1
|
Kailasam V, Hiremath MS, Sudharsan P, Nagarjuna V, Garg P, Nirmal J. Stability enhancement of Amphotericin B using 3D printed biomimetic polymeric corneal patch to treat fungal infections. Int J Pharm 2024; 670:125149. [PMID: 39736279 DOI: 10.1016/j.ijpharm.2024.125149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Amphotericin B eye drops (reconstituted from lyophilized Amphotericin B formulation indicated for intravenous use) is used off-label for fungal keratitis. However, the reconstituted formulation is stable only for a week, even after refrigeration. Moreover, a high dosing frequency makes it an inconvenient treatment practice. The current study aims to develop a stable Amphotericin B-loaded biomimetic polymeric corneal patch (Ampat) using 3D printing. Hydroxypropyl methylcellulose and chitosan were used to formulate Ampat, which was then characterized for its physical and mechanical properties. The stability studies were performed at different conditions, protected from light. Further, the therapeutic efficacy of Ampat was evaluated against Candida albicans-induced fungal keratitis using ex vivo and in vivo efficacy models. Amphotericin B in Ampat was found to be stable at room temperature (25 °C) and refrigerated conditions for at least two months. Computer simulations showed that the hydrolysis was a major degradation mechanism of Amphotericin B and was reduced when loaded in the polymeric corneal patch. The ex vivo and in vivo studies show that Ampat was as efficacious as the marketed Amphotericin B formulation but with a reduced administration frequency (1 vs 12 times per day). The present study demonstrated Ampat as a potential alternative to reconstituted lipid-bound eye drops to treat fungal keratitis.
Collapse
Affiliation(s)
- Velmurugan Kailasam
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Manthan S Hiremath
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | | | - Vasagiri Nagarjuna
- Shantilal Shanghvi Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Prashant Garg
- Shantilal Shanghvi Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
2
|
Szalai B, Budai-Szűcs M, Kovács A, Berkó S, Gróf I, Deli MA, Katona G, Balogh GT, Jójárt-Laczkovich O. The effect of mucoadhesive polymers on ocular permeation of thermoresponsive in situ gel containing dexamethasone-cyclodextrin complex. Int J Pharm 2024; 667:124848. [PMID: 39447934 DOI: 10.1016/j.ijpharm.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Dexamethasone (DXM) is a commonly used corticosteroid in the treatment of ocular inflammatory conditions that affect more and more people. The aim of this study was to evaluate the effect of the combination of hydroxypropyl-β-cyclodextrin (HPBCD), in situ gelling formulations, and other mucoadhesive polymers, i.e., hydroxypropyl methylcellulose (HPMC) and zinc-hyaluronate (ZnHA), on permeation by applying in vitro and ex vivo ophthalmic permeation models. Additionally, gelling properties, in vitro drug release, and mucoadhesion were measured to determine the impact of these factors on permeation and ultimately on bioavailability. The results showed that GEL1 and GEL2 had an optimal gelling temperature, 36.3 ℃ and 34.6 ℃, respectively. Moreover, the combination of Poloxamer 407 (P407) with other polymers improved the mucoadhesion (GEL1: 1333.7 mN) compared with formulations containing only P407 (P12: 721.8 mN). Both HPBCD and the gel matrix had a considerable influence on the drug release and permeability of DXM, and the combination could facilitate the permeation into the aqueous humor. After 30 min of treatment, the DXM concentration in the aqueous humor was 1.16-1.37 µg∕mL in case of the gels, whereas DXM could not be detected when treated with the DXM suspension. The results of the experiments using an in vitro cell line indicated that the formulations could be considered safe for topical treatment of the eye. In conclusion, with application of a small amount of HPMC (0.2 % w∕w), the concentration of P407 could be reduced to 12 % w/w while maintaining the ideal gelling properties and gel structure without negatively affecting permeability compared with the formulation containing a higher amount of P407. Furthermore, the gel matrix may also provide programmed and elongated drug release.
Collapse
Affiliation(s)
- Boglárka Szalai
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - Ilona Gróf
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 62 Temesvári krt., Szeged H-6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 62 Temesvári krt., Szeged H-6726, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary
| | - György T Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, 7-9 Hőgyes Endre u., Budapest H-1092, Hungary; Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rakpart 3., Budapest H -1111, Hungary
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6 Eötvös u., Szeged H-6720, Hungary.
| |
Collapse
|
3
|
Ellakwa TE, Abu-Khadra AS, Ellakwa DES. Influence of physico-chemical properties of hydroxypropyl methylcellulose on quetiapine fumarate release from sustained release matrix tablets. BMC Chem 2024; 18:219. [PMID: 39511691 PMCID: PMC11545565 DOI: 10.1186/s13065-024-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Quetiapine fumarateis a typical antipsychotic with a short half-life of 6 h and is administered multiple times daily. In this study, a copolymer for controlled delivery of quetiapine fumarate will be developed. In order to prevent side effects and improve patient compliance, hydroxypropyl methylcellulose K15M (HPMC K15M) was included in the formulation of the quetiapine fumarate oral sustained-release tablets at a concentration of 10-30%. A series of analytical methods were used to determine the characteristics of the prepared hydrogels, including Fourier transform-infrared spectroscopy, Differential scanning calorimetry, X-ray diffraction, and Scanning electron microscope. At two different pH values (1.2 and 6.8), swelling and release studies were conducted. A variety of release kinetic models was used to study drug release mechanisms. A non-Fickian diffusion mechanism released hydrogels prepared from quetiapine fumarate. It was found that swelling was increased by increasing the amount of HPMC K15M. Compared to the other batches (10-20%), the produced tablets with 30% HPMC K15M content had a better release profile after 20 h of dissolution. Because of the effective matrix complex's limited solubility in water, the drug diffuses through the gel layer at a steady rate rather than dissolving quickly.
Collapse
Grants
- Egyptian Russian University,Cairo, Egypt
- Faculty of Engineering, Sinai University, Al-Arish, Egypt
- Faculty of pharmacy for Girls, Al-Azhar, Cairo., Egypt
- Faculty of pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
- Egyptian Russian University (ERU)
Collapse
Affiliation(s)
- Takwa E Ellakwa
- Physical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| | - Ahmad S Abu-Khadra
- Basic Science Department, Faculty of Engineering, Sinai University, Al-Arish, Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| |
Collapse
|
4
|
Preman NK, Amin N, Sanjeeva SG, Surya S, Kumar B S, Shenoy MM, Shastry RP, Johnson RP. Essential Oil Components Incorporated Emulsion Hydrogels for Eradicating Dermatophytosis Caused by Pathogenic Fungi Trichophyton mentagrophytes and Microsporum canis. Adv Healthc Mater 2024; 13:e2400811. [PMID: 39138998 DOI: 10.1002/adhm.202400811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Dermatophytosis is a prevalent fungal infection and public health burden, majorly caused by the attack of zoophilic fungi genera of Trichophyton and Microsporum. Among them, T. mentagrophytes and M. canis are the dominating pathogens that cause dermatophytosis in humans. Though anti-fungal treatments are available, the widespread drug resistance and minimal efficacy of conventional therapies cause recurring infections. In addition, prolonged anti-fungal medications induce several systemic side effects, including hepatotoxicity and leucopenia. The anti-dermatophytic formulation of biocompatible essential oil components (EOCs) is attractive due to their highly potent anti-dermatophytic action. Herein, two EOCs, Eugenol (EU) and Isoeugenol (IU), incorporated emulsion hydrogel (EOCs-EHG) synthesized from hydroxypropylmethyl cellulose and poly(ethylene glycol) methyl ether methacrylate. The cytocompatibility of the hydrogels is confirmed by treating them with fibroblast and keratinocyte cell lines. The EOCs-EHG demonstrated pH and temperature-responsive sustained release of entrapped EOCs and inhibited fungal spore germination. T. mentagrophytes and M. canis biofilms are eradicated at a minimal inhibitory concentration of 2 µg mL-1 each of EU and IU. The in vivo anti-dermatophytic activity of EOCs-EHG is confirmed in dermatophyte-infected Wistar albino rat models. The topical application of EOCs-EHG demonstrated complete infection eradication and facilitated skin regeneration, emphasizing the therapeutic potential of EOCs-EHG against dermatophytosis.
Collapse
Affiliation(s)
- Namitha K Preman
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Nikhitha Amin
- Department of Dermatology, Venereology and Leprosy, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Sandesh G Sanjeeva
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suprith Surya
- Advanced Surgical Skill ENhancement Division (ASSEND), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Sukesh Kumar B
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Manjunath M Shenoy
- Department of Dermatology, Venereology and Leprosy, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Renjith P Johnson
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
5
|
Ubhe A, Oldenkamp H, Wu K. Small Molecule Topical Ophthalmic Formulation Development-Data Driven Trends & Perspectives from Commercially Available Products in the US. J Pharm Sci 2024; 113:2997-3011. [PMID: 39117273 DOI: 10.1016/j.xphs.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Topical ophthalmic drug product development is a niche research domain as the drug formulations need to be designed to perform in the unique ocular physiological conditions. The most common array of small molecule drug formulations intended for topical ophthalmic administration include solutions, suspensions, emulsions, gels, and ointments. The formulation components such as excipients and container closure are unique to serve the needs of topical ophthalmic delivery compared to other parenteral products. The selection of appropriate formulation platform, excipients, and container closure for delivery of drugs by topical ophthalmic route is influenced by a combination of factors like physicochemical properties of the drug molecule, intended dose, pharmacological indication as well as the market trends influenced by the patient population. In this review, data from literature and packaging inserts of 118 reference listed topical ophthalmic medications marketed in the US are collected and analyzed to identify trends that would serve as a guidance for topical ophthalmic formulation development for small molecule drugs. Specifically, the topics reviewed include current landscape of the available small molecule topical ophthalmic drug products in the US, physicochemical properties of the active pharmaceutical ingredients (APIs), formulation platforms, excipients, and container closure systems.
Collapse
Affiliation(s)
- Anand Ubhe
- AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA.
| | | | - Ke Wu
- AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
6
|
Bouchekhou Z, Hadj Ziane-Zafour A, Lupascu FG, Profire BȘ, Nicolescu A, Bostiog DI, Doroftei F, Dascalu IA, Varganici CD, Pinteala M, Profire L, Pinteala T, Bouzid B. Binary and Ternary Inclusion Complexes of Niflumic Acid: Synthesis, Characterization, and Dissolution Profile. Pharmaceutics 2024; 16:1190. [PMID: 39339226 PMCID: PMC11435181 DOI: 10.3390/pharmaceutics16091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Although niflumic acid (NA) is one of the most used non-steroidal anti-inflammatory drugs, it suffers from poor solubility, low bioavailability, and significant adverse effects. To address these limitations, the complexation of NA with cyclodextrins (CDs) is a promising strategy. However, complexing CDs with low molecular weight drugs like NA can lead to low CE. This study explores the development of inclusion complexes of NA with 2-hydroxypropyl-β-cyclodextrin (2HP-β-CD), including the effect of converting NA to its sodium salt (NAs) and adding hydroxypropyl methylcellulose (HPMC) on complex formation. Inclusion complexes were prepared using co-evaporation solvent and freeze-drying methods, and their CE and Ks were determined through a phase solubility study. The complexes were characterized using physicochemical analyses, including FT-IR, DSC, SEM, XRD, DLS, UV-Vis, 1H-NMR, and 1H-ROESY. The dissolution profiles of the complexes were also evaluated. The analyses confirmed complex formation for all systems, demonstrating drug-cyclodextrin interactions, amorphous drug states, morphological changes, and improved solubility and dissolution profiles. The NAs-2HP-β-CD-HPMC complex exhibited the highest CE and Ks values, a 1:1 host-guest molar ratio, and the best dissolution profile. The results indicate that the NAs-2HP-β-CD-HPMC complex has potential for delivering NA, which might enhance its therapeutic effectiveness and minimize side effects.
Collapse
Affiliation(s)
- Zohra Bouchekhou
- Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria
| | - Amel Hadj Ziane-Zafour
- Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria
| | - Florentina Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Bianca-Ștefania Profire
- Department of Internal Medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iași, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Denisse-Iulia Bostiog
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Ioan-Andrei Dascalu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Cristian-Dragoș Varganici
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Mariana Pinteala
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica-Voda Alley, 700487 Iasi, Romania
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania
| | - Tudor Pinteala
- Department of Orthopedics and Traumatology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iași, Romania
| | - Bachir Bouzid
- Chemical Engineering Laboratory, Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaa, BP 270, Blida 09000, Algeria
| |
Collapse
|
7
|
Cheng H, Wang Y, Hong Y, Wu F, Shen L, Lin X. Low-viscosity hydroxypropyl methylcellulose obtained by electron beam irradiation and its performance in spray drying. Int J Biol Macromol 2024; 275:133626. [PMID: 38964691 DOI: 10.1016/j.ijbiomac.2024.133626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low-viscosity hydroxypropyl methylcellulose (HPMC) was obtained by electron beam irradiation, and its use as an excipient for improving the properties of spray dried pharmaceutical powders was investigated. The minimum molecular weight of HPMC which could maintain the capacity of encapsulation and powder modification was explored. As the irradiation dose was increased from 10 to 200 kGy, the molecular weight and viscosity of HPMC decreased linearly. However, its main structure and degrees of methoxy and hydroxypropyl substitution were not significantly affected. The irradiated HPMC could encapsulate particles during spray drying and, thus, modify powder properties. Furthermore, the water content of spray-dried powders with irradiated HPMC was lower than that with parent HPMC. After the spray-dried powder with irradiated HPMC was prepared into granules, their dissolution rate was also faster. However, in order to achieve high encapsulation, the molecular weight of HPMC should be ensured to be above 7.5 kDa. The designated low-viscosity HPMC obtained by electron beam irradiation is a suitable powder-modification material for use in spray drying, and it shows promise as a superior excipient in medicine, food, paint industries, among others.
Collapse
Affiliation(s)
- Hong Cheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Youjie Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yanlong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
8
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Enhancing the Biodegradability, Water Solubility, and Thermal Properties of Polyvinyl Alcohol through Natural Polymer Blending: An Approach toward Sustainable Polymer Applications. Polymers (Basel) 2024; 16:2141. [PMID: 39125167 PMCID: PMC11314078 DOI: 10.3390/polym16152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The escalating environmental crisis posed by single-use plastics underscores the urgent need for sustainable alternatives. This study provides an approach to introduce biodegradable polymer blends by blending synthetic polyvinyl alcohol (PVA) with natural polymers-corn starch (CS) and hydroxypropyl methylcellulose (HPMC)-to address this challenge. Through a comprehensive analysis, including of the structure, mechanical strength, water solubility, biodegradability, and thermal properties, we investigated the enhanced performance of PVA-CS and PVA-HPMC blends over conventional polymers. Scanning electron microscopy (SEM) findings of pure PVA and its blends were studied, and we found a complete homogeneity between the PVA and both types of natural polymers in the case of a high concentration of PVA, whereas at lower concentration of PVA, some granules of CS and HMPC appear in the SEM. Blending corn starch (CS) with PVA significantly boosts its biodegradability in soil environments, since adding starch of 50 w/w duplicates the rate of PVA biodegradation. Incorporating hydroxypropyl methylcellulose (HPMC) with PVA not only improves water solubility but also enhances biodegradation rates, as the addition of HPMC increases the biodegradation of pure PVA from 10 to 100% and raises the water solubility from 80 to 100%, highlighting the significant acceleration of the biodegradation process and water solubility caused by HPMC addition, making these blends suitable for a wide range of applications, from packaging and agricultural films to biomedical engineering. The thermal properties of pure PVA and its blends with natural were studied using diffraction scanning calorimetry (DSC). It is found that the glass transition temperature (Tg) increases after adding natural polymers to PVA, referring to an improvement in the molecular weight and intermolecular interactions between blend molecules. Moreover, the amorphous structure of natural polymers makes the melting temperature ™ lessen after adding natural polymer, so the blends require lower temperature to remelt and be recycled again. For the mechanical properties, both types of natural polymer decrease the tensile strength and elongation at break, which overall weakens the mechanical properties of PVA. Our findings offer a promising pathway for the development of environmentally friendly polymers that do not compromise on performance, marking a significant step forward in polymer science's contribution to sustainability. This work presents detailed experimental and theoretical insights into novel polymerization methods and the utilization of biological strategies for advanced material design.
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, UK
| |
Collapse
|
9
|
Kuncorojakti S, Pratama AZA, Antujala CA, Harijanto CTB, Arsy RK, Kurniawan PA, Tjahjono Y, Hendriati L, Widodo T, Aswin A, Diyantoro D, Wijaya AY, Rodprasert W, Susilowati H. Acceleration of wound healing using adipose mesenchymal stem cell secretome hydrogel on partial-thickness cutaneous thermal burn wounds: An in vivo study in rats. Vet World 2024; 17:1545-1554. [PMID: 39185045 PMCID: PMC11344119 DOI: 10.14202/vetworld.2024.1545-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The intricate healing process involves distinct sequential and overlapping phases in thermal injury. To maintain the zone of stasis in Jackson's burn wound model, proper wound intervention is essential. The extent of research on the histoarchitecture of thermal wound healing and the application of mesenchymal stem cell (MSC)-free-based therapy is limited. This study aimed to assess the efficacy of MSC-secretome-based hydrogel for treating partial-thickness cutaneous thermal burn wounds. Materials and Methods Eighteen male Wistar rats were divided into three groups, namely the hydrogel base (10 mg), hydrogel secretome (10 mg) and Bioplacenton™ (10 mg) treatment groups. All groups were treated twice a day (morning and evening) for 7 days. Skin tissue samples from the animals were processed for histological evaluation using the formalin-fixed paraffin-embedded method on days 3 and 7. Results This study's findings showed that secretome hydrogel expedited thermal burn wound healing, decreasing residual burn area, boosting collagen deposition and angiogenesis, guiding scar formation, and influencing the inflammation response facilitated by polymorphonuclear leukocytes and macrophages. Conclusion The secretome hydrogel significantly improves healing outcomes in partial-thickness cutaneous thermal burn wounds. The administration of secretome hydrogel accelerates the reduction of the residual burn area and promotes fibroblast proliferation and collagen density. The repairment of histo-architecture of the damaged tissue was also observed such as the reduction of burn depth, increased angiogenesis and epidermal scar index while the decreased dermal scar index. Furthermore, the secretome hydrogel can modulate the immunocompetent cells by decreasing the polymorphonuclear and increasing the mononuclear cells. Thus, it effectively and safely substitutes for thermal injury stem cell-free therapeutic approaches. The study focuses on the microscopical evaluation of secretome hydrogel; further research to investigate at the molecular level may be useful in predicting the beneficial effect of secretome hydrogel in accelerating wound healing.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cahya Asri Antujala
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | | | - Rozak Kurnia Arsy
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Putut Andika Kurniawan
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Yudy Tjahjono
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Lucia Hendriati
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Teguh Widodo
- Department of Pharmaceutics Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
| | - Ahmad Aswin
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Diyantoro Diyantoro
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Andi Yasmin Wijaya
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Susilowati
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Kruk K, Winnicka K. Hard Gelatin Capsules with Alginate-Hypromellose Microparticles as a Multicompartment Drug Delivery System for Sustained Posaconazole Release. Int J Mol Sci 2024; 25:7116. [PMID: 39000223 PMCID: PMC11241651 DOI: 10.3390/ijms25137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.
Collapse
Affiliation(s)
- Katarzyna Kruk
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
11
|
Wu KY, Khan S, Liao Z, Marchand M, Tran SD. Biopolymeric Innovations in Ophthalmic Surgery: Enhancing Devices and Drug Delivery Systems. Polymers (Basel) 2024; 16:1717. [PMID: 38932068 PMCID: PMC11207407 DOI: 10.3390/polym16121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The interface between material science and ophthalmic medicine is witnessing significant advances with the introduction of biopolymers in medical device fabrication. This review discusses the impact of biopolymers on the development of ophthalmic devices, such as intraocular lenses, stents, and various prosthetics. Biopolymers are emerging as superior alternatives due to their biocompatibility, mechanical robustness, and biodegradability, presenting an advance over traditional materials with respect to patient comfort and environmental considerations. We explore the spectrum of biopolymers used in ophthalmic devices and evaluate their physical properties, compatibility with biological tissues, and clinical performances. Specific applications in oculoplastic and orbital surgeries, hydrogel applications in ocular therapeutics, and polymeric drug delivery systems for a range of ophthalmic conditions were reviewed. We also anticipate future directions and identify challenges in the field, advocating for a collaborative approach between material science and ophthalmic practice to foster innovative, patient-focused treatments. This synthesis aims to reinforce the potential of biopolymers to improve ophthalmic device technology and enhance clinical outcomes.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Sameer Khan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zhuoying Liao
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada; (K.Y.W.); (M.M.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
12
|
Yang Q, Zhang T, Wu Y, Liang Q, Zhao W, Liu R, Jin X. Progress in the Application of Microneedles in Eye Disorders and the Proposal of the Upgraded Microneedle with Spinule. Pharm Res 2024; 41:203-222. [PMID: 38337104 DOI: 10.1007/s11095-024-03658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE In the local administration methods for treating eye diseases, the application of microneedles has great potential due to the shortcomings of low efficacy and significant side effects of local administration preparations. This article provides ideas for the research on the application of ophthalmic microneedle in the treatment of eye diseases. RESULTS This article analyzes the physiological structures of the eyes, ocular diseases and its existing ocular preparations in sequence. Finally, this article reviews the development and trends of ocular microneedles in recent years, and summarizes and discusses the drugs of ocular microneedles as well as the future directions of development. At the same time, according to the inspiration of previous work, the concept of "microneedle with spinule" is proposed for the first time, and its advantages and limitations are discussed in the article. CONCLUSIONS At present, the application of ocular microneedles still faces multiple challenges. The aspects of auxiliary devices, appearance, the properties of the matrix materials, and preparation technology of ophthalmic microneedle are crucial for their application in the treatment of eye diseases.
Collapse
Affiliation(s)
- Qiannan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Tingting Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujie Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyue Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Wanqi Zhao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Tianjin, 301617, Jinghai District, China
| | - Rui Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin, 301617, China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Jin
- Military Medicine Section, Logistics University of People's Armed Police Force, 1 Huizhihuan Road, Tianjin, 300309, Dongli District, China.
| |
Collapse
|
13
|
Khan KA, Ahmad A, Marini C, Nicotra M, Di Cerbo A, Fazal-Ur-Rehman, Ullah N, Khan GM. Formulation and Preparation of Losartan-Potassium-Loaded Controlled-Release Matrices Using Ethocel Grade 10 to Establish a Correlation between In Vitro and In Vivo Results. Pharmaceutics 2024; 16:186. [PMID: 38399247 PMCID: PMC10893290 DOI: 10.3390/pharmaceutics16020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
In the current study, matrices of losartan potassium were formulated with two different polymers (Ethocel 10 premium and Ethocel 10FP premium), along with a filler and a lubricant, at different drug-to-polymer w/w ratios (10:3, 10:4, and 10:5). The matrices were tested by the direct compression method, and their hardness, diameter, thickness, friability, weight variation, content uniformity, and in vitro dissolution tests were assessed to determine 24-h drug release rates. The matrices with Ethocel 10 FP at a 10:4 ratio exhibited pseudo-zero-order kinetics (n-value of 0.986), while the dissolution data of the test matrices and reference tablets did not match. The new test-optimized matrices were also tested in rabbits, and their pharmacokinetic parameters were investigated: half-life (11.78 ± 0.018 h), Tmax (2.105 ± 1.131 h), Cmax (205.98 ± 0.321 μg/mL), AUCo (5931.10 ± 1.232 μg·h/mL), AUCo-inf (7348.46 ± 0.234 μg·h/mL), MRTo-48h (17.34 ± 0.184 h), and Cl (0.002 ± 0.134 mL/min). A correlation value of 0.985 between the in vitro and in vivo results observed for the test-optimized matrices was observed, indicating a level-A correlation between the percentage of the drug released in vitro and the percentage of the drug absorbed in vivo. The matrices might improve patient compliance with once-a-day dosing and therapeutic outcomes.
Collapse
Affiliation(s)
- Kamran Ahmad Khan
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan P.O. Box 29050, Pakistan;
| | - Ashfaq Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Gulberg Greens Campus, Islamabad P.O. Box 44000, Pakistan;
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (C.M.); (M.N.)
| | - Mario Nicotra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (C.M.); (M.N.)
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (C.M.); (M.N.)
| | - Fazal-Ur-Rehman
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan P.O. Box 29050, Pakistan;
| | - Naveed Ullah
- Department of Pharmacy, University of Swabi, Swabi P.O. Box 23430, Pakistan;
| | - Gul Majid Khan
- Islamia College University, Peshawar P.O. Box 25120, Pakistan;
| |
Collapse
|
14
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
15
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
16
|
Chen LC, Lin SY, Cheng WJ, Sheu MT, Chung CY, Hsu CH, Lin HL. Poloxamer sols endowed with in-situ gelability and mucoadhesion by adding hypromellose and hyaluronan for prolonging corneal retention and drug delivery. Drug Deliv 2023; 30:2158964. [PMID: 36587631 PMCID: PMC9809414 DOI: 10.1080/10717544.2022.2158964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to develop poloxamer (P407)-based in-situ thermogellable hydrogels with reducing concentration of P407 by adding hypromellose (HPMC) and with enhancing mucoadhesion of resulting hydrogels by adding hyaluronic acid (HA) for prolonging ocular delivery of hydroxypropyl-β-cyclodextrin (HPβCD)-solubilized testosterone (TES). Results demonstrated that 0.5% TES solution was successfully solubilized with adding 10% HPβCD. Non-gellable 13% P407 sol became in-situ gellable with adding 2.0-2.5% HPMC and mucoadhesibility was further imporved with adding 0.3% HA-L (low MW) or HA-H (high MW). Optimized 0.5% HPβCD-solubilized TES P407-based thermogellable hydrogels with enhancement of mucoadhesion for prolonging ocular delivery comprised 13% P407, 2.5% HPMC, and 0.3% HA-L or HA-H. Furthermore, rheological measurements under simulated eye blinking confirmed that non-thixotropic properties of optimized hydrogels could be spreaded evenly and retain a greater amount of drug-loaded hydrogels on the ocular surface for a longer period to prolong drug delivery. Compared with conventional eye drops, the prolonged residence time of optimized hydrogels from ex vivo and in vivo studies were observed, indicating relationships between rheological properties and in vivo performances. It was concluded that P407-based thermosensitive hydrogels with reducing concentration of P407 and enhancing mucoadhesion was successfully formulated by adding 2.5% HPMC and 0.3% HA in 13% P407 for potentially accomplishing effective clinical treatment of DED.
Collapse
Affiliation(s)
- Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, ROC
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC,Center for Drug Evaluation, Taipei, Taiwan, ROC
| | - Wei-Jie Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chi-Yun Chung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chen-Hsuan Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC,CONTACT Hong-Liang Lin
| |
Collapse
|
17
|
Navas-Bachiller M, Persoons T, D'Arcy DM. In vitro and in silico methods to investigate the effect of moderately increasing medium viscosity and density on ibuprofen dissolution rate. Eur J Pharm Biopharm 2023; 193:74-88. [PMID: 37884158 DOI: 10.1016/j.ejpb.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Medium viscosity can affect drug dissolution rate, however, it is not usually considered in routine dissolution testing or less complex biorelevant media. The effects of moderately increasing medium viscosity on the in vitro and in silico dissolution of ibuprofen were investigated with two viscosity enhancing agents (VEA) (hydroxypropyl methylcellulose (HPMC) and sucrose), three viscosity levels (range 0.7-5.5 mPa.s), two solubilities and two fluid velocities in the paddle, flow-through and intrinsic dissolution apparatuses. A factorial design analysis highlighted which factors significantly affected key dissolution metrics. Experimental results in the flow-through apparatus (FTA) were compared with in silico dissolution profiles generated by an in-house simulation code (SIMDISSOTM). Increasing viscosity reduced the intrinsic dissolution rate of ibuprofen for both VEAs. The dissolution rate reduction was also observed in the FTA with sucrose, but less so with HPMC, suggesting particle wetting, motion and surface area effects. Particle motion simulations suggested reduced particle lifting times as viscosity increased, indicating an effect of viscosity on particle dispersal. The viscosity- and fluid density-mediated reduction in the dissolution rate observed with sucrose was accurately simulated by SIMDISSOTM, in particular at higher velocities. Velocity had a significant impact on dissolution rates in the paddle apparatus, with a significant viscosity-related reduction in dissolution observed in the low solubility-low velocity scenario. Even small increases in medium viscosity can reduce the dissolution rate of a BCS class II drug, and in silico particle motion and dissolution data can assist interpretation of particulate dissolution behaviour.
Collapse
Affiliation(s)
- Marina Navas-Bachiller
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland.
| |
Collapse
|
18
|
de Carvalho ACW, Paiva NF, Demonari IK, Duarte MPF, do Couto RO, de Freitas O, Vicentini FTMDC. The Potential of Films as Transmucosal Drug Delivery Systems. Pharmaceutics 2023; 15:2583. [PMID: 38004562 PMCID: PMC10675688 DOI: 10.3390/pharmaceutics15112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Pharmaceutical films are polymeric formulations used as a delivery platform for administration of small and macromolecular drugs for local or systemic action. They can be produced by using synthetic, semi-synthetic, or natural polymers through solvent casting, electrospinning, hot-melt extrusion, and 3D printing methods, and depending on the components and the manufacturing methods used, the films allow the modulation of drug release. Moreover, they have advantages that have drawn interest in the development and evaluation of film application on the buccal, nasal, vaginal, and ocular mucosa. This review aims to provide an overview of and critically discuss the use of films as transmucosal drug delivery systems. For this, aspects such as the composition of these formulations, the theories of mucoadhesion, and the methods of production were deeply considered, and an analysis of the main transmucosal pathways for which there are examples of developed films was conducted. All of this allowed us to point out the most relevant characteristics and opportunities that deserve to be taken into account in the use of films as transmucosal drug delivery systems.
Collapse
Affiliation(s)
- Ana Clara Wada de Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Natália Floriano Paiva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Isabella Kriunas Demonari
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Maíra Peres Ferreira Duarte
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Renê Oliveira do Couto
- Campus Centro-Oeste Dona Lindu (CCO), Universidade Federal de São João del-Rei (UFSJ), Divinópolis 35501-296, MG, Brazil
| | - Osvaldo de Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | | |
Collapse
|
19
|
Biswas A, Choudhury AD, Bisen AC, Agrawal S, Sanap SN, Verma SK, Mishra A, Kumar S, Bhatta RS. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 2023; 24:217. [PMID: 37891392 DOI: 10.1208/s12249-023-02673-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.
Collapse
Affiliation(s)
- Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
- Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivansh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
20
|
Zhu Q, Zhang Q, Fu DY, Su G. Polysaccharides in contact lenses: From additives to bulk materials. Carbohydr Polym 2023; 316:121003. [PMID: 37321708 DOI: 10.1016/j.carbpol.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/17/2023]
Abstract
As the number of applications has increased, so has the demand for contact lenses comfort. Adding polysaccharides to lenses is a popular way to enhance comfort for wearers. However, this may also compromise some lens properties. It is still unclear how to balance the variation of individual lens parameters in the design of contact lenses containing polysaccharides. This review provides a comprehensive overview of how polysaccharide addition impacts lens wear parameters, such as water content, oxygen permeability, surface wettability, protein deposition, and light transmittance. It also examines how various factors, such as polysaccharide type, molecular weight, amount, and mode of incorporation into lenses modulate these effects. Polysaccharide addition can improve some wear parameters while reducing others depending on the specific conditions. The optimal method, type, and amount of added polysaccharides depend on the trade-off between various lens parameters and wear requirements. Simultaneously, polysaccharide-based contact lenses may be a promising option for biodegradable contact lenses as concerns regarding environmental risks associated with contact lens degradation continue to increase. It is hoped that this review will shed light on the rational use of polysaccharides in contact lenses to make personalized lenses more accessible.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
21
|
Chiaregato CG, Bernardinelli OD, Shavandi A, Sabadini E, Petri DFS. The effect of the molecular structure of hydroxypropyl methylcellulose on the states of water, wettability, and swelling properties of cryogels prepared with and without CaO 2. Carbohydr Polym 2023; 316:121029. [PMID: 37321726 DOI: 10.1016/j.carbpol.2023.121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/17/2023]
Abstract
Hydroxypropyl methylcellulose (HPMC) belongs to the cellulose ether family that has hydroxyl groups substituted by hydrophobic methyl groups (DS) and hydrophilic hydroxypropyl groups (MS). Herein, the interactions between water molecules and cryogels prepared with HPMC in the presence and absence of a linear nonionic surfactant, as well as CaO2 microparticles, which react with water producing O2, were systematically investigated by sorption experiments and Time-Domain Nuclear Magnetic Resonance. Regardless of the DS and MS, most water molecules presented transverse relaxation time t2 typical of intermediate water and a small population of more tightly bound water. HPMC cryogels with the highest DS of 1.9 presented the slowest swelling rate of 0.519 ± 0.053 gwater/(g.s) and the highest contact angle values 85.250o ± 0.004o, providing the best conditions for a slow reaction between CaO2 and water. The presence of surfactant favored hydrophobic interactions that allowed the polar head of the surfactant to be exposed to the medium, resulting in a higher swelling rate and lower contact angle values. The HPMC with the highest MS presented the fastest swelling rate and the lowest contact angle. These findings are relevant for the formulations and reactions, where tuning the swelling kinetics is crucial for the final application.
Collapse
Affiliation(s)
- Camila Gruber Chiaregato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, Brazil
| | | | - Amin Shavandi
- BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Edvaldo Sabadini
- Department of Physical Chemistry, Institute of Chemistry, State University of Campinas, 6154, 13083-970 Campinas, Brazil
| | | |
Collapse
|
22
|
Kaushal N, Kumar M, Tiwari A, Tiwari V, Sharma K, Sharma A, Marisetti AL, Gupta MM, Kazmi I, Alzarea SI, Almalki WH, Gupta G. Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation. Nanomedicine (Lond) 2023; 18:1383-1398. [PMID: 37702303 DOI: 10.2217/nnm-2023-0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Aim: Our study developed a prednisolone acetate polymeric micelles (PM) system for ocular inflammation related to allergic uveitis. Methods: For PM development, a thin-film hydration procedure was used. Irritation, in vitro, ex vivo transcorneal permeation, micelle size, entrapment efficiency and histology within the eye were all calculated for PM. Results: The optimized in situ gel (A4) showed superior ex vivo transcorneal permeation with zero-order kinetics. Conclusion: The developed formulation could be a promising candidate for treating anterior uveitis via topical application to the anterior segment of the eye.
Collapse
Affiliation(s)
- Nikita Kaushal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, 142024, India
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad, 244102, India
| | - Kamini Sharma
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana
| | - Ajay Sharma
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, PushpVihar-3, New Delhi, 110017, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- Center for Global Health research (CGHR), Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
| |
Collapse
|
23
|
Furtado LM, Yee M, Fernandes R, Valera TS, Itri R, Petri DFS. Rheological and mechanical properties of hydroxypropyl methylcellulose-based hydrogels and cryogels controlled by AOT and SDS micelles. J Colloid Interface Sci 2023; 648:604-615. [PMID: 37315482 DOI: 10.1016/j.jcis.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
HYPOTHESIS The type and concentration of surfactants affect the rheological behavior of hydroxypropyl methylcellulose (HPMC) chains in hydrogels, influencing the microstructure and mechanical properties of HPMC cryogels. EXPERIMENTS Hydrogels and cryogels containing HPMC, AOT (bis (2-ethylhexyl) sodium sulfosuccinate or dioctyl sulfosuccinate salt sodium, two C8 chains and sulfosuccinate head group), SDS (sodium dodecyl sulfate, one C12 chain and sulfate head group), and sodium sulfate (salt, no hydrophobic chain) at different concentrations were investigated using small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), rheological measurements, and compressive tests. FINDINGS SDS micelles bound to the HPMC chains building "bead necklaces", increasing considerably the storage modulus G' values of the hydrogels and the compressive modulus E values of the corresponding cryogels. The dangling SDS micelles promoted multiple junction points among the HPMC chains. AOT micelles and HPMC chains did not form "bead necklaces". Although AOT increased the G' values of the hydrogels, the resulting cryogels were softer than pure HPMC cryogels. The AOT micelles are probably embedded between HPMC chains. The AOT short double chains rendered softness and low friction to the cryogel cell walls. Therefore, this work demonstrated that the structure of the surfactant tail can tune the rheological behavior of HPMC hydrogels and hence the microstructure of the resulting cryogels.
Collapse
Affiliation(s)
- Laíse M Furtado
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| | - Marcio Yee
- Marine Science Department, Federal University of São Paulo, R. Dr. Carvalho de Mendonça, 144, CEP 11070-100, Santos, SP, Brazil.
| | - Rodrigo Fernandes
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
| | - Ticiane S Valera
- Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes, 2463, CEP 05508-030, São Paulo, SP, Brazil.
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil.
| | - Denise F S Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
24
|
Talebian S, Mendes B, Conniot J, Farajikhah S, Dehghani F, Li Z, Bitoque D, Silva G, Naficy S, Conde J, Wallace GG. Biopolymeric Coatings for Local Release of Therapeutics from Biomedical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207603. [PMID: 36782094 PMCID: PMC10131825 DOI: 10.1002/advs.202207603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The deployment of structures that enable localized release of bioactive molecules can result in more efficacious treatment of disease and better integration of implantable bionic devices. The strategic design of a biopolymeric coating can be used to engineer the optimal release profile depending on the task at hand. As illustrative examples, here advances in delivery of drugs from bone, brain, ocular, and cardiovascular implants are reviewed. These areas are focused to highlight that both hard and soft tissue implants can benefit from controlled localized delivery. The composition of biopolymers used to achieve appropriate delivery to the selected tissue types, and their corresponding outcomes are brought to the fore. To conclude, key factors in designing drug-loaded biopolymeric coatings for biomedical implants are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Bárbara Mendes
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - João Conniot
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Zhongyan Li
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Diogo Bitoque
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gabriela Silva
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - João Conde
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gordon G. Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongSydneyNSW2522Australia
| |
Collapse
|
25
|
Innovation in the Development of Synthetic and Natural Ocular Drug Delivery Systems for Eye Diseases Treatment: Focusing on Drug-Loaded Ocular Inserts, Contacts, and Intraocular Lenses. Pharmaceutics 2023; 15:pharmaceutics15020625. [PMID: 36839947 PMCID: PMC9961328 DOI: 10.3390/pharmaceutics15020625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Nowadays, ocular drug delivery still remains a challenge, since the conventional dosage forms used for anterior and posterior ocular disease treatments, such as topical, systemic, and intraocular administration methods, present important limitations mainly related to the anatomical complexity of the eye. In particular, the blood-ocular barrier along with the corneal barrier, ocular surface, and lacrimal fluid secretion reduce the availability of the administered active compounds and their efficacy. These limitations have increased the need to develop safe and effective ocular delivery systems able to sustain the drug release in the interested ocular segment over time. In the last few years, thanks to the innovations in the materials and technologies employed, different ocular drug delivery systems have been developed. Therefore, this review aims to summarize the synthetic and natural drug-loaded ocular inserts, contacts, and intraocular lenses that have been recently developed, emphasizing the characteristics that make them promising for future ocular clinical applications.
Collapse
|
26
|
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023; 12:foods12020350. [PMID: 36673441 PMCID: PMC9857633 DOI: 10.3390/foods12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
- Correspondence: (P.K.N.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (P.K.N.); or (B.S.I.)
| |
Collapse
|
27
|
Doan TNK, Le MD, Bajrovic I, Celentano L, Krause C, Balyan HG, Svancarek A, Mote A, Tretiakova A, Jude Samulski R, Croyle MA. Thermostability and in vivo performance of AAV9 in a film matrix. COMMUNICATIONS MEDICINE 2022; 2:148. [PMID: 36414773 PMCID: PMC9681776 DOI: 10.1038/s43856-022-00212-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) vectors are stored and shipped frozen which poses logistic and economic barriers for global access to these therapeutics. To address this issue, we developed a method to stabilize AAV serotype 9 (AAV9) in a film matrix that can be stored at ambient temperature and administered by systemic injection. METHODS AAV9 expressing the luciferase transgene was mixed with formulations, poured into molds and films dried under aseptic conditions. Films were packaged in individual particle-free bags with foil overlays and stored at various temperatures under controlled humidity. Recovery of AAV9 from films was determined by serial dilution of rehydrated film in media and infection of HeLa RC32 cells. Luciferase expression was compared to that of films rehydrated immediately after drying. Biodistribution of vector was determined by in vivo imaging and quantitative real-time PCR. Residual moisture in films was determined by Karl Fischer titration. RESULTS AAV9 embedded within a film matrix and stored at 4 °C for 5 months retained 100% of initial titer. High and low viscosity formulations maintained 90 and 85% of initial titer after 6 months at 25 °C respectively. AAV was not detected after 4 months in a Standard Control Formulation under the same conditions. Biodistribution and transgene expression of AAV stored in film at 25 or 4 °C were as robust as vector stored at -80 °C in a Standard Control Formulation. CONCLUSIONS These results suggest that storage of AAV in a film matrix facilitates easy transport of vector to remote sites without compromising in vivo performance.
Collapse
Affiliation(s)
- Trang Nguyen Kieu Doan
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
| | - Matthew D Le
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
| | - Irnela Bajrovic
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Lorne Celentano
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Charles Krause
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | | | - Abbie Svancarek
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Angela Mote
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Anna Tretiakova
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - R Jude Samulski
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
- Jurata Thin Film, 2450 Holcombe Blvd., Suite J, Houston, TX, 77021, USA
- Department of Pharmacology, University of North Carolina, 7119 Thurston Bowles Bldg. 104 Manning Dr., Chapel Hill, NC, 27599, USA
| | - Maria A Croyle
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA.
- John R. LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
28
|
Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers (Basel) 2022; 14:polym14224968. [PMID: 36433095 PMCID: PMC9699531 DOI: 10.3390/polym14224968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Packaging plays an important role in food quality and safety, especially regarding waste and spoilage reduction. The main drawback is that the packaging industry is among the ones that is highly dependent on plastic usage. New alternatives to conventional plastic packaging such as biopolymers-based type are mandatory. Examples are cellulose films and its derivatives. These are among the most used options in the food packaging due to their unique characteristics, such as biocompatibility, environmental sustainability, low price, mechanical properties, and biodegradability. Emerging concepts such as active and intelligent packaging provides new solutions for an extending shelf-life, and it fights some limitations of cellulose films and improves the properties of the packaging. This article reviews the available cellulose polymers and derivatives that are used as sustainable alternatives for food packaging regarding their properties, characteristics, and functionalization towards active properties enhancement. In this way, several types of films that are prepared with cellulose and their derivatives, incorporating antimicrobial and antioxidant compounds, are herein described, and discussed.
Collapse
|
29
|
Chen FC, Liu WJ, Zhu WF, Yang LY, Zhang JW, Feng Y, Ming LS, Li Z. Surface Modifiers on Composite Particles for Direct Compaction. Pharmaceutics 2022; 14:pharmaceutics14102217. [PMID: 36297653 PMCID: PMC9612340 DOI: 10.3390/pharmaceutics14102217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Direct compaction (DC) is considered to be the most effective method of tablet production. However, only a small number of the active pharmaceutical ingredients (APIs) can be successfully manufactured into tablets using DC since most APIs lack adequate functional properties to meet DC requirements. The use of suitable modifiers and appropriate co-processing technologies can provide a promising approach for the preparation of composite particles with high functional properties. The purpose of this review is to provide an overview and classification of different modifiers and their multiple combinations that may improve API tableting properties or prepare composite excipients with appropriate co-processed technology, as well as discuss the corresponding modification mechanism. Moreover, it provides solutions for selecting appropriate modifiers and co-processing technologies to prepare composite particles with improved properties.
Collapse
Affiliation(s)
- Fu-Cai Chen
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jun Liu
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Wei-Feng Zhu
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ling-Yu Yang
- Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330049, China
| | - Ji-Wen Zhang
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Feng
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang-Shan Ming
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| | - Zhe Li
- Key Laboratory of Preparation of Modern TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (L.-S.M.); (Z.L.); Tel.: +86-791-8711-9027 (L.-S.M. & Z.L.)
| |
Collapse
|
30
|
Balsam Poplar Buds: Extraction of Potential Phenolic Compounds with Polyethylene Glycol Aqueous Solution, Thermal Sterilization of Extracts and Challenges to Their Application in Topical Ocular Formulations. Antioxidants (Basel) 2022; 11:antiox11091771. [PMID: 36139845 PMCID: PMC9495353 DOI: 10.3390/antiox11091771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds of natural origin have been valued for their beneficial effects on health since ancient times. During our study, we performed the extraction of phenolic compounds from balsam poplar buds using different concentrations of aqueous polyethylene glycol 400 solvents (10-30% PEG400). The aqueous 30% PEG400 extract showed the best phenolic yield. The stability of the extract during autoclave sterilization was evaluated. The extract remained stable under heat sterilization. Ophthalmic formulations are formed using different concentrations (8-15%) of poloxamer 407 (P407) together with hydroxypropyl methylcellulose (0.3%), sodium carboxymethyl cellulose (0.3%) or hyaluronic acid (0.1%). Physicochemical parameters of the formulations remained significantly unchanged after sterilization. Formulations based on 12% P407 exhibited properties characteristic of in situ gels, the gelation point of the formulations was close to the temperature of the cornea. After evaluating the amount of released compounds, it was found that, as the concentration of polymers increases, the amount of released compounds decreases. Formulations based on 15% P407 released the least biologically active compounds. Sterilized formulations remained stable for 30 days.
Collapse
|
31
|
Szalai B, Jójárt-Laczkovich O, Kovács A, Berkó S, Balogh GT, Katona G, Budai-Szűcs M. Design and Optimization of In Situ Gelling Mucoadhesive Eye Drops Containing Dexamethasone. Gels 2022; 8:gels8090561. [PMID: 36135271 PMCID: PMC9498616 DOI: 10.3390/gels8090561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Poor bioavailability of eye drops is a well-known issue, which can be improved by increasing the residence time on the eye surface and the penetration of the active pharmaceutical ingredient (API). This study aims to formulate in situ gelling mucoadhesive ophthalmic preparations. To increase the residence time, the formulations were based on a thermosensitive polymer (Poloxamer 407 (P407)) and were combined with two types of mucoadhesive polymers. Dexamethasone (DXM) was solubilized by complexation with cyclodextrins (CD). The effect of the composition on the gel structure, mucoadhesion, dissolution, and permeability was investigated with 33 full factorial design. These parameters of the gels were measured by rheological studies, tensile test, dialysis membrane diffusion, and in vitro permeability assay. The dissolution and permeability of the gels were also compared with DXM suspension and CD-DXM solution. The gelation is strongly determined by P407; however, the mucoadhesive polymers also influenced it. Mucoadhesion increased with the polymer concentration. The first phase of drug release was similar to that of the CD-DXM solution, then it became prolonged. The permeability of DXM was significantly improved. The factorial design helped to identify the most important factors, thereby facilitating the formulation of a suitable carrier for the CD-DXM complex.
Collapse
Affiliation(s)
- Boglárka Szalai
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - György Tibor Balogh
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem Quay 3, H-1111 Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-6254-5573
| |
Collapse
|
32
|
Novaes SD, Oliveira PV, Petri DFS. Hydroxypropyl methylcellulose-sugarcane bagasse adsorbents for removal of 17α-ethinylestradiol from aqueous solution and freshwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63936-63952. [PMID: 35467193 DOI: 10.1007/s11356-022-20345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Adsorbents made of hydroxypropyl methylcellulose (HPMC) and sugarcane bagasse (BG) microparticles were applied for the separation of 17α-ethinylestradiol (EE2) from aqueous solution in batch, and from aqueous solution and freshwater in fixed-bed columns. HPMC chains and BG microparticles were crosslinked by the esterification with citric acid. The adsorbents presented compression modulus values that increased from 208 ± 20 kPa (pure HPMC) to 917 ± 90 kPa, when the content of BG particles added to HPMC was 50 wt% (HPMC50BG). The porosity (~ 97%), specific surface area (1.16 ± 0.10 m2/g) and swelling degree (20 ± 1 g water/g) values were not affected by the addition of BG particles. The adsorption isotherms determined for EE2 on HPMC and on HPMC50BG fitted to the Langmuir and Freundlich models; the adsorption capacity of HPMC was slightly higher than that of composite HPMC50BG. Nevertheless, the addition of BG particles rendered outstanding mechanical reinforcement and dimensional stability to the adsorbents. The adsorption was driven by (i) hydrophobic interactions between EE2 methylene and aromatic groups and HPMC methyl groups, as evidenced by FTIR spectroscopy, and (ii) H bonds between HPMC and EE2 hydroxyl groups, as revealed by the adsorption enthalpy change (ΔHads) of - 45 kJ/mol. Column adsorption experiments of EE2 from aqueous solution on HPMC and HPMC50BG indicated adsorptive capacity (q0) values of 8.06 mg/g and 4.07 mg/g, respectively. These values decreased considerably for the adsorption of EE2 from river water, probably due to the competition of EE2 with humic substances dissolved in natural water. The HPMC adsorbents could be recycled retaining up to 83% of the original efficiency.
Collapse
Affiliation(s)
- Stephanie Dias Novaes
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Pedro Vitoriano Oliveira
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
33
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
34
|
Papakyriakopoulou P, Rekkas DM, Colombo G, Valsami G. Development and In Vitro-Ex Vivo Evaluation of Novel Polymeric Nasal Donepezil Films for Potential Use in Alzheimer's Disease Using Experimental Design. Pharmaceutics 2022; 14:pharmaceutics14081742. [PMID: 36015368 PMCID: PMC9416078 DOI: 10.3390/pharmaceutics14081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The objective and novelty of the present study is the development and optimization of innovative nasal film of Donepezil hydrochloride (DH) for potential use in Alzheimer’s disease. Hydroxypropyl-methyl-cellulose E50 (factor A) nasal films, with Polyethylene glycol 400 as plasticizer (factor B), and Methyl-β-Cyclodextrin, as permeation enhancer (factor C), were prepared and characterized in vitro and ex vivo. An experimental design was used to determine the effects of the selected factors on permeation profile of DH through rabbit nasal mucosa (response 1), and on film flexibility/foldability (response 2). A face centered central composite design with three levels was applied and 17 experiments were performed in triplicate. The prepared films exhibited good uniformity of DH content (90.0 ± 1.6%−99.8 ± 4.9%) and thickness (19.6 ± 1.9−170.8 ± 11.5 μm), storage stability characteristics, and % residual humidity (<3%), as well as favourable swelling and mucoadhesive properties. Response surface methodology determined the optimum composition for flexible nasal film with maximized DH permeation. All selected factors interacted with each other and the effect of these interactions on responses is strongly related to the factor’s concentration ratios. Based on these encouraging results, in vivo serum and brain pharmacokinetic study of the optimized nasal film, in comparison to DH oral administration, is ongoing in an animal model.
Collapse
Affiliation(s)
- Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitrios M. Rekkas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence:
| |
Collapse
|
35
|
Zhang L, Huang YK, Yue LN, Xu L, Qian JY, He XD. Variation of blending ratio and drying temperature optimize the physical properties and compatibility of HPMC/curdlan films. Carbohydr Polym 2022; 296:119951. [DOI: 10.1016/j.carbpol.2022.119951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
|
36
|
Hassan DH, Shohdy JN, El-Setouhy DA, El-Nabarawi M, Naguib MJ. Compritol-Based Nanostrucutured Lipid Carriers (NLCs) for Augmentation of Zolmitriptan Bioavailability via the Transdermal Route: In Vitro Optimization, Ex Vivo Permeation, In Vivo Pharmacokinetic Study. Pharmaceutics 2022; 14:pharmaceutics14071484. [PMID: 35890379 PMCID: PMC9315618 DOI: 10.3390/pharmaceutics14071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/14/2023] Open
Abstract
Migraine is a severe neurovascular disease manifested mainly as unilateral throbbing headaches. Triptans are agonists for serotonin receptors. Zolmitriptan (ZMP) is a biopharmaceutics classification system (BCS) class III medication with an absolute oral bioavailability of less than 40%. As a result, our research intended to increase ZMP bioavailability by developing transdermal nanostructured lipid carriers (NLCs). NLCs were prepared utilizing a combination of hot melt emulsification and high-speed stirring in a 32 full factorial design. The studied variables were liquid lipid type (X1) and surfactant type (X2). The developed NLCs were evaluated in terms of particle size (Y1, nm), polydispersity index (Y2, PDI), zeta potential (Y3, mV), entrapment efficacy (Y4, %) and amount released after 6 h (Q6h, Y5, %). At 1% Mygliol as liquid lipid component and 1% Span 20 as surfactant, the optimized formula (NLC9) showed a minimum particle size (138 ± 7.07 nm), minimum polydispersity index (0.39 ± 0.001), acceptable zeta potential (−22.1 ± 0.80), maximum entrapment efficiency (73 ± 0.10%) and maximum amount released after 6 h (83.22 ± 0.10%). The optimized formula was then incorporated into gel preparation (HPMC) to improve the system stability and ease of application. Then, the pharmacokinetic study was conducted on rabbits in a cross-over design. The calculated parameters showed a higher area under the curve (AUC0–24, AUC0–∞ (ng·h/mL)) of the developed ZMP-NLCs loaded gel, with a 1.76-fold increase in bioavailability in comparison to the orally administered marketed product (Zomig®). A histopathological examination revealed the safety of the developed nanoparticles. The declared results highlight the potential of utilizing the proposed NLCs for the transdermal delivery of ZMP to improve the drug bioavailability.
Collapse
Affiliation(s)
- Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Joseph N. Shohdy
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Marianne J. Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
- Correspondence:
| |
Collapse
|
37
|
Onisuru OR, Fapojuwo DP, Oseghale CO, Alimi OA, Meijboom R. Transfer hydrogenation of ketone; an in situ approach toward an eco-friendly reduction. RSC Adv 2022; 12:19890-19900. [PMID: 35865205 PMCID: PMC9262422 DOI: 10.1039/d2ra02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
The use of water as a solvent in chemical reactions has recently been brought to public attention, especially in the exploration of eco-friendly procedures. It is readily available, abundantly accessible, non-toxic, non-flammable, and at a low cost. As opposed to the previous limitation of reactant solubilities associated with aqueous media, a hydrogel such as a hydroxypropyl methylcellulose (HPMC) solution can significantly improve the reactant solubility. This investigation employed water and HPMC as the reaction solvent, and the reaction medium viscosity was impressively enhanced. Silica-supported Pd particles (Pd@SiO2) were synthesized and effectively catalyzed the reduction of acetophenone in the presence of sodium borohydride (NaBH4) as the hydrogen source. The conversion of acetophenone to 1-phenyl ethanol remained at a very high value of >99.34% with 100% selectivity towards 1-phenyl ethanol. The use of water as a solvent in chemical reactions has recently been brought to public attention, especially in the exploration of eco-friendly procedures.![]()
Collapse
Affiliation(s)
- Oluwatayo Racheal Onisuru
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Dele Peter Fapojuwo
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Charles O Oseghale
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Oyekunle Azeez Alimi
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| | - Reinout Meijboom
- Department of Chemical Sciences, University of Johannesburg P.O. Box 524, Auckland Park Johannesburg 2006 South Africa +27 (0)11 559 2819 +27 (0)72 894 0293
| |
Collapse
|
38
|
Iqbal S, Zhang P, Wu P, Yin Q, Hidayat K, Chen XD. Modulation of viscosity, microstructure and lipolysis of W/O emulsions by cellulose ethers during in vitro digestion in the dynamic and semi-dynamic gastrointestinal models. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Design of Topical Moxifloxacin Mucoadhesive Nanoemulsion for the Management of Ocular Bacterial Infections. Pharmaceutics 2022; 14:pharmaceutics14061246. [PMID: 35745818 PMCID: PMC9228176 DOI: 10.3390/pharmaceutics14061246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Ocular bacterial infections can lead to serious visual disability without proper treatment. Moxifloxacin (MOX) has been approved by the US Food and Drug Administration as a monotherapy for ocular bacterial infections and is available commercially as an ophthalmic solution (0.5% w/v). However, precorneal retention, drainage, and low bioavailability remain the foremost challenges associated with current commercial eyedrops. With this study, we aimed to design a MOX-loaded nanoemulsion (NE; MOX-NE) with mucoadhesive agents (MOX-NEM) to sustain MOX release, as well as to overcome the potential drawbacks of the current commercial ophthalmic formulation. MOX-NE and MOX-NEM formulations were prepared by hot homogenization coupled with probe sonication technique and subsequently characterized. The lead formulations were further evaluated for in vitro release, ex vivo transcorneal permeation, sterilization, and antimicrobial efficacy studies. Commercial MOX ophthalmic solution was used as a control. The lead formulations showed the desired physicochemical properties and viscosity. All lead formulations showed sustained release profiles a period of more than 12 h. Filtered and autoclaved lead formulations were stable for one month (the last time point tested) under refrigeration and at room temperature. Ex vivo transcorneal permeation studies revealed a 2.1-fold improvement in MOX permeation of the lead MOX-NE formulation compared with Vigamox® eyedrops. However, MOX-NEM formulations showed similar flux and permeability coefficients to those of Vigamox® eyedrops. The lead formulations showed similar in vitro antibacterial activity as the commercial eyedrops and crude drug solution. Therefore, MOX-NE and MOX-NEM formulations could serve as effective delivery vehicles for MOX and could improve treatment outcomes in different ocular bacterial infections.
Collapse
|
40
|
Latif MS, Nawaz A, Rashid SA, Akhlaq M, Iqbal A, Khan MJ, Khan MS, Lim V, Alfatama M. Formulation of Polymers-Based Methotrexate Patches and Investigation of the Effect of Various Penetration Enhancers: In Vitro, Ex Vivo and In Vivo Characterization. Polymers (Basel) 2022; 14:polym14112211. [PMID: 35683883 PMCID: PMC9182619 DOI: 10.3390/polym14112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
The present study aimed to prepare methotrexate-loaded transdermal patches with different blends of hydrophobic and hydrophilic polymers (Eudragit S-100 and hydroxypropyl methylcellulose) at different concentrations. The polymers employed in transdermal patches formulations served as controlled agent. Transdermal patches were prepared using the solvent casting technique. The suitable physicochemical properties were obtained from the formulation F5 (HPMC and Eudragit S-100 (5:1). Various penetration enhancers were employed in different concentrations to investigate their potential for enhancing the drug permeation profile from optimized formulations. A preformulation study was conducted to investigate drug-excipient compatibilities (ATR-FTIR) and the study showed greater compatibility between drug, polymers and excipients. The prepared patches containing different penetration enhancers at different concentrations were subjected for evaluating different physicochemical parameters and in vitro drug release studies. The obtained data were added to various kinetic models, then formulated patch formulations were investigated for ex vivo permeation studies, in vivo studies and skin drug retention studies. The prepared patches showed elastic, smooth and clear nature with good thickness, drug content, % moisture uptake and weight uniformity. The prepared transdermal patches showed % drug content ranging from 91.43 ± 2.90 to 98.37 ± 0.56, % swelling index from 36.98 ± 0.19 to 75.32 ± 1.21, folding endurance from 61 ± 3.14 to 78 ± 1.54 and tensile strength from 8.54 ± 0.18 to 12.87 ± 0.50. The formulation F5, containing a greater amount of hydrophilic polymers (HPMC), showed increased drug release and permeation and drug retention when compared to other formulated transdermal patch formulations (F1-F9). No significant change was observed during a stability study for a period of 60 days. The rabbit skin samples were subjected to ATR-FTIR studies, which revealed that polymers and penetration enhancers have affected skin proteins (ceramides and keratins). The pharmacokinetic profiling of optimized formulation (F5) as well as formulations with optimized concentrations of penetration enhancers revealed Cmax ranged 167.80 ng/mL to 178.07 ± 2.75 ng/mL, Tmax was 8 h to 10 h, and t1/2 was 15.9 ± 2.11 to 21.49 ± 1.16. From the in vivo studies, it was revealed that the formulation F5-OA-10% exhibited greater skin drug retention as compared to other formulations. These results depicted that prepared methotrexate transdermal patches containing different blends of hydrophobic and hydrophilic polymers along with different penetration enhancers could be safely used for the management of psoriasis. The formulated transdermal patches exhibited sustained release of drug with good permeations and retention profile. Hence, these formulated transdermal patches can effectively be used for the management of psoriasis.
Collapse
Affiliation(s)
- Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.); (M.A.); (A.I.); (M.J.K.)
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.); (M.A.); (A.I.); (M.J.K.)
- Correspondence: (A.N.); (V.L.); or (M.A.)
| | - Sheikh Abdur Rashid
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.); (M.A.); (A.I.); (M.J.K.)
| | - Muhammad Akhlaq
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.); (M.A.); (A.I.); (M.J.K.)
| | - Asif Iqbal
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.); (M.A.); (A.I.); (M.J.K.)
| | - Muhammad Jamil Khan
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.); (M.A.); (A.I.); (M.J.K.)
- Faculty of Agriculture, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Shuaib Khan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia
- Correspondence: (A.N.); (V.L.); or (M.A.)
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
- Correspondence: (A.N.); (V.L.); or (M.A.)
| |
Collapse
|
41
|
Affiliation(s)
- Mohamed S. Hasanin
- Cellulose & Paper Dept. National Research Centre El‐Buhouth St. Dokki 12622 Egypt
| |
Collapse
|
42
|
Sustained Release Biocompatible Ocular Insert Using Hot Melt Extrusion Technology: Fabrication and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Formulation and Evaluation of Nano Lipid Carrier-Based Ocular Gel System: Optimization to Antibacterial Activity. Gels 2022; 8:gels8050255. [PMID: 35621552 PMCID: PMC9140781 DOI: 10.3390/gels8050255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
Abstract
The present research work was designed to prepare Azithromycin (AM)-loaded nano lipid carriers (NLs) for ocular delivery. NLs were prepared by the emulsification–homogenization method and further optimized by the Box Behnken design. AM-NLs were optimized using the independent constraints of homogenization speed (A), surfactant concentration (B), and lipid concentration (C) to obtain optimal NLs (AM-NLop). The selected AM-NLop was further converted into a sol-gel system using a mucoadhesive polymer blend of sodium alginate and hydroxyl propyl methyl cellulose (AM-NLopIG). The sol-gel system was further characterized for drug release, permeation, hydration, irritation, histopathology, and antibacterial activity. The prepared NLs showed nano-metric size particles (154.7 ± 7.3 to 352.2 ± 15.8 nm) with high encapsulation efficiency (48.8 ± 1.1 to 80.9 ± 2.9%). AM-NLopIG showed a more prolonged drug release (98.6 ± 4.6% in 24 h) than the eye drop (99.4 ± 5.3% in 3 h). The ex vivo permeation result depicted AM-NLopIG, AM-IG, and eye drop. AM-NLopIG exhibited significant higher AM permeation (60.7 ± 4.1%) than AM-IG (33.46 ± 3.04%) and eye drop (23.3 ± 3.7%). The corneal hydration was found to be 76.45%, which is within the standard limit. The histopathology and HET-CAM results revealed that the prepared formulation is safe for ocular use. The antibacterial study revealed enhanced activity from the AM-NLopIG.
Collapse
|
44
|
BaŞaran E, AykaÇ K, Yenİlmez E, BÜyÜkkÖroĞlu G, Tunali Y, Demİrel M. Formulation and Characterization Studies of Inclusion Complexes of Voriconazole for Possible Ocular Application. Pharm Dev Technol 2022; 27:228-241. [PMID: 35107405 DOI: 10.1080/10837450.2022.2037635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In our study Voriconazole (VOR) was selected as an active agent to be used for the treatment of ocular fungal infections. To overcome low aqueous solubility of VOR, inclusion complexes with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-cyclodextrin (HP-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) hydroxypropyl-γ-cyclodextrin (HP-γ-CD), methyl-β-cyclodextrin (M-β-CD) and sulfabutylether-β-cyclodextrin (SBE-β-CD) were formulated. Characterization studies revealed that inclusion complexes were formulated successfully with lyophilization method. Aqueous solubility of VOR was enhanced up to 86 fold with the formation of the inclusion complexes. MTT analyses results revealed the safety of the complexes on 3T3 mouse fibroblast cell lines while Microbroth Dilution Method revealed the remarkable antifungal activities of the complexes. Analyses results revealed that inclusion complexes will overcome the poor ocular bioavailability of VOR resulting in efficient treatment of severe ocular fungal infections.
Collapse
Affiliation(s)
- Ebru BaŞaran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Kadir AykaÇ
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Evrim Yenİlmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülay BÜyÜkkÖroĞlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yağmur Tunali
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Müzeyyen Demİrel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
45
|
Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med (Lausanne) 2022; 8:787644. [PMID: 35155469 PMCID: PMC8831705 DOI: 10.3389/fmed.2021.787644] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.
Collapse
Affiliation(s)
- Megan M. Allyn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Richard H. Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elle B. Hellwarth
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Katelyn E. Swindle-Reilly
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
46
|
Rheological behaviors and texture properties of semi-interpenetrating networks of hydroxypropyl methylcellulose and gellan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Tudoroiu EE, Dinu-Pîrvu CE, Albu Kaya MG, Popa L, Anuța V, Prisada RM, Ghica MV. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals (Basel) 2021; 14:1215. [PMID: 34959615 PMCID: PMC8706040 DOI: 10.3390/ph14121215] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Presently, notwithstanding the progress regarding wound-healing management, the treatment of the majority of skin lesions still represents a serious challenge for biomedical and pharmaceutical industries. Thus, the attention of the researchers has turned to the development of novel materials based on cellulose derivatives. Cellulose derivatives are semi-synthetic biopolymers, which exhibit high solubility in water and represent an advantageous alternative to water-insoluble cellulose. These biopolymers possess excellent properties, such as biocompatibility, biodegradability, sustainability, non-toxicity, non-immunogenicity, thermo-gelling behavior, mechanical strength, abundance, low costs, antibacterial effect, and high hydrophilicity. They have an efficient ability to absorb and retain a large quantity of wound exudates in the interstitial sites of their networks and can maintain optimal local moisture. Cellulose derivatives also represent a proper scaffold to incorporate various bioactive agents with beneficial therapeutic effects on skin tissue restoration. Due to these suitable and versatile characteristics, cellulose derivatives are attractive and captivating materials for wound-healing applications. This review presents an extensive overview of recent research regarding promising cellulose derivatives-based materials for the development of multiple biomedical and pharmaceutical applications, such as wound dressings, drug delivery devices, and tissue engineering.
Collapse
Affiliation(s)
- Elena-Emilia Tudoroiu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania; (E.-E.T.); (L.P.); (V.A.); (R.M.P.); (M.V.G.)
| |
Collapse
|
48
|
Cellulosic Polymers for Enhancing Drug Bioavailability in Ocular Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14111201. [PMID: 34832983 PMCID: PMC8621906 DOI: 10.3390/ph14111201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.
Collapse
|
49
|
Wan S, Dai C, Bai Y, Xie W, Guan T, Sun H, Wang B. Application of Multivariate Methods to Evaluate Differential Material Attributes of HPMC from Different Sources. ACS OMEGA 2021; 6:28598-28610. [PMID: 34746555 PMCID: PMC8567258 DOI: 10.1021/acsomega.1c03009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study is to achieve differential material attributes (DMAs) of hydroxypropyl methylcellulose (HPMC) with different viscosity grades (K4M, K15M, and K100M) from different manufacturers (Anhui Shanhe and Dow Chemical). Two kinds of multivariate methods, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), were adopted. The physicochemical properties of HPMC were systematically investigated via various techniques (e.g., SEM, particle size detection, and SeDeM characterization). Data from 33 characterization variables were applied to the multivariate methods. The PCA and OPLS-DA results indicated the differences between the HPMC from two manufacturers by the common variables that include the tablet hardness (HD), tensile strength (TS), bulk density, interparticle porosity, Carr index, cohesion index, Hausner ratio, flowability, and the width of the particle size distribution (span). Interestingly, these variables showed a certain correlation with each other, supporting the characterization results. Except for these different variables of the HPMC obtained by multivariate analysis results, distinguishable shapes and surface morphologies also appeared between different sources. To sum up, the powder properties (particle size, surface topography, dimension, flowability, and compressibility) and the tablet properties (HD and TS) were recognized as the DMAs of HPMC samples. This work provided the multivariate methods for the physicochemical characterization of HPMC, with potential in the quality control and formulation development.
Collapse
Affiliation(s)
- Shulin Wan
- Chongqing
Key Laboratory of Industrial Fermentation Microorganisms, School of
Chemistry and Chemical Engineering, Chongqing
University of Science and Technology, Chongqing 401331, China
| | - Chuanyun Dai
- Chongqing
Key Laboratory of Industrial Fermentation Microorganisms, School of
Chemistry and Chemical Engineering, Chongqing
University of Science and Technology, Chongqing 401331, China
| | - Yuling Bai
- Chongqing
Key Laboratory of Industrial Fermentation Microorganisms, School of
Chemistry and Chemical Engineering, Chongqing
University of Science and Technology, Chongqing 401331, China
| | - Wenying Xie
- Chongqing
Key Laboratory of Industrial Fermentation Microorganisms, School of
Chemistry and Chemical Engineering, Chongqing
University of Science and Technology, Chongqing 401331, China
| | - Tianbing Guan
- Chongqing
Key Laboratory of Industrial Fermentation Microorganisms, School of
Chemistry and Chemical Engineering, Chongqing
University of Science and Technology, Chongqing 401331, China
| | - Huimin Sun
- NMPA
Key Laboratory for Quality Research and Evaluation of Pharmaceutical
Excipients, National Institutes for Food
and Drug Control, Beijing 100050, China
| | - Bochu Wang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
50
|
Omer S, Zelkó R. A Systematic Review of Drug-Loaded Electrospun Nanofiber-Based Ophthalmic Inserts. Pharmaceutics 2021; 13:1637. [PMID: 34683930 PMCID: PMC8536958 DOI: 10.3390/pharmaceutics13101637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, ocular inserts and nanoparticles have received much attention due to the limited bioavailability of conventional eye preparations and the toxicity problems of systemic drug administration. The current systematic review aims to present recent studies on the use of electrospun nanofiber-based ocular inserts to improve the bioavailability of drugs used for different ophthalmic diseases. A systematic search was performed in PubMed, Ovid Medline, Web of Science, ScienceDirect, Scopus, Reaxys, Google Scholar, and Google Patents/Espacenet taking "drug-loaded", "nanofibers", and "ophthalmic inserts" and their equivalent terms as keywords. The search was limited to original and peer-reviewed studies published in 2011-2021 in English language. Only 13 out of 795 articles and 15 out of 197 patents were included. All results revealed the success of nanofiber-based ocular inserts in targeting and improved bioavailability. Ocular inserts based on nanofibers can be used as safe, efficient carriers for the treatment of anterior and posterior eye diseases.
Collapse
Affiliation(s)
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, 1092 Budapest, Hungary;
| |
Collapse
|