1
|
Sulthana SF, Iqbal UM, Suseela SB, Anbazhagan R, Chinthaginjala R, Chitathuru D, Ahmad I, Kim TH. Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review. ACS OMEGA 2024; 9:25493-25512. [PMID: 38911761 PMCID: PMC11190924 DOI: 10.1021/acsomega.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Heavy metal ions (HMIs) are very harmful to the ecosystem when they are present in excess of the recommended limits. They are carcinogenic in nature and can cause serious health issues. So, it is important to detect the metal ions quickly and accurately. The metal ions arsenic (As3+), cadmium (Cd2+), chromium (Cr3+), lead (Pb2+), and mercury (Hg2+) are considered to be very toxic among other metal ions. Standard analytical methods like atomic absorption spectroscopy, atomic fluorescence spectroscopy, and X-ray fluorescence spectroscopy are used to detect HMIs. But these methods necessitate highly technical equipment and lengthy procedures with skilled personnel. So, electrochemical sensing methods are considered to be more advantageous because of their quick analysis with precision and simplicity to operate. They can detect a wide range of heavy metals providing real-time monitoring and are cost-effective and enable multiparametric detection. Various sensing applications necessitate severe regulation regarding the modification of electrode surfaces. Numerous nanomaterials such as graphene, carbon nanotubes, and metal nanoparticles have been extensively explored as interface materials in electrode modifiers. These nanoparticles offer excellent electrical conductivity, distinctive catalytic properties, and high surface area resulting in enhanced electrochemical performance. This review examines different HMI detection methods in an aqueous medium by an electrochemical sensing approach and studies the recent developments in interface materials for altering the electrodes.
Collapse
Affiliation(s)
- S. Fouziya Sulthana
- Department
of Mechatronics Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - U. Mohammed Iqbal
- Department
of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sreeja Balakrishnapillai Suseela
- Department
of Electronics and Communication Engineering, Centre for Medical Electronics,
College of Engineering, Anna University, Chennai, Tamil Nadu 600025, India
| | - Rajesh Anbazhagan
- School
of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613401, India
| | - Ravikumar Chinthaginjala
- School
of Electronics Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Dhanamjayulu Chitathuru
- School of
Electrical Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Tai-hoon Kim
- School
of Electrical and Computer Engineering Yeosu Campus, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do 59626, Republic of Korea
| |
Collapse
|
2
|
Liu Q, Liu Y, Xing Z, Huang Y, Ling L, Mo X. A novel dual-function probe for fluorescent turn-on recognition and differentiation of Al 3+ and Ga 3+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122076. [PMID: 36368269 DOI: 10.1016/j.saa.2022.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel dual-function probe BMP based on benzothiazole was easily synthesized and characterized through common optical technique. In the system consisting of DMF/H2O (v/v, 2/3), probe BMP showed azure and blue-green to Al3+ and Ga3+, respectively. Besides, the binding ratios of BMP to Al3+ and Ga3+ were determined as 1:1, which confirmed by Job's plot. Furthermore, for Al3+ and Ga3+, the limit of detection (LOD) was determined to be 1.51 × 10-6 M and 4.28 × 10-6 M, respectively. Moreover, it was worth noting that BMP showed good performances in paper colorimetry, cell phone colorimetric identification and cell imaging.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yatong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China.
| | - Yuntong Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| | - Li Ling
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| | - Xinglin Mo
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, PR China
| |
Collapse
|
3
|
Silveri F, Della Pelle F, Scroccarello A, Mazzotta E, Di Giulio T, Malitesta C, Compagnone D. Carbon Black Functionalized with Naturally Occurring Compounds in Water Phase for Electrochemical Sensing of Antioxidant Compounds. Antioxidants (Basel) 2022; 11:antiox11102008. [PMID: 36290731 PMCID: PMC9598705 DOI: 10.3390/antiox11102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
A new sustainable route to nanodispersed and functionalized carbon black in water phase (W-CB) is proposed. The sonochemical strategy exploits ultrasounds to disaggregate the CB, while two selected functional naturally derived compounds, sodium cholate (SC) and rosmarinic acid (RA), act as stabilizing agents ensuring dispersibility in water adhering onto the CB nanoparticles’ surface. Strategically, the CB-RA compound is used to drive the AuNPs self-assembling at room temperature, resulting in a CB surface that is nanodecorated; further, this is achieved without the need for additional reagents. Electrochemical sensors based on the proposed nanomaterials are realized and characterized both morphologically and electrochemically. The W-CBs’ electroanalytical potential is proved in the anodic and cathodic window using caffeic acid (CF) and hydroquinone (HQ), two antioxidant compounds that are significant for food and the environment. For both antioxidants, repeatable (RSD ≤ 3.3%; n = 10) and reproducible (RSD ≤ 3.8%; n = 3) electroanalysis results were obtained, achieving nanomolar detection limits (CF: 29 nM; HQ: 44 nM). CF and HQ are successfully determined in food and environmental samples (recoveries 97–113%), and also in the presence of other phenolic classes and HQ structural isomers. The water dispersibility of the proposed materials can be an opportunity for (bio) sensor fabrication and sustainable device realization.
Collapse
Affiliation(s)
- Filippo Silveri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Correspondence: (F.D.P.); (D.C.); Tel.: +39-0861-266948 (F.D.P.); +39-0861-266942 (D.C.)
| | - Annalisa Scroccarello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universitaà del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Tiziano Di Giulio
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universitaà del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Cosimino Malitesta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universitaà del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Correspondence: (F.D.P.); (D.C.); Tel.: +39-0861-266948 (F.D.P.); +39-0861-266942 (D.C.)
| |
Collapse
|
4
|
Ivoilova A, Malakhova N, Mozharovskaia P, Nikiforova A, Tumashov A, Kozitsina A, Ivanova A, Rusinov V. Study of Different Carbonaceous Materials as Modifiers of Screen‐Printed Carbon Electrodes for Detection of the Triazid as Potential Antiviral Drug. ELECTROANAL 2022. [DOI: 10.1002/elan.202100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Nataliya Malakhova
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Polina Mozharovskaia
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Aleksandra Nikiforova
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Andrey Tumashov
- FSBSI I Ya Postovsky Institute of Organic Synthesis of Ural Branch of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | | | | |
Collapse
|
5
|
Hussain A, Rafeeq H, Qasim M, Jabeen Z, Bilal M, Franco M, Iqbal HMN. Engineered tyrosinases with broadened bio-catalysis scope: immobilization using nanocarriers and applications. 3 Biotech 2021; 11:365. [PMID: 34290948 PMCID: PMC8257883 DOI: 10.1007/s13205-021-02913-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Enzyme immobilization is a widely used technology for creating more stable, active, and reusable biocatalysts. The immobilization process also improves the enzyme's operating efficiency in industrial applications. Various support matrices have been designed and developed to enhance the biocatalytic efficiency of immobilized enzymes. Given their unique physicochemical attributes, including substantial surface area, rigidity, semi-conductivity, high enzyme loading, hyper catalytic activity, and size-assisted optical properties, nanomaterials have emerged as fascinating matrices for enzyme immobilization. Tyrosinase is a copper-containing monooxygenase that catalyzes the o-hydroxylation of monophenols to catechols and o-quinones. This enzyme possesses a wide range of uses in the medical, biotechnological, and food sectors. This article summarizes an array of nanostructured materials as carrier matrices for tyrosinase immobilization. Following a detailed background overview, various nanomaterials, as immobilization support matrices, including carbon nanotubes (CNTs), carbon dots (CDs), carbon black (CB), nanofibers, Graphene nanocomposite, platinum nanoparticles, nano-sized magnetic particles, lignin nanoparticles, layered double hydroxide (LDH) nanomaterials, gold nanoparticles (AuNPs), and zinc oxide nanoparticles have been discussed. Next, applied perspectives have been spotlights with particular reference to environmental pollutant sensing, phenolic compounds detection, pharmaceutical, and food industry (e.g., cereal processing, dairy processing, and meat processing), along with other miscellaneous applications.
Collapse
Affiliation(s)
- Asim Hussain
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Hamza Rafeeq
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Qasim
- grid.411727.60000 0001 2201 6036International Islamic University Islamabad, Islamabad, Pakistan
| | - Zara Jabeen
- grid.414839.30000 0001 1703 6673Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- grid.417678.b0000 0004 1800 1941School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Marcelo Franco
- grid.412324.20000 0001 2205 1915Departament of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | - Hafiz M. N. Iqbal
- grid.419886.a0000 0001 2203 4701Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|
6
|
Antonacci A, Attaallah R, Arduini F, Amine A, Giardi MT, Scognamiglio V. A dual electro-optical biosensor based on Chlamydomonas reinhardtii immobilised on paper-based nanomodified screen-printed electrodes for herbicide monitoring. J Nanobiotechnology 2021; 19:145. [PMID: 34001124 PMCID: PMC8130446 DOI: 10.1186/s12951-021-00887-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
The indiscriminate use of herbicides in agriculture contributes to soil and water pollution, with important endangering consequences on the ecosystems. Among the available analytical systems, algal biosensors have demonstrated to be valid tools thanks to their high sensitivity, cost-effectiveness, and eco-design. Herein, we report the development of a dual electro-optical biosensor for herbicide monitoring, based on Chlamydomonas reinhardtii whole cells immobilised on paper-based screen-printed electrodes modified with carbon black nanomaterials. To this aim, a systematic study was performed for the selection and characterisation of a collection among 28 different genetic variants of the alga with difference response behaviour towards diverse herbicide classes. Thus, CC125 strain was exploited as case study for the study of the analytical parameters. The biosensor was tested in standard solutions and real samples, providing high sensitivity (detection limit in the pico/nanomolar), high repeatability (RSD of 5% with n = 100), long lasting working (10 h) and storage stability (3 weeks), any interference in the presence of heavy metals and insecticides, and low matrix effect in drinking water and moderate effect in surface one.
![]()
Collapse
Affiliation(s)
- Amina Antonacci
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Via Salaria km 29.300, Monterotondo, 00015, Rome, Italy
| | - Raouia Attaallah
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy.,SENSE4MED, Via Renato Rascel 30, 00128, Rome, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | - Maria Teresa Giardi
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Via Salaria km 29.300, Monterotondo, 00015, Rome, Italy.,Biosensor Srl, Via degli Olmetti 44, Formello, 00060, Rome, Italy
| | - Viviana Scognamiglio
- Department of Chemical Sciences and Materials Technologies, Institute of Crystallography, National Research Council, Via Salaria km 29.300, Monterotondo, 00015, Rome, Italy.
| |
Collapse
|
7
|
Tajik S, Dourandish Z, Jahani PM, Sheikhshoaie I, Beitollahi H, Shahedi Asl M, Jang HW, Shokouhimehr M. Recent developments in voltammetric and amperometric sensors for cysteine detection. RSC Adv 2021; 11:5411-5425. [PMID: 35423079 PMCID: PMC8694840 DOI: 10.1039/d0ra07614g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
This review article aims to provide an overview of the recent advances in the voltammetric and amperometric sensing of cysteine (Cys). The introduction summarizes the important role of Cys as an essential amino acid, techniques for its sensing, and the utilization of electrochemical methods and chemically modified electrodes for its determination. The main section covers voltammetric and amperometric sensing of Cys based on glassy carbon electrodes, screen printed electrodes, and carbon paste electrodes, modified with various electrocatalytic materials. The conclusion section discusses the current challenges of Cys determination and the future perspectives.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Mehdi Shahedi Asl
- Marine Additive Manufacturing Centre of Excellence (MAMCE), University of New Brunswick Fredericton NB E3B 5A1 Canada
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
8
|
Fabiani L, Saroglia M, Galatà G, De Santis R, Fillo S, Luca V, Faggioni G, D'Amore N, Regalbuto E, Salvatori P, Terova G, Moscone D, Lista F, Arduini F. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens Bioelectron 2021; 171:112686. [PMID: 33086175 PMCID: PMC7833515 DOI: 10.1016/j.bios.2020.112686] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
The diffusion of novel SARS-CoV-2 coronavirus over the world generated COVID-19 pandemic event as reported by World Health Organization on March 2020. The huge issue is the high infectivity and the absence of vaccine and customised drugs allowing for hard management of this outbreak, thus a rapid and on site analysis is a need to contain the spread of COVID-19. Herein, we developed an electrochemical immunoassay for rapid and smart detection of SARS-CoV-2 coronavirus in saliva. The electrochemical assay was conceived for Spike (S) protein or Nucleocapsid (N) protein detection using magnetic beads as support of immunological chain and secondary antibody with alkaline phosphatase as immunological label. The enzymatic by-product 1-naphtol was detected using screen-printed electrodes modified with carbon black nanomaterial. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S and N protein in buffer solution and untreated saliva with a detection limit equal to 19 ng/mL and 8 ng/mL in untreated saliva, respectively for S and N protein. Its effectiveness was assessed using cultured virus in biosafety level 3 and in saliva clinical samples comparing the data using the nasopharyngeal swab specimens tested with Real-Time PCR. The agreement of the data, the low detection limit achieved, the rapid analysis (30 min), the miniaturization, and portability of the instrument combined with the easiness to use and no-invasive sampling, confer to this analytical tool high potentiality for market entry as the first highly sensitive electrochemical immunoassay for SARS-CoV-2 detection in untreated saliva.
Collapse
Affiliation(s)
- Laura Fabiani
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Marco Saroglia
- University of Insubria, Department of Biotechnologies and Life Sciences, Varese, Italy
| | - Giuseppe Galatà
- GTS Consulting S.r.l., Via Consolare Pompea 1, 98168, Messina, Italy
| | | | - Silvia Fillo
- Scientific Department, Army Medical Center, Rome, Italy
| | - Vincenzo Luca
- Scientific Department, Army Medical Center, Rome, Italy
| | | | - Nino D'Amore
- Scientific Department, Army Medical Center, Rome, Italy
| | | | | | - Genciana Terova
- University of Insubria, Department of Biotechnologies and Life Sciences, Varese, Italy
| | - Danila Moscone
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | | | - Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, Via Renato Rascel 30, 00128, Rome, Italy.
| |
Collapse
|
9
|
Bounegru AV, Apetrei C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. Int J Mol Sci 2020; 21:E9275. [PMID: 33291758 PMCID: PMC7730703 DOI: 10.3390/ijms21239275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid is one of the most important hydroxycinnamic acids found in various foods and plant products. It has multiple beneficial effects in the human body such as antioxidant, antibacterial, anti-inflammatory, and antineoplastic. Since overdoses of caffeic acid may have negative effects, the quality and quantity of this acid in foods, pharmaceuticals, food supplements, etc., needs to be accurately determined. The present paper analyzes the most representative scientific papers published mostly in the last 10 years which describe the development and characterization of voltamperometric sensors or biosensors based on carbon nanomaterials and/or enzyme commonly used for detecting caffeic acid and a series of methods which may improve the performance characteristics of such sensors.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
10
|
Sapari S, Razak NHA, Hasbullah SA, Heng LY, Chong KF, Tan LL. A regenerable screen-printed voltammetric Hg(II) ion sensor based on tris-thiourea organic chelating ligand grafted graphene nanomaterial. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
|
12
|
Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 2020; 156:112033. [PMID: 32174547 DOI: 10.1016/j.bios.2020.112033] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Advances in cutting-edge technologies including nanotechnology, microfluidics, electronic engineering, and material science have boosted a new era in the design of robust and sensitive biosensors. In recent years, carbon black has been re-discovered in the design of electrochemical (bio)sensors thanks to its interesting electroanalytical properties, absence of treatment requirement, cost-effectiveness (c.a. 1 €/Kg), and easiness in the preparation of stable dispersions. Herein, we present an overview of the literature on carbon black-based electrochemical (bio)sensors, highlighting current trends and possible challenges to this rapidly developing area, with a special focus on the fabrication of carbon black-based electrodes in the realisation of sensors and biosensors (e.g. enzymatic, immunosensors, and DNA-based).
Collapse
Affiliation(s)
- Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED via Renato Rascel 30, 00128, Rome, Italy.
| | - Stefano Cinti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Vincenzo Mazzaracchio
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Morocco
| | - Danila Moscone
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
13
|
Tomei MR, Marcoccio E, Neagu D, Moscone D, Arduini F. A Miniaturized Carbon Black‐based Electrochemical Sensor for Chlorine Dioxide Detection in Swimming Pool Water. ELECTROANAL 2020. [DOI: 10.1002/elan.201900667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Eleonora Marcoccio
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Daniela Neagu
- TecnoSens srl Via Francesco Antolisei 25 00173 Rome Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
- SENSE4MED srl Via Renato Rascel 30 00128 Rome Italy
| |
Collapse
|
14
|
Wong A, Santos AM, Cincotto FH, Moraes FC, Fatibello-Filho O, Sotomayor MD. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 2020; 206:120252. [DOI: 10.1016/j.talanta.2019.120252] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
|
15
|
Improved sensitivity and reproducibility in electrochemical detection of trace mercury (II) by bromide ion & electrochemical oxidation. Talanta 2019; 203:186-193. [DOI: 10.1016/j.talanta.2019.05.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
|
16
|
Yang Y, Zou T, Wang Z, Xing X, Peng S, Zhao R, Zhang X, Wang Y. The Fluorescent Quenching Mechanism of N and S Co-Doped Graphene Quantum Dots with Fe 3+ and Hg 2+ Ions and Their Application as a Novel Fluorescent Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E738. [PMID: 31086109 PMCID: PMC6566331 DOI: 10.3390/nano9050738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/29/2023]
Abstract
The fluorescence intensity of N, S co-doped graphene quantum dots (N, S-GQDs) can be quenched by Fe3+ and Hg2+. Density functional theory (DFT) simulation and experimental studies indicate that the fluorescence quenching mechanisms for Fe3+ and Hg2+ detection are mainly attributed to the inner filter effect (IFE) and dynamic quenching process, respectively. The electronegativity difference between C and doped atoms (N, S) in favor to introduce negative charge sites on the surface of N, S-GQDs leads to charge redistribution. Those negative charge sites facilitate the adsorption of cations on the N, S-GQDs' surface. Atomic population analysis results show that some charge transfer from Fe3+ and Hg2+ to N, S-GQDs, which relate to the fluorescent quenching of N, S-GQDs. In addition, negative adsorption energy indicates the adsorption of Hg2+ and Fe2+ is energetically favorable, which also contributes to the adsorption of quencher ions. Blue fluorescent N, S-GQDs were synthesized by a facile one-pot hydrothermal treatment. Fluorescent lifetime and UV-vis measurements further validate the fluorescent quenching mechanism is related to the electron transfer dynamic quenching and IFE quenching. The as-synthesized N, S-GQDs were applied as a fluorescent probe for Fe3+ and Hg2+ detection. Results indicate that N, S-GQDs have good sensitivity and selectivity on Fe3+ and Hg2+ with a detection limit as low as 2.88 and 0.27 nM, respectively.
Collapse
Affiliation(s)
- Yue Yang
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Tong Zou
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Zhezhe Wang
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Xinxin Xing
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Sijia Peng
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Rongjun Zhao
- Department of Physics, Yunnan University, Kunming 650091, China.
| | - Xu Zhang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
| | - Yude Wang
- School of Materials Science and Engineering, Yunnan University, Kunming 650091, China.
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.
| |
Collapse
|
17
|
dos Santos Pereira T, Mauruto de Oliveira GC, Santos FA, Raymundo-Pereira PA, Oliveira ON, Janegitz BC. Use of zein microspheres to anchor carbon black and hemoglobin in electrochemical biosensors to detect hydrogen peroxide in cosmetic products, food and biological fluids. Talanta 2019; 194:737-744. [DOI: 10.1016/j.talanta.2018.10.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
|
18
|
Hwa KY, Sharma TSK, Karuppaiah P. Development of an electrochemical sensor based on a functionalized carbon black/tungsten carbide hybrid composite for the detection of furazolidone. NEW J CHEM 2019. [DOI: 10.1039/c9nj02531f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, the simple sonochemical synthesis of functionalized carbon black (f-CB) anchored with tungsten carbide (WC) is used to prepare a novel electrocatalyst for the electrochemical detection of furazolidone (FU) by modifying screen-printed carbon electrodes (SPCE).
Collapse
Affiliation(s)
- Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Palpandi Karuppaiah
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| |
Collapse
|
19
|
Carbon black-based disposable sensor for an on-site detection of free chlorine in swimming pool water. Talanta 2018; 189:262-267. [DOI: 10.1016/j.talanta.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023]
|
20
|
Celebanska A, Jedraszko J, Lesniewski A, Jubete E, Opallo M. Stripe-shaped Electrochemical Biosensor for Organophosphate Pesticide. ELECTROANAL 2018. [DOI: 10.1002/elan.201800406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Celebanska
- Institute of Physical Chemistry; Polish Academy of Sciences; 44/52 Kasprzaka 01-224 Warsaw Poland
| | - Justyna Jedraszko
- Institute of Physical Chemistry; Polish Academy of Sciences; 44/52 Kasprzaka 01-224 Warsaw Poland
- Nencki Institute of Experimental Biology Polish Academy of Sciences; 3 Pasteur 02-093 Warsaw Poland
| | - Adam Lesniewski
- Institute of Physical Chemistry; Polish Academy of Sciences; 44/52 Kasprzaka 01-224 Warsaw Poland
| | - Elena Jubete
- CIDETEC, Sensors Unit, Nanomedicine Institute; Parque Tecnológico de Gipuzkoa; Paseo Miramón 196 2014 Donostia-San Sebastián Spain
| | - Marcin Opallo
- Institute of Physical Chemistry; Polish Academy of Sciences; 44/52 Kasprzaka 01-224 Warsaw Poland
| |
Collapse
|
21
|
Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples. Talanta 2018; 186:389-396. [PMID: 29784378 DOI: 10.1016/j.talanta.2018.04.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
Abstract
An electrochemical screening assay for the detection of phenyl carbamates (i.e. carbaryl, carbofuran, isoprocarb and fenobucarb) was developed and applied to grains samples (i.e. durum wheat, soft wheat and maize). Nano carbon black (CB) was strategically employed to realize an effective, reproducible, fouling resistant, low cost, delocalisable screen printed sensor (CB-SPE). CB-SPEs morphology (SEM and FEM) and electrochemical property (CV and EIS) were studied. The final pesticides analysis protocol consist of: (i) extraction of the analyte (just by mixing), (ii) alkaline hydrolysis (10 min R.T.), (iii) DPV detection directly of 100 µL of extract on the CB-SPE surface. Linear range between 1.0 × 10-7 and 1.0 × 10-4 mol L-1, good determination coefficients (R2 ≥ 0.9971) and satisfactory sensitivity (≥ 3.90 × 10-1 A M-1 cm-2) and LODs (≤ 8.0 × 10-8 mol L-1) were obtained for all the analytes. Excellent recoveries (78-102%) and accuracy (relative error vs. HPLC-MS/MS between 9.0% and -7.8%) resulted from the analysis of grains samples. The proposed CB-SPE based approach has demonstrated to be able to detect carbaryl at Maximum residue limits levels (MRLs), allowing class selective detection of commonly employed phenyl carbamates in food samples.
Collapse
|
22
|
Electroanalytical determination of eugenol in clove oil by voltammetry of immobilized microdroplets. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3933-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J Colloid Interface Sci 2017; 515:101-108. [PMID: 29331776 DOI: 10.1016/j.jcis.2017.12.085] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 01/24/2023]
Abstract
A green approach for the preparation of carbon black (CB) and electrochemically reduced graphene oxide composite (ERGO) is described based on screen printed carbon electrodes (SPCEs) fabricated on poly(ethylene terephthalate) (PET) as electrochemical sensors. This approach leads to a heterogeneous hydrophilic surface with high concentration of defect sites according to scanning electron microscopy, contact angle and Raman spectroscopy measurements. The SPCE/CB-ERGO sensor was tested with dopamine (DA), epinephrine (EP) and paracetamol (PCM), exhibiting an enhanced electrocatalytic performance compared to the bare SPCE. It displayed a wider linear range, lower limit of detection and a remarkably higher analytical sensitivity, viz. 1.5, 0.13 and 0.028 A L mol-1 for DA, EP and PCM, respectively, being also capable of simultaneous determination of the three analytes. Such high performance is demonstration that SPCE/CB-ERGO may serve as generic platform for cost-effective flexible electrochemical sensors.
Collapse
|
24
|
A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 2017; 94:443-455. [DOI: 10.1016/j.bios.2017.03.031] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 11/16/2022]
|
25
|
Baccarin M, Santos FA, Vicentini FC, Zucolotto V, Janegitz BC, Fatibello-Filho O. Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.052] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Dinesh B, Saraswathi R, Senthil Kumar A. Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.139] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Arduini F, Cinti S, Scognamiglio V, Moscone D, Palleschi G. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Anal Chim Acta 2017; 959:15-42. [PMID: 28159104 DOI: 10.1016/j.aca.2016.12.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Through the years, scientists have developed cutting-edge technologies to make (bio)sensors more convenient for environmental analytical purposes. Technological advancements in the fields of material science, rational design, microfluidics, and sensor printing, have radically shaped biosensor technology, which is even more evident in the continuous development of sensing systems for the monitoring of hazardous chemicals. These efforts will be crucial in solving some of the problems constraining biosensors to reach real environmental applications, such as continuous analyses in field by means of multi-analyte portable devices. This review (with 203 refs.) covers the progress between 2010 and 2015 in the field of technologies enabling biosensor applications in environmental analysis, including i) printing technology, ii) nanomaterial technology, iii) nanomotors, iv) biomimetic design, and (v) microfluidics. Next section describes futuristic cutting-edge technologies that are gaining momentum in recent years, which furnish highly innovative aspects to biosensing devices.
Collapse
Affiliation(s)
- Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems "INBB", Viale Medaglie d'Oro, 305, Rome, Italy.
| | - Stefano Cinti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Via Salaria Km 29.300, 00015, Monterotondo, Rome, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems "INBB", Viale Medaglie d'Oro, 305, Rome, Italy
| | - Giuseppe Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems "INBB", Viale Medaglie d'Oro, 305, Rome, Italy
| |
Collapse
|
28
|
Trojanowicz M. Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP. Recent Advances in the Fabrication and Application of Screen-Printed Electrochemical (Bio)Sensors Based on Carbon Materials for Biomedical, Agri-Food and Environmental Analyses. BIOSENSORS 2016; 6:E50. [PMID: 27690118 PMCID: PMC5192370 DOI: 10.3390/bios6040050] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023]
Abstract
This review describes recent advances in the fabrication of electrochemical (bio)sensors based on screen-printing technology involving carbon materials and their application in biomedical, agri-food and environmental analyses. It will focus on the various strategies employed in the fabrication of screen-printed (bio)sensors, together with their performance characteristics; the application of these devices for the measurement of selected naturally occurring biomolecules, environmental pollutants and toxins will be discussed.
Collapse
Affiliation(s)
- Gareth Hughes
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kelly Westmacott
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kevin C Honeychurch
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Adrian Crew
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Roy M Pemberton
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
30
|
Talarico D, Arduini F, Amine A, Cacciotti I, Moscone D, Palleschi G. Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Anal Bioanal Chem 2016; 408:7299-309. [DOI: 10.1007/s00216-016-9604-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/20/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
31
|
Arduini F, Cinti S, Scognamiglio V, Moscone D. Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1858-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Talarico D, Arduini F, Constantino A, Del Carlo M, Compagnone D, Moscone D, Palleschi G. Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
33
|
Barton J, García MBG, Santos DH, Fanjul-Bolado P, Ribotti A, McCaul M, Diamond D, Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1651-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Celebanska A, Filipiak MS, Lesniewski A, Jubete E, Opallo M. Nanocarbon electrode prepared from oppositely charged nanoparticles and nanotubes for low-potential thiocholine oxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Talarico D, Arduini F, Amine A, Moscone D, Palleschi G. Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex. Talanta 2015; 141:267-72. [DOI: 10.1016/j.talanta.2015.04.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 11/25/2022]
|
36
|
Cinti S, Arduini F, Carbone M, Sansone L, Cacciotti I, Moscone D, Palleschi G. Screen-Printed Electrodes Modified with Carbon Nanomaterials: A Comparison among Carbon Black, Carbon Nanotubes and Graphene. ELECTROANAL 2015. [DOI: 10.1002/elan.201500168] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Talarico D, Cinti S, Arduini F, Amine A, Moscone D, Palleschi G. Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7934-7939. [PMID: 26066782 DOI: 10.1021/acs.est.5b00218] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.
Collapse
Affiliation(s)
- Daria Talarico
- †Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefano Cinti
- †Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabiana Arduini
- †Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Aziz Amine
- §Faculté de Sciences et Techniques Laboratoire Génie des Procédés et Environnement, Université Hassan II-Mohammedia, B.P. 146, Mohammadia, Morocco
| | - Danila Moscone
- †Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Giuseppe Palleschi
- †Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
38
|
Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction for determination of mercury in water samples. Talanta 2015; 135:34-40. [DOI: 10.1016/j.talanta.2014.11.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022]
|
39
|
Vicentini FC, Ravanini AE, Figueiredo-Filho LC, Iniesta J, Banks CE, Fatibello-Filho O. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.204] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Pikna L, Heželová M, Kováčová Z. Optimization of simultaneous electrochemical determination of Cd(II), Pb(II), Cu(II) and Hg(II) at carbon nanotube-modified graphite electrodes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:874-881. [PMID: 26030694 DOI: 10.1080/10934529.2015.1019810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The health of the environment is worsening every day. Monitoring of potentially toxic elements and remediation of environmental pollution are necessary. Therefore, the research and development of simple, inexpensive, portable and effective sensors is important. Electrochemistry is a useful component of the field of environment monitoring. The present study focuses on evaluating and comparing three types of electrodes (PIGE, PIGE/MWCNT/HNO3 and PIGE/MWCNT/EDTA/HNO3) employed for the simultaneous electrochemical determination of four potentially toxic elements: Cd(II), Pb(II), Cu(II) and Hg(II). Cyclic voltammograms were measured in an acetate buffer. The LOD, LOQ, the standard and relative precisions of the method and a prediction intervals were calculated (according to the technical procedure DIN 32 645) for the three electrodes and for each measured element. The LOD for PIGE/CNT/HNO3 (the electrode with narrowest calculated prediction intervals) was 2.98 × 10(-7) mol L(-1) for Cd(II), 4.83 × 10(-7) mol L(-1) for Pb(II), 3.81 × 10(-7) mol L(-1) for Cu(II), 6.79 × 10(-7) mol L(-1) for Hg(II). One of the benefits of this study was the determination of the amount of Hg(II) in the mixture of other elements.
Collapse
Affiliation(s)
- L'ubomír Pikna
- a Department of Chemistry, Faculty of Metallurgy , Technical University in Košice , Košice , Slovak Republic
| | | | | |
Collapse
|
41
|
Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G. Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1370-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Cinti S, Arduini F, Vellucci G, Cacciotti I, Nanni F, Moscone D. Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H 2 O 2 by using screen-printed electrode. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
The use of screen-printed electrodes in a proof of concept electrochemical estimation of homocysteine and glutathione in the presence of cysteine using catechol. SENSORS 2014; 14:10395-411. [PMID: 24926695 PMCID: PMC4118355 DOI: 10.3390/s140610395] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022]
Abstract
Screen printed electrodes were employed in a proof of concept determination of homocysteine and glutathione using electrochemically oxidized catechol via a 1,4-Michael addition reaction in the absence and presence of cysteine, and each other. Using cyclic voltammetry, the Michael reaction introduces a new adduct peak which is analytically useful in detecting thiols. The proposed procedure relies on the different rates of reaction of glutathione and homocysteine with oxidized catechol so that at fast voltage scan rates only homocysteine is detected in cyclic voltammetry. At slower scan rates, both glutathione and homocysteine are detected. The combination of the two sets of data provides quantification for homocysteine and glutathione. The presence of cysteine is shown not to interfere provided sufficient high concentrations of catechol are used. Calibration curves were determined for each homocysteine and glutathione detection; where the sensitivities are 0.019 μA·μM−1 and 0.0019 μA·μM−1 and limit of detections are ca. 1.2 μM and 0.11 μM for homocysteine and glutathione, respectively, within the linear range. This work presents results with potential and beneficial use in re-useable and/or disposable point-of-use sensors for biological and medical applications.
Collapse
|
44
|
Cinti S, Politi S, Moscone D, Palleschi G, Arduini F. Stripping Analysis of As(III) by Means of Screen-Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite. ELECTROANAL 2014. [DOI: 10.1002/elan.201400041] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Fang S, Dong X, Zhang Y, Kang M, Liu S, Yan F, He L, Feng X, Wang P, Zhang Z. One-step synthesis of porous cuprous oxide microspheres on reduced graphene oxide for selective detection of mercury ions. NEW J CHEM 2014. [DOI: 10.1039/c4nj01347f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile one-step synthesis of Cu2OMS–rGO nanocomposites used as a sensitive layer for selective detection of mercury ions was reported.
Collapse
Affiliation(s)
- Shaoming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Xiaodong Dong
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Yuanchang Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Mengmeng Kang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Shunli Liu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Fufeng Yan
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Xiaozhong Feng
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Peiyuan Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration, Zhengzhou University of Light Industry
- Zhengzhou 450001, P. R. China
| |
Collapse
|
46
|
Nadifiyine S, Haddam M, Mandli J, Chadel S, Blanchard CC, Marty JL, Amine A. Amperometric Biosensor Based on Tyrosinase Immobilized on to a Carbon Black Paste Electrode for Phenol Determination in Olive Oil. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.811679] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Electrochemical determination of mercury: A review. Talanta 2013; 116:1091-104. [DOI: 10.1016/j.talanta.2013.07.056] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 11/20/2022]
|
48
|
Portaccio M, Di Tuoro D, Arduini F, Moscone D, Cammarota M, Mita D, Lepore M. Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.129] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Malha SIR, Mandli J, Ourari A, Amine A. Carbon Black-Modified Electrodes as Sensitive Tools for the Electrochemical Detection of Nitrite and Nitrate. ELECTROANAL 2013. [DOI: 10.1002/elan.201300257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Fu L, Li X, Yu J, Ye J. Facile and Simultaneous Stripping Determination of Zinc, Cadmium and Lead on Disposable Multiwalled Carbon Nanotubes Modified Screen-Printed Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201200248] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|