1
|
Sudlovenick E, Jenkins E, Loseto L. Comparative review of One Health and Indigenous approaches to wildlife research in Inuit Nunangat. One Health 2024; 19:100846. [PMID: 39091975 PMCID: PMC11292360 DOI: 10.1016/j.onehlt.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
There is increasing interest in One Health and Indigenous methodologies and approaches in wildlife research, but they are not widely used research applications in the Arctic. Both approaches are wide in scope and originate from different knowledge systems but are often compared synonymously. We review the literature of overlap between the term One Health and Inuit Qaujimajatuqangit (Inuit Indigenous Knowledge) throughout Inuit Nunaat on wildlife research. Three databases (SCOPUS, Web of Science, and BIOSIS) were used to find English language articles and books within the bounds of Inuit Nunaat. While One Health and Inuit Qaujimajatuqangit research approaches share synergies, they are fundamentally disparate owing to their differences in epistemology, including views on the natural environment and wildlife management. We describe current examples of One Health being operationalized in Inuit Nunaat and identify potential to address larger and more complex questions about wildlife health, with examples from terrestrial and marine Arctic wildlife. Both Indigenous methodologies and One Health naturally have a human component at their core, which seamlessly lends itself to discussions on wildlife management, as human actions and regulations directly impact environment and wildlife health.
Collapse
Affiliation(s)
- E. Sudlovenick
- Centre for Earth Observation Science (CEOS), Department of Environment and Geography, University of Manitoba, 500 University Crescent, Winnipeg, MB R3T 2N2, Canada
| | - E. Jenkins
- Centre for Earth Observation Science (CEOS), Department of Environment and Geography, University of Manitoba, 500 University Crescent, Winnipeg, MB R3T 2N2, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7H 5B4, Canada
| | - L. Loseto
- Centre for Earth Observation Science (CEOS), Department of Environment and Geography, University of Manitoba, 500 University Crescent, Winnipeg, MB R3T 2N2, Canada
- Freshwater Institute, Department of Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
2
|
Tan X, Shi Y, Ma CF, Chi Q, Yang YH, Zhang WX, Xiao HM, Wang X. Fluoro-functionalized plant biomass adsorbent: Preparation and application in extraction of trace perfluorinated compounds from environmental water samples. J Environ Sci (China) 2024; 137:703-715. [PMID: 37980053 DOI: 10.1016/j.jes.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 11/20/2023]
Abstract
Perfluorinated compounds (PFCs) are toxic and widely present in the environment, and therefore effective adsorbents are required to remove PFCs from environmental water. In the present study, a new type of fluorinated biomass materials was synthesized via an ingenious fluorosilanization reaction. These adsorbents were applied for the adsorption of 13 typical PFCs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). By comparing their adsorption performance, Fluorinated cedar slag (FCS) was discovered to have the best absorption efficiency and enabled highly efficient enrichment of PFCs. The adsorption recovery of FCS with the investigated PFCs is greater than 90% under the optimal adsorption condition. Ascribed to the high affinity of F-F sorbent-sorbate interaction, FCS had good adsorption capacities of PFCs from aqueous solution, with the maximum adsorption capacity of 15.80 mg/g for PFOS and 10.71 mg/g for PFOA, respectively. Moreover, the adsorption time could be achieved in a short time (8 min). Using the FCS absorbent, an innovative FCS-solid phase extraction assisted with high performance liquid chromatography-electrospray-tandem mass spectrometry (FCS-SPE-HPLC-ESI-MS/MS) method was first developed to sensitively detect PFCs in the environmental water samples. The intra-day and inter-day recovery rates of the 13 compounds ranged from 90.7%-104.3%, with the RSD of 2.1%-4.7% (intra-day) and 2.5%-8.5% (inter-day), respectively. This research demonstrates the potential of the newly fluoro-functionalized plant biomass to adsorb PFCs from environmental water, with the advantages of high adsorption efficiencies, high anti-interference, easy operation and low economic cost.
Collapse
Affiliation(s)
- Xi Tan
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yan Shi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chun-Feng Ma
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Hang Yang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Xiang Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
3
|
Feng QJ, Luo XJ, Ye MX, Hu KQ, Zeng YH, Mai BX. Bioaccumulation, tissue distributions, and maternal transfer of perfluoroalkyl carboxylates (PFCAs) in laying hens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167008. [PMID: 37704139 DOI: 10.1016/j.scitotenv.2023.167008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Laying hens were exposed to feeds spiked with a series of perfluoroalkyl carboxylates (PFCAs) ranging from perfluorobutanoic acid (C4) to perfluorooctadecanoic acid (C18) to investigate their bioaccumulation, tissue distribution, and maternal transfer. We found that PFCAs with longer carbon chains (>8) were more efficiently absorbed in the gastrointestinal tract than those with shorter chains (≤8), and that the rate of depuration varied inversely with the carbon chain length in a U-shaped pattern. Moreover, bioaccumulation potential increased with increasing carbon-chain length, except for C4. Distinct affinities were observed for specific carbon-chain PFCAs across various tissues, evident from their differential accumulation during both uptake and depuration phases. Specifically, C9 showed a higher affinity for serum and liver, C12 was more prevalent in yolk, C14 was notably abundant in the brain, and C18 was predominant in other tissues. Furthermore, the egg-maternal ratio (EMR) increased with increasing carbon-chain length from C7 to C11 and reached a plateau phase for C12 to C18. Our study also confirmed the key role of phospholipids in the tissue distribution and maternal transfer of long-chain PFCAs. This study sheds light on the interaction between PFCAs and biological tissues and reveals the toxicokinetic factors that influence the bioaccumulation of PFCAs. Further research is needed to identify the specific proteins or components that mediate the tissue-specific affinity for different carbon-chain lengths of PFCAs.
Collapse
Affiliation(s)
- Qun-Jie Feng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Mei-Xia Ye
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke-Qi Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
4
|
Starling AP. Invited Perspective: Per- and Polyfluoroalkyl Substances and Impaired Antibody Response to Vaccination-Who Is Affected? ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:81304. [PMID: 37578903 PMCID: PMC10424815 DOI: 10.1289/ehp12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 07/03/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Mayakaduwage S, Ekanayake A, Kurwadkar S, Rajapaksha AU, Vithanage M. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. ENVIRONMENTAL RESEARCH 2022; 212:113311. [PMID: 35460639 DOI: 10.1016/j.envres.2022.113311] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Extensive use of per- and polyfluoroalkyl substances (PFASs) in various industrial activities and daily-life products has made them ubiquitous contaminants in soil and water. PFAS-contaminated soil acts as a long-term source of pollution to the adjacent surface water bodies, groundwater, soil microorganisms, and soil invertebrates. While several remediation strategies exist to eliminate PFASs from the soil, strong ionic interactions between charged groups on PFAS with soil constituents rendered these PFAS remediation technologies ineffective. Pilot and field-scale data from recent studies have shown a great potential of PFAS to bio-accumulate and distribute within plant compartments suggesting that phytoremediation could be a potential remediation technology to clean up PFAS contaminated soils. Even though several studies have been performed on the uptake and translocation of PFAS by different plant species, most of these studies are limited to agricultural crops and fruit species. In this review, the role of both aquatic and terrestrial plants in the phytoremediation of PFAS was discussed highlighting different mechanisms underlying the uptake of PFASs in the soil-plant and water-plant systems. This review further summarized a wide range of factors that influence the bioaccumulation and translocation of PFASs within plant compartments including both structural properties of PFASs and physiological properties of plant species. Even though phytoremediation appears to be a promising remediation technique, some limitations that reduced the feasibility of phytoremediation in the practical application have been emphasized in previous studies. Additional research directions are suggested, including advanced genetic engineering techniques and endophyte-assisted phytoremediation to upgrade the phytoremediation potential of plants for the successful removal of PFASs.
Collapse
Affiliation(s)
- Sonia Mayakaduwage
- School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Anusha Ekanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA, 92831, USA
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
6
|
Chen Y, Fu J, Ye T, Li X, Gao K, Xue Q, Lv J, Zhang A, Fu J. Occurrence, profiles, and ecotoxicity of poly- and perfluoroalkyl substances and their alternatives in global apex predators: A critical review. J Environ Sci (China) 2021; 109:219-236. [PMID: 34607670 DOI: 10.1016/j.jes.2021.03.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Certain poly- and perfluoroalkyl substances (PFASs) exhibit significant bioaccumulation/biomagnification behaviors in ecosystems. PFASs, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and related precursors, have elicited attention from both public and national regulatory agencies, which has resulted in worldwide restrictions on their production and use. Apex predators occupy the top trophic positions in ecosystems and are most affected by the biomagnification behavior of PFASs. Meanwhile, the long lifespans of apex predators also lead to the high body burden of PFASs. The high body burden of PFASs might be linked to adverse health effects and even pose a potential threat to their reproduction. As seen in previous reviews of PFASs, knowledge is lacking between the current stage of the PFAS body burden and related effects in apex predators. This review summarized PFAS occurrence in global apex predators, including information on the geographic distribution, levels, profiles, and tissue distribution, and discussed the trophic transfer and ecotoxicity of PFASs. In the case where legacy PFASs were restricted under international convention, the occurrence of novel PFASs, such as 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and perfluoroethylcyclohexane sulfonate (PFECHS), in apex predators arose as an emerging issue. Future studies should develop an effective analytical method and focus on the toxicity and trophic transfer behavior of novel PFASs.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Ye
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430010, China
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ke Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jungang Lv
- Procuratoral Technology and Information Research Center, Supreme People's Procuratorate, Beijing 100144, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou 310000, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430010, China.
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou 310000, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430010, China.
| |
Collapse
|
7
|
Taylor S, Terkildsen M, Stevenson G, de Araujo J, Yu C, Yates A, McIntosh RR, Gray R. Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147446. [PMID: 33971603 DOI: 10.1016/j.scitotenv.2021.147446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Per and polyfluorinated substances (PFAS) exposure was investigated in Australian pinnipeds. Concentrations of 16 PFAS were measured in the livers of Australian sea lion (Neophoca cinerea), Australian fur seal (Arctocephalus pusillus doriferus) and a long-nosed Fur Seal (Arctocephalus forsteri) pup sampled between 2017 and 2020 from colonies in South Australia and Victoria. Findings reported in this study are the first documented PFAS concentrations in Australian pinnipeds. Median and observed range of values in ng/g wet weight were highest for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the liver of N. cinerea (PFOS = 7.14, 1.00-16.9; PFOA = 2.73, 0.32-11.2; PFNA = 2.96, 0.61-8.22; n = 28), A. forsteri (PFOS = 15.98, PFOA = 2.02, PFNA = 7.86; n = 1) and A. p. doriferus (PFOS = 27.4, 10.5-2119; PFOA = 0.98, 0.32-52.2; PFNA = 2.50, 0.91-44.2; n = 20). PFAS concentrations in A. p. doriferus pups were significantly greater (p < 0.05) than in N. cinerea pups for all PFAS except PFOA and were of similar magnitude to those reported in northern hemisphere marine animals. These results demonstrate exposure differences in both magnitude and PFAS profiles for N. cinerea in South Australia and A. p. doriferus in Victoria. This study reports detectable PFAS concentrations in Australian pinniped pups indicating the importance of maternal transfer of these toxicants. As N. cinerea are endangered and recent declines in pup production has been reported for A. p. doriferus at the colony sampled, investigation of potential health impacts of these toxicants on Australian pinnipeds is recommended.
Collapse
Affiliation(s)
- Shannon Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| | | | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Jesuina de Araujo
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Chunhai Yu
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia
| | - Alan Yates
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde, NSW 2113, Australia.
| | - Rebecca R McIntosh
- Conservation Department, Phillip Island Nature Parks, PO Box 97, Cowes, Victoria 3922, Australia.
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
8
|
Sim W, Park H, Yoon JK, Kim JI, Oh JE. Characteristic distribution patterns of perfluoroalkyl substances in soils according to land-use types. CHEMOSPHERE 2021; 276:130167. [PMID: 33725626 DOI: 10.1016/j.chemosphere.2021.130167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
In this study, a nationwide monitoring of perfluoroalkyl substances (PFAS) in soils was conducted for various land-use types around South Korea, such as industrial complexes, landfills, farmlands, mountains, and woodlands. The ∑15PFAS concentrations in soil samples ranged from 0.175 to 11.7 ng/g dry weight (dw) (median 2.39 ng/g dw). The soil samples from industrial complexes (0.346-11.7 ng/g dw; median 3.25 ng/g dw) and landfills (0.504-10.4 ng/g dw; median 2.13 ng/g dw) had higher median ∑15PFAS concentrations than other regions (0.175-3.01 ng/g dw; median 1.15 ng/g dw). In the soil samples from industrial areas, the ∑15PFAS concentrations ranged from 3.11 to 11.7 ng/g dw (median 6.32 ng/g dw) from the textile industries, 3.26-8.74 ng/g dw (median 6.20 ng/g dw) from the metal industries, 1.53-5.71 ng/g dw (median 3.38 ng/g) from the chemical industries, and 0.346-3.48 ng/g dw (median 2.39 ng/g dw) from the electronics industries. Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and long chain perfluorinated carboxylic acids (PFCAs) between C9 and C12 were generally dominant in these soils. In particular, PFOS, perfluorohexane sulfonate (PFHxS), and PFCAs with ≤ C6 were more frequently found in soils from industrial complexes than from other land-use types. On the other hand, PFCAs between C7 and C12 had relatively high detection frequencies regardless of the soil type.
Collapse
Affiliation(s)
- Wonjin Sim
- Education & Research Center for Infrastructure of Smart Ocean City (i-SOC Center), Pusan National University, Busan, 46241, Republic of Korea
| | - Heejeong Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea; Seoul Institute, Seoul, 06756, Republic of Korea
| | - Jeong-Ki Yoon
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Ji-In Kim
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Schroeder T, Bond D, Foley J. PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:291-301. [PMID: 33443261 DOI: 10.1039/d0em00427h] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In order to understand the extent to which airborne PFAS emission can impact soil and groundwater, we conducted a sampling campaign in areas of conserved forest lands near Bennington, VT/Hoosick Falls, NY. This has been home to sources of PFAS air-emissions from Teflon-coating operations for over 50 years. Since 2015, the Vermont and New York Departments of Environmental Conservation have documented ∼1200 residential wells and two municipal water systems across a 200 km2 area contaminated with perfluorooctanoic acid (PFOA). Given the large areal extent of the plume, and the fact that much of the contaminated area lies up-gradient and across rivers from manufactures, we seek to determine if groundwater contamination could have resulted primarily from air-emission, land deposition, and subsequent leaching to infiltrating groundwater. Sampling of soils and groundwater in the Green Mountain National Forest (GMNF) downwind of factories shows that both soil and groundwater PFOA contamination extend uninterrupted from inhabited areas into conserved forest lands. Groundwater springs and seeps in the GMNF located 8 km downwind, but >300 meters vertically above factories, contain up to 100 ppt PFOA. Our results indicate that air-emitted PFAS can contaminate groundwater and soil in areas outside of those normally considered down-gradient of a source with respect to regional groundwater flow.
Collapse
Affiliation(s)
- Tim Schroeder
- Bennington College, 1 College Drive, Bennington, VT 05201, USA.
| | - David Bond
- Bennington College, 1 College Drive, Bennington, VT 05201, USA.
| | - Janet Foley
- Bennington College, 1 College Drive, Bennington, VT 05201, USA.
| |
Collapse
|
10
|
Hao S, Choi YJ, Wu B, Higgins CP, Deeb R, Strathmann TJ. Hydrothermal Alkaline Treatment for Destruction of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3283-3295. [PMID: 33557522 DOI: 10.1021/acs.est.0c06906] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The widespread use of aqueous film-forming foam (AFFF) for firefighting activities (e.g., fire training to extinguish fuel-based fires at aircraft facilities) has led to extensive groundwater and soil contamination by per- and polyfluoroalkyl substances (PFASs) that are highly recalcitrant to destruction using conventional treatment technologies. This study reports on the hydrothermal alkaline treatment of diverse PFASs present in AFFFs. Quantitative and semiquantitative high-resolution mass spectrometry analyses of PFASs demonstrate a rapid degradation of all 109 PFASs identified in two AFFFs (sulfonate- and fluorotelomer-based formulations) in water amended with an alkali (e.g., 1-5 M NaOH) at near-critical temperature and pressure (350 °C, 16.5 MPa). This includes per- and polyfluoroalkyl acids and a range of acid precursors. Most PFASs were degraded to nondetectable levels within 15 min, and the most recalcitrant perfluoroalkyl sulfonates were degraded within 30 min when treated with 5 M NaOH. 19F NMR spectroscopic analysis and fluoride ion analysis confirm the near-complete defluorination of PFASs in both dilute and concentrated AFFF mixtures, and no stable volatile organofluorine species were detected in reactor headspace gases by the gas chromatography-mass spectrometry analysis. These findings indicate a significant potential for application of hydrothermal treatment technologies to manage PFAS waste streams, including on-site treatment of unused AFFF chemical stockpiles, investigation-derived wastes, and concentrated source zone materials.
Collapse
Affiliation(s)
- Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Youn-Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Boran Wu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rula Deeb
- Geosyntec Consultants, Oakland, California 94607, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
11
|
Wang F, Qiu Y, Zhou B. In silico exploration of hydroxylated polychlorinated biphenyls as estrogen receptor β ligands by 3D-QSAR, molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2021; 40:6798-6809. [PMID: 33645467 DOI: 10.1080/07391102.2021.1890220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hydroxylated polychlorinated biphenyls (HO-PCBs), as the major metabolites of PCBs, have been reported to act as estrogen receptor β (ERβ) agonists. However, the chemical-biological interactions governing their activities toward ERβ have not been elucidated. Therefore, three dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations, to the best of our knowledge, for the first time were performed to explore the correlation between the structures and activities. The best 3D-QSAR model presented higher predictive ability (R2cv=0.543, R2pred=0.5793/R2cv=0.543, R2pred=0.6795) based on comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA), respectively. At the same time, the derived contour maps indicated the important structural features required for improving the activity. Furthermore, molecular docking studies and MD simulations predicted the binding mode and the interactions between the ligand and the receptor. All the results would lead to a better understanding of the specific mechanism of HO-PCBs on estrogen receptor β (ERβ).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Life Science, Linyi University, Linyi, China
| | - Yingchao Qiu
- School of Life Science, Linyi University, Linyi, China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical, Guizhou Medical University, Guizhou, China
| |
Collapse
|
12
|
Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8020. [PMID: 33143342 PMCID: PMC7663035 DOI: 10.3390/ijerph17218020] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| |
Collapse
|
13
|
Xiang J, Zheng W, Yan J, Liang X, Zhang H, Liu B, Zou W. Thermally Driven Separation of Perfluoroalkyl Substances with High Efficiency. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40759-40767. [PMID: 32811144 DOI: 10.1021/acsami.0c09599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs), such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), can contaminate the surface and groundwater. Common treatment strategies and adsorbents have low adsorption efficiencies and poor selectivity toward PFASs because of the extremely low surface energy of these compounds. This paper reports the use of a phenolic resin (PR) modified with perfluoroalkyl (PFA) segments and thermally sensitive poly(ethylene glycol) (PEG) segments (PR-PEG-PFA) to remove PFOA and PFOS from water. The modified PR microspheres captured >90% of PFASs and were insensitive to common anionic surfactants. By treating simulated wastewater six times with this material, the PFOA concentration in water was reduced from 1 ppm to 43 ppt (43 ng L-1), showing that PR-PEG-PFA is a promising adsorbent for PFAS separation, recovery, and recycling.
Collapse
Affiliation(s)
- Jia Xiang
- College of Chemistry and Engineering, Sichuan University of Science and Engineering, Zigong 643000, P R China
| | - Wenjiang Zheng
- College of Chemistry and Engineering, Sichuan University of Science and Engineering, Zigong 643000, P R China
| | - Jie Yan
- College of Chemistry and Engineering, Sichuan University of Science and Engineering, Zigong 643000, P R China
| | - XiaoFeng Liang
- College of Chemistry and Engineering, Sichuan University of Science and Engineering, Zigong 643000, P R China
| | - Haibo Zhang
- Zhonghao Chenguang Chemical Research Institute of Chemical Industry Co., Ltd., Zigong 643201, P R China
| | - Bo Liu
- Zhonghao Chenguang Chemical Research Institute of Chemical Industry Co., Ltd., Zigong 643201, P R China
| | - Wei Zou
- College of Chemistry and Engineering, Sichuan University of Science and Engineering, Zigong 643000, P R China
| |
Collapse
|
14
|
Christou M, Fraser TWK, Berg V, Ropstad E, Kamstra JH. Calcium signaling as a possible mechanism behind increased locomotor response in zebrafish larvae exposed to a human relevant persistent organic pollutant mixture or PFOS. ENVIRONMENTAL RESEARCH 2020; 187:109702. [PMID: 32474314 DOI: 10.1016/j.envres.2020.109702] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 μM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.
Collapse
Affiliation(s)
- Maria Christou
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway.
| | - Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Vidar Berg
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584, CM Utrecht, the Netherlands
| |
Collapse
|
15
|
Villanger GD, Kovacs KM, Lydersen C, Haug LS, Sabaredzovic A, Jenssen BM, Routti H. Perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard - A comparison of concentrations in plasma sampled 15 years apart. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114497. [PMID: 32302893 DOI: 10.1016/j.envpol.2020.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The objective of the present study was to investigate recent concentrations of perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard and compare them to concentrations found in white whales sampled from that same area 15 years ago. Plasma collected from live-captured white whales from two time periods (2013-2014, n = 9, and 1996-2001, n = 11) were analysed for 19 different PFASs. The 11 PFASs detected included seven C8-C14 perfluoroalkyl carboxylates (PFCAs) and three C6-C8 perfluoroalkyl sulfonates (PFSAs) as well as perfluorooctane sulfonamide (FOSA). Recent plasma concentrations (2013-2014) of the dominant PFAS in white whales, perfluorooctane sulfonate (PFOS; geometric mean = 22.8 ng/mL), was close to an order of magnitude lower than reported in polar bears (Ursus maritimus) from Svalbard. PFOS concentrations in white whales were about half the concentrations in harbour (Phoca vitulina) and ringed (Pusa hispida) seals, similar to hooded seals (Cystophora cristata) and higher than in walruses (Odobenus rosmarus) from that same area. From 1996 to 2001 to 2013-2014, plasma concentrations of PFOS decreased by 44%, whereas four C9-12 PFCAs and total PFCAs increased by 35-141%. These results follow a similar trend to what has been reported in other studies of Arctic marine mammals from Svalbard. The most dramatic change has been the decline of PFOS concentrations since 2000, corresponding to the production phase-out of PFOS and related compounds in many countries around the year 2000 and a global restriction on these substances in 2009. Still, the continued dominance of PFOS in white whales, and increasing concentration trends for several PFCAs, even though exposure is relatively low, calls for continued monitoring of concentrations of both PFCAs and PFSAs and investigation of biological effects.
Collapse
Affiliation(s)
- Gro D Villanger
- Norwegian Institute of Public Health, Oslo, Norway; Norwegian Polar Institute, Tromsø, Norway.
| | | | | | - Line S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
16
|
Per- and Polyfluoroalkyl Substances (PFAS) Neurotoxicity in Sentinel and Non-Traditional Laboratory Model Systems: Potential Utility in Predicting Adverse Outcomes in Human Health. TOXICS 2020; 8:toxics8020042. [PMID: 32549216 PMCID: PMC7355795 DOI: 10.3390/toxics8020042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals that were widely used in manufacturing and are now present in the environment throughout the world. It is known that various PFAS are quantifiable in human in blood, but potential adverse health outcomes remain unclear. Sentinel and non-traditional model species are useful to study potential toxicity of PFAS in order to understand the relationship between environmental and human health. Here, we present a critical review of studies on the neurotoxicity of PFAS in sentinel and non-traditional laboratory model systems, including Caenorhabditis elegans (nematode), Dugesia japonica (planarian), Rana pipiens (frogs), Danio rerio and Oryzias melastigma (fish), and Ursus maritimus (polar bears). PFAS have been implicated in developmental neurotoxicity in non-traditional and traditional model systems as well as sentinel species, including effects on neurotransmitter levels, especially acetylcholine and its metabolism. However, further research on the mechanisms of toxicity needs to be conducted to determine if these chemicals are affecting organisms in a similar manner. Overall, findings tend to be similar among the various species, but bioaccumulation may vary, which needs to be taken into account in future studies by quantifying target organ concentrations of PFAS to better compare different species. Furthermore, data on the majority of PFAS is lacking in neurotoxicity testing, and additional studies are needed to corroborate findings thus far.
Collapse
|
17
|
Lynch KM, Fair PA, Houde M, Muir DC, Kannan K, Bossart GD, Bartell SM, Gribble MO. Temporal Trends in Per- and Polyfluoroalkyl Substances in Bottlenose Dolphins ( Tursiops truncatus) of Indian River Lagoon, Florida and Charleston, South Carolina. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14194-14203. [PMID: 31804805 PMCID: PMC7051242 DOI: 10.1021/acs.est.9b04585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Temporal trends in plasma concentrations of per- and polyfluoroalkyl substances (PFAS) in free-ranging bottlenose dolphins (Tursiops truncatus) inhabiting two geographic areas: Indian River Lagoon, Florida over the years 2003-2015 and the waters surrounding Charleston, South Carolina over 2003-2013, were examined. Nine PFAS met the inclusion criteria for analysis based on percent of values below level of detection and sampling years. Proportionate percentiles parametric quantile regression assuming lognormal distributions was used to estimate the average ratio of PFAS concentrations per year for each chemical. Plasma concentrations decreased over time for perfluorodecanoate (PFDA), perfluorohexane sulfonate (PFHxS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), and perfluoroundecanoate (PFUnDA) in both locations. Perfluorononanoate (PFNA) decreased with time in Indian River Lagoon dolphins. Perfluorododecanoate (PFDoDA) concentrations significantly increased over time among female Indian River Lagoon dolphins. Regulation and phaseout of specific PFAS groups may have led to the decreasing levels of those PFAS and increasing levels of other replacement PFAS.
Collapse
Affiliation(s)
- Katie M. Lynch
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Patricia A. Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montreal, Quebec H2Y 2E7, Canada
| | - Derek C.G. Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | - Scott M. Bartell
- Program in Public Health and Department of Statistics, University of California, Irvine, CA 92697, USA
| | - Matthew O. Gribble
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
- Corresponding author: Matthew Gribble, PhD DABT, Address: 1518 Clifton Road NE, Mailstop 1518-002-2BB, Atlanta, Georgia 30322, T: 404-712-8908,
| |
Collapse
|
18
|
Warner NA, Sagerup K, Kristoffersen S, Herzke D, Gabrielsen GW, Jenssen BM. Snow buntings (Plectrophenax nivealis) as bio-indicators for exposure differences to legacy and emerging persistent organic pollutants from the Arctic terrestrial environment on Svalbard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:638-647. [PMID: 30833262 DOI: 10.1016/j.scitotenv.2019.02.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Eggs of snow buntings (Plectrophenax nivealis) were applied as a bio-indicator to examine differences in exposure to legacy persistent organic pollutants (POPs) and perflouroalkyl subtances (PFAS) from the terrestrial environment surrounding the settlements of Longyearbyen, Barentsburg and Pyramiden on Svalbard, Norway. Significantly higher concentrations of summed polychlorinated biphenyls (sumPCB7) in eggs collected from Barentsburg (2980 ng/g lipid weight (lw)) and Pyramiden (3860 ng/g lw) compared to Longyearbyen (96 ng/g lw) are attributed to local sources of PCBs within these settlements. Similar findings were observed for p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) where higher median concentrations observed in Pyramiden (173 ng/g lw) and Barentsburg (75 ng/g lw) compared to Longyearbyen (48 ng/g lw) may be influenced by guano inputs from breeding seabird populations, although other point sources cannot be ruled out. Concentrations of perfluorooctane sulphonate (PFOS) and several perfluorinated carboxylic acids (PFCAs) in snow bunting eggs were found to be statistically higher in the populated settlements of Longyearbyen and Barentsburg compared to the abandoned Pyramiden. Narrow foraging ranges of snow buntings during breeding season was useful in assessing point sources of exposure for PCBs and PFAS at particular sites with extreme differences observed between nest locations. SumPCB7 concentrations ranged from 2 μg/g ww to below detection limits between nest sites located less than a kilometer from each other in Pyramiden. Similar findings were observed in Longyearbyen, where several PFCAs ranged from 2 to 55 times higher between nest sites with similar spatial distances. These findings indicate that snow buntings can be a useful bio-indicator offering high spatial resolution for contaminant source apportionment in terrestrial environments on Svalbard.
Collapse
Affiliation(s)
- Nicholas A Warner
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway.
| | | | - Siv Kristoffersen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Dorte Herzke
- NILU-Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway; Department of Arctic Technology, University Center in Svalbard, NO-9171 Longyearbyen, Norway
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Arctic Technology, University Center in Svalbard, NO-9171 Longyearbyen, Norway
| |
Collapse
|
19
|
Routti H, Atwood TC, Bechshoft T, Boltunov A, Ciesielski TM, Desforges JP, Dietz R, Gabrielsen GW, Jenssen BM, Letcher RJ, McKinney MA, Morris AD, Rigét FF, Sonne C, Styrishave B, Tartu S. State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1063-1083. [PMID: 30901781 DOI: 10.1016/j.scitotenv.2019.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 05/03/2023]
Abstract
The polar bear (Ursus maritimus) is among the Arctic species exposed to the highest concentrations of long-range transported bioaccumulative contaminants, such as halogenated organic compounds and mercury. Contaminant exposure is considered to be one of the largest threats to polar bears after the loss of their Arctic sea ice habitat due to climate change. The aim of this review is to provide a comprehensive summary of current exposure, fate, and potential health effects of contaminants in polar bears from the circumpolar Arctic required by the Circumpolar Action Plan for polar bear conservation. Overall results suggest that legacy persistent organic pollutants (POPs) including polychlorinated biphenyls, chlordanes and perfluorooctane sulfonic acid (PFOS), followed by other perfluoroalkyl compounds (e.g. carboxylic acids, PFCAs) and brominated flame retardants, are still the main compounds in polar bears. Concentrations of several legacy POPs that have been banned for decades in most parts of the world have generally declined in polar bears. Current spatial trends of contaminants vary widely between compounds and recent studies suggest increased concentrations of both POPs and PFCAs in certain subpopulations. Correlative field studies, supported by in vitro studies, suggest that contaminant exposure disrupts circulating levels of thyroid hormones and lipid metabolism, and alters neurochemistry in polar bears. Additionally, field and in vitro studies and risk assessments indicate the potential for adverse impacts to polar bear immune functions from exposure to certain contaminants.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Todd C Atwood
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA
| | - Thea Bechshoft
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Center, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Adam D Morris
- Ecotoxicology and Wildlife Heath Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario K1A 0H3, Canada
| | - Frank F Rigét
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen OE, Denmark
| | - Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
20
|
Lippold A, Bourgeon S, Aars J, Andersen M, Polder A, Lyche JL, Bytingsvik J, Jenssen BM, Derocher AE, Welker JM, Routti H. Temporal Trends of Persistent Organic Pollutants in Barents Sea Polar Bears ( Ursus maritimus) in Relation to Changes in Feeding Habits and Body Condition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:984-995. [PMID: 30548071 DOI: 10.1021/acs.est.8b05416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Temporal trends of persistent organic pollutants (POPs: PCBs, OH-PCBs, p, p'-DDE, HCB, β-HCH, oxychlordane, BDE-47, and 153) in relation to changes in feeding habits and body condition in adult female polar bears ( Ursus maritimus) from the Barents Sea subpopulation were examined over 20 years (1997-2017). All 306 samples were collected in the spring (April). Both stable isotope values of nitrogen (δ15N) and carbon (δ13C) from red blood cells declined over time, with a steeper trend for δ13C between 2012 and 2017, indicating a decreasing intake of marine and high trophic level prey items. Body condition, based on morphometric measurements, had a nonsignificant decreasing tendency between 1997 and 2005, and increased significantly between 2005 and 2017. Plasma concentrations of BDE-153 and β-HCH did not significantly change over time, whereas concentrations of Σ4PCB, Σ5OH-PCB, BDE-47, and oxychlordane declined linearly. Concentrations of p, p'-DDE and HCB, however, declined until 2012 and 2009, respectively, and increased thereafter. Changes in feeding habits and body condition did not significantly affect POP trends. The study indicates that changes in diet and body condition were not the primary driver of POPs in polar bears, but were controlled in large part by primary and/or secondary emissions of POPs.
Collapse
Affiliation(s)
- Anna Lippold
- Norwegian Polar Institute , Tromsø 9296 , Norway
- The Arctic University of Norway (UiT) , Tromsø 9019 , Norway
| | - Sophie Bourgeon
- The Arctic University of Norway (UiT) , Tromsø 9019 , Norway
| | - Jon Aars
- Norwegian Polar Institute , Tromsø 9296 , Norway
| | | | - Anuschka Polder
- Norwegian University of Life Sciences (NMBU) , Oslo 0454 , Norway
| | - Jan Ludvig Lyche
- Norwegian University of Life Sciences (NMBU) , Oslo 0454 , Norway
| | - Jenny Bytingsvik
- Akvaplan-niva AS , Tromsø 9296 , Norway
- Norwegian University of Science and Technology (NTNU) Trondheim 7491 , Norway
| | - Bjørn Munro Jenssen
- Norwegian University of Science and Technology (NTNU) Trondheim 7491 , Norway
| | | | - Jeffrey M Welker
- University of Alaska Anchorage (UAA) , Anchorage 99508 , United States
- University of Oulu , Oulu 90014 , Finland
- University of the Arctic
| | - Heli Routti
- Norwegian Polar Institute , Tromsø 9296 , Norway
| |
Collapse
|
21
|
Cabrerizo A, Muir DCG, De Silva AO, Wang X, Lamoureux SF, Lafrenière MJ. Legacy and Emerging Persistent Organic Pollutants (POPs) in Terrestrial Compartments in the High Arctic: Sorption and Secondary Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14187-14197. [PMID: 30521332 DOI: 10.1021/acs.est.8b05011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and emerging perfluoroalkyl substances (PFASs) were measured in vegetation and soil samples collected at remote lakes in the Canadian High Arctic. Field studies were carried out in 2015 and 2016 to assess concentrations of POPs, study the relevant sorbing phases, and determine whether Arctic soils were sinks or sources of legacy POPs to the atmosphere and to neighboring lakes. The patterns of legacy POPs in vegetation and soils were dominated by low molecular weight PCB congeners along with OCPs, confirming the importance of long-range atmospheric transport. Lipid and non-lipid organic matter was a key determinant of legacy POPs in Arctic vegetation. Soil organic matter was the main descriptor of hydrophobic PCBs and OCPs in soils, while soil inorganic carbon content, was an important driver of the sorption of PFASs in soils. While contaminant concentrations were low in soil and vegetation, higher PCBs and PFOS organic and inorganic carbon-normalized concentrations were found at Resolute Lake indicating the presence of local sources of contamination. Comparison of fugacities of PCBs in soil and air from Resolute Lake indicated soils as net sources of PCBs to the atmosphere.
Collapse
Affiliation(s)
- Ana Cabrerizo
- Environment and Climate Change Canada , Aquatic Contaminant Research Division , Burlington , Ontario L7S 1A1 , Canada
| | - Derek C G Muir
- Environment and Climate Change Canada , Aquatic Contaminant Research Division , Burlington , Ontario L7S 1A1 , Canada
| | - Amila O De Silva
- Environment and Climate Change Canada , Aquatic Contaminant Research Division , Burlington , Ontario L7S 1A1 , Canada
| | - Xiaowa Wang
- Environment and Climate Change Canada , Aquatic Contaminant Research Division , Burlington , Ontario L7S 1A1 , Canada
| | - Scott F Lamoureux
- Department of Geography and Planning , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Melissa J Lafrenière
- Department of Geography and Planning , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
22
|
Ciesielski TM, Sonne C, Ormbostad I, Aars J, Lie E, Bytingsvik J, Jenssen BM. Effects of biometrics, location and persistent organic pollutants on blood clinical-chemical parameters in polar bears (Ursus maritimus) from Svalbard, Norway. ENVIRONMENTAL RESEARCH 2018; 165:387-399. [PMID: 29860211 DOI: 10.1016/j.envres.2018.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In the present study, blood clinical-chemical parameters (BCCPs) were analysed in 20 female and 18 male Svalbard polar bears (Ursus maritimus) captured in spring 2007. The aim was to study how age, body condition (BC), biometrics, plasma lipid content and geographical location may confound the relationship between persistent organic pollutants (POPs) including PCBs, HCB, chlordanes, DDTs, HCHs, mirex and OH-PCBs and the concentrations of 12 specific BCCPs (hematocrit [HCT], hemoglobin [HB], aspartate aminotransferase [ASAT], alanine aminotransferase [ALAT], γ-glutamyltransferase [GGT], creatine kinase [CK], triglycerides [TG], cholesterol [CHOL], high-density lipoprotein [HDL], creatinine (CREA], urea, potassium (K]), and to investigate if any of these BCCPs may be applied as potential biomarkers for POP exposure in polar bears. Initial PCA and O-PLS modelling showed that age, lipids, BC and geographical location (longitude and latitude) were important parameters explaining BCCPs in females. Following subsequent partial correlation analyses correcting for age and lipids, multiple POPs in females were still significantly correlated with HCT and HDL (all p < 0.05). In males, age, BM, BC and longitude were important parameters explaining BCCPs. Following partial correlation analyses correcting for age, biometrics, lipids and longitude in males, multiple POPs were significantly correlated with HCT, ASAT, GGT and CHOL (all p < 0.05). In conclusion, several confounding parameters has to be taken into account when studying the relations between BCCPs and POPs in polar bears. When correcting for these, in particular HCT may be used as a simple cost-efficient biomarker of POP exposure in polar bears. Furthermore, decreasing HDL concentrations and increasing CHOL concentration with increasing POP concentrations may indicate responses related to increased risk of cardiovascular disease. We therefore suggest to further study POP exposure and lipidome response to increase knowledge of the risk of cardiometabolic syndrome in polar bears.
Collapse
Affiliation(s)
- Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark.
| | - Ingunn Ormbostad
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Elisabeth Lie
- Norwegian Institute for Water research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway.
| | - Jenny Bytingsvik
- Akvaplan-niva AS, Fram Centre - High North Research Centre for Climate and the Environment, Hjalmar Johansens Gate 14, 9007 Tromsø, Norway.
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark; Department of Arctic Technology, The University Centre in Svarbard, POBox 156, NO-9171 Longyearbyen, Norway.
| |
Collapse
|
23
|
Tartu S, Aars J, Andersen M, Polder A, Bourgeon S, Merkel B, Lowther AD, Bytingsvik J, Welker JM, Derocher AE, Jenssen BM, Routti H. Choose Your Poison-Space-Use Strategy Influences Pollutant Exposure in Barents Sea Polar Bears. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3211-3221. [PMID: 29363970 DOI: 10.1021/acs.est.7b06137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Variation in space-use is common within mammal populations. In polar bears, Ursus maritimus, some individuals follow the sea ice (offshore bears) whereas others remain nearshore yearlong (coastal bears). We studied pollutant exposure in relation to space-use patterns (offshore vs coastal) in adult female polar bears from the Barents Sea equipped with satellite collars (2000-2014, n = 152). First, we examined the differences in home range (HR) size and position, body condition, and diet proxies (nitrogen and carbon stable isotopes, n = 116) between offshore and coastal space-use. Second, we investigated how HR, space-use, body condition, and diet were related to plasma concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) ( n = 113), perfluoroalkyl substances (PFASs; n = 92), and hydroxylated-PCBs ( n = 109). Offshore females were in better condition and had a more specialized diet than did coastal females. PCBs, OCPs, and hydroxylated-PCB concentrations were not related to space-use strategy, yet PCB concentrations increased with increasing latitude, and hydroxylated-PCB concentrations were positively related to HR size. PFAS concentrations were 30-35% higher in offshore bears compared to coastal bears and also increased eastward. On the basis of the results we conclude that space-use of Barents Sea female polar bears influences their pollutant exposure, in particular plasma concentrations of PFAS.
Collapse
Affiliation(s)
- Sabrina Tartu
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Jon Aars
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Magnus Andersen
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Anuschka Polder
- Norwegian University of Life Science , Campus Adamstua , Oslo NO-1432 , Norway
| | - Sophie Bourgeon
- UiT-The Arctic University of Norway , Department of Arctic and Marine Biology , Tromsø NO-9010 , Norway
| | - Benjamin Merkel
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | - Andrew D Lowther
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| | | | - Jeffrey M Welker
- Department of Biological Sciences , University of Alaska-Anchorage , Anchorage , Alaska 99508 , United States
- Department of Arctic Technology , University Center in Svalbard , Longyearbyen, Svalbard NO-9171 , Norway
| | - Andrew E Derocher
- Department of Biological Sciences , University of Alberta , Edmonton T6G 2R3 , Canada
| | - Bjørn Munro Jenssen
- Department of Arctic Technology , University Center in Svalbard , Longyearbyen, Svalbard NO-9171 , Norway
- Department of Biology , Norwegian University of Science and Technology , Trondheim NO-7491 , Norway
| | - Heli Routti
- Norwegian Polar Institute , Fram Centre , Tromsø NO-9296 , Norway
| |
Collapse
|
24
|
Omorodion H, Palenzuela M, Ruether M, Twamley B, Platts JA, Baker RJ. A rationally designed perfluorinated host for the extraction of PFOA from water utilising non-covalent interactions. NEW J CHEM 2018. [DOI: 10.1039/c7nj03026f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three hosts for the encapsulation of perfluorooctanoic acid have been synthesized. The host:guest complexes have been characterized by multinuclear NMR spectroscopy in solution and the solid state.
Collapse
Affiliation(s)
| | - Miguel Palenzuela
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Manuel Ruether
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Brendan Twamley
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | | | - Robert J. Baker
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
25
|
Ciesielski TM, Hansen IT, Bytingsvik J, Hansen M, Lie E, Aars J, Jenssen BM, Styrishave B. Relationships between POPs, biometrics and circulating steroids in male polar bears (Ursus maritimus) from Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:598-608. [PMID: 28710978 DOI: 10.1016/j.envpol.2017.06.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to determine the effects of persistent organic pollutants (POPs) and biometric variables on circulating levels of steroid hormones (androgens, estrogens and progestagens) in male polar bears (Ursus maritimus) from Svalbard, Norway (n = 23). Levels of pregnenolone (PRE), progesterone (PRO), androstenedione (AN), dehydroepiandrosterone (DHEA), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2) and 17β-estradiol (βE2) were quantified in polar bear serum by gas chromatography tandem mass spectrometry (GC-MS/MS), while POPs were measured in plasma. Subsequently, associations between hormone concentrations (9 steroids), POPs (21 polychlorinated biphenyls (PCBs), 8 OH-PCBs, 8 organochlorine pesticides (OCPs) and OCP metabolites, and 2 polybrominated diphenyl ethers (PBDEs)) and biological variables (age, head length, body mass, girth, body condition index), capture date, location (latitude and longitude), lipid content and cholesterol levels were examined using principal component analysis (PCA) and orthogonal projections to latent structures (OPLS) modelling. Average concentrations of androgens, estrogens and progestagens were in the range of 0.57-83.7 (0.57-12.4 for subadults, 1.02-83.7 for adults), 0.09-2.69 and 0.57-2.44 nmol/L, respectively. The steroid profiles suggest that sex steroids were mainly synthesized through the Δ-4 pathway in male polar bears. The ratio between androgens and estrogens significantly depended on sexual maturity with androgen/estrogen ratios being approximately 60 times higher in adult males than in subadult males. PCA plots and OPLS models indicated that TS was positively related to biometrics, such as body condition index in male polar bears. A negative relationship was also observed between POPs and DHT. Consequently, POPs and body condition may potentially affect the endocrinological function of steroids, including development of reproductive tissues and sex organs and the general condition of male polar bears.
Collapse
Affiliation(s)
- Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Tjelta Hansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Bytingsvik
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Hansen
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elisabeth Lie
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Aars
- Norwegian Polar Institute, Tromsø, Norway
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard, Longyearbyen, Norway
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
26
|
Routti H, Aars J, Fuglei E, Hanssen L, Lone K, Polder A, Pedersen ÅØ, Tartu S, Welker JM, Yoccoz NG. Emission Changes Dwarf the Influence of Feeding Habits on Temporal Trends of Per- and Polyfluoroalkyl Substances in Two Arctic Top Predators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11996-12006. [PMID: 28918622 DOI: 10.1021/acs.est.7b03585] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We monitored concentrations of per- and polyfluoroalkyl substances (PFASs) in relation to climate-associated changes in feeding habits and food availability in polar bears (Ursus maritimus) and arctic foxes (Vulpes lagopus) (192 plasma and 113 liver samples, respectively) sampled from Svalbard, Norway, during 1997-2014. PFASs concentrations became greater with increasing dietary trophic level, as bears and foxes consumed more marine as opposed to terrestrial food, and as the availability of sea ice habitat increased. Long-chained perfluoroalkyl carboxylates (PFCAs) in arctic foxes decreased with availability of reindeer carcasses. The ∼9-14% yearly decline of C6-8 perfluoroalkyl sulfonates (PFSAs) following the cease in C6-8 PFSA precursor production in 2001 indicates that the peak exposure was mainly a result of atmospheric transport of the volatile precursors. However, the stable PFSA concentrations since 2009-2010 suggest that Svalbard biota is still exposed to ocean-transported PFSAs. Long-chain ocean-transported PFCAs increased 2-4% per year and the increase in C12-14 PFCAs in polar bears tended to level off since ∼2009. Emerging short-chain PFASs showed no temporal changes. Climate-related changes in feeding habits and food availability moderately affected PFAS trends. Our results indicate that PFAS concentrations in polar bears and arctic foxes are mainly affected by emissions.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Jon Aars
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Eva Fuglei
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Linda Hanssen
- Norwegian Institute for Air Research , Fram Centre, Tromsø, Norway
| | - Karen Lone
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Anuschka Polder
- Norwegian University of Life Sciences , Campus Adamstua, Oslo, Norway
| | | | - Sabrina Tartu
- Norwegian Polar Institute , Fram Centre, Tromsø, Norway
| | - Jeffrey M Welker
- University of Alaska Anchorage , Department of Biological Sciences, Anchorage, Alaska 99508, United States
| | - Nigel G Yoccoz
- UiT-The Arctic University of Norway , Department of Arctic and Marine Biology, Tromsø, Norway
| |
Collapse
|
27
|
Tartu S, Bourgeon S, Aars J, Andersen M, Lone K, Jenssen BM, Polder A, Thiemann GW, Torget V, Welker JM, Routti H. Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:146-158. [PMID: 28587979 DOI: 10.1016/j.envpol.2017.04.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/05/2017] [Accepted: 04/29/2017] [Indexed: 05/26/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been detected in organisms worldwide, including Polar Regions. The polar bear (Ursus maritimus), the top predator of Arctic marine ecosystems, accumulates high concentrations of PFASs, which may be harmful to their health. The aim of this study was to investigate which factors (habitat quality, season, year, diet, metabolic state [i.e. feeding/fasting], breeding status and age) predict PFAS concentrations in female polar bears captured on Svalbard (Norway). We analysed two perfluoroalkyl sulfonates (PFSAs: PFHxS and PFOS) and C8-C13 perfluoroalkyl carboxylates (PFCAs) in 112 plasma samples obtained in April and September 2012-2013. Nitrogen and carbon stable isotope ratios (δ15N, δ13C) in red blood cells and plasma, and fatty acid profiles in adipose tissue were used as proxies for diet. We determined habitat quality based on movement patterns, capture position and resource selection functions, which are models that predict the probability of use of a resource unit. Plasma urea to creatinine ratios were used as proxies for metabolic state (i.e. feeding or fasting state). Results were obtained from a conditional model averaging of 42 general linear mixed models. Diet was the most important predictor of PFAS concentrations. PFAS concentrations were positively related to trophic level and marine diet input. High PFAS concentrations in females feeding on the eastern part of Svalbard, where the habitat quality was higher than on the western coast, were likely related to diet and possibly to abiotic factors. Concentrations of PFSAs and C8-C10 PFCAs were higher in fasting than in feeding polar bears and PFOS was higher in females with cubs of the year than in solitary females. Our findings suggest that female polar bears that are exposed to the highest levels of PFAS are those 1) feeding on high trophic level sea ice-associated prey, 2) fasting and 3) with small cubs.
Collapse
Affiliation(s)
- Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway.
| | - Sophie Bourgeon
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway; UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | | - Karen Lone
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Bjørn Munro Jenssen
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Anuschka Polder
- Norwegian University of Life Science, Campus Adamstua, Oslo, Norway
| | | | - Vidar Torget
- Norwegian University of Science and Technology, Department of Biology, Trondheim, Norway
| | - Jeffrey M Welker
- University of Alaska Anchorage, Department of Biological Sciences, Anchorage, AK, USA; University Center in Svalbard, Longyearbyen, Svalbard, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| |
Collapse
|
28
|
Berntsen HF, Berg V, Thomsen C, Ropstad E, Zimmer KE. The design of an environmentally relevant mixture of persistent organic pollutants for use in in vivo and in vitro studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1002-1016. [PMID: 28854125 DOI: 10.1080/15287394.2017.1354439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amongst the substances listed as persistent organic pollutants (POP) under the Stockholm Convention on Persistent Organic Pollutants (SCPOP) are chlorinated, brominated, and fluorinated compounds. Most experimental studies investigating effects of POP employ single compounds. Studies focusing on effects of POP mixtures are limited, and often conducted using extracts from collected specimens. Confounding effects of unmeasured substances in such extracts may bias the estimates of presumed causal relationships being examined. The aim of this investigation was to design a model of an environmentally relevant mixture of POP for use in experimental studies, containing 29 different chlorinated, brominated, and perfluorinated compounds. POP listed under the SCPOP and reported to occur at the highest levels in Scandinavian food, blood, or breast milk prior to 2012 were selected, and two different mixtures representing varying exposure scenarios constructed. The in vivo mixture contained POP concentrations based upon human estimated daily intakes (EDIs), whereas the in vitro mixture was based upon levels in human blood. In addition to total in vitro mixture, 6 submixtures containing the same concentration of chlorinated + brominated, chlorinated + perfluorinated, brominated + perfluorinated, or chlorinated, brominated or perfluorinated compounds only were constructed. Using submixtures enables investigating the effect of adding or removing one or more chemical groups. Concentrations of compounds included in feed and in vitro mixtures were verified by chemical analysis. It is suggested that this method may be utilized to construct realistic mixtures of environmental contaminants for toxicity studies based upon the relative levels of POP to which individuals are exposed.
Collapse
Affiliation(s)
- Hanne Friis Berntsen
- a Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine , NMBU-School of Veterinary Science , Oslo , Norway
- b Department of Administration , Lab Animal Unit, National Institute of Occupational Health , Oslo , Norway
| | - Vidar Berg
- c Department of Food Safety and Infection Biology, Section of Pharmacology and Toxicology , NMBU-School of Veterinary Science , Oslo , Norway
| | - Cathrine Thomsen
- d Department of Environmental Exposure and Epidemiology, Division for Infection Control, and Environmental Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Erik Ropstad
- a Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine , NMBU-School of Veterinary Science , Oslo , Norway
| | - Karin Elisabeth Zimmer
- e Department of Basic Sciences and Aquatic Medicine, Section of Biochemistry and Physiology , NMBU-School of Veterinary Science , Oslo , Norway
| |
Collapse
|
29
|
Robel AE, Marshall K, Dickinson M, Lunderberg D, Butt C, Peaslee G, Stapleton HM, Field JA. Closing the Mass Balance on Fluorine on Papers and Textiles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9022-9032. [PMID: 28712295 DOI: 10.1021/acs.est.7b02080] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Papers and textiles that are treated with per- and polyfluoroalkyl substances (PFASs) are sources of human and environmental exposure. Data for individual PFASs, such as perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), are not placed into the context of total fluorine for papers and textiles. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to quantify volatile and ionic PFASs, respectively, and the total oxidizable precursor (TOP) assay was used to quantify precursors that form perfluoroalkyl carboxylates. Molar sums of PFASs obtained by GC-MS, LC-MS/MS, and precursors were compared to total fluorine (nmol F/cm2) determined by particle-induced gamma ray emission (PIGE) spectroscopy, measured before and after extraction. Volatile and ionic PFASs and unknown precursors accounted for 0-2.2%, 0-0.41%, and 0.021-14%, respectively, of the total nmol F/cm2 determined by PIGE. After extraction, papers and textiles retained 64 ± 28% to 110 ± 30% of the original nmol F/cm2 as determined by PIGE, indicating that the majority of fluorine remains associated with the papers and textiles. The sum of PFASs in the volatile, ionic, and precursor fraction, and total fluorine after extraction indicate that mass balance was achieved (within analytical error) of the initial total fluorine measured by PIGE.
Collapse
Affiliation(s)
- Alix E Robel
- Department of Environmental and Molecular Toxicology, 2750 Campus Way, Oregon State University , Corvallis, Oregon 97331, United States
| | - Kristin Marshall
- Department of Environmental and Molecular Toxicology, 2750 Campus Way, Oregon State University , Corvallis, Oregon 97331, United States
| | - Margaret Dickinson
- Science Center Rm 2106A , 35 East 12th Street, Holland, Michigan 49422-9000, United States
| | - David Lunderberg
- Science Center Rm 2106A , 35 East 12th Street, Holland, Michigan 49422-9000, United States
| | - Craig Butt
- Nicholas School of the Environment, Duke University , Durham, North Carolina 27708, United States
| | - Graham Peaslee
- Department of Physics, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University , Durham, North Carolina 27708, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, 2750 Campus Way, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
30
|
Khezri A, Lindeman B, Krogenæs AK, Berntsen HF, Zimmer KE, Ropstad E. Maternal exposure to a mixture of persistent organic pollutants (POPs) affects testis histology, epididymal sperm count and induces sperm DNA fragmentation in mice. Toxicol Appl Pharmacol 2017. [PMID: 28645691 DOI: 10.1016/j.taap.2017.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent organic pollutants (POPs) are widespread throughout the environment and some are suspected to induce reproductive toxicity. As animals and humans are exposed to complex mixtures of POPs, it is reasonable to assess how such mixtures could interact with the reproductive system. Our aim is to investigate how maternal exposure to a mixture of 29 different persistent organic pollutants, formulated to mimic the relative POP levels in the food basket of the Scandinavian population, could alter reproductive endpoints. Female mice were exposed via feed from weaning, during pregnancy and lactation in 3 exposure groups (control (C), low (L) and high (H)). Testicular morphometric endpoints, epididymal sperm concentration and sperm DNA integrity were assessed in adult male offspring. We found that the number of tubules, proportion of tubule compartments and epididymal sperm concentration significantly decreased in both POP exposed groups. Epididymal sperm from both POP exposed groups showed increased DNA fragmentation. It is concluded that maternal exposure to a defined POP mixture relevant to human exposure can affect testicular development, sperm production and sperm chromatin integrity.
Collapse
Affiliation(s)
- Abdolrahman Khezri
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Birgitte Lindeman
- Department of Toxicology and Risk, Norwegian Institute of Public Health, Pb 4404, 0403 Oslo, Norway.
| | - Anette K Krogenæs
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Hanne F Berntsen
- Norwegian National Institute of Occupational Health, Pb. 8149 Dep, 0033 Oslo, Norway.
| | - Karin E Zimmer
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Science, Pb. 8146 Dep, 0033 Oslo, Norway.
| |
Collapse
|
31
|
Chen F, Yin S, Kelly BC, Liu W. Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Matched Maternal, Cord, and Placenta Samples: A Study of Transplacental Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6387-6394. [PMID: 28482666 DOI: 10.1021/acs.est.6b06049] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Currently, information regarding concentrations of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in human placenta does not exist. The main objective of this study was to assess the occurrence and distribution of two Cl-PFESAs, 6:2 Cl-PFESA and 8:2 Cl-PFESA, in maternal serum, umbilical cord serum, and placenta to better assess the transport pathways related to human prenatal exposure. The widely studied perfluorooctanesulfonate (PFOS) was studied for comparison. This study was a hospital-based survey involving quantitative determination of Cl-PFESA and PFOS concentrations in maternal serum (n = 32), cord serum (n = 32), and placenta (n = 32) samples from women in Wuhan, China. The results indicate that Cl-PFESAs can efficiently be transported across placenta, with median exposure levels of 0.60 and 0.01 ng/mL for 6:2 Cl-PFESA and 8:2 Cl-PFESA in the cord sera, respectively. Concentrations of the target compounds in maternal sera, cord sera, and placentas decreased in the following order: PFOS > 6:2 Cl-PFESA > 8:2 Cl-PFESA. Similar patterns were observed in maternal sera, cord sera, and placentas for Cl-PFESAs, with concentrations decreasing in the following order: maternal sera > cord sera > placentas. Significant correlations were observed among 6:2 Cl-PFESA, 8:2 Cl-PFESA, and PFOS concentrations in the maternal serum, cord serum, and placenta samples (r > 0.7; p < 0.001). The median value of RCM (ratio of cord serum to maternal serum concentration) of 6:2 Cl-PFESA was 0.403, indicating a relatively high (∼40%) placental transfer efficiency. 8:2 Cl-PFESA was transported across placenta to a greater extent than 6:2 Cl-PFESA was, likely because of its higher hydrophobicity and lower plasma protein binding affinity. To the best of our knowledge, this is the first study to report the occurrence and distribution of 6:2 Cl-PFESA and 8:2 Cl-PFESA in human placenta. The findings improve our understanding of the mechanisms of transplacental transfer and neonatal exposure to these important PFOS alternatives.
Collapse
Affiliation(s)
- Fangfang Chen
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore , Singapore 117576
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
32
|
Grønnestad R, Villanger GD, Polder A, Kovacs KM, Lydersen C, Jenssen BM, Borgå K. Maternal transfer of perfluoroalkyl substances in hooded seals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:763-770. [PMID: 27771942 DOI: 10.1002/etc.3623] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
The role of milk in the transfer of perfluoroalkyl substances (PFASs) to offspring is not well known in wildlife. Eight PFASs were quantified in plasma and milk in mother-pup pairs of hooded seals (Cystophora cristata) during the nursing period, and the role of milk in the transfer process was analyzed. Hooded seal was chosen because of its short lactation period (3-4 d), during which the pup feeds only on milk. Placental or lactation transfer would thus be the only source of PFAS in the pup. Of the 8 PFASs analyzed (Σ8 PFAS), 7 were found in all samples; therefore, milk is a source to PFASs in pups. Perfluorooctane sulfonate was the dominant PFAS in all samples. Mean Σ8 PFAS concentrations were 6.0 ng/g protein (36 ng/g wet wt) in maternal plasma, 0.77 ng/g protein (3.2 ng/g wet wt) in milk, and 12 ng/g protein (66 ng/g wet wt) in pup plasma. Measured concentrations in plasma were within ranges previously reported from other seal species, below known toxicity thresholds for experimental rodents. Individual PFASs differed in transfer efficiency from mother to pup, depending on carbon chain lengths, with the lowest relative transfer for the intermediate-chained PFASs (C9 -C10 ). The results show maternal transfer of PFASs via both milk and the placenta, of which placental transfer is the dominant pathway. Environ Toxicol Chem 2017;36:763-770. © 2016 SETAC.
Collapse
Affiliation(s)
| | - Gro D Villanger
- Department of Child Development and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anuschka Polder
- Norwegian University of Life Sciences, Oslo, Norway
- North-West University, Potchefstroom, South Africa
| | - Kit M Kovacs
- Fram Centre, Norwegian Polar Institute, Tromsø, Norway
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
A Mixture of Persistent Organic Pollutants and Perfluorooctanesulfonic Acid Induces Similar Behavioural Responses, but Different Gene Expression Profiles in Zebrafish Larvae. Int J Mol Sci 2017; 18:ijms18020291. [PMID: 28146072 PMCID: PMC5343827 DOI: 10.3390/ijms18020291] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022] Open
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and some may be neurotoxic. As we are exposed to complex mixtures of POPs, we aimed to investigate how a POP mixture based on Scandinavian human blood data affects behaviour and neurodevelopment during early life in zebrafish. Embryos/larvae were exposed to a series of sub-lethal doses and behaviour was examined at 96 h post fertilization (hpf). In order to determine the sensitivity window to the POP mixture, exposure models of 6 to 48 and 48 to 96 hpf were used. The expression of genes related to neurological development was also assessed. Results indicate that the POP mixture increases the swimming speed of larval zebrafish following exposure between 48 to 96 hpf. This behavioural effect was associated with the perfluorinated compounds, and more specifically with perfluorooctanesulfonic acid (PFOS). The expression of genes related to the stress response, GABAergic, dopaminergic, histaminergic, serotoninergic, cholinergic systems and neuronal maintenance, were altered. However, there was little overlap in those genes that were significantly altered by the POP mixture and PFOS. Our findings show that the POP mixture and PFOS can have a similar effect on behaviour, yet alter the expression of genes relevant to neurological development differently.
Collapse
|
34
|
Tartu S, Bourgeon S, Aars J, Andersen M, Polder A, Thiemann GW, Welker JM, Routti H. Sea ice-associated decline in body condition leads to increased concentrations of lipophilic pollutants in polar bears (Ursus maritimus) from Svalbard, Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:409-419. [PMID: 27794227 DOI: 10.1016/j.scitotenv.2016.10.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Global climate changes are magnified in the Arctic and are having an especially dramatic effect on the spatial and temporal distribution and the thickness traits of sea ice. Decline of Arctic sea ice may lead to qualitative and/or quantitative changes in diet and reduced body condition (i.e. adipose tissue stores) of ice-associated apex predators such as polar bears (Ursus maritimus). This may further affect their tissue concentrations of lipophilic pollutants. We determined how variations in adipose tissue stores associated to both breeding status and spatial changes in sea ice conditions and diet influence concentrations and biotransformation of lipophilic persistent organic pollutants (POPs). We collected 112 blood and fat samples from female polar bears (Ursus maritimus) of different breeding status (alone, with cubs of the year, or with yearlings) during two seasons (April and September) in 2012 and 2013 at three locations of Svalbard, Norway, with contrasted sea ice conditions. We inferred diet from nitrogen and carbon stable isotope ratios in red blood cells and fatty acid composition in adipose tissue. Relative to diet, body condition, which was negatively related to sea ice extent at both temporal and spatial scales, was the most important predictor for concentrations of POPs in plasma and fat, whereas diet showed a minor influence. Additionally, fatter females were more efficient at biotransforming PCBs than were leaner ones. Breeding status influenced the concentrations of less lipophilic compounds such as β-hexachlorocyclohexane, which were lower in females with yearlings, probably due to excretion into milk and subsequent offloading to young. In conclusion, our results indicate that declining sea ice indirectly leads to increased concentrations of lipophilic pollutants in polar bears mediated through reduced feeding opportunities and declining body condition rather than changes in diet composition.
Collapse
Affiliation(s)
- Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway.
| | - Sophie Bourgeon
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway; UiT-The Arctic University of Norway, Department of Arctic and Marine Biology, Tromsø, Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | | - Anuschka Polder
- Norwegian University of Life Science, Campus Adamstua, Oslo, Norway; York University, Faculty of Environmental Studies, Toronto, ON, Canada
| | | | - Jeffrey M Welker
- University of Alaska Anchorage, Department of Biological Sciences, Anchorage, AK, USA; University Center in Svalbard, Longyearbyen, Svalbard, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| |
Collapse
|
35
|
van den Dungen MW, Murk AJ, Kampman E, Steegenga WT, Kok DE. Association between DNA methylation profiles in leukocytes and serum levels of persistent organic pollutants in Dutch men. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx001. [PMID: 29492303 PMCID: PMC5804541 DOI: 10.1093/eep/dvx001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
Consumption of polluted fish may lead to high levels of persistent organic pollutants (POPs) in humans, potentially causing adverse health effects. Altered DNA methylation has been suggested as a possible contributor to a variety of adverse health effects. The aim of this study was to evaluate the relationship between serum POP levels (dioxins, polychlorobiphenyls, and perfluoroctane sulphonate) and DNA methylation. We recruited a total of 80 Dutch men who regularly consumed eel from either low- or high-polluted areas, and subsequently had normal or elevated POP levels. Clinical parameters related to e.g. hormone levels and liver enzymes were measured as biomarkers for adverse health effects. The Infinium 450K BeadChip was used to assess DNA methylation in a representative subset of 34 men. We identified multiple genes with differentially methylated regions (DMRs; false discovery rate <0.05) related to POP levels. Several of these genes are involved in carcinogenesis (e.g. BRCA1, MAGEE2, HOXA5), the immune system (e.g. RNF39, HLA-DQB1), retinol homeostasis (DHRS4L2), or in metabolism (CYP1A1). The DMRs in these genes show mean methylation differences up to 7.4% when comparing low- and high-exposed men, with a mean difference up to 14.4% for single positions within a DMR. Clinical parameters were not significantly associated with serum POP levels. This is the first explorative study investigating extensive DNA methylation in relation to serum POP levels among men. We observed that elevated POP levels are associated with aberrant DNA methylation profiles in adult men who consumed high-polluted eel. These preliminary findings warrant further confirmation in other populations.
Collapse
Affiliation(s)
- Myrthe W. van den Dungen
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
- Marine Animal Ecology Group, De Elst 1, 6708 WD, Wageningen, Wageningen University, The Netherlands
| | - Albertinka J. Murk
- Marine Animal Ecology Group, De Elst 1, 6708 WD, Wageningen, Wageningen University, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| | - Wilma T. Steegenga
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| | - Dieuwertje E. Kok
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| |
Collapse
|
36
|
van den Dungen MW, Kok DE, Polder A, Hoogenboom RLAP, van Leeuwen SPJ, Steegenga WT, Kampman E, Murk AJ. Accumulation of persistent organic pollutants in consumers of eel from polluted rivers compared to marketable eel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:80-88. [PMID: 27697634 DOI: 10.1016/j.envpol.2016.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Globally, many river sediments are seriously contaminated with persistent organic pollutants (POPs) known to accumulate in aquatic food. In the Netherlands, toxicological risks of human exposure to dioxins and dioxin-like compounds led to a ban on eel fishing in the Rhine-Meuse delta. The aim of this study is to investigate differences in serum POP levels in consumers of eel from high-polluted areas and consumers of eel from low-polluted areas or aquaculture. In total 80 Dutch men were included, aged 40-70 years, with a habitual eel consumption of at least one portion (150 g) per month. Total levels of dioxins and dioxin-like compounds were measured in serum of all participants with the DR CALUX bioassay, validated with GC-MS. For a subgroup of 38 participants extensive POP measurements were performed. We revealed that consumption of eel from polluted rivers resulted in 2.5 and up to 10 times increased levels of dioxins and polychlorinated biphenyls (PCBs) respectively compared to controls. The highest PCB levels were detected for PCB 153, with a median level of 896 ng/g lipid and a maximum level of 5000 ng/g lipid in the high-exposed group. Furthermore, hydroxylated PCB metabolites (OH-PCBs: sum of 4-OH-CB107, 4-OH-CB146, 4'-OH-CB172, and 4-OH-CB187) were 8 times higher in men who consumed eel from polluted areas, and detected at levels (median 4.5 ng/g ww) reported to cause adverse health effects. Also, the majority of the perfluoroalkyl substances (PFASs) were significantly higher in consumers of eel from pullulated areas. In conclusion, this study is the first to reveal that (past) consumption of eel from polluted rivers resulted in high body burdens of dioxins, PCBs, OH-PCBs and PFASs. We confirmed the predictions made in a former risk assessment, and the high levels of dioxins and dioxin-like compounds as well as the OH-PCBs are of health concern.
Collapse
Affiliation(s)
- Myrthe W van den Dungen
- Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands; Marine Animal Ecology Group, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| | - Dieuwertje E Kok
- Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands.
| | - Anuschka Polder
- Norwegian University of Life Sciences, Campus Adamstua, P.O. Box 8146 Dep., N-0033, Oslo, Norway; Environmental Sciences and Management, North-West University, PB X6001, Potchefstroom 2520, South Africa.
| | | | | | - Wilma T Steegenga
- Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands.
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands.
| | - Albertinka J Murk
- Marine Animal Ecology Group, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
37
|
De Silva AO, Spencer C, Ho KCD, Al Tarhuni M, Go C, Houde M, de Solla SR, Lavoie RA, King LE, Muir DCG, Fair PA, Wells RS, Bossart GD. Perfluoroalkylphosphinic Acids in Northern Pike (Esox lucius), Double-Crested Cormorants (Phalacrocorax auritus), and Bottlenose Dolphins (Tursiops truncatus) in Relation to Other Perfluoroalkyl Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10903-10913. [PMID: 27677975 DOI: 10.1021/acs.est.6b03515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Perfluoroalkyl phosphinic acids (PFPIAs) are perfluoroalkyl acids (PFAAs) that are used for their surfactant properties in a variety of applications, resulting in their presence in environmental waters; however, they have not been widely studied in biota. A survey of PFPIAs was conducted in fish, dolphins, and birds from various locations in North America. Northern pike (Esox lucius) were collected at two locations in 2011 near Montréal Island in the St. Lawrence River, Canada, double-crested cormorants (Phalacrocorax auritus) were collected from bird colonies in the Great Lakes in 2010-2012, and bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, FL and Charleston Harbor, SC were sampled in 2004-2009. PFPIAs had a detection frequency of 100% in all animals. This is the first report of PFPIAs in fish, dolphin, and bird plasma. Total PFPIA levels (mean ± standard deviation, 1.87 ± 2.17 ng/g wet weight (ww), range of 0.112-15.3 ng/g ww) were 1-2 orders of magnitude lower than those of perfluoroalkyl carboxylates (PFCA) and perfluoroalkanesulfonates (PFSA) in the same samples. The predominant congeners were 6:8 PFPIA (cormorants and pike) and 6:6 PFPIA (dolphins). Total PFPIAs in cormorants from Hamilton Harbour (5.02 ± 2.80 ng/g ww) were statistically higher than in other areas and taxonomic groups. The ubiquity of PFPIAs warrants further research on sources and effects of these unique compounds.
Collapse
Affiliation(s)
- Amila O De Silva
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Christine Spencer
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Ki Chung D Ho
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Mohammed Al Tarhuni
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Christopher Go
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Centre Saint-Laurent , Montréal, Quebec H2Y 2E7, Canada
| | - Shane R de Solla
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Raphael A Lavoie
- Biology Department, Queen's University , 116 Barrie Street, Kingston, Ontario K7L3N6 Canada
| | - Laura E King
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters , Burlington, Ontario, L7S 1A1, Canada
| | - Patricia A Fair
- Center for Coastal Environmental Health and Biomolecular Research, NOS, NOAA , 219 Fort Johnson Road, Charleston, South Carolina 29142, United States
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory , 1600 Ken Thompson Parkway, Sarasota, Florida 34236, United States
- Georgia Aquarium , 225 Baker Street, Atlanta, Georgia 30313, United States
| | - Gregory D Bossart
- Georgia Aquarium , 225 Baker Street, Atlanta, Georgia 30313, United States
| |
Collapse
|
38
|
Routti H, Gabrielsen GW, Herzke D, Kovacs KM, Lydersen C. Spatial and temporal trends in perfluoroalkyl substances (PFASs) in ringed seals (Pusa hispida) from Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:230-238. [PMID: 27089420 DOI: 10.1016/j.envpol.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
This study investigates concentrations of perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFSAs) and perfluoroalkane sulfonamides (FASA) in plasma from ringed seals sampled in the period 1990-2010 (n = 71) in Svalbard, Norway. Perfluorooctane sulfonate was dominant among the perfluoroalkyl substances. PFCAs were dominated by perfluoroundecanoate followed by perfluorononanoate. C4C8 PFCAs and perfluorooctane sulfonamide (FOSA) were detected in ≤42% of the samples. PFSA and PFCA concentrations were higher in seals sampled from Kongsfjorden, a fjord influenced by strong inflows of Atlantic Water compared to seals from fjords dominated by Arctic Water (e.g. Billefjorden). Sex, age and body condition of the seals did not influence PFAS concentrations. Due to the confounding effect of year and sampling area, temporal trends were assessed only in seals sampled from Kongsfjorden (5 years, n = 51). PFHxS and PFOS concentrations did not show significant linear trends during the whole study period, but a decrease was observed since 2004. Concentrations of all of the detected PFCAs (C9C13 PFCAs) increased until 2004 after which they have declined or stabilized.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway.
| | | | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre, 9296, Tromsø, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | |
Collapse
|
39
|
Bechshoft T, Derocher AE, Richardson E, Lunn NJ, St Louis VL. Hair Mercury Concentrations in Western Hudson Bay Polar Bear Family Groups. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5313-5319. [PMID: 27095340 DOI: 10.1021/acs.est.6b00483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methylmercury is one of the more toxic forms of mercury (Hg), the biomagnification of which is prevalent in the Arctic where apex predators such as polar bears (Ursus maritimus) can carry high loads. The maternal transfer of contaminants to offspring is a concern, as offspring may be particularly sensitive to the effects of environmental pollutants during early development. However, few studies of polar bears report on Hg in dependent young. We examined hair total Hg (THg) concentrations in 24 polar bear family groups in western Hudson Bay: mother, cub-of-the-year (COY), yearling, and 2 year old. THg concentrations increased with bear age, with COYs having lower concentrations than other offspring groups (p ≤ 0.008). Using AICc-based regression models, we found maternal THg to be positively related to body condition and litter size, while overall offspring THg was positively related to maternal body condition in addition to being dependent on the sex and age of the offspring. COY THg concentrations were positively related to maternal THg while also depending on the sex of the offspring. Considering our results, future studies in polar bear ecotoxicology are encouraged to include offspring of different ages and sexes.
Collapse
Affiliation(s)
- Thea Bechshoft
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| | - Andrew E Derocher
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| | - Evan Richardson
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, University of Alberta , CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Nicholas J Lunn
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, University of Alberta , CW405, Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta , Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
40
|
Holmquist H, Schellenberger S, van der Veen I, Peters GM, Leonards PEG, Cousins IT. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. ENVIRONMENT INTERNATIONAL 2016; 91:251-64. [PMID: 26994426 DOI: 10.1016/j.envint.2016.02.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 05/21/2023]
Abstract
Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the environment and human health.
Collapse
Affiliation(s)
- H Holmquist
- Chemical Environmental Science, Department of Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - S Schellenberger
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| | - I van der Veen
- Institute for Environmental Studies (IVM), VU University, De Boelelaan 1087, NL-1081 HV, Amsterdam, The Netherlands
| | - G M Peters
- Chemical Environmental Science, Department of Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - P E G Leonards
- Institute for Environmental Studies (IVM), VU University, De Boelelaan 1087, NL-1081 HV, Amsterdam, The Netherlands
| | - I T Cousins
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
41
|
van Beest FM, Aars J, Routti H, Lie E, Andersen M, Pavlova V, Sonne C, Nabe-Nielsen J, Dietz R. Spatiotemporal variation in home range size of female polar bears and correlations with individual contaminant load. Polar Biol 2015. [DOI: 10.1007/s00300-015-1876-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Bouwman H, Govender D, Underhill L, Polder A. Chlorinated, brominated and fluorinated organic pollutants in African Penguin eggs: 30 years since the previous assessment. CHEMOSPHERE 2015; 126:1-10. [PMID: 25613517 DOI: 10.1016/j.chemosphere.2014.12.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 05/02/2023]
Abstract
The African Penguin population has drastically declined over the last 100 years. Changes in food availability due to over-fishing and other oceanographic changes seem to be major causes. However, it has also been 30 years since organic pollutants as a potential factor have been assessed. We analysed penguin eggs collected in 2011 and 2012 from two breeding colonies 640 km apart: Robben Island near Cape Town on the Atlantic Ocean coast, and Bird Island near Port Elizabeth on the Indian Ocean coast of South Africa. We quantified organochlorine pesticides, brominated flame retardants, and perfluorinated compounds (PFCs). Compared to 30 years ago, concentrations of ΣDDT have remained about the same or slightly lower, while ΣPCBs declined almost four-fold. The use of DDT in malaria control is unlikely to have contributed. PFCs were detected in all eggs. Indications (non-significant) of eggshell thinning associated with ΣDDT and ΣPCB was found. It seems therefore that the concentrations of measured organic pollutants the African Penguin eggs are not contributing directly to its current demise, but concerns remain about thinner shells and desiccation. Effects of combinations of compounds and newer compounds cannot be excluded, as well as more subtle effects on reproduction, development, and behaviour.
Collapse
Affiliation(s)
- Hindrik Bouwman
- Research Unit: Environmental Sciences and Development, North-West University, Potchefstroom, South Africa.
| | - Danny Govender
- Scientific Services, SANParks, Skukuza, South Africa; Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Les Underhill
- Animal Demography Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Anuschka Polder
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Norway
| |
Collapse
|
43
|
Gustavson L, Ciesielski TM, Bytingsvik J, Styrishave B, Hansen M, Lie E, Aars J, Jenssen BM. Hydroxylated polychlorinated biphenyls decrease circulating steroids in female polar bears (Ursus maritimus). ENVIRONMENTAL RESEARCH 2015; 138:191-201. [PMID: 25725300 DOI: 10.1016/j.envres.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/07/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
As a top predator in the Arctic food chain, polar bears (Ursus maritimus) are exposed to high levels of persistent organic pollutants (POPs). Because several of these compounds have been reported to alter endocrine pathways, such as the steroidogenesis, potential disruption of the sex steroid synthesis by POPs may cause implications for reproduction by interfering with ovulation, implantation and fertility. Blood samples were collected from 15 female polar bears in Svalbard (Norway) in April 2008. The concentrations of nine circulating steroid hormones; dehydroepiandrosterone (DHEA), androstenedione (AN), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (βE2), pregnenolone (PRE) and progesterone (PRO) were determined. The aim of the study was to investigate associations among circulating levels of specific POP compounds and POP-metabolites (hydroxylated PCBs [OH-PCBs] and hydroxylated PBDEs [OH-PBDEs]), steroid hormones, biological and capture variables in female polar bears. Inverse correlations were found between circulating levels of PRE and AN, and circulating levels of OH-PCBs. There were no significant relationships between the steroid concentrations and other analyzed POPs or the variables capture date and capture location (latitude and longitude), lipid content, condition and body mass. Although statistical associations do not necessarily represent direct cause-effect relationships, the present study indicate that OH-PCBs may affect the circulating levels of AN and PRE in female polar bears and that OH-PCBs thus may interfere with the steroid homeostasis. Increase in PRO and a decrease in AN concentrations suggest that the enzyme CYP17 may be a potential target for OH-PCBs. In combination with natural stressors, ongoing climate change and contaminant exposure, it is possible that OH-PCBs may disturb the reproductive potential of polar bears.
Collapse
Affiliation(s)
- Lisa Gustavson
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Tomasz M Ciesielski
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Jenny Bytingsvik
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Bjarne Styrishave
- University of Copenhagen, Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Martin Hansen
- University of Copenhagen, Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elisabeth Lie
- The Norwegian School of Veterinary Science (NVH), Department of Food Safety and Infection Biology, P.O. Box 5003, Campus Adamstuen, NO-1432 Ås, Norway
| | - Jon Aars
- Norwegian Polar Institute (NPI), Fram Centre, NO-9296 Tromsø, Norway
| | - Bjørn M Jenssen
- Norwegian University of Science and Technology (NTNU), Department of Biology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| |
Collapse
|
44
|
Simon E, Lamoree MH, Hamers T, de Boer J. Challenges in effect-directed analysis with a focus on biological samples. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Jenssen BM, Villanger GD, Gabrielsen KM, Bytingsvik J, Bechshoft T, Ciesielski TM, Sonne C, Dietz R. Anthropogenic flank attack on polar bears: interacting consequences of climate warming and pollutant exposure. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00016] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
46
|
Routti H, Lydersen C, Hanssen L, Kovacs KM. Contaminant levels in the world's northernmost harbor seals (Phoca vitulina). MARINE POLLUTION BULLETIN 2014; 87:140-146. [PMID: 25152181 DOI: 10.1016/j.marpolbul.2014.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 06/03/2023]
Abstract
The world's northernmost harbor seal (Phoca vitulina) population, which inhabits Svalbard, Norway, constitutes a genetically distinct population. The present study reports concentrations of 14 PCBs, 5 chlordanes, p,p'-DDT, p,p'-DDE, hexachlorobenzene (HCB), mirex, and, α-, β-and γ-hexachlorocyclohexane (HCH) in blubber, and pentachlorophenol, 4-OH-heptachlorostyrene, 10 OH-PCBs and 14 perfluoroalkyl substances in plasma of live-captured harbor seals from this population (4 males, 4 females, 4 juveniles), sampled in 2009-2010. Concentrations of PCB 153, p,p'-DDE, oxychlordane, α-HCH and mirex and perfluoroalkyl sulfonates in Svalbard harbor seals were considerably lower than harbor seal from more southerly populations, while concentrations of HCB, OH-PCBs and perfluoroalkyl carboxylates were similar for harbor seals from Svalbard and southern areas. Concentrations of PCBs and pesticides in the Svalbard harbor seals were 60-90% lower than levels determined a decade ago in this same population. Current concentrations of legacy POPs are not considered a health risk to the harbor seals from Svalbard.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway.
| | | | - Linda Hanssen
- Norwegian Institute for Air Research, Fram Centre, 9296 Tromsø, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
47
|
Aas CB, Fuglei E, Herzke D, Yoccoz NG, Routti H. Effect of body condition on tissue distribution of perfluoroalkyl substances (PFASs) in Arctic fox (Vulpes lagopus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11654-61. [PMID: 25215880 DOI: 10.1021/es503147n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arctic animals undergo large seasonal fluctuations in body weight. The effect of body condition on the distribution and composition of 16 perfluoroalkyl substances (PFASs) was investigated in liver, blood, kidney, adipose tissue, and muscle of Arctic foxes (Vulpes lagopus) from Svalbard (n = 18, age 1-3 years). PFAS concentrations were generally highest in liver, followed by blood and kidney, while lowest concentrations were found in adipose tissue and muscle. Concentrations of summed perfluorocarboxylic acids and perfluoroalkyl sulfonates were five and seven times higher, respectively, in adipose tissue of lean compared to fat foxes. In addition, perfluorodecanoate (PFDA) and perfluoroheptanesulfonate (PFHpS) concentrations in liver, kidney, and blood, and, perfluorononanoate (PFNA) in liver and blood, were twice as high in the lean compared to the fat foxes. The ratio between perfluorooctane sulfonamide (FOSA) and its metabolite perfluorooctanesulfonate (PFOS) was lowest in liver, muscle, and kidney, while significantly higher proportions of FOSA were found in adipose tissue and blood. The results of the present study suggest that toxic potential of exposure to PFAS among other pollutants in Arctic mammals may increase during seasonal emaciation. The results also suggest that body condition should be taken into account when assessing temporal trends of PFASs.
Collapse
|
48
|
León-Olea M, Martyniuk CJ, Orlando EF, Ottinger MA, Rosenfeld C, Wolstenholme J, Trudeau VL. Current concepts in neuroendocrine disruption. Gen Comp Endocrinol 2014; 203:158-173. [PMID: 24530523 PMCID: PMC4133337 DOI: 10.1016/j.ygcen.2014.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 11/17/2022]
Abstract
In the last few years, it has become clear that a wide variety of environmental contaminants have specific effects on neuroendocrine systems in fish, amphibians, birds and mammals. While it is beyond the scope of this review to provide a comprehensive examination of all of these neuroendocrine disruptors, we will focus on select representative examples. Organochlorine pesticides bioaccumulate in neuroendocrine areas of the brain that directly regulate GnRH neurons, thereby altering the expression of genes downstream of GnRH signaling. Organochlorine pesticides can also agonize or antagonize hormone receptors, adversely affecting crosstalk between neurotransmitter systems. The impacts of polychlorinated biphenyls are varied and in many cases subtle. This is particularly true for neuroedocrine and behavioral effects of exposure. These effects impact sexual differentiation of the hypothalamic-pituitary-gonadal axis, and other neuroendocrine systems regulating the thyroid, metabolic, and stress axes and their physiological responses. Weakly estrogenic and anti-androgenic pollutants such as bisphenol A, phthalates, phytochemicals, and the fungicide vinclozolin can lead to severe and widespread neuroendocrine disruptions in discrete brain regions, including the hippocampus, amygdala, and hypothalamus, resulting in behavioral changes in a wide range of species. Behavioral features that have been shown to be affected by one or more these chemicals include cognitive deficits, heightened anxiety or anxiety-like, sociosexual, locomotor, and appetitive behaviors. Neuroactive pharmaceuticals are now widely detected in aquatic environments and water supplies through the release of wastewater treatment plant effluents. The antidepressant fluoxetine is one such pharmaceutical neuroendocrine disruptor. Fluoxetine is a selective serotonin reuptake inhibitor that can affect multiple neuroendocrine pathways and behavioral circuits, including disruptive effects on reproduction and feeding in fish. There is growing evidence for the association between environmental contaminant exposures and diseases with strong neuroendocrine components, for example decreased fecundity, neurodegeneration, and cardiac disease. It is critical to consider the timing of exposures of neuroendocrine disruptors because embryonic stages of central nervous system development are exquisitely sensitive to adverse effects. There is also evidence for epigenetic and transgenerational neuroendocrine disrupting effects of some pollutants. We must now consider the impacts of neuroendocrine disruptors on reproduction, development, growth and behaviors, and the population consequences for evolutionary change in an increasingly contaminated world. This review examines the evidence to date that various so-called neuroendocrine disruptors can induce such effects often at environmentally-relevant concentrations.
Collapse
Affiliation(s)
- Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría, R.F.M., México D.F., México
| | - Christopher J. Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Edward F. Orlando
- University of Maryland, Department of Animal and Avian Sciences, College Park, MD 20742, USA
| | - Mary Ann Ottinger
- University of Maryland, Department of Animal and Avian Sciences, College Park, MD 20742, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Cheryl Rosenfeld
- Departments of Biomedical Sciences and Bond Life Sciences Center, Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
| | - Jennifer Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 23112, USA
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, Canada, K1N 6N5
- Corresponding author:
| |
Collapse
|
49
|
Persson S, Rotander A, Kärrman A, van Bavel B, Magnusson U. Perfluoroalkyl acids in subarctic wild male mink (Neovison vison) in relation to age, season and geographical area. ENVIRONMENT INTERNATIONAL 2013; 59:425-30. [PMID: 23928036 DOI: 10.1016/j.envint.2013.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/28/2013] [Accepted: 06/30/2013] [Indexed: 05/26/2023]
Abstract
This study investigates the influence of biological and environmental factors on the concentrations of perfluoroalkyl acids (PFAAs) in a top predator; the American mink. Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS) and perfluoroalkyl carboxylates (PFCAs) with C8-C13 perfluorinated carbon chains were analyzed in livers from wild male mink liver (n=101) from four areas in Sweden representing two inland environments (rural and highly anthropogenic, respectively) and two different coastal environments. Mean PFOS concentrations were 1250ng/g wet weight and some mink from the urban inland area had among the highest PFOS concentrations ever recorded in mink (up to 21 800ng/g wet weight). PFBS was detected in 89% of the samples, but in low concentrations (mean 0.6ng/g ww). There were significant differences in PFAA concentrations between the geographical areas (p<0.001-0.01). Age, body condition and body weight did not influence the concentrations significantly, but there was a seasonal influence on the concentrations of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnDA) (p<0.01 and p<0.05, respectively), with lower concentrations in autumn samples than in samples taken in the winter and spring. It is thus recommended to take possible seasonal differences into account when using mink exposure data. The overall results suggest that the mink is a suitable sentinel species for assessing and monitoring environmental levels of PFAAs.
Collapse
Affiliation(s)
- Sara Persson
- Division of Reproduction, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
50
|
Villanger GD, Gabrielsen KM, Kovacs KM, Lydersen C, Lie E, Karimi M, Sørmo EG, Jenssen BM. Effects of complex organohalogen contaminant mixtures on thyroid homeostasis in hooded seal (Cystophora cristata) mother-pup pairs. CHEMOSPHERE 2013; 92:828-842. [PMID: 23726007 DOI: 10.1016/j.chemosphere.2013.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/07/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Many lipid-soluble and phenolic compounds present in the complex mixture of orgaohalogen contaminants (OHCs) that arctic wildlife is exposed to have the ability to interfere with the thyroid hormone (TH) system. The aim of this study was to identify compounds that might interfere with thyroid homeostasis in 14 nursing hooded seal (Cystophora cristata) mothers and their pups (1-4d old) sampled in the West Ice in March 2008. Multivariate modelling was used to assess the potential effects of measured plasma levels of OHCs on circulating TH levels of the measured free (F) and total (T) levels of triidothyrine (T3) and thyroxine (T4). Biological factors were important in all models (e.g. age and sex). In both mothers and pups, TT3:FT3 ratios were associated with α- and β-hexachlorocyclohexane (HCH), ortho-PCBs, chlordanes and DDTs. The similarities between the modelled TT3:FT3 responses to OHC levels in hooded seal mothers and pups most probably reflects similar exposure patterns, but could also indicate interconnected TH responses. There were some differences in the modelled TH responses of mothers and pups. Most importantly, the negative relationships between many OH-PCBs (particularly 3'-OH-CB138) and TT3:FT3 ratio and the positive relationships between TT4:FT4 ratios and polybrominated diphenyl ether [PBDE]-99, -100 and 4-OH-CB107 in pups, which was not found in mothers. Although statistical associations are not evidence per se of biological cause-effect relationships, the results suggest that thyroid homeostasis is affected in hooded seals, and that the inclusion of the fullest possible OHC mixture is important when assessing TH related effects in wildlife.
Collapse
Affiliation(s)
- Gro D Villanger
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|