis SAU-19 and its possible mechanisms of action in mice with type 2 diabetes mellitus (T2DM). Thirty SPFKM mice were randomly assigned to three groups: control, diabetic model, and diabetes + Bacillus toyonensis SAU-19 group. After 35 days, blood was collected for biochemical analysis and liver tissue samples for histopathological analysis using H&E staining, qPCR, and ELISA. The results showed that the administration of B. toyonensis SAU-19 significantly improved the blood glucose, hepatic insulin resistance, and morphological changes of the liver characterized by significant improvement of dyslipidemia, glycogen synthesis, and antioxidant status (p < 0.05), indicating the strains’ ameliorating effects on hepatic insulin resistance in T2DM. In conclusion, the probiotic strain (B. toyonensis SAU-19) inhibits T2DM by reducing insulin resistance, improving antioxidant status, and downregulating genes related to glucose synthesis; hence, it may be used in treating diabetes and other metabolic disorders. This study provides the basis for further studies into the molecular mechanisms of B. toyonensis SAU-19 in treating T2DM.
Collapse
|
29
|
Luo Z, Wan Q, Han Y, Li Z, Li B. CAPE-pNO 2 ameliorates diabetic brain injury through modulating Alzheimer's disease key proteins, oxidation, inflammation and autophagy via a Nrf2-dependent pathway. Life Sci 2021; 287:119929. [PMID: 34743947 DOI: 10.1016/j.lfs.2021.119929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/22/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022]
Abstract
AIMS CAPE-pNO2, an active derivative of caffeic acid phenethyl ester, has been verified to exert protection of diabetic cardiomyopathy and diabetic nephropathy. The present study aims to explore the brain protection effects and potential mechanisms of CAPE-pNO2 on streptozotocin-induced diabetic brain injury in vivo and in vitro. MAIN METHODS Biochemical indexes including triglyceride, total cholesterol, superoxide dismutase and malondialdehyde contents were detected. The histopathological structure of hippocampus and cerebral cortex were determined. Immunofluorescence and immunoblot methods were used to assess expression of oxidative stress, inflammation and autophagy pathway-related proteins of diabetic brain in vivo. Alzheimer's disease (AD)-associated key proteins were also checked in vivo. DCFH-DA assay, immunofluorescence and immunoblot methods were applied to verify the master role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in vitro. KEY FINDINGS First, CAPE-pNO2 could rescue the diabetic brain atrophy and diminish CA1 and CA3 cells of hippocampus and cerebral cortex. Second, CAPE-pNO2 could decrease Aβ and p-tau (S396) expression through anti-oxidation, anti-inflammation and autophagy induction in vivo. Last, CAPE-pNO2 could down-regulate p-tau (S396) expression through Nrf2-related anti-oxidation mechanisms in vitro. SIGNIFICANCE CAPE-pNO2 may exert brain protection via Nrf2-dependent way in diabetes. Additionally, Nrf2 was capable of regulating p-tau (S396) expression that is critical to AD.
Collapse
Affiliation(s)
- Zhouxia Luo
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yanmin Han
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Boheng Li
- College of Pharmaceutical Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400716, China.
| |
Collapse
|
30
|
Total Sesquiterpene Glycosides from Loquat Leaves Ameliorate HFD-Induced Insulin Resistance by Modulating IRS-1/GLUT4, TRPV1, and SIRT6/Nrf2 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4706410. [PMID: 34745416 PMCID: PMC8566052 DOI: 10.1155/2021/4706410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Loquat (Eriobotrya japonica Lindl.), a subtropical fruit tree native to Asia, is not only known to be nutritive but also beneficial for the treatment of diabetes in the south of China. To expand its development, this study was undertaken concerning the potential therapeutic role of total sesquiterpene glycosides (TSGs) from loquat leaves in insulin resistance (IR), the major causative factor of type 2 diabetes mellitus (T2DM). Male C57BL/6 mice were fed on high-fat diet (HFD) to induce IR and then were given TSG by oral administration at 25 and 100 mg/kg/day, respectively. TSG notably improved metabolic parameters including body weight, serum glucose, and insulin levels and prevented hepatic injury. Moreover, inflammatory response and oxidative stress were found to be remarkably alleviated in IR mice with TSG supplement. Further research in liver of IR mice demonstrated that TSG repaired the signalings of insulin receptor substrate-1 (IRS-1)/glucose transporter member 4 (GLUT4) and AMP-activated protein kinase (AMPK), which improved glucose and lipid metabolism and prevented lipid accumulation in liver. It was also observed that TSG suppressed the expression of transient receptor potential vanilloid 1 (TRPV1), whereas the signaling pathway of sirtuin-6 (SIRT6)/nuclear factor erythroid 2-related factor 2 (Nrf2) was significantly promoted. Based on the results, the current study demonstrated that TSG from loquat leaves potentially ameliorated IR in vivo by enhancing IRS-1/GLUT4 signaling and AMPK activation and modulating TRPV1 and SIRT6/Nrf2 signaling pathways.
Collapse
|
31
|
Zhou X, Shang GS, Tan Q, He Q, Tan X, Park KY, Zhao X. Effect of Lactobacillus fermentum TKSN041 on improving streptozotocin-induced type 2 diabetes in rats. Food Funct 2021; 12:7938-7953. [PMID: 34251007 DOI: 10.1039/d1fo01571k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increasing incidence of type 2 diabetes, it is imperative to identify how to effectively prevent or treat this disease. Studies have shown that some lactic acid bacteria can improve type 2 diabetes with almost no side effects. Therefore, in this experimental study, we explored the preventive and therapeutic effects of Lactobacillus fermentum TKSN041 (L. fermentum TKSN041) on streptozotocin-induced type 2 diabetes in rats. The results showed that L. fermentum TKSN041 could reduce the amount of water intake, reduce weight loss, and control the increase in the fasting blood glucose level of diabetic rats. The organ index and tissue section results showed that L. fermentum TKSN041 could reduce the damage caused by diabetes to the liver, kidney, spleen, pancreatic, and brain tissue. Furthermore, L. fermentum TKSN041 decreased the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL), aminotransferase (AST), alanine aminotransferase (ALT), glycated serum proteins (GSP), malondialdehyde (MDA), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and endothelin 1 (ET-1) in serum and increased the serum levels of high-density lipoprotein cholesterol (HDL) and interleukin 10 (IL-10). Finally, L. fermentum TKSN041 up-regulated the mRNA and protein expressions of NF-kappa-B inhibitor-α (IκB-α), AMP-activated protein kinase (AMPK), insulin receptor substrate-1 (IRS-1), liver kinase B1 (LKB1), and glucose transporter 4 (GLUT4) and down-regulated those of nuclear factor-κBp65 (NFκB-p65) and tumor necrosis factor alpha (TNF-α). Furthermore, LF-TKSN041 up-regulated the mRNA expressions of peroxisome proliferator-activated receptor γ (PPAR-γ) and down-regulated neuropeptide Y (NPY), sterol regulatory element-binding protein-1 (SREBF-1), and vascular endothelial growth factor (VEGF). These results suggest that L. fermentum TKSN041 may be a useful intervention factor for the prevention or treatment of type 2 diabetes induced by STZ. Clinical trials are needed to further demonstrate its effectiveness.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Yuan X, Zheng J, Ren L, Jiao S, Feng C, Du Y, Liu H. Glucosamine Ameliorates Symptoms of High-Fat Diet-Fed Mice by Reversing Imbalanced Gut Microbiota. Front Pharmacol 2021; 12:694107. [PMID: 34149435 PMCID: PMC8209492 DOI: 10.3389/fphar.2021.694107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Glucosamine (GlcN) is used as a supplement for arthritis and joint pain and has been proved to have effects on inflammation, cancer, and cardiovascular diseases. However, there are limited studies on the regulatory mechanism of GlcN against glucose and lipid metabolism disorder. In this study, we treated high-fat diet (HFD)-induced diabetic mice with GlcN (1 mg/ml, in drinking water) for five months. The results show that GlcN significantly reduced the fasting blood glucose of HFD-fed mice and improved glucose tolerance. The feces of intestinal contents in mice were analyzed using 16s rDNA sequencing. It was indicated that GlcN reversed the imbalanced gut microbiota in HFD-fed mice. Based on the PICRUSt assay, the signaling pathways of glucolipid metabolism and biosynthesis were changed in mice with HFD feeding. By quantitative real-time PCR (qPCR) and hematoxylin and eosin (H&E) staining, it was demonstrated that GlcN not only inhibited the inflammatory responses of colon and white adipose tissues, but also improved the intestinal barrier damage of HFD-fed mice. Finally, the correlation analysis suggests the most significantly changed intestinal bacteria were positively or negatively related to the occurrence of inflammation in the colon and fat tissues of HFD-fed mice. In summary, our studies provide a theoretical basis for the potential application of GlcN to glucolipid metabolism disorder through the regulation of gut microbiota.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Institute of Process Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Institute of Process Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lishi Ren
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production and Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
34
|
Li G, Zhang L. miR-335-5p aggravates type 2 diabetes by inhibiting SLC2A4 expression. Biochem Biophys Res Commun 2021; 558:71-78. [PMID: 33901926 DOI: 10.1016/j.bbrc.2021.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/27/2022]
Abstract
Globally, type 2 diabetes (T2D) is the most common chronic disease. It affects approximately 500 million people worldwide. Dysregulation of the solute carrier family 2 member 4 (SLC2A4) gene and miR-335-5p has been associated with T2D progression. However, the mechanisms underlying this dysregulation are unclear. The levels of miR-335-5p and SLC2A4 in blood samples collected from patients with T2D (T2D blood samples) and pancreatic cell lines were measured by Real Time quantitative PCR (RT-qPCR). The relationship between miR-335-5p and SLC2A4 was investigated using a luciferase assay. The role of the miR-335-5p-SLC2A4 axis was detected by CCK8, BrdU, and caspase-3 assays in pancreatic cells treated with 25 mM glucose. Increased miR-335-5p and decreased SLC2A4 expression was observed in both T2D blood samples and pancreatic cell lines. The miR-335-5p mimic markedly suppressed proliferation and elevated apoptosis in glucose-treated pancreatic cells. SLC2A4 overexpression significantly enhanced proliferation but inhibited apoptosis in glucose-treated pancreatic cells. Moreover, miR-335-5p inhibited the expression of SLC2A4 in the pancreatic cells and suppressed the growth of these cells. The data indicated that miR-335-5p targeting of SLC2A4 could hamper the growth of T2D cell model by inhibiting their proliferation and elevating apoptosis. Collectively, our findings implicate miR-335-5p and SLC2A4 as potentially effective therapeutic targets for patients with T2D.
Collapse
Affiliation(s)
- Geng Li
- Department of Cardiology, Hubei Third People's Hospital Affiliated to Jianghan University, Wuhan, 430300, Hubei, China
| | - Linghui Zhang
- Department of Endocrinology, Hubei Third People's Hospital Affiliated to Jianghan University, Wuhan, 430300, Hubei, China.
| |
Collapse
|
35
|
Zeng J, Li D, Li Z, Zhang J, Zhao X. Dendrobium officinale Attenuates Myocardial Fibrosis via Inhibiting EMT Signaling Pathway in HFD/STZ-Induced Diabetic Mice. Biol Pharm Bull 2021; 43:864-872. [PMID: 32378562 DOI: 10.1248/bpb.b19-01073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibrosis is a major contributor for diabetic cardiomyopathy and Dendrobium officinale possessed therapeutic effects on hyperglycemia and diabetic cardiomyopathy. To further investigate the possible mechanisms of the Dendrobium officinale on diabetic myocardial fibrosis in mice. Water-soluble extracts of Dendrobium officinale (DOE) from dry stem was analyzed by HPLC and phenol-sulfuric acid method. Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ) (30 mg/kg) for 4 consecutive days after intragastric administration of a high-fat diet (HFD) for 2 weeks. The groups were as follows: control group, model group, DOE low, medium, high dose group (75, 150, 300 mg/kg) and Metformin positive group (125 mg/kg). The results showed that DOE dose-dependently lower serum insulin, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and grew the high-density lipoprotein cholesterol (HDL-C) after 12 weeks of daily administration with DOE. Hematoxylin-eosin staining and Sirius red staining showed obvious amelioration of cardiac injury and fibrosis. In addition, the result of immunoblot indicated that DOE increased the expression of peroxisome proliferator activated receptor-α (PPAR-α), phosphorylation of insulin receptor substrate 1 (p-IRS1) and E-cadherin and repressed the expression of transforming growth factor β1 (TGF-β1), phosphorylation of c-Jun N-terminal kinase (p-JNK), Twist, Snail1 and Vimentin. The present findings suggested that DOE ameliorated HFD/STZ-induced diabetic cardiomyopathy (DCM). The possible mechanism mainly associated with DOE accelerating lipid transport, inhibiting insulin resistant and suppressing fibrosis induced by epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Jie Zeng
- College of Pharmaceutical Sciences, Southwest University
| | - Dongning Li
- College of Pharmaceutical Sciences, Southwest University
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University
| | - Xiaoyan Zhao
- College of Pharmaceutical Sciences, Southwest University
| |
Collapse
|
36
|
Su C, Cheng Q, Wang L. Roux-en-Y Gastric Bypass Improves Hepatic Glucose Metabolism Involving Upregulation of Sirt1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:2269-2280. [PMID: 34045876 PMCID: PMC8145911 DOI: 10.2147/dmso.s298897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) is the most effective treatment for type 2 diabetes mellitus (T2DM). Previous studies have reported that silent information regulator 1 (Sirt1) closely relates to many pathological processes of glucose metabolism and insulin resistance (IR). However, it is unclear whether Sirt1 is involved in the hepatic glucose metabolism of T2DM after RYGB. METHODS T2DM rats were randomly divided into four groups: Control, DM, Diet and RYGB. Normal rats were served as the control group. Hematoxylin and eosin (H&E) staining and Masson staining assays were performed to explore the changes of liver fibrous tissue after RYGB. The effect of RYGB on the protein expression of Sirt1 was detected by the Western blotting assay and immunohistochemical assay. Next, we built the insulin resistance model of human hepatocyte cell lines (FL62891 and HHL5) using the human recombinant insulin. Western blotting assay was applied to determine the expression of Sirt1 and the expression change of IRS1/mTOR2 /PKB pathway-related proteins in FL62891 and HHL5 cells. Additionally, the effects of Sirt1 on the expression of PTP1B and FGF-21 in insulin-resistant FL62891 and HHL5 cells were investigated using Western blotting and immunofluorescence assay. RESULTS Our results showed that following RYGB improved the pathological changes of liver and increased the expression of Sirt1 in rats with T2DM compared with the diabetic rats. In experiments in vitro, the expression of Sirt1 was downregulated in insulin-resistance FL62891 and HHL5 cells. Moreover, overexpression of Sirt1 significantly increased the expression of FGF-21 whereas decreased the expression of PTP1B in insulin-resistance FL62891 and HHL5 cells. These above changes were alleviated in RYGB and Diet groups. Furthermore, RYGB could improve the glucose metabolism through activating IRS1/mTOR2/PKB pathways by regulating Sirt1 in rats with T2DM. CONCLUSION RYGB could significantly improve hepatic glucose metabolism and increase the expression of Sirt1 in T2DM rats, which is related to the IRS1/mTOR2 /PKB pathway.
Collapse
Affiliation(s)
- Chunjie Su
- Department of Gastrointestinal Surgery, Jingmen No.1 People’s Hospital, Jingmen, 448000, People’s Republic of China
| | - Qian Cheng
- Department of Endocrinology, Yixing People’s Hospital, Yixing, 214200, Jiangsu, People’s Republic of China
| | - Liyun Wang
- Department of Endocrinology, Yixing People’s Hospital, Yixing, 214200, Jiangsu, People’s Republic of China
- Correspondence: Liyun Wang Department of Endocrinology, Yixing People’s Hospital, No. 75, Tongzhenguan Road, Yicheng Street, Yixing, 214200, Jiangsu, People’s Republic of China Email
| |
Collapse
|
37
|
Chen X, Yang K, Jin X, Meng Z, Liu B, Yu H, Lu P, Wang K, Fan Z, Tang Z, Zhang F, Liu C. Bone Autophagy: A Potential Way of Exercise-Mediated Meg3/P62/Runx2 Pathway to Regulate Bone Formation in T2DM Mice. Diabetes Metab Syndr Obes 2021; 14:2753-2764. [PMID: 34168475 PMCID: PMC8216663 DOI: 10.2147/dmso.s299744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Meg3 has been shown to attenuate T2DM bone autophagy by activating p62 to inhibit bone formation. However, whether exercise can reverse this process to promote T2DM bone formation and its mechanism remains unknown. METHODS A T2DM mouse model was established by a high-fat diet and STZ injection, and the mice were trained with 8-week HIIT and downhill running exercise. Micro-CT was used to scan the bone microstructure. Bone morphology was observed by HE staining, and the osteoblast (OB) activity in bones was observed by AKP staining. Calcium ion and phosphorus concentration in serum was detected by ELISA; RT-PCR was used to detect the mRNA level, and Western blot was used to detect the protein level of related indexes in Meg3/p62/Runx2 pathway. RESULTS The inhibition of bone autophagy, in the bones of T2DM mice, resulted in the degradation of the bone tissue morphology and structure, with the increase of the expressions of Meg3, PI3K, Akt, mTOR, p62 and NF-κB. However, 8-week HIIT and downhill running could reverse this process, especially downhill running, manifested with the up-regulation of miR-16 mRNA level, along with Beclin-1, LC3 II and Runx2 mRNA and protein level. CONCLUSION T2DM leads to pathology in model mice. Eight-week HIIT and downhill running exercise can inhibit Meg3, activate autophagy of osteoblasts and promote bone formation in T2DM mice.
Collapse
Affiliation(s)
- Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Xing Jin
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Correspondence: Xing Jin; Zhaoxiang Meng Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China Email
| | - Zhaoxiang Meng
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
- Zhaoxiang Meng Email
| | - Bo Liu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huilin Yu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Kui Wang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhangling Fan
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Ziang Tang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Feng Zhang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Chengye Liu
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
38
|
Yang R, Jia Q, Mehmood S, Ma S, Liu X. Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. Eur J Nutr 2020; 60:2155-2168. [PMID: 33068158 DOI: 10.1007/s00394-020-02403-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Genistein (GEN) has been reported to have diverse biological activities, including antioxidant, hypolipidemic, and antidiabetic effects. This study investigated whether the ameliorative effects of GEN on inflammation and insulin resistance were associated with the modulation of gut microbiota composition in type 2 diabetic (T2D) mice. METHODS C57BL/6J mice were treated with a high-fat diet/streptozotocin to induce T2D and then gavaged with GEN (20 and 40 mg/kg) for 8 weeks. Then, oral glucose tolerance, fasting blood glucose, serum insulin, glucagon, lipid profiles, and pro-inflammatory factors were measured. After this, hepatic function and histopathological analysis and inflammation-related indices of the liver and colon were determined, along with short-chain fatty acid (SCFA) and gut microbiota composition. RESULTS GEN treatment decreased hyperglycemia, hyperlipidemia, and serum pro-inflammatory factor levels and attenuated hepatic dysfunction, pathological changes, inflammation-related protein expression, and hepatocyte apoptosis. It also ameliorated colonic pathological changes, tight junction-associated protein expression, and pro-inflammatory factor increases. Furthermore, high-dose GEN treatment increased the concentrations of SCFAs and down-regulated the ratio of Firmicutes/Bacteroidetes and the abundance of Proteobacteria at the phylum level. However, GEN increased the abundances of Bacteroides and Prevotella and decreased the levels of Helicobacter and Ruminococcus at the genus level in T2D mice. CONCLUSION GEN showed ameliorative effects on glucose and lipid dysmetabolism and hepatic and colonic dysfunction; most importantly, GEN could ameliorate inflammation and insulin resistance through modulation of gut microbiota composition.
Collapse
Affiliation(s)
- Rui Yang
- Department of Physiology, Bengbu Medical College, Bengbu, 233030, China.,School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu, 233030, China.
| | | | - Shanfeng Ma
- Department of Physiology, Bengbu Medical College, Bengbu, 233030, China
| | - Xiaofen Liu
- Department of Physiology, Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
39
|
Lang X, Zhao N, He Q, Li X, Li X, Sun C, Zhang X. Treadmill exercise mitigates neuroinflammation and increases BDNF via activation of SIRT1 signaling in a mouse model of T2DM. Brain Res Bull 2020; 165:30-39. [PMID: 32987101 DOI: 10.1016/j.brainresbull.2020.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Although previous studies showed that exercise can improve cognitive dysfunction in type 2 diabetes (T2DM), the underlying mechanism remains unclear. Sirtuin 1 (SIRT1) has been shown to play a role in regulating inflammatory responses in the brain and increasing BDNF expression. This study investigated the effects of treadmill exercise on the hippocampal inflammatory response and BDNF expression in a T2DM mice model. We also tested whether these effects are SIRT1-dependent. In this study, C57BL/ 6 mice were used to construct T2DM model by a high-fat diet and STZ injection. We found that treadmill exercise for 8 weeks can significantly improve the cognitive dysfunction, alleviate activation of proinflammatory microglia M1 (Iba1 labeling) in the hippocampus of T2DM mice, and reduce the levels of proinflammatory factors IL-1β, IL-6, TNF-α, increase the expression levels of anti-inflammatory factors IL-10, TGF-β1, and promote the release of BDNF. We also found that exercise activate the signaling pathway of SIRT1/ NF-κB and SIRT1/ PGC-1α/ FNDC5/ BDNF. After the application of nicotinamide (NAM, SIRT1 inhibitor), the positive effects of exercise were remarkably suppressed. Our results showed that long-term moderate intensity treadmill exercise can alleviate inflammatory response in the hippocampus and increase BDNF expression in T2DM mice by activating SIRT1.
Collapse
Affiliation(s)
| | - Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Qiang He
- School of Physical Education of Shandong University, Jinan, China
| | - Xun Li
- College of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuejiao Li
- School of Physical Education of Shandong University, Jinan, China
| | - Chuanning Sun
- School of Physical Education of Shandong University, Jinan, China
| | - Xianliang Zhang
- School of Physical Education of Shandong University, Jinan, China.
| |
Collapse
|
40
|
Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103944] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
41
|
Dong J, Liang Q, Niu Y, Jiang S, Zhou L, Wang J, Ma C, Kang W. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Int J Biol Macromol 2020; 159:725-738. [PMID: 32437806 DOI: 10.1016/j.ijbiomac.2020.05.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Effect of Nigella sativa seed polysaccharides (NSSP) on type 2 diabetic mice and its gut microbiota was investigated on the type 2 diabetic mice model feed by high-fat diet. Fasting blood glucose (FBG), biochemical parameters, expression levels of cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and phosphor-AKT (p-AKT) protein, membrane glucose transporter 4 (GLUT4) in skeletal muscles, as well as the change of gut microbiota profile in mice model were measured. Results showed that the high-dose NSSP could significantly lower the levels of FBG, glycosylated serum protein (GSP), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), malondialdehyde (MDA), TNF-α, IL-6 and IL-1β, and significantly increased insulin (INS), high-density lipoprotein cholesterol (HDLC), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) and the expression levels of p-AKT and GLUT4 in mice. Besides, the high-dose NSSP has significantly increased the abundance of f_Muribaculaceae_Unclassified and Bacteroides, which were significantly suppressed in the mice gut after the treatment of streptozotocin (STZ). These results indicated that NSSP could improve the abnormal state of diabetic mice by regulating the PI3K/AKT signaling pathway with simultaneous changes of the gut microbiota profile.
Collapse
Affiliation(s)
- Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Yun Niu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China
| | - Shengjun Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China
| | - Li Zhou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China.
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
42
|
The signaling interplay of GSK-3β in myocardial disorders. Drug Discov Today 2020; 25:633-641. [PMID: 32014454 DOI: 10.1016/j.drudis.2020.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates numerous signaling transductions and pathological states, from cell growth, inflammation, apoptosis, and heart failure to cancer. Recent studies have validated the feasibility of targeting GSK-3β for its therapeutic potential to maintain myocardial homeostasis. Herein, we review the multifactorial roles of GSK-3β in cardiac abnormalities, focusing primarily on recent investigations into myocardial survival. In addition, we discuss the cardioprotective potential of divergent GSK-3β inhibitors. Finally, we also highlight crosstalk between the various mechanisms underlying abnormal myocardial functions in which GSK-3β is involved.
Collapse
|