1
|
Kumar A, Gosling SN, Johnson MF, Jones MD, Nkwasa A, Koutroulis A, Schmied HM, Li HY, Kim H, Hanasaki N, Kumar R, Thiery W, Pokhrel Y. Cascading droughts: Exploring global propagation of meteorological to hydrological droughts (1971-2001). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179486. [PMID: 40273520 DOI: 10.1016/j.scitotenv.2025.179486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
An understanding of the spatiotemporal behaviour of Meteorological drought (MD) and Hydrological drought (HD) is crucial for analysing how drought propagation occurs. Here, drought events were treated as three-dimensional grid structures spanning space (latitude and longitude) and time. 31 years (1971-2001) of global MD and HD events were analysed for evidence of propagation, and the most severe 20 MD events explored in detail. From the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) data archive, precipitation data was used for identifying MD events and an ensemble of simulated runoff from several global hydrological models used for detecting HD events. A technique was developed based on overlapping of the spatial and temporal coverage of MD and HD events, to establish propagation, and to calculate several propagation features. In three dimensions, the transformation from MD to HD was characterised based on delayed instigation, elongated duration, and dampened intensity of the HD event. Additionally, pooling of MD events that resulted in one or multiple branched HD events were identified. Results indicate that minor MD events with short durations and small areas generally do not exhibit propagation. The frequency of HD events with drought duration of 6-12-months is higher than that of MD events with 6-12-month duration. Out of 1740 extreme MD events identified for the 31-year period, 272 events propagated and resulted in 395 extreme HD events. Propagation features for the 20 most severe MD events show substantial variation based on geographical location highlighting the influence of regional climatic and hydrological conditions. This study advances the understanding of global drought propagation mechanisms by addressing key methodological challenges and providing a structured framework for future large-scale drought assessments.
Collapse
Affiliation(s)
- Amit Kumar
- School of Geography, University of Nottingham, UK; UK Centre for Ecology and Hydrology, UK.
| | | | | | | | - Albert Nkwasa
- Water Security Research Group, Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria; Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Hannes Müller Schmied
- Institute for Physical Geography, University of Frankfurt, Frankfurt am Main, Germany; Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Hong-Yi Li
- Department of Civil and Environmental Engineering, University of Houston, USA
| | - Hyungjun Kim
- Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Naota Hanasaki
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Rohini Kumar
- Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Wim Thiery
- Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yadu Pokhrel
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Martinez Del Castillo E, Torbenson MCA, Reinig F, Konter O, Ziaco E, Büntgen U, Esper J. Diverging growth trends and climate sensitivities of individual pine trees after the 1976 extreme drought. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174370. [PMID: 38945248 DOI: 10.1016/j.scitotenv.2024.174370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Summer droughts are affecting the productivity and functioning of central European forests, with potentially lasting consequences for species composition and carbon sequestration. Long-term recovery rates and individual growth responses that may diverge from species-specific and population-wide behaviour are, however, poorly understood. Here, we present 2052 pine (Pinus sylvestris) ring width series from 19 forest sites in south-west Germany to investigate growth responses of individual trees to the exceptionally hot and dry summer of 1976. This outstanding drought event presents a distinctive test case to examine long-term post-drought recovery dynamics. We have proposed a new classification approach to identify a distinct sub-population of trees, referred to as "temporarily affected trees", with a prevalence ranging from 9 to 33 % across the forest stands. These trees exhibited an exceptionally prolonged growth suppression, lasting over a decade, indicating significantly lower resilience to the 1976 drought and a 50 % reduced capacity to recover to pre-drought states. Furthermore, shifts in resilience and recovery dynamics are accompanied by changing climate sensitivities, notably an increased response to maximum temperatures and summer droughts in post-1976 affected pines. Our findings underscore the likely interplay between individual factors and micro-site conditions that contribute to divergent tree responses to droughts. Assessing these factors at the individual tree level is recommended to advancing our understanding of forest responses to extreme drought events. By analyzing sub-population growth patterns, our study provides valuable insights into the impacts of summer droughts on central European forests in context of increasing drought events.
Collapse
Affiliation(s)
| | - Max C A Torbenson
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederick Reinig
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Konter
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Emanuele Ziaco
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, United Kingdom; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic; Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Jan Esper
- Department of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic
| |
Collapse
|
3
|
Mašek J, Dorado-Liñán I, Treml V. Responses of stem growth and canopy greenness of temperate conifers to dry spells. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1533-1544. [PMID: 38630139 PMCID: PMC11281975 DOI: 10.1007/s00484-024-02682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/28/2024]
Abstract
Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.
Collapse
Affiliation(s)
- Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic.
| | - Isabel Dorado-Liñán
- Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 128 43, Prague, Czech Republic
| |
Collapse
|
4
|
Ssemugenze B, Ocwa A, Bojtor C, Illés Á, Esimu J, Nagy J. Impact of research on maize production challenges in Hungary. Heliyon 2024; 10:e26099. [PMID: 38510009 PMCID: PMC10951463 DOI: 10.1016/j.heliyon.2024.e26099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Maize (Zea mays L), as a major cereal crop produced in Hungary in addition to wheat, attracts enormous research from both educational and non-educational institutions. Research is aimed at addressing the key abiotic, biotic and social economic constraints. The stakeholders and institutions involved in research are spread all over Hungary. Currently, no review has been done to comprehensively reveal the trend of maize research in Hungary, as well as key players such as institutions, universities, industry and researchers. Hence, this bibliographic review was conducted to: i) identify the major research institutions and their contribution towards maize research in Hungary; ii) evaluate the major maize research areas in Hungary between 1975 and 2022. Literature search was conducted in Web of Science (WoS) database using keywords; 'maize' OR 'maize' + 'Research' + 'Hungary'. Bibliometric analyses were performed using the VOSviewer software. Changes in the publication trend of documents was tested using Mann Kendall Test. A total of 947 publications related to the topic were published by 441 institutions between 1975 and 2022. There was a significant (p = 0.001) positive increase in the number of published documents. Hungarian Academy of Science (210 documents) and University of Debrecen (132 documents) recorded the highest number of publications contributing 58.7% of the maize research literature in Hungary. The major research areas included: increasing maize yield, hybrid development, pests and diseases, irrigation, fertilization (nitrogen), drought, temperature, gene expression and climate change. The increasing number of published documents signifies an improved response to addressing maize production challenges through research in order to boost its productivity.
Collapse
Affiliation(s)
- Brian Ssemugenze
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
- Faculty of Agriculture, Uganda Martyrs University, P.O. Box 5498, Kampala, Uganda
| | - Akasairi Ocwa
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
- Department of Agriculture Production, Faculty of Agriculture, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda
| | - Csaba Bojtor
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
| | - Árpád Illés
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
| | - Joseph Esimu
- Research School of Biology, Australian National University, ACT, Canberra 2601, Australia
| | - János Nagy
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi street, 4032, Debrecen, Hungary
| |
Collapse
|
5
|
Fiaz K, Maqsood MF, Shahbaz M, Zulfiqar U, Naz N, Gaafar ARZ, Tariq A, Farhat F, Haider FU, Shahzad B. Application of thiourea ameliorates drought induced oxidative injury in Linum usitatissimum L. by regulating antioxidant defense machinery and nutrients absorption. Heliyon 2024; 10:e25510. [PMID: 38390139 PMCID: PMC10881316 DOI: 10.1016/j.heliyon.2024.e25510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Thiourea (TU) is considered an essential and emerging biostimulant against the negative impacts of severe environmental stresses, including drought stress in plants. However, the knowledge about the foliar application of TU to mitigate drought stress in Linum usitatissimum L., has yet to be discovered. The present study was designed to assess the impact of foliar application of TU for its effects against drought stress in two flax cultivars. The study comprised two irrigation regimes [60% field capacity (FC) and the control (100% FC)], along with TU (0, 500, 1000 mg L-1) application at the vegetative stage. The findings indicated that drought stress reduced the shoot fresh weight (44.2%), shoot dry weight (67.5%), shoot length (41.5%), total chlorophyll (51.6%), and carotenoids (58.8%). Drought stress increased both cultivars' hydrogen peroxide (H2O2) and malondialdehyde (MDA). Foliar application of TU (1000 mg L-1) enhanced the growth and chlorophyll contents with or without drought stress. Under drought stress (60% FC), TU decreased MDA and H2O2 contents up to twofold. Moreover, TU application increased catalase (40%), peroxidase (13%), superoxide dismutase (30%), and total soluble protein contents (32.4%) differentially in both cultivars. Nevertheless, TU increased calcium (Ca2+) (42.8%), potassium (K+) (33.4%), and phosphorus (P) (72%) in shoots and decreased the elevated sodium (Na+) (28.2%) ions under drought stress. It is suggested that TU application (1000 mg L-1) enhances the growth potential of flax by enhancing photosynthetic pigment, nutrient uptake, and antioxidant enzymes under drought stress. Research outcomes, therefore, recommend that TU application can ameliorate drought-induced negative effects in L. usitatissimum L. seedlings, resulting in improved plant growth and mineral composition, as depicted by balanced primary and secondary metabolite accumulation.
Collapse
Affiliation(s)
- Khazra Fiaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arneeb Tariq
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Fozia Farhat
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
6
|
Meilutytė-Lukauskienė D, Nazarenko S, Kobets Y, Akstinas V, Sharifi A, Haghighi AT, Hashemi H, Kokorīte I, Ozolina B. Hydro-meteorological droughts across the Baltic Region: The role of the accumulation periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169669. [PMID: 38176563 DOI: 10.1016/j.scitotenv.2023.169669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Based on the physical and geographical conditions, the Baltic Region is categorised as a humid climate zone. This means that, there is usually more precipitation than evaporation throughout the year, suggesting that droughts should not occur frequently in this region. Despite the humid climate in the region, the study focused on assessing the spatio-temporal patterns of droughts. The drought events were analysed across the Baltic Region, including Sweden, Finland, Lithuania, Latvia, and Estonia. This analysis included two drought indices, the Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI), for different accumulation periods. Daily data series of precipitation and river discharge were used. The spatial and temporal analyses of selected drought indices were carried out for the Baltic Region. In addition, the decadal distribution of drought classes was analysed to disclose the temporal changes and spatial extent of drought patterns. The Pearson correlation between SPI and SDI was applied to investigate the relationship between meteorological and hydrological droughts. The analysis showed that stations with more short-duration SPI or SDI cases had fewer long-duration cases and vice versa. The number of SDI cases (SDI ≤ -1) increased in the Western Baltic States and some WGSs in Sweden and Finland from 1991 to 2020 compared to 1961-1990. The SPI showed no such tendencies except in Central Estonia and Southern Finland. The 6-month accumulation period played a crucial role in both the meteorological and hydrological drought analyses, as it revealed prolonged and widespread drought events. Furthermore, the 9- and 12-month accumulation periods showed similar trends in terms of drought duration and spatial extent. The highest number of correlation links between different months was found between SPI12-SDI9 and SPI12-SDI12. The results obtained have deepened our understanding of drought patterns and their potential impacts in the Baltic Region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ilga Kokorīte
- University of Latvia, Latvia; Latvian Environment, Geology and Meteorology Centre, Latvia
| | - Baiba Ozolina
- Latvian Environment, Geology and Meteorology Centre, Latvia
| |
Collapse
|
7
|
Bonomo S, Marchetti P, Fasola S, Vesentini R, Marcon A, Ferrante G, Antonicelli L, Battaglia S, Bono R, Squillacioti G, Murgia N, Pirina P, Villani S, La Grutta S, Verlato G, Viegi G. Asthma incidence can be influenced by climate change in Italy: findings from the GEIRD study-a climatological and epidemiological assessment. Sci Rep 2023; 13:19047. [PMID: 37923929 PMCID: PMC10624678 DOI: 10.1038/s41598-023-46423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
An association between climatic conditions and asthma incidence has been widely assumed. However, it is unclear whether climatic variations have a fingerprint on asthma dynamics over long time intervals. The aim of this study is to detect a possible correlation of the Summer North Atlantic Oscillation (S-NAO) index and the self-calibrated palmer drought severity index (scPDSI) with asthma incidence over the period from 1957 to 2006 in Italy. To this aim, an analysis of non-stationary and non-linear signals was performed on the time series of the Italian databases on respiratory health (ISAYA and GEIRD) including 36,255 individuals overall, S-NAO, and scPDSI indices to search for characteristic periodicities. The ISAYA (Italian Study on Asthma in Young Adults) and GEIRD (Gene Environment Interactions in Respiratory Diseases) studies collected information on respiratory health in general population samples, born between 1925 and 1989 and aged 20-84 years at the time of the interview, from 13 Italian centres. We found that annual asthma total incidence shared the same periodicity throughout the 1957-2006 time interval. Asthma incidence turned out to be correlated with the dynamics of the scPDSI, modulated by the S-NAO, sharing the same averaged 6 year-periodicity. Since climate patterns appear to influence asthma incidence, future studies aimed at elucidating the complex relationships between climate and asthma incidence are warranted.
Collapse
Affiliation(s)
- S Bonomo
- CNR Institute of Environmental Geology and Geo-Engineering (CNR-IGAG), Montelibretti, Rome, Italy.
| | - P Marchetti
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - S Fasola
- CNR Institute of Translational Pharmacology (CNR-IFT), Palermo, Italy
| | - R Vesentini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - A Marcon
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - G Ferrante
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | | | - S Battaglia
- Dipartimento PROMISE, University of Palermo, Palermo, Italy
| | - R Bono
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - G Squillacioti
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - N Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - P Pirina
- Respiratory Unit, Sassari University, Sassari, Italy
| | - S Villani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - S La Grutta
- CNR Institute of Translational Pharmacology (CNR-IFT), Palermo, Italy
| | - G Verlato
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - G Viegi
- CNR Institute of Clinical Physiology (CNR-IFC), Pisa, Italy
| |
Collapse
|
8
|
Cammalleri C, Acosta Navarro JC, Bavera D, Diaz V, Di Ciollo C, Maetens W, Magni D, Masante D, Spinoni J, Toreti A. An event-oriented database of meteorological droughts in Europe based on spatio-temporal clustering. Sci Rep 2023; 13:3145. [PMID: 36823221 PMCID: PMC9950368 DOI: 10.1038/s41598-023-30153-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Droughts evolve in space and time without following borders or pre-determined temporal constraints. Here, we present a new database of drought events built with a three-dimensional density-based clustering algorithm. The chosen approach is able to identify and characterize the spatio-temporal evolution of drought events, and it was tuned with a supervised approach against a set of past global droughts characterized independently by multiple drought experts. About 200 events were detected over Europein the period 1981-2020 using SPI-3 (3-month cumulated Standardized Precipitation Index) maps derived from the ECMWF (European Centre for Medium-range Weather Forecasts) 5th generation reanalysis (ERA5) precipitation. The largest European meteorological droughts during this period occurred in 1996, 2003, 2002 and 2018. A general agreement between the major events identified by the algorithm and drought impact records was found, as well as with previous datasets based on pre-defined regions.
Collapse
Affiliation(s)
- Carmelo Cammalleri
- European Commission, Joint Research Centre (JRC), Ispra, Italy. .,Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milan, Italy.
| | | | | | - Vitali Diaz
- grid.5292.c0000 0001 2097 4740Technische Universiteit Delft, Delft, Netherlands
| | | | - Willem Maetens
- grid.434554.70000 0004 1758 4137European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Dario Masante
- grid.434554.70000 0004 1758 4137European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Jonathan Spinoni
- grid.434554.70000 0004 1758 4137European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Toreti
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
9
|
Wicher-Dysarz J, Dysarz T, Jaskuła J. Uncertainty in Determination of Meteorological Drought Zones Based on Standardized Precipitation Index in the Territory of Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15797. [PMID: 36497872 PMCID: PMC9737882 DOI: 10.3390/ijerph192315797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The primary aim of this work is to assess the accuracy of the methods for spatial interpolation applied for the reconstruction of the spatial distribution of the Standardized Precipitation Index (SPI). The one-month version called SPI-1 is chosen for this purpose due to the known greatest variability of this index in comparison with its other versions. The analysis has been made for the territory of the entire country of Poland. At the same time the uncertainty related to the application of such computational procedures is determined based on qualitative and quantitative measures. The public data of two kinds are applied: (1) measurements of precipitation and (2) the locations of the meteorological stations in Poland. The analysis has been made for the period 1990-2020. However, all available observations since 1950 have been implemented. The number of available meteorological stations has decreased over the analyzed period. In January 1990 there were over one thousand stations making observations. In the end of the period of the study, the number of stations was below six hundred. Obviously, the temporal scarcity of data had an impact on the obtained results. The main tools applied were ArcGIS supported with Python scripting, including generally used modules and procedures dedicated to geoprocessing. Such an approach appeared crucial for the effective processing of the large number of data available. It also guaranteed the accuracy of the produced results and brought about drought maps based on SPI-1. The methods tested included: Inverse Distance Weighted, Natural Neighbor, Linear, Kriging, and Spline. The presented results prove that all the procedures are inaccurate and uncertain, but some of them provide satisfactory results. The worst method seems to be the interpolation based on Spline functions. The practical aspects related to the implementation of the methods led to removal of the Linear and Kriging interpolations from further use. Hence, Inverse Distance Weighted, as well as Natural Neighbor, seem to be well suited for this problem.
Collapse
Affiliation(s)
- Joanna Wicher-Dysarz
- Department of Hydraulic and Sanitary Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan’ University of Life Sciences, Piątkowska St. 94A, 60-649 Poznan, Poland
| | - Tomasz Dysarz
- Department of Hydraulic and Sanitary Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan’ University of Life Sciences, Piątkowska St. 94A, 60-649 Poznan, Poland
| | - Joanna Jaskuła
- Department of Land Improvement, Environmental Development and Spatial Management, Faculty of Environmental Engineering and Mechanical Engineering, Poznan’ University of Life Sciences, Piątkowska St. 94E, 60-649 Poznan, Poland
| |
Collapse
|
10
|
Han Y, Chang D, Xiang XZ, Wang JL. Can ecological landscape pattern influence dry-wet dynamics? A national scale assessment in China from 1980 to 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153587. [PMID: 35122863 DOI: 10.1016/j.scitotenv.2022.153587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Land cover has been demonstrated to have substantial impacts on climate and dry-wet environment, but potential influence of landscape pattern dynamics accompanying land cover change on drought remains unclear. In this study, response of dry-wet dynamics to landscape pattern in China was examined. Results suggest that landscape pattern in China's nine agricultural districts had transformed to varying extents and showed spatiotemporal heterogeneity from 1980 to 2018. For forest landscape, the highest annual average Percentage of Landscape (PLAND) was recorded in SC, reaching 62.26%; and the highest Largest Patch Index (LPI) was presented in YGP, followed by SC, with annual values of 53.79% and 46.26% respectively. The QTP has the most prominent forest connectivity in spite of its lower abundance. For grass landscape, the highest abundance and dominance were recorded in QTP, with annual PLAND fluctuation range of 49.66%-63.52% and annual LPI variation range of 34.10%-58.46%, which is associated with its climate and altitude. The most prominent crop landscape abundance and dominance were recorded in HHHP, with annual PLAND fluctuating interval of 56.53%-60.64%, indicating the highest agricultural development level in this district. At landscape level, dry-wet circumstance could be improved with enhancements in the largest patch percentage, patch density and spatial connectivity, while worsen with increases of landscape fragmentation and separated degree. At class level, increases in abundance and dominance of forest and crop landscapes would reduce drought risk, while it was opposite for grass landscape. Improved forest connectedness would optimize dry-wet environment and reduce drought risk. The PLAND of forest and crop landscapes contributed the most prominent effect to alleviate drought intensity. Compared with forestland and grassland, determining suitable crop landscape configuration to reduce drought risk is more complex because the balance between agricultural economic benefits and ecological landscape effects should be taken into account.
Collapse
Affiliation(s)
- Yang Han
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Di Chang
- Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023, China
| | - Xiao-Zhi Xiang
- Institute of Geography and Resources Science, Sichuan Normal University, Chengdu 610066, China
| | - Jing-Lei Wang
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China..
| |
Collapse
|
11
|
Mohammed S, Alsafadi K, Enaruvbe GO, Bashir B, Elbeltagi A, Széles A, Alsalman A, Harsanyi E. Assessing the impacts of agricultural drought (SPI/SPEI) on maize and wheat yields across Hungary. Sci Rep 2022; 12:8838. [PMID: 35614172 PMCID: PMC9132936 DOI: 10.1038/s41598-022-12799-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
This study examined the physical properties of agricultural drought (i.e., intensity, duration, and severity) in Hungary from 1961 to 2010 based on the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The study analyzed the interaction between drought and crop yield for maize and wheat using standardized yield residual series (SYRS), and the crop-drought resilient factor (CDRF). The results of both SPI and SPEI (-3, -6) showed that the western part of Hungary has significantly more prone to agricultural drought than the eastern part of the country. Drought frequency analysis reveals that the eastern, northern, and central parts of Hungary were the most affected regions. Drought analysis also showed that drought was particularly severe in Hungary during 1970–1973, 1990–1995, 2000–2003, and 2007. The yield of maize was more adversely affected than wheat especially in the western and southern regions of Hungary (1961–2010). In general, maize and wheat yields were severely non-resilient (CDRF < 0.8) in the central and western part of the country. The results suggest that drought events are a threat to the attainment of the second Sustainable Development Goals (SDG-2). Therefore, to ensure food security in Hungary and in other parts of the world, drought resistant crop varieties need to be developed to mitigate the adverse effects of climate change on agricultural production.
Collapse
Affiliation(s)
- Safwan Mohammed
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi 138, 4032, Debrecen, Hungary. .,Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi 138, 4032, Debrecen, Hungary.
| | - Karam Alsafadi
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Glory O Enaruvbe
- African Regional Institute for Geospatial Information Science and Technology, Obafemi Awolowo University, Ile-Ife, 220282, Nigeria
| | - Bashar Bashir
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Ahmed Elbeltagi
- Agricultural Engineering Dept., Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Adrienn Széles
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi 138, 4032, Debrecen, Hungary
| | - Abdullah Alsalman
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Endre Harsanyi
- Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi 138, 4032, Debrecen, Hungary.,Institutes for Agricultural Research and Educational Farm, University of Debrecen, Böszörményi 138, 4032, Debrecen, Hungary
| |
Collapse
|
12
|
Heritable and Climatic Sources of Variation in Juvenile Tree Growth in an Austrian Common Garden Experiment of Central European Norway Spruce Populations. FORESTS 2022. [DOI: 10.3390/f13050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We leveraged publicly available data on juvenile tree height of 299 Central European Norway spruce populations grown in a common garden experiment across 24 diverse trial locations in Austria and weather data from the trial locations and population provenances to parse the heritable and climatic components of juvenile tree height variation. Principal component analysis of geospatial and weather variables demonstrated high interannual variation among trial environments, largely driven by differences in precipitation, and separation of population provenances based on altitude, temperature, and snowfall. Tree height was highly heritable and modeling the covariance between populations and trial environments based on climatic data led to more stable estimation of heritability and population × environment variance. Climatic similarity among population provenances was highly predictive of population × environment estimates for tree height.
Collapse
|
13
|
Češljar G, Jovanović F, Brašanac-Bosanac L, Đorđević I, Mitrović S, Eremija S, Ćirković-Mitrović T, Lučić A. Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1286. [PMID: 35631711 PMCID: PMC9144404 DOI: 10.3390/plants11101286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
This paper presents research results on forest decline in Serbia. The results were obtained through monitoring defoliation of 34 tree species at 130 sample plots during the period from 2004 to 2018. This research aimed to determine whether the occurrence of defoliation and tree mortality were caused by drought. Defoliation was assessed in 5% steps according to the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) methodology. All the trees recorded as dead were singled out, and annual mortality rates were calculated. To determine changes in air temperature and precipitation regimes during the study period, we processed and analysed climatic data related to air temperature and precipitation throughout the year and in the growing season at 28 main weather stations in Serbia. Tree mortality patterns were established by classifying trees into three groups. The first group of trees exhibited a gradual increase in defoliation during the last few years of monitoring, with dying as the final outcome. The second group was characterised by sudden death of trees. The third group of trees reached a higher degree of defoliation immediately after the first monitoring year, and the trees died after several years. Tree mortality rates were compared between years using the Standardised Precipitation Evaporation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), the most common methods used to monitor drought. The most intensive forest decline was recorded during the period from 2013 to 2016, when the largest percentage of the total number of all trees died. According to the annual mortality rates calculated for the three observation periods (2004-2008, 2009-2013, and 2014-2018) the highest forest decline rate was recorded in the period from 2014 to 2018, with no statistically significant difference between broadleaved and coniferous tree species. As the sample of coniferous species was small, the number of sample plots should be increased in order to achieve better systematic forest condition monitoring in Serbia. The analysis of the relationship between defoliation and climatic parameters proved the correlation between them. It was noted that the forest decline in Serbia was preceded by an extremely dry period with high temperatures from 2011 to 2013, supporting the hypothesis that it was caused by drought. We therefore conclude that these unfavourable climatic conditions had serious and long-term consequences on forest ecosystems in Serbia.
Collapse
Affiliation(s)
- Goran Češljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, Serbia;
| | - Filip Jovanović
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Ljiljana Brašanac-Bosanac
- Department of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, Serbia; (L.B.-B.); (S.M.)
| | - Ilija Đorđević
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, Serbia;
| | - Suzana Mitrović
- Department of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, Serbia; (L.B.-B.); (S.M.)
| | - Saša Eremija
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Tatjana Ćirković-Mitrović
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Aleksandar Lučić
- Department of Genetics, Plant Breeding, Seed and Nursery Production, Institute of Forestry, 11030 Belgrade, Serbia;
| |
Collapse
|
14
|
Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nat Commun 2022; 13:2015. [PMID: 35440102 PMCID: PMC9018849 DOI: 10.1038/s41467-022-29615-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022] Open
Abstract
The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions. Here the authors show that extremes in the summer jet stream position over Europe create a beech forest productivity dipole between northwestern and southeastern Europe and can result in regional anomalies in forest carbon uptake and growth.
Collapse
|
15
|
Vuković R, Čamagajevac IŠ, Vuković A, Šunić K, Begović L, Mlinarić S, Sekulić R, Sabo N, Španić V. Physiological, Biochemical and Molecular Response of Different Winter Wheat Varieties under Drought Stress at Germination and Seedling Growth Stage. Antioxidants (Basel) 2022; 11:antiox11040693. [PMID: 35453378 PMCID: PMC9028496 DOI: 10.3390/antiox11040693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023] Open
Abstract
Due to climate change in recent years, there has been an increasing water deficit during the winter wheat sowing period. This study evaluated six Croatian winter wheat varieties’ physiological, biochemical, and molecular responses under two drought stress levels at the germination/seedling growth stage. Lipid peroxidation was mainly induced under both drought stress treatments, while the antioxidative response was variety-specific. The most significant role in the antioxidative response had glutathione along with the ascorbate-glutathione pathway. Under drought stress, wheat seedlings responded in proline accumulation that was correlated with the P5CS gene expression. Expression of genes encoding dehydrins (DHN5, WZY2) was highly induced under the drought stress in all varieties, while genes encoding transcription factors were differentially regulated. Expression of DREB1 was upregulated under severe drought stress in most varieties, while the expression of WRKY2 was downregulated or revealed control levels. Different mechanisms were shown to contribute to the drought tolerance in different varieties, which was mainly associated with osmotic adjustment and dehydrins expression. Identifying different mechanisms in drought stress response would advance our understanding of the complex strategies contributing to wheat tolerance to drought in the early growth stage and could contribute to variety selection useful for developing new drought-tolerant varieties.
Collapse
Affiliation(s)
- Rosemary Vuković
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ivna Štolfa Čamagajevac
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ana Vuković
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Katarina Šunić
- Department of Small Cereal Crops, Agricultural Institute Osijek, 31000 Osijek, Croatia;
| | - Lidija Begović
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Selma Mlinarić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ramona Sekulić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Nikolina Sabo
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Valentina Španić
- Department of Small Cereal Crops, Agricultural Institute Osijek, 31000 Osijek, Croatia;
- Correspondence:
| |
Collapse
|
16
|
Christopoulou A, Sazeides CI, Fyllas NM. Size-mediated effects of climate on tree growth and mortality in Mediterranean Brutia pine forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151463. [PMID: 34742797 DOI: 10.1016/j.scitotenv.2021.151463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The Eastern Mediterranean Basin is experiencing long-term drought conditions that affect the growth and mortality of many forest tree species. We analysed tree rings from 113 Pinus brutia (living and dead) trees of different age (<50, 50-85, >85 years old) and size to study how climatic variation during the 20th century has shaped their radial-growth and mortality patterns. We selected the pine forest on the island of Lesvos (Greece) representing the largest continuous P. brutia forest on the Aegean islands, to develop a chronology that could provide a bridge between the available tree-ring data sets from the Western and Eastern Mediterranean region. The analysis of the novel chronology captured well-known drought events during the 20th century, such as those in 1949, 1990 and 2007, and provided an equation to reconstruct the intensity of droughts (10 month time scale). P. brutia tree-growth indicated a positive trend from the beginning until the 3rd quarter of the 21st century and then flattened for living trees. Trees that eventually died between 2010 and 2019, were characterized by a much lower growth than surviving trees and also illustrated a long-lasting negative growth trend. Precipitation and water availability (inferred from the SPEI drought index) were positively related to the growth of living and dead trees, mainly in the middle and old age classes. Temperature effect on tree growth shifted from negative to positive with increasing age of living trees, but remained always negative across all age classes in trees that eventually died. Our findings verify the positive effect of water availability on tree growth and survival of Mediterranean pines and highlight a size-mediated effect of temperature on tree growth, probably coupled with individual-tree access to underground water resources. Increased air temperatures during various time periods related to tree physiological activity seem to negatively affect tree survival across all age classes, in Mediterranean P. brutia forests, highlighting their potential vulnerability to global warming conditions.
Collapse
Affiliation(s)
- A Christopoulou
- Biodiversity Conservation Lab, Department of Environment, University of the Aegean, 81100 Mytilene, Greece; Centre for Research and Conservation of Cultural Heritage, Faculty of Fine Arts, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - C I Sazeides
- Biodiversity Conservation Lab, Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - N M Fyllas
- Biodiversity Conservation Lab, Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| |
Collapse
|
17
|
Precipitation Variability and Drought Assessment Using the SPI: Application to Long-Term Series in the Strait of Gibraltar Area. WATER 2022. [DOI: 10.3390/w14060884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The standardized precipitation index (SPI) provides reliable estimations about the intensity, magnitude and spatial extent of droughts in a variety of time scales based on long-term precipitation series. In this work, we assess the evolution of monthly precipitation in the Barbate River basin (S. Iberian Peninsula) between 1910/11 and 2017/18 through the generation of a representative precipitation series for the 108-year period and the subsequent application of the SPI. This extensive series was obtained after processing all the precipitation data (67 stations) available within and nearby the basin and subsequent complex gap-filling stages. The SPI identified 26 periods of drought, 12 of them severe and 6 extreme, with return periods of 9 and 18 years, respectively. Complementary analysis evidenced changes in precipitation cyclicity, with periodicities of 5 and 7–8 years during the first and second half of the study period, respectively. Additionally, the amplitude of pluviometric oscillations increased during the second half of the period, and extreme events were more frequent. While the decade 1940–1950 was very dry, with precipitation 11% below the basin’s average, 1960–1970 was very humid, with precipitation 23% above average. Contrary to the results of climate change projections specific to this area, a clear downward trend in precipitation is not detected.
Collapse
|
18
|
Observed Changes in Meteorological Drought Events during 1981–2020 over Rwanda, East Africa. SUSTAINABILITY 2022. [DOI: 10.3390/su14031519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Drought is one of the most complex natural phenomena affecting the life and livelihood of people, especially in the current time of human-induced climate change. This research employs ground-based observations to assess the recent spatiotemporal characteristics of meteorological drought events over Rwanda. The drought is examined based on the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Precipitation Index (SPI) at seasonal and annual time scales from 1981 to 2020. The Man–Kendal test was used to evaluate the trends in rainfall, temperature, and SPEI values at the annual scale and during the March to May (MAM) and October to December (OND) seasons. The analysis revealed nonsignificant trends in annual (8.4 mm/decade), MAM (−3.4 mm/decade), and OND (4.5 mm/decade) rainfall, while an apparent significant increasing trend in surface air temperature was obtained during the MAM (0.19 °C/decade), OND (0.2 °C/decade), and annual (0.23 °C/decade) time slices. Overall, the SPEI characteristics indicated that the country is more prone to moderate drought events than severe and extreme drought events during MAM and OND seasons. However, the intensity, duration, and frequency differ spatially among seasons. The findings of this study inform policy and decision-makers on the past experienced drought behavior, which can serve as a baseline for future drought mitigation and adaptation plans.
Collapse
|
19
|
Ayugi B, Eresanya EO, Onyango AO, Ogou FK, Okoro EC, Okoye CO, Anoruo CM, Dike VN, Ashiru OR, Daramola MT, Mumo R, Ongoma V. Review of Meteorological Drought in Africa: Historical Trends, Impacts, Mitigation Measures, and Prospects. PURE AND APPLIED GEOPHYSICS 2022; 179:1365-1386. [PMID: 35308437 PMCID: PMC8918426 DOI: 10.1007/s00024-022-02988-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 05/22/2023]
Abstract
This review study examines the state of meteorological drought over Africa, focusing on historical trends, impacts, mitigation strategies, and future prospects. Relevant meteorological drought-related articles were systematically sourced from credible bibliographic databases covering African subregions in the twentieth and twenty-first centuries (i.e. from 1950 to 2021), using suitable keywords. Past studies show evidence of the occurrence of extreme drought events across the continent. The underlying mechanisms are mostly attributed to complex interactions of dynamical and thermodynamical mechanisms. The resultant impact is evidenced in the decline of agricultural activities and water resources and the environmental degradation across all subregions. Projected changes show recovery from drought events in the west/east African domain, while the south and north regions indicate a tendency for increasing drought characteristics. The apparent intricate link between the continent's development and climate variability, including the reoccurrence of drought events, calls for paradigm shifts in policy direction. Key resources meant for the infrastructural and technological growth of the economy are being diverted to develop coping mechanisms to adapt to climate change effects, which are changing. Efficient service delivery to drought-prone hotspots, strengthening of drought monitoring, forecasting, early warning, and response systems, and improved research on the combined effects of anthropogenic activities and changes in climate systems are valuable to practitioners, researchers, and policymakers regarding drought management in Africa today and in the future.
Collapse
Affiliation(s)
- Brian Ayugi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044 China
- Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center On Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing, University of Information Science and Technology, Nanjing, 210044 China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| | - Emmanuel Olaoluwa Eresanya
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
- Department of Marine Science and Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Science, Haizhu District, 164 Xingangdong Road, Guangzhou, China
| | - Augustine Omondi Onyango
- Institute of Atmospheric Physics, Chinese Academy of Sciences, International Center for Climate and Environment Sciences (ICCES), University of the Chinese Academy of Sciences, College of Earth and Planetary Science, Beijing, China
| | - Faustin Katchele Ogou
- Laboratory of Atmospheric Physics, Department of Physics, Faculty of Science and Technology, University of Abomey-Calavi, Godomey, Benin
| | - Eucharia Chidinma Okoro
- Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria
- Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Chaoyang District, Beijing, 100012 China
| | - Charles Obinwanne Okoye
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- Biofuel Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | | | - Victor Nnamdi Dike
- Institute of Atmospheric Physics, Chinese Academy of Sciences, International Center for Climate and Environment Sciences (ICCES), University of the Chinese Academy of Sciences, College of Earth and Planetary Science, Beijing, China
- Energy, Climate, and Environment Science Group, Imo State Polytechnic Umuagwo, Imo, Ohaji, PMB 1472, Owerri, Nigeria
| | - Olusola Raheemat Ashiru
- Key Laboratory of Geophysics and Georesources, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mojolaoluwa Toluwalase Daramola
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing, 100101 China
| | - Richard Mumo
- Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana
| | - Victor Ongoma
- International Water Research Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
20
|
Assessment of Outdoor Thermal Comfort in Serbia’s Urban Environments during Different Seasons. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urban microclimate is gradually changing due to climate change, extreme weather conditions, urbanization, and the heat island effect. In such an altered environment, outdoor thermal comfort can have a strong impact on public health and quality of life in urban areas. In this study, three main urban areas in Serbia were selected: Belgrade (Central Serbia), Novi Sad (Northern Serbia), and Niš (Southern Serbia). The focus was on the temporal assessment of OTC, using the UTCI over a period of 20 years (1999–2018) during different seasons. The main aim is the general estimation of the OTC of Belgrade, Novi Sad, and Niš, in order to gain better insight into the bioclimatic condition, current trends and anomalies that have occurred. The analysis was conducted based on an hourly (7 h, 14 h, and 21 h CET) and “day by day” meteorological data set. Findings show the presence of a growing trend in seasonal UTCI anomalies, especially during summer and spring. In addition, there is a notable increase in the number of days above the defined UTCI thresholds for each season. Average annual UTCIs values also show a positive, rising trend, ranging from 0.50 °C to 1.33 °C. The most significant deviations from the average UTCI values, both seasonal and annual, were recorded in 2000, 2007, 2012, 2015, 2017, and 2018.
Collapse
|
21
|
Effect of Climate Change on the Growth of Endangered Scree Forests in Krkonoše National Park (Czech Republic). FORESTS 2021. [DOI: 10.3390/f12081127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Scree forests with large numbers of protected plants and wildlife are seriously threatened by climate change due to more frequent drought episodes, which cause challenges for very stony, shallow soils. The effect of environmental factors on the radial growth of five tree species—European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst.), sycamore maple (Acer pseudoplatanus L.), European ash (Fraxinus excelsior L.), and mountain elm (Ulmus glabra Huds.)—was studied in the mixed stands (105–157 years) in the western Krkonoše Mountains (Czech Republic) concerning climate change. These are communities of maple to fir beechwoods (association Aceri-Fagetum sylvaticae and Luzulo-Abietetum albae) on ranker soils at the altitude 590–700 m a.s.l. Production, structure, and biodiversity were evaluated in seven permanent research plots and the relationships of the radial growth (150 cores) to climatic parameters (precipitation, temperature, and extreme conditions) and air pollution (SO2, NOX, ozone exposure). The stand volume reached 557–814 m3 ha−1 with high production potential of spruce and ash. The radial growth of beech and spruce growing in relatively favorable habitat conditions (deeper soil profile and less skeletal soils) has increased by 16.6%–46.1% in the last 20 years. By contrast, for sycamore and ash growing in more extreme soil conditions, the radial growth decreased by 12.5%–14.6%. However, growth variability increased (12.7%–29.5%) for all tree species, as did the occurrence of negative pointer years (extremely low radial growth) in the last two decades. The most sensitive tree species to climate and air pollution were spruce and beech compared to the resilience of sycamore and ash. Spectral analysis recorded the largest cyclical fluctuations (especially the 12-year solar cycle) in spruce, while ash did not show any significant cycle processes. The limiting factors of growth were droughts with high temperatures in the vegetation period for spruce and late frosts for beech. According to the degree of extreme habitat conditions, individual tree species thus respond appropriately to advancing climate change, especially to an increase in the mean temperature (by 2.1 °C), unevenness in precipitation, and occurrence of extreme climate events in the last 60 years.
Collapse
|
22
|
Mediterranean-Scale Drought: Regional Datasets for Exceptional Meteorological Drought Events during 1975–2019. ATMOSPHERE 2021. [DOI: 10.3390/atmos12080941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drought is one of the most complex climate-related phenomena and is expected to progressively affect our lives by causing very serious environmental and socioeconomic damage by the end of the 21st century. In this study, we have extracted a dataset of exceptional meteorological drought events between 1975 and 2019 at the country and subregional scales. Each drought event was described by its start and end date, intensity, severity, duration, areal extent, peak month and peak area. To define such drought events and their characteristics, separate analyses based on three drought indices were performed at 12-month timescale: the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Reconnaissance Drought Index (RDI). A multivariate combined drought index (DXI) was developed by merging the previous three indices for more understanding of droughts’ features at the country and subregional levels. Principal component analysis (PCA) was used to identify five different drought subregions based on DXI-12 values for 312 Mediterranean stations and a new special score was defined to classify the multi-subregional exceptional drought events across the Mediterranean Basin (MED). The results indicated that extensive drought events occurred more frequently since the late 1990s, showing several drought hotspots in the last decades in the southeastern Mediterranean and northwest Africa. In addition, the results showed that the most severe events were more detected when more than single drought index was used. The highest percentage area under drought was also observed through combining the variations of three drought indices. Furthermore, the drought area in both dry and humid areas in the MED has also experienced a remarkable increase since the late 1990s. Based on a comparison of the drought events during the two periods—1975–1996 and 1997–2019—we find that the current dry conditions in the MED are more severe, intense, and frequent than the earlier period; moreover, the strongest dry conditions occurred in last two decades. The SPEI-12 and RDI-12 have a higher capacity in providing a more comprehensive description of the dry conditions because of the inclusion of temperature or atmospheric evaporative demand in their scheme. A complex range of atmospheric circulation patterns, particularly the Western Mediterranean Oscillation (WeMO) and East Atlantic/West Russia (EATL/WRUS), appear to play an important role in severe, intense and region-wide droughts, including the two most severe droughts, 1999–2001 and 2007–2012, with lesser influence of the NAO, ULMO and SCAND.
Collapse
|
23
|
Reduced Temperature Sensitivity of Maximum Latewood Density Formation in High-Elevation Corsican Pines under Recent Warming. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maximum latewood density (MXD) measurements from long-lived Black pines (Pinus nigra spp. laricio) growing at the upper treeline in Corsica are one of the few archives to reconstruct southern European summer temperatures at annual resolution back into medieval times. Here, we present a compilation of five MXD chronologies from Corsican pines that contain high-to-low frequency variability between 1168 and 2016 CE and correlate significantly (p < 0.01) with the instrumental April–July and September–October mean temperatures from 1901 to 1980 CE (r = 0.52−0.64). The growth–climate correlations, however, dropped to −0.13 to 0.02 afterward, and scaling the MXD data resulted in a divergence of >1.5 °C between the colder reconstructed and warmer measured temperatures in the early-21st century. Our findings suggest a warming-induced shift from initially temperature-controlled to drought-prone MXD formation, and therefore question the suitability of using Corsican pine MXD data for climate reconstruction.
Collapse
|
24
|
Abstract
The Mediterranean region is an area particularly susceptible to water scarcity and drought. In this work, drought has been analyzed in Italy using multiple timescales of the standardized precipitation index (SPI) evaluated from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement product from 2000 to 2020. In particular, drought characteristics (severity, duration, and intensity) have been estimated by means of the run theory applied to the SPI values calculated in 3325 grid points falling within the Italian territory. Results clearly indicate that although a high number of drought events has been identified for the short timescale, these events present a lower duration and lesser severity than the long-timescale droughts. The main outcomes of this study, with the indication of the spatial distribution of the drought characteristics in Italy, allow identifying the areas that could also face water stress conditions in the future, thus requiring drought monitoring and adequate adaptation strategies.
Collapse
|
25
|
Is It a Drought or Only a Fluctuation in Precipitation Patterns?—Drought Reconnaissance in Poland. WATER 2021. [DOI: 10.3390/w13060807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The process of propagation from meteorological to hydrological drought is studied using the Vistula basin in Poland (193,960 km2) as a case study. The study aims to set a background for the analysis of processes influencing drought propagation in the basin, including the availability of data on hydro-meteorological factors, groundwater, and major human activities that might influence the water cycle in the region. A recent history of drought events in the basin is derived based on a statistical analysis of flow measured at nine gauging stations located along the river, starting from upstream downwards in the 1951–2018 period. The study is enhanced by the analysis of the temporal and spatial variability of a number of drought indices. As a result, the factors affecting temporal and spatial variability of drought—with particular emphasis on the interaction between the variability induced by natural processes and human interaction—are identified. The drought dynamics is studied by analysis of the relationships between meteorological and hydrological drought indices. The results indicate that the Vistula River basin has been influenced in its upstream part mainly by the mining industry, and the middle and downstream parts are additionally affected by industry and agriculture.
Collapse
|
26
|
An Enhanced Innovative Triangular Trend Analysis of Rainfall Based on a Spectral Approach. WATER 2021. [DOI: 10.3390/w13050727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The world is currently witnessing high rainfall variability at the spatiotemporal level. In this paper, data from three representative rain gauges in northern Algeria, from 1920 to 2011, at an annual scale, were used to assess a relatively new hybrid method, which combines the innovative triangular trend analysis (ITTA) with the orthogonal discrete wavelet transform (DWT) for partial trend identification. The analysis revealed that the period from 1950 to 1975 transported the wettest periods, followed by a long-term dry period beginning in 1973. The analysis also revealed a rainfall increase during the latter decade. The combined method (ITTA–DWT) showed a good efficiency for extreme rainfall event detection. In addition, the analysis indicated the inter- to multiannual phenomena that explained the short to medium processes that dominated the high rainfall variability, masking the partial trend components existing in the rainfall time series and making the identification of such trends a challenging task. The results indicate that the approaches—combining ITTA and selected input combination models resulting from the DWT—are auspicious compared to those found using the original rainfall observations. This analysis revealed that the ITTA–DWT method outperformed the ITTA method for partial trend identification, which proved DWT’s efficiency as a coupling method.
Collapse
|
27
|
García-Valdecasas Ojeda M, Gámiz-Fortis SR, Romero-Jiménez E, Rosa-Cánovas JJ, Yeste P, Castro-Díez Y, Esteban-Parra MJ. Projected changes in the Iberian Peninsula drought characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143702. [PMID: 33310580 DOI: 10.1016/j.scitotenv.2020.143702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
High spatial resolution drought projections for the Iberian Peninsula (IP) have been examined in terms of duration, frequency, and severity of drought events. For this end, a set of regional climate simulations was completed using the Weather Research and Forecasting (WRF) model driven by two global climate models (GCMs), the CCSM4 and the MPI-ESM-LR, for a near (2021-2050) and a far (2071-2100) future, and under two representative concentration pathway (RCP) scenarios (RCP4.5 and RCP8.5). Projected changes for these simulations were analyzed using two drought indices, the Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI), considering different time scales (3- and 12-months). The results showed that the IP is very likely to undergo longer and more severe drought events. Substantial changes in drought parameters (i.e., frequency, duration, and severity) were projected by both indices and at both time scales in most of the IP. These changes are particularly strong by the end of the century under RCP8.5. Meanwhile, the intensification of drought conditions is expected to be more moderate for the near future. However, the results also indicated key differences between indices. Projected drought conditions by using the SPEI showed more severe increases in drought events than those from SPI by the end of the century and, especially, for the high-emission scenario. The most extreme conditions were projected in terms of the duration of the events. Specifically, results from the 12-month SPEI analysis suggested a significant risk of megadrought events (drought events longer than 15 years) in many areas of IP by the end of the century under RCP8.5.
Collapse
Affiliation(s)
- Matilde García-Valdecasas Ojeda
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, ES18071 Granada, Spain; Istituto Nazionale di Oceanografia e di Geosica Sperimentale (OGS), Borgo Grotta Gigante, 42/c, TS34010 Sgonico, Italy; Earth System Physics Section, International Centre for Theoretical Physics (ICTP), Strada Costiera, 11, TS34151 Trieste, Italy.
| | - Sonia Raquel Gámiz-Fortis
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, ES18071 Granada, Spain.
| | - Emilio Romero-Jiménez
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, ES18071 Granada, Spain.
| | - Juan José Rosa-Cánovas
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, ES18071 Granada, Spain.
| | - Patricio Yeste
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, ES18071 Granada, Spain.
| | - Yolanda Castro-Díez
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, ES18071 Granada, Spain.
| | - María Jesús Esteban-Parra
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, ES18071 Granada, Spain.
| |
Collapse
|
28
|
Jakovac-Strajn B, Brozić D, Tavčar-Kalcher G, Babič J, Trilar T, Vengust M. Entomological Surveillance and Cantharidin Concentrations in Mylabris variabilis and Epicauta rufidorsum Blister Beetles in Slovenia. Animals (Basel) 2021; 11:220. [PMID: 33477415 PMCID: PMC7830541 DOI: 10.3390/ani11010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
True blister beetles (genus Epicauta, family Meloidae) produce cantharidin, which can cause toxicosis in humans and animals. Some recent reports suggest that poisoning by the blister beetle has occurred in the Mediterranean part of Slovenia, which has never been reported before. Drought and modern harvesting techniques are thought to increase the likelihood of blister beetle forage contamination and cantharidin intoxication in animals. A survey of fields associated with blister beetle contamination was conducted and the Meloid species present were identified. Entomological surveillance was conducted for Mylabris variabilis and Epicauta rufidorsum. Cantharidin concentrations were also measured in both blister beetle species. Cantharidin concentration in Mylabris variabilis (n = 17) ranged from 0.038 to 0.354 µg/mg (mean 0.151 µg/mg). Cantharidin concentration in Epicauta rufidorsum (n = 36) ranged from 0.055 to 0.341 µg/mg (mean 0.142 µg/mg). Both species exhibited variable concentrations of cantharidin that could not be associated with their biology, sex, age, size, and/or reproductive status. Epicauta rufidorsum have never previously been studied as a possible source of forage contamination, nor have cantharidin concentrations been determined in this species. It is the most likely source of forage contamination due to its abundance in the investigated fields, its swarming activity, and its tendency to reside in the green parts of plants immediately after cutting. Delaying the simultaneous processing and storage of forage after cutting would reduce the likelihood of forage contamination by blister beetles, as they can then retreat to the ground or fly away.
Collapse
Affiliation(s)
- Breda Jakovac-Strajn
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.J.-S.); (G.T.-K.); (J.B.)
| | - Diana Brozić
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Gabrijela Tavčar-Kalcher
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.J.-S.); (G.T.-K.); (J.B.)
| | - Janja Babič
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.J.-S.); (G.T.-K.); (J.B.)
| | - Tomi Trilar
- Slovenian Museum of Natural History, 1000 Ljubljana, Slovenia;
| | - Modest Vengust
- Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.J.-S.); (G.T.-K.); (J.B.)
| |
Collapse
|
29
|
Bosela M, Tumajer J, Cienciala E, Dobor L, Kulla L, Marčiš P, Popa I, Sedmák R, Sedmáková D, Sitko R, Šebeň V, Štěpánek P, Büntgen U. Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141794. [PMID: 32898800 DOI: 10.1016/j.scitotenv.2020.141794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Covering large parts of Europe, Norway spruce (Picea abies L Karst.) plays an important role in the adaptation strategy of forest services to future climate change. Although dendroecology can provide valuable information on the past relationships between tree growth and climate, most previous studies were biased towards species-specific distribution limits, where old individuals grow slowly under extreme conditions. In the present study, we investigated the growth variability and climate sensitivity of 2851 Norway spruce trees along longitudinal (E 12-26°), latitudinal (N 45-51°), and elevation (118-1591 m a.s.l.) gradients in central-eastern Europe. We reveal that summer weather significantly affects the radial growth of spruce trees, but the effects strongly vary along biogeographical gradients. Extreme summer heatwaves in 2000 and 2003 reduced the growth rates by 10-35%, most pronounced in the southern Carpathians. In contrast to the population in the Czech Republic, climate warming induced a synchronous decline in the growth rates across biogeographical gradients in the Carpathian arc. By demonstrating the increased vulnerability of Norway spruce under warmer climate conditions, we recommended that the forest services and conservation managers replace or admix monocultures of this species with more drought-resilient mixtures including fir, beech and other broadleaved species.
Collapse
Affiliation(s)
- Michal Bosela
- Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia; National Forest Centre, T.G. Masaryka 22, 96001 Zvolen, Slovakia.
| | - Jan Tumajer
- IFER - Institute of Forest Ecosystem Research, 254 01 Jilove u Prahy, Czech Republic; University of Greifswald, Institute of Botany and Landscape Ecology, Soldmannstraße 15, 17487 Greifswald, Germany; Charles University, Faculty of Science, Department of Physical Geography and Geoecology, Albertov 6, 12843 Prague, Czech Republic
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, 254 01 Jilove u Prahy, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Laura Dobor
- Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague 6, Czech Republic
| | - Ladislav Kulla
- National Forest Centre, T.G. Masaryka 22, 96001 Zvolen, Slovakia
| | - Peter Marčiš
- Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Ionel Popa
- National Research and Development Institute for Silviculture "Marin Drăcea", Calea Bucovinei, 76bis, Câmpulung Moldovenesc 725100, Romania; Center of Mountain Economy (INCE - CE-MONT), Petreni, 49, Vatra Dornei, 725700, Romania
| | - Róbert Sedmák
- Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Denisa Sedmáková
- Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Roman Sitko
- Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Vladimír Šebeň
- National Forest Centre, T.G. Masaryka 22, 96001 Zvolen, Slovakia
| | - Petr Štěpánek
- Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Ulf Büntgen
- Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic; Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK; Swiss Federal Research Institute WSL, Zürcherstr 111, 8903 Birmensdorf, Switzerland; Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 613 00 Brno, Czech Republic
| |
Collapse
|
30
|
Buras A, Rammig A, Zang CS. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. FRONTIERS IN PLANT SCIENCE 2021; 12:689220. [PMID: 34925391 PMCID: PMC8672298 DOI: 10.3389/fpls.2021.689220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
Forest decline, in course of climate change, has become a frequently observed phenomenon. Much of the observed decline has been associated with an increasing frequency of climate change induced hotter droughts while decline induced by flooding, late-frost, and storms also play an important role. As a consequence, tree mortality rates have increased across the globe. Despite numerous studies that have assessed forest decline and predisposing factors for tree mortality, we still lack an in-depth understanding of (I) underlying eco-physiological mechanisms, (II) the influence of varying environmental conditions related to soil, competition, and micro-climate, and (III) species-specific strategies to cope with prolonged environmental stress. To deepen our knowledge within this context, studying tree performance within larger networks seems a promising research avenue. Ideally such networks are already established during the actual period of environmental stress. One approach for identifying stressed forests suitable for such monitoring networks is to assess measures related to tree vitality in near real-time across large regions by means of satellite-borne remote sensing. Within this context, we introduce the European Forest Condition monitor (EFCM)-a remote-sensing based, freely available, interactive web information tool. The EFCM depicts forest greenness (as approximated using NDVI from MODIS at a spatial resolution of roughly 5.3 hectares) for the pixel-specific growing season across Europe and consequently allows for guiding research within the context of concurrent forest performance. To allow for inter-temporal comparability and account for pixel-specific features, all observations are set in relation to normalized difference vegetation index (NDVI) records over the monitoring period beginning in 2001. The EFCM provides both a quantile-based and a proportion-based product, thereby allowing for both relative and absolute comparison of forest greenness over the observational record. Based on six specific examples related to spring phenology, drought, late-frost, tree die-back on water-logged soils, an ice storm, and windthrow we exemplify how the EFCM may help identifying hotspots of extraordinary forest greenness. We discuss advantages and limitations when monitoring forest condition at large scales on the basis of moderate resolution remote sensing products to guide users toward an appropriate interpretation.
Collapse
Affiliation(s)
- Allan Buras
- Land Surface-Atmosphere Interactions, Technische Universität München, Freising, Germany
- *Correspondence: Allan Buras
| | - Anja Rammig
- Land Surface-Atmosphere Interactions, Technische Universität München, Freising, Germany
| | - Christian S. Zang
- Land Surface-Atmosphere Interactions, Technische Universität München, Freising, Germany
- Forests and Climate Change, Hochschule Weihenstephan-Triesdorf, Freising, Germany
| |
Collapse
|
31
|
Abstract
The current study presents the results of the first dendrochronological survey performed over the East Aegean island of Symi. Research Highlights: Dendrochronological research of the East Aegean region is of paramount importance since dendrochronological data from the region, and especially the islands, are still limited. Background and Objectives: The main aim of the study is to explore the dendrochronological potential of the island, focusing on the dating of historical wood and buildings as well as dendroprovenancing. Materials and Methods: A total of 57 wood samples were collected from historical timber from windmills and architectural elements, including doors and warehouse planks, while 68 cores were collected from the three dominant tree species of the island—Cupressus sempervirens, Pinus brutia, and Quercus ithaburensis subsp. macrolepis—in an attempt to develop local reference chronologies that could be useful in dating historical timber Results: Of the historical timber, at least nine different species have been detected, with conifers representing the majority of the collected material. In total, 56% of the dendroarchaeological samples, belonging to four different species, were dated absolutely. According to cross-dating and dendroprovenancing results, Pinus nigra, Cedrus sp., and Quercus sp. represent timber imported from present-day Turkey while the fir samples collected from the windmills originate from Central Europe. The use of local timber is also highly probable although it could not be confirmed by the reference chronologies developed for the three dominant tree species of the island. Conclusions: The results of the study reveal the dendrochronological potential of the island from both dendroarchaeological and dendroecological perspectives. The finding that most of the wood was imported mainly from Turkey highlights the importance of timber trade with the Turkish mainland during the mid-18th and 19th centuries. Chronologies developed from living trees could be used in future studies for dating historical material while further research would increase our understanding of past timber trade and the island’s history.
Collapse
|
32
|
Spatio-Temporal Variation of Ozone Concentrations and Ozone Uptake Conditions in Forests in Western Germany. ATMOSPHERE 2020. [DOI: 10.3390/atmos11111261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The study analyzes the long-term trends (1998–2019) of concentrations of the air pollutants ozone (O3) and nitrogen oxides (NOx) as well as meteorological conditions at forest sites in German midrange mountains to evaluate changes in O3 uptake conditions for trees over time at a plot scale. O3 concentrations did not show significant trends over the course of 22 years, unlike NO2 and NO, whose concentrations decreased significantly since the end of the 1990s. Temporal analyses of meteorological parameters found increasing global radiation at all sites and decreasing precipitation, vapor pressure deficit (VPD), and wind speed at most sites (temperature did not show any trend). A principal component analysis revealed strong correlations between O3 concentrations and global radiation, VPD, and temperature. Examination of the atmospheric water balance, a key parameter for O3 uptake, identified some unusually hot and dry years (2003, 2011, 2018, and 2019). With the help of a soil water model, periods of plant water stress were detected. These periods were often in synchrony with periods of elevated daytime O3 concentrations and usually occurred in mid and late summer, but occasionally also in spring and early summer. This suggests that drought protects forests against O3 uptake and that, in humid years with moderate O3 concentrations, the O3 flux was higher than in dry years with higher O3 concentrations.
Collapse
|
33
|
Gaitán E, Monjo R, Pórtoles J, Pino-Otín MR. Impact of climate change on drought in Aragon (NE Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140094. [PMID: 32562994 DOI: 10.1016/j.scitotenv.2020.140094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Droughts are one of the extreme climatic phenomena with the greatest and most persistent impact on health, economic activities and ecosystems and are poorly understood due to their complexity. The exacerbation of global warming throughout this century probably will cause an increase in droughts, so accurate studies of future projections at a local level, not done so far, are essential. Climate change scenarios of drought indexes for the region of Aragon (Spain) based on nine Earth System Models (ESMs) and two Representative Concentration Pathways (RCPs) corresponding to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) have been generated for the first time. Meteorological Drought episodes were analysed from three main aspects: magnitude (index values), duration and spatial extent. The evolution of drought is also represented in a novel way, allowing identification, simultaneously, of the intensity of the episodes as well as their duration in different periods of accumulation and, for the first time, at the observatory level. Future meteorological drought scenarios based on the Standardized Precipitation Index (SPI) hardly show variations in water balance with respect to normal values. However, the Standardized Precipitation Evapotranspiration Index (SPEI) which, in addition to precipitation, considers evapotranspiration, shows a clear trend towards increasingly intense periods of drought, especially when considering cumulative periods and those at the end of the century. Representation of the territory of the drought indexes reflects that the most populated areas (Ebro Valley and SW of the region), will suffer the longest and most intense drought episodes. These results are key in the development of specific measures for adapting to climate change.
Collapse
Affiliation(s)
- Emma Gaitán
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain; Fundación para la Investigación del Clima, C/ Tremps 11, 28040 Madrid, Spain.
| | - Robert Monjo
- Fundación para la Investigación del Clima, C/ Tremps 11, 28040 Madrid, Spain.
| | - Javier Pórtoles
- Fundación para la Investigación del Clima, C/ Tremps 11, 28040 Madrid, Spain.
| | | |
Collapse
|
34
|
Abstract
This study spanning the period 1851–2015 explores the spatial and temporal characteristics of dry and wet periods in Europe as well as their variability and changes. It is based on up to 220 stations with monthly precipitation time series that have a varying data availability within the study period. The stations are classified into eight regions with similar climate characteristics. Dry and wet periods are analyzed using the decile method as well as the modified Rainfall Anomaly Index mRAI at the 3-month timescale. Spatial extent, duration, and frequency of dry and wet periods show a large multi-decadal variability resulting in comparatively small long-term trends over the entirety of Europe for the study periods 1901–2015 and 1951–2015. Nonetheless, several sub-regions show distinct changes—with opposite signals for northern and southern Europe. Spatial extent and duration of dry periods generally decreased, while wet periods show increases throughout the 20th century—particularly in Scandinavia. A simultaneous increase in the frequency of severely dry and wet years, respectively, is observed since the 1980s. This indicates that temperature increases across Europe may be connected with an increasing frequency of extremes at both sides of the probability density function of precipitation.
Collapse
|
35
|
Gerveni M, Fernandes Tomon Avelino A, Dall'erba S. Drivers of Water Use in the Agricultural Sector of the European Union 27. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9191-9199. [PMID: 32609504 DOI: 10.1021/acs.est.9b06662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Population growth and the uncertain hazards that accompany climate change have put increasing pressure on the management and sustainability of water. It has a direct impact on agriculture and its domestic and international supply chain linkages. As one of the largest agricultural producers in the world, the European Union (EU) is particularly sensitive to changes in water availability. Therefore, we perform a structural decomposition analysis based on the recently released EXIOBASE 3 database to examine in depth how changes in water input coefficients, in final demand and in technology have affected changes in water use across crops. Crop production consumes 99% of the direct water in agriculture. Our results show that the largest EU crop producers have experienced an increase in water use that is mostly driven by changes in technology. On the other hand, several Mediterranean countries, where water scarcity has been a problem for years, have decreased their water consumption mostly thanks to an improvement in their water intensity. Results by crop are consistent with those at the aggregated level except for vegetables of which water use changes have been primarily driven by changes in final demand and water intensity.
Collapse
Affiliation(s)
- Maria Gerveni
- Department of Agricultural and Consumer Economics, Regional Economics Applications Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Sandy Dall'erba
- Department of Agricultural and Consumer Economics, Regional Economics Applications Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Abstract
We evaluated the response of vegetation’s photosynthetic activity to drought conditions from 1998 to 2014 over Romania and the Republic of Moldova. The connection between vegetation stress and drought events was assessed by means of a correlation analysis between the monthly Standardized Precipitation Evaporation Index (SPEI), at several time scales, and the Normalized Difference Vegetation Index (NDVI), as well as an assessment of the simultaneous occurrence of extremes in both indices. The analysis of the relationship between drought and vegetation was made for the growing season (from April to October of the entire period), and special attention was devoted to the severe drought event of 2000/2001, considered as the driest since 1961 for the study area. More than three quarters (77%) of the agricultural land exhibits a positive correlation between the two indices. The sensitivity of crop areas to drought is strong, as the impacts were detected from May to October, with a peak in July. On the other hand, forests were found to be less sensitive to drought, as the impacts were limited mostly to July and August. Moreover, vegetation of all land cover classes showed a dependence between the sign of the correlation and the elevation gradient. Roughly 60% (20%) of the study domain shows a concordance of anomalously low vegetation activity with dry conditions of at least 50% (80%) in August. By contrast, a lower value of concordance was observed over the Carpathian Mountains. During the severe drought event of 2000/2001, a decrease in vegetation activity was detected for most of the study area, showing a decrease lasting at least 4 months, between April and October, for more than two thirds (71%) of the study domain.
Collapse
|
37
|
Abstract
Modelling of hydrological extremes and drought modelling in particular has received much attention over recent decades. The main aim of this study is to apply a statistical model for drought estimation (in this case deficit volume) using extreme value theory and the index-flood method and to reduce the uncertainties in estimation of drought event return levels. Deficit volumes for 133 catchments in the Czech Republic (1901–2015) were simulated by hydrological model BILAN. The validation of severity, intensity and length of simulated drought events revealed good match with the available observed data. To estimate return levels of the deficit volumes, it is assumed (in accord with the index-flood method), that the deficit volumes within a homogeneous region are identically distributed after scaling with a site-specific factor. The parameters of the scaled regional distribution are estimated using L-moments. The goodness-of-fit of the statistical model is assessed by Anderson–Darling test. For the estimation of critical values, sampling methods allowing for handling of years without drought were used. It is shown, that the index-flood model with a Generalized Pareto distribution performs well and substantially reduces the uncertainty related to the estimation of the shape parameter and of the large deficit volume quantiles.
Collapse
|
38
|
Evaluation of Meteorological Drought and Flood Scenarios over Kenya, East Africa. ATMOSPHERE 2020. [DOI: 10.3390/atmos11030307] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work examines drought and flood events over Kenya from 1981 to 2016 using the Standardized Precipitation–Evapotranspiration Index (SPEI). The spatiotemporal analysis of dry and wet events was conducted for 3 and 12 months. Extreme drought incidences were observed in the years 1987, 2000, 2006, and 2009 for SPEI-3, whilst the SPEI-12 demonstrated the manifestation of drought during the years 2000 and 2006. The SPEI showed that the wettest periods, 1997 and 1998, coincided with the El Nino event for both time steps. SPEI-3 showed a reduction in moderate drought events, while severe and extreme cases were on the increase tendencies towards the end of the twentieth century. Conversely, SPEI-12 depicted an overall increase in severe drought occurrence over the study location with ab observed intensity of −1.54 and a cumulative frequency of 64 months during the study period. Wet events showed an upward trend in the western and central highlands, while the rest of the regions showed an increase in dry events during the study period. Moreover, moderate dry/wet events predominated, whilst extreme events occurred least frequently across all grid cells. It is apparent that the study area experienced mild extreme dry events in both categories, although moderately severe dry events dominated most parts of the study area. A high intensity and frequency of drought was noted in SPEI-3, while the least occurrences of extreme events were recorded in SPEI-12. Though drought event prevailed across the study area, there was evidence of extreme flood conditions over the recent decades. These findings form a good basis for next step of research that will look at the projection of droughts over the study area based on regional climate models.
Collapse
|
39
|
Abstract
Drought is a severe threat, especially in the arid regions of Pakistan, such as the Balochistan Province. The aim of this study is to analyze drought trends in Balochistan using Standard Precipitation Index (SPI) at the 3-month accumulation timescale. The monthly rainfall data of 10 stations were collected from the Pakistan Meteorological Department (PMD) for 37 years (1980–2017). Drought trends were analyzed at each station using the Mann-Kendall test. The SPI identified extreme drought events in 1996, 2001, 2002, 2004, 2009, and 2014. Barkhan was the station that most frequently experienced extreme to severe drought events, as defined using SPI. A statistically significant decreasing precipitation trend was found in four stations (Dalbandin, Jiwani, Quetta, and Zhob). The analysis of drought characteristics showed Barkhan faced the most prolonged drought, of 22 months from 1999 to 2001. The findings from the present study can give guidance on how strategies of water management should be adjusted based on the changing patterns of droughts in the Balochistan Province.
Collapse
|
40
|
Sutanto SJ, Vitolo C, Di Napoli C, D'Andrea M, Van Lanen HAJ. Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. ENVIRONMENT INTERNATIONAL 2020; 134:105276. [PMID: 31726364 DOI: 10.1016/j.envint.2019.105276] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Compound and cascading natural hazards usually cause more severe impacts than any of the single hazard events alone. Despite the significant impacts of compound hazards, many studies have only focused on single hazards. The aim of this paper is to investigate spatio-temporal patterns of compound and cascading hazards using historical data for dry hazards, namely heatwaves, droughts, and fires across Europe. We streamlined a simple methodology to explore the occurrence of such events on a daily basis. Droughts in soil moisture were analyzed using time series of a threshold-based index, obtained from the LISFLOOD hydrological model forced with observations. Heatwave and fire events were analyzed using the ERA5-based temperature and Fire Weather Index datasets. The data used in this study relates to the summer seasons from 1990 to 2018. Our results show that joint dry hazard occurrences were identified in west, central, and east Europe, and with a lower frequency in southern Europe and eastern Scandinavia. Drought plays a substantial role in the occurrence of the compound and cascading events of dry hazards, especially in southern Europe as it drives duration of cascading events. Moreover, drought is the most frequent hazard-precursor in cascading events, followed by compound drought-fire events. Changing the definition of a cascading dry hazard by increasing the number of days without a hazard from 1 to 21 within the event (inter-event criterion), lowers as expected, the maximum number of cascading events from 94 to 42, and extends the maximum average duration of cascading events from 38 to 86 days. We had to use proxy observed data to determine the three selected dry hazards because long time series of reported dry hazards do not exist. A complete and specific database with reported hazards is a prerequisite to obtain a more comprehensive insight into compound and cascading dry hazards.
Collapse
Affiliation(s)
- Samuel Jonson Sutanto
- Hydrology and Water Management Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, the Netherlands.
| | | | - Claudia Di Napoli
- Forecast Department, ECMWF, Reading, UK; School of Geography and Environmental Science, University of Reading, Reading, UK
| | | | - Henny A J Van Lanen
- Hydrology and Water Management Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
41
|
Sutanto SJ, van der Weert M, Wanders N, Blauhut V, Van Lanen HAJ. Moving from drought hazard to impact forecasts. Nat Commun 2019; 10:4945. [PMID: 31666523 PMCID: PMC6821769 DOI: 10.1038/s41467-019-12840-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/01/2019] [Indexed: 11/15/2022] Open
Abstract
Present-day drought early warning systems provide the end-users information on the ongoing and forecasted drought hazard (e.g. river flow deficit). However, information on the forecasted drought impacts, which is a prerequisite for drought management, is still missing. Here we present the first study assessing the feasibility of forecasting drought impacts, using machine-learning to relate forecasted hydro-meteorological drought indices to reported drought impacts. Results show that models, which were built with more than 50 months of reported drought impacts, are able to forecast drought impacts a few months ahead. This study highlights the importance of drought impact databases for developing drought impact functions. Our findings recommend that institutions that provide operational drought early warnings should not only forecast drought hazard, but also impacts after developing an impact database.
Collapse
Affiliation(s)
- Samuel J Sutanto
- Hydrology and Quantitative Water Management Group, Environmental Sciences Department, Wageningen University and Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, The Netherlands.
| | - Melati van der Weert
- Hydrology and Quantitative Water Management Group, Environmental Sciences Department, Wageningen University and Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, The Netherlands
| | - Niko Wanders
- Department of Physical Geography, Utrecht University, Princetonlaan 8A, 3508CB, Utrecht, The Netherlands
| | - Veit Blauhut
- Hydrology Department, University of Freiburg, Fahnenbergplatz, D-79098, Freiburg, Germany
| | - Henny A J Van Lanen
- Hydrology and Quantitative Water Management Group, Environmental Sciences Department, Wageningen University and Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
42
|
Abstract
This paper evaluates Integrated Multi-Satellite Retrievals from GPM (IMERG-F) over Europe for the period 2014–2018 in order to evaluate application of the retrievals to hydrology. IMERG-F is compared with a large pan-European precipitation dataset built on rain gauge stations, i.e., the ENSEMBLES OBServation (E-OBS) gridded dataset. Although there is overall agreement in the spatial distribution of mean precipitation (R2 = 0.8), important discrepancies are revealed in mountainous regions, specifically the Alps, Pyrenees, west coast of the British Isles, Scandinavia, the Iberian and Italian peninsulas, and the Adriatic coastline. The results show that the strongest contributors to poor performance are pixels where IMERG-F has no gauges available for adjustment. If rain gauges are available, IMERG-F yields results similar to those of the surface observations, although the performance varies by region. However, even accounting for gauge adjustment, IMERG-F systematically underestimates precipitation in the Alps and Scandinavian mountains. Conversely, IMERG-F overestimates precipitation in the British Isles, Italian Peninsula, Adriatic coastline, and eastern European plains. Additionally, the research shows that gauge adjustment worsens the spatial gradient of precipitation because of the coarse resolution of Global Precipitation Climatology Centre data.
Collapse
|
43
|
Variations of Drought Tendency, Frequency, and Characteristics and Their Responses to Climate Change under CMIP5 RCP Scenarios in Huai River Basin, China. WATER 2019. [DOI: 10.3390/w11102174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Huai River Basin (HRB) is an important food and industrial production area and a frequently drought-affected basin in eastern China. It is necessary to consider the future drought development for reducing the impact of drought disasters. Three global circulation models (GCMs) from Coupled Model Intercomparison Project phase 5 (CMIP5), such as CNRM-CM5 (CNR), HadGEM2-ES (Had) and MIROC5 (MIR), were used to assessment the future drought conditions under two Representative Concentration Pathways (RCPs) scenarios, namely, RCP4.5 and RCP8.5. The standardized precipitation evapotranspiration index (SPEI), statistical method, Mann-Kendall test, and run theory were carried out to study the variations of drought tendency, frequency, and characteristics and their responses to climate change. The research showed that the three CMIP5 models differ in describing the future seasonal and annual variations of precipitation and temperature in the basin and thus lead to the differences in describing drought trends, frequency, and drought characteristics, such as drought severity, drought duration, and drought intensity. However, the drought trend, frequency, and characteristics in the future are more serious than the history. The drought frequency and characteristics tend to be strengthened under the scenario of high concentration of RCP8.5, and the drought trend is larger than that of low concentration of RCP4.5. The lower precipitation and the higher temperature are the main factors affecting the occurrence of drought. All three CMIP5 models show that precipitation would increase in the future, but it could not offset the evapotranspiration loss caused by significant temperature rise. The serious risk of drought in the future is still higher. Considering the uncertainty of climate models for simulation and prediction, attention should be paid to distinguish the effects of different models in the future drought assessment.
Collapse
|
44
|
Parente J, Amraoui M, Menezes I, Pereira MG. Drought in Portugal: Current regime, comparison of indices and impacts on extreme wildfires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:150-173. [PMID: 31174114 DOI: 10.1016/j.scitotenv.2019.05.298] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
In Portugal, drought characterizes the climatic variability, contributes to the increase of fire risk and its duration and intensity are expected to increase in future climate. Surprisingly, the quantitative and objective analysis to characterize the drought regime in current climate conditions as well as its influence on the occurrence of large wildfires (LW) has never been done for Portugal, which are the main objectives of this study. We assessed drought regime for recent past climate conditions (1981-2017), using four different drought indices, namely SPI, SPEI, RDI and VCI, and assessed the influence of drought in LW occurrence. Results include the characterization of drought number, duration, severity, intensity, extension, intra- and inter-annual variability for different classes of severity and the space-time distribution of LW in drought periods and affected area. Our main findings include 67% of the study period were drought months; regions with higher drought duration and severity assessed with SPI and SPEI for general drought conditions evolves from north to south with the increase of drought assessment period; drought characteristics present low intra - annual and inter - annual variability but are clearly associated to the temporal and spatial distribution of LW. In fact, all LW occurred during drought assessed with SPI or SPEI, almost all LW (97% to 95%) and corresponding burnt area (98% to 97%) occurred during drought assessed with SPI and SPEI. The relationship between drought and fire incidence is statistical significant for 3 - month SPI, 3 - and 6 - month SPEI, and is particularly strong for Moderate and Severe drought. 85% and 87% of LW occurred in area affected by drought assessed with SPI or SPEI, respectively. It is not clear which is the best index, but drought plays a fundamental role in the occurrence of large wildfires in Portugal.
Collapse
Affiliation(s)
- J Parente
- Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Portugal.
| | - M Amraoui
- Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Portugal.
| | - I Menezes
- ICAAM, Universidade de Évora, Évora, Portugal; DREAMS, Universidade Lusófona de Humanidades e Tecnologia, Lisboa, Portugal.
| | - M G Pereira
- Centre for Research and Technology of Agro-Environment and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Portugal; Instituto Dom Luiz, IDL, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
45
|
Bonomo S, Ferrante G, Palazzi E, Pelosi N, Lirer F, Viegi G, La Grutta S. Evidence for a link between the Atlantic Multidecadal Oscillation and annual asthma mortality rates in the US. Sci Rep 2019; 9:11683. [PMID: 31406172 PMCID: PMC6690970 DOI: 10.1038/s41598-019-48178-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
An association between climatic conditions and asthma mortality has been widely assumed. However, it is unclear whether climatic variations have a fingerprint on asthma dynamics over long time intervals. The aim of this study is to detect a possible correlation between climatic indices, namely the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation, and asthma mortality rates over the period from 1950 to 2015 in the contiguous US. To this aim, an analysis of non-stationary and non-linear signals was performed on time series of US annual asthma mortality rates, AMO and PDO indices to search for characteristic periodicities. Results revealed that asthma death rates evaluated for four different age groups (5-14 yr; 15-24 yr; 25-34 yr; 35-44 yr) share the same pattern of fluctuation throughout the 1950-2015 time interval, but different trends, i.e. a positive (negative) trend for the two youngest (oldest) categories. Annual asthma death rates turned out to be correlated with the dynamics of the AMO, and also modulated by the PDO, sharing the same averaged ∼44 year-periodicity. The results of the current study suggest that, since climate patterns have proved to influence asthma mortality rates, they could be advisable in future studies aimed at elucidating the complex relationships between climate and asthma mortality.
Collapse
Affiliation(s)
- Sergio Bonomo
- Istituto per la Ricerca e l'Innovazione Biomedica, National Research Council (CNR-IRIB), Via Ugo La Malfa 153, 90146, Palermo, Italy
- Institute for Marine Sciences, National Research Council (CNR-ISMAR), Calata Porta di Massa, 80133, Napoli, Italy
- National Institute of Geophysics and Volcanology (INGV), Via della Faggiola 32, 52126, Pisa, Italy
| | - Giuliana Ferrante
- Dipartimento di Scienze per la Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Elisa Palazzi
- Institute of Atmospheric Sciences and Climate, National Research Council (CNR-ISAC), Corso Fiume 4, I-10133, Torino, Italy
| | - Nicola Pelosi
- Institute for Marine Sciences, National Research Council (CNR-ISMAR), Calata Porta di Massa, 80133, Napoli, Italy
| | - Fabrizio Lirer
- Institute for Marine Sciences, National Research Council (CNR-ISMAR), Calata Porta di Massa, 80133, Napoli, Italy
| | - Giovanni Viegi
- Istituto per la Ricerca e l'Innovazione Biomedica, National Research Council (CNR-IRIB), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Stefania La Grutta
- Istituto per la Ricerca e l'Innovazione Biomedica, National Research Council (CNR-IRIB), Via Ugo La Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
46
|
Contrasting Response to Drought and Climate of Planted and Natural Pinus pinaster Aiton Forests in Southern Spain. FORESTS 2019. [DOI: 10.3390/f10070603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extreme drought events and increasing aridity are leading to forest decline and tree mortality, particularly in populations near the limits of the species distribution. Therefore, a better understanding of the growth response to drought and climate change could show the vulnerability of forests and enable predictions of future dieback. In this study, we used a dendrochronological approach to assess the response to drought in natural and planted forests of the maritime pine (Pinus pinaster Aiton) located in its southernmost distribution (south of Spain). In addition, we investigated how environmental variables (climatic and site conditions) and structural factors drive radial growth along the biogeographic and ecological gradients. Our results showed contrasting growth responses to drought of natural and planted stands, but these differences were not significant after repeated drought periods. Additionally, we found differences in the climate–growth relationships when comparing more inland sites (wet previous winter and late spring precipitation) and sites located closer to the coast (early spring precipitation). Response functions emphasized the negative effect of defoliation and drought, expressed as the June standard precipitation-evapotranspiration index calculated for the 12-month temporal scale and the mean temperature in the current February, on growth. The strong relationship between climatic variables and growth enabled acceptable results to be obtained in a modeling approach. The study and characterization of this tree species’ response to drought will help to improve the adaptive management of forests under climate change.
Collapse
|
47
|
Abstract
This paper presents the standardized precipitation evapotranspiration index (SPEI)-based approach to agricultural drought monitoring (ADM-SPEI approach) combining well-known methods, expert’ critical opinions, and local agro-climatic specificities. The proposed approach has been described in detail in three phases. This allows its application in any region and modification according to different agro-climatic conditions. The application of the ADM-SPEI approach has resulted in obtaining a modified SPEI for different crops (agricultural drought SPEI (AD-SPEIcrop)) in the Vojvodina region. In the first phase of the proposed approach, analytical hierarchy process (AHP) was used to obtain an experts’ group decision regarding the most suitable method for calculating evapotranspiration for a particular analyzed region. In the second phase, SPEI was modified and adjusted to the conditions in Vojvodina, where ET0 was replaced by ETc. In the validation phase, the results of the application of AD-SPEIcrop were compared to crop yields and well-known indices and evaluated by the experts’ feedback. The statistically significant correlations were achieved between AD-SPEIcrop and crop yields. The highest correlations were achieved in the months when the analyzed crops were in the developmental stages when they are most sensitive to drought. The AD-SPEIcrop better correlates to the crop yields compared to SPEI. The comparison of AD-SPEIcrop to the standardized precipitation index (SPI), SPEI, and self-calibrated Palmer drought severity index (SC-PDSI) shows that it can successfully detect dry and wet periods. The results have indicated that the proposed approach can be successfully applied, and AD-SPEIcrop has shown a good performance for agricultural drought monitoring.
Collapse
|
48
|
Qarri F, Lazo P, Allajbeu S, Bekteshi L, Kane S, Stafilov T. The Evaluation of Air Quality in Albania by Moss Biomonitoring and Metals Atmospheric Deposition. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:554-571. [PMID: 30805682 DOI: 10.1007/s00244-019-00608-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
The air quality of Albania is evaluated by trace metals atmospheric deposition using moss biomonitoring method. Bryophyte moss (Hypnum cupressiforme Hedw.) samples were collected during August and September 2015 from 55 sampling points distributed over the entire territory of Albania. The concentrations of Cr, Cu, Fe, Ni, Pb, V, and Zn in moss samples was determined by ICP-AES, ETAAS (As and Cd), and CVAAS (Hg) analysis. Spatial distribution and temporal trend of the moss elements is discussed in this study. Different variability was found in moss metal concentrations that may reflect their spatial distribution patterns and may identify the location of the areas with high contamination of each element. Compared with the measurements of moss collected in 2010, significant differences were found in the concentrations of As, Cr, Cu, Hg, Ni, Pb, and Zn. The differences between two moss surveys may reflect changes in the bioavailability of the elements resulting from wet and dry deposition respectively during 2015 and 2010 moss biomonitoring survey. The pollution loading index that was applied to judge the content of metal contamination indicated moderate pollution throughout Albania. Examination of the potential ecological risk found that As, Cd, Cr, Hg, Ni, and Pb pose the highest potential ecological risks particularly in the areas with high metal contents. Factor analysis applied to investigate the probable sources of metals in the environment suggested that Al and Fe likely originated from natural sources. As, Cd, Hg, Pb, Cu, Zn, Ni, and Cr likely originated from anthropogenic sources associated with long-range transport, transboundary pollution and local emission sources.
Collapse
Affiliation(s)
- Flora Qarri
- Department of Chemistry, University of Vlora, Vlora, Albania
| | - Pranvera Lazo
- Department of Chemistry, Faculty of Natural Sciences, Tirana, Albania.
| | - Shaniko Allajbeu
- Department of Chemistry, Faculty of Natural Sciences, Tirana, Albania
| | - Lirim Bekteshi
- Department of Chemistry, University of Elbasan, Elbasan, Albania
| | - Sonila Kane
- Department of Chemistry, University of Vlora, Vlora, Albania
| | - Trajce Stafilov
- Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, Skopje, Macedonia
| |
Collapse
|
49
|
Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts. SUSTAINABILITY 2019. [DOI: 10.3390/su11082450] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.
Collapse
|
50
|
Grillakis MG. Increase in severe and extreme soil moisture droughts for Europe under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1245-1255. [PMID: 30743919 DOI: 10.1016/j.scitotenv.2019.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Droughts are among the costliest natural disasters. They affect wide regions and large numbers of people worldwide by tampering with water availability and agricultural production. In this research, soil moisture drought trends are assessed for Europe using the Soil Moisture Index (SMI) estimated on Joint UK Land Environment Simulator simulations under two Representative Concentration Pathways, the RCP 2.6 and RCP 6.0 scenarios. Results show that SMI drought conditions are expected to exacerbate in Europe with substantial differences among regions. Eastern Europe and Mediterranean regions are found to be the most affected. Spatially and temporally contiguous regions that exhibit SMI of Severe and Extreme index categories are identified as distinct drought events and are assessed for their characteristics. It is shown that even under strong emissions mitigation, these events are expected to increase in occurrence (22% to 123%), while their characteristics will become more unfavorable. Results indicate increase in their spatial extend (between 23% and 46%) and their duration (between 16% and 48%) depending on the period and the scenario. Additional analysis was performed for the exceptionally wide-area (over 106 km2) severe and extreme soil moisture drought events that are expected to drastically increase comparing to the recent past. Projections show that those events are expected to happen between 11 and 28 times more frequently depending on the scenario and the period with a 59% to 246% larger duration. These findings indicate that even applying strong mitigation measures, agricultural drought risk in Europe is expected to become higher than our present experience.
Collapse
Affiliation(s)
- Manolis G Grillakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|