1
|
Zhang C, Wu Q, Cheng X, Tian Z, Li J, Liu Q, Zhang Y, Guo X, Chen G, Li H, Liang C, Hu B, Zhang D, Liang C, Sheng J, Tao F, Wang J, Yao Y, Yang L. Nitrogen dioxide exposure attenuates or even reverses the association between physical activity and fasting plasma glucose levels in non-diabetic elderly Chinese adults. BMC Public Health 2025; 25:872. [PMID: 40045267 PMCID: PMC11881241 DOI: 10.1186/s12889-025-22050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The combined effects of physical activity (PA) and nitrogen dioxide (NO2) on fasting plasma glucose (FPG) levels have rarely been studied. This study aimed to examine whether long-term exposure to NO2 attenuates the association between PA and FPG levels in non-diabetic older adults. METHODS A total of 2600 non-diabetic elderly Chinese adults were included in this cross-sectional study. PA data were collected using the International Physical Activity Questionnaire (IPAQ). The Space-Time Extra-Trees model was utilized to estimate the annual concentration of NO2. General linear regression models were used to assess independent and interaction associations of long-term exposure to NO2 and PA with FPG levels. An interaction plot was employed to enhance the visual representation of the interaction. RESULTS A 0.32 µg/m3 increase in the 3-year average NO2, corresponding to one interquartile range (IQR), was positively associated with FPG levels (β = 0.099 mmol/L, 95% CI: 0.069-0.130). PA exhibited a negative, albeit non-significant, association with FPG levels (β = -0.027 mmol/L, 95% CI: -0.069, 0.015). A statistically significant interaction between PA and NO2 on FPG levels was observed (Pfor interaction = 0.016). The interaction plots revealed that the beneficial effects of PA on FPG levels were attenuated or even reversed as NO2 concentrations increased, with a threshold for reversal at 33.02 µg/m3. CONCLUSIONS Long-term exposure to NO2 attenuates or reverses the beneficial effects of PA on FPG levels in non-diabetic older adults. Therefore, further action is imperative to reduce air pollution and thereby enhance the benefits of PA on FPG levels.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qingsi Wu
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Blood Transfusion, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xuqiu Cheng
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ziwei Tian
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junzhe Li
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qiang Liu
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huaibiao Li
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Changliu Liang
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Dongmei Zhang
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jie Sheng
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Jun Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuyou Yao
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Linsheng Yang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Kılınçer M, Gürsoy E. Assessing the short-term hematological and pulmonary effects of air pollution: a cross-sectional study in a Turkish urban setting. BMC Public Health 2025; 25:16. [PMID: 39748373 PMCID: PMC11697805 DOI: 10.1186/s12889-024-21246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Air pollution has become a significant global public health concern, with evidence linking it to various adverse health outcomes, including respiratory and cardiovascular diseases. While numerous studies have investigated the effects of these particulate and gaseous pollutants on both healthy individuals and patients, further research is needed to clarify the short-term hematological and pulmonary responses in individuals without underlying health conditions. This study aims to explore the relationship between air quality, hematological parameters, and pulmonary function in a healthy population in Turkey. METHODS This cross-sectional study included 326 healthy, non-smoking adults aged 18-65 years. Air Quality Index (AQI) data for the examination day and the preceding 5 days were collected. Hematological parameters and pulmonary function tests were analyzed. Spearman and Pearson correlation tests were used to compare numerical variables. Group comparisons were conducted using the independent samples t-test and Mann-Whitney U test. RESULTS The mean AQI on the day of the medical visit was 68.20, indicating moderate air quality. Significant negative correlations were observed between AQI and hematological parameters, including leukocyte (r = -0.111, p = 0.046), lymphocyte (r = -0.134, p = 0.016), and platelet counts (r = -0.141, p = 0.011). Similar negative correlations were found for the 5-day average AQI. For pulmonary parameters, AQI was negatively correlated with FEF50% (r = -0.172, p = 0.002), FEF25% (r = -0.140, p = 0.012), FEV1/FVC% (r = -0.125, p = 0.024), and FEF75% (r = -0.124, p = 0.025). CONCLUSION Short-term exposure to moderate air pollution significantly impacts hematological parameters and specific pulmonary function indices, even in healthy individuals. These findings emphasize the importance of continuous air quality monitoring and public health interventions to mitigate the health risks of air pollution.
Collapse
Affiliation(s)
- Mehmet Kılınçer
- Niksar State Hospital, Family Medicine Clinic, Tokat, 60600, Turkey
| | - Ersan Gürsoy
- Department of Family Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey.
| |
Collapse
|
3
|
Swan D, Turner R, Franchini M, Mannucci PM, Thachil J. Air pollution and venous thromboembolism: current knowledge and future perspectives. Lancet Haematol 2025; 12:e68-e82. [PMID: 39653046 DOI: 10.1016/s2352-3026(24)00291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 01/06/2025]
Abstract
Air pollution, comprising a variable mixture of gaseous and solid particulate material, represents a serious, unmet, global health issue. The Global Burden of Disease study reported that 12% of all deaths occurring in 2019 were related to ambient air pollution, with particulate matter often considered to be the leading cause of harm. As of 2024, over 90% of the world's population are exposed to excessive amounts of particulate matter, based on WHO maximum exposure level guidelines. A substantial body of evidence supports a link between air pollution and cardiovascular disease, with around half of ambient pollution-related deaths thought to be secondary to cardiovascular causes. A possible association between particulate matter and venous thromboembolism has been less clear, but in the past decade, several studies have added to the available literature. In this Review, we discuss the current epidemiological evidence linking air pollution to the development of venous thrombotic events. We consider mechanisms promoting a thromboinflammatory phenotype in these individuals, including platelet dysfunction, dysregulated fibrinolysis, and enhanced thrombin generation. Given the relevance to global health, we also discuss possible strategies required to mitigate the impact of air pollution on human health worldwide.
Collapse
Affiliation(s)
- Dawn Swan
- Department of Haematology, Austin Health, Melbourne, VIC, Australia.
| | - Robert Turner
- Department of Intensive Care, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Pier Mannuccio Mannucci
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan, Milan, Italy
| | - Jecko Thachil
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
George PE, Zhao J, Liang D, Nogueira LM. Ambient air pollution and survival in childhood cancer: A nationwide survival analysis. Cancer 2024; 130:3870-3878. [PMID: 39106101 DOI: 10.1002/cncr.35484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Particulate matter consisting of fine particles measuring 2.5 microns or less in diameter (PM2.5), a component of air pollution, has been linked to adverse health outcomes. The objective of this study was to assess the association between ambient PM2.5 exposure and survival in children with cancer in the United States. METHODS Individuals aged birth to 19 years who were diagnosed with cancer between January 1, 2004, and December 31, 2019, were selected from the National Cancer Database. The association between the annual PM2.5 level at the patient's zip code of residence at the time of diagnosis and overall survival was evaluated using time-varying Cox proportional hazards models (crude and adjusted for diagnosis year and age). To address concerns that exposure to air pollution is correlated with other social determinants of health, the authors tested the association between PM2.5 levels and survival among sociodemographic subgroups. RESULTS Of the 172,550 patients included, 27,456 (15.9%) resided in areas with annual PM2.5 concentrations above the US Environmental Protection Agency (EPA) annual PM2.5 standard of 12 μg/m3. Residing in these high-pollution areas was associated with worse overall survival (adjusted hazard ratio [aHR], 1.06; 95% confidence interval [CI], 1.012-1.10). Similarly, when PM2.5 was evaluated as a linear measure, each unit increase in PM2.5 exposure was associated with worse survival (aHR, 1.011; CI, 1.005-1.017). Exposure to PM2.5 at levels above the EPA standards was also significantly associated with worse overall survival among sociodemographic subgroups. CONCLUSIONS Exposure to PM2.5 was significantly associated with worse overall survival among children with cancer, even at levels below EPA air quality standards. These results underscore the importance of setting appropriate air quality standards to protect the health of this sensitive population. PLAIN LANGUAGE SUMMARY The authors investigated how living in areas with high air pollution (defined as particulate matter consisting of fine particles measuring 2.5 microns or less in diameter; PM2.5) affects the overall survival of children with cancer in the United States. The results indicated that children living in areas with higher PM2.5 levels, and even at levels below prior and current US Environmental Protection Agency standards, had lower survival rates than children living in areas with lower levels of PM2.5. This finding emphasizes the need for stricter air quality standards to better protect children, particularly those with serious health conditions like childhood cancer.
Collapse
Affiliation(s)
- Paul E George
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jingxuan Zhao
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- American Cancer Society, Kennesaw, Georgia, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
5
|
Kuodza GE, Kawai R, LaSalle JM. Intercontinental insights into autism spectrum disorder: a synthesis of environmental influences and DNA methylation. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae023. [PMID: 39703685 PMCID: PMC11658417 DOI: 10.1093/eep/dvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by a broad range of symptoms. The etiology of ASD is thought to involve complex gene-environment interactions, which are crucial to understanding its various causes and symptoms. DNA methylation is an epigenetic mechanism that potentially links genetic predispositions to environmental factors in the development of ASD. This review provides a global perspective on ASD, focusing on how DNA methylation studies may reveal gene-environment interactions characteristic of specific geographical regions. It delves into the role of DNA methylation in influencing the causes and prevalence of ASD in regions where environmental influences vary significantly. We also address potential explanations for the high ASD prevalence in North America, considering lifestyle factors, environmental toxins, and diagnostic considerations. Asian and European studies offer insights into endocrine-disrupting compounds, persistent organic pollutants, maternal smoking, and their associations with DNA methylation alterations in ASD. In areas with limited data on DNA methylation and ASD, such as Africa, Oceania, and South America, we discuss prevalent environmental factors based on epidemiological studies. Additionally, the review integrates global and country-specific prevalence data from various studies, providing a comprehensive picture of the variables influencing ASD diagnoses over region and year of assessment. This prevalence data, coupled with regional environmental variables and DNA methylation studies, provides a perspective on the complexities of ASD research. Integrating global prevalence data, we underscore the need for a comprehensive global understanding of ASD's complex etiology. Expanded research into epigenetic mechanisms of ASD is needed, particularly in underrepresented populations and locations, to enhance biomarker development for diagnosis and intervention strategies for ASD that reflect the varied environmental and genetic landscapes worldwide.
Collapse
Affiliation(s)
- George E Kuodza
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Ray Kawai
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
6
|
Gwak E, Shin JW, Kim SY, Lee JT, Jeon OH, Choe SA. Exposure to ambient air pollution mixture and senescence-associated secretory phenotype proteins among middle-aged and older women. ENVIRONMENTAL RESEARCH 2024; 260:119642. [PMID: 39029725 DOI: 10.1016/j.envres.2024.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Our study aimed to investigate the impact of environmental exposures, such as ambient air pollutants, on systemic inflammation and cellular senescence in middle-aged and older women. We utilized epidemiological data linked with exposure data of six air pollutants (particulate matters [PM10, PM2.5], sulphur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO], and ozone [O3]) and blood samples of 380 peri- and postmenopausal women participants of the Korean Genome and Epidemiology Study. We measured blood high-sensitivity C-reactive protein (hsCRP) and age-related 27 circulatory senescence-associated secretory phenotypes (SASP) produced by senescent cells. We employed single exposure models to explore the general pattern of association between air pollution exposure and proteomic markers. Using quantile g-computation models, we assessed the association of six air pollutant mixtures with hsCRP and SASP proteins. In single-exposure, single-period models, nine out of the 27 SASP proteins including IFN-γ (β = 0.04, 95% CI: 0.01, 0.07 per interquartile range-increase), IL-8 (0.15, 95% CI: 0.09, 0.20), and MIP1α (0.11, 95% CI: 0.04, 0.18) were positively associated with the average level of O3 over one week. Among the age-related SASP proteins, IFN-γ (0.11, 95% CI: 0.03, 0.20) and IL-8 (0.22, 95% CI: 0.05, 0.39) were positively associated with exposure to air pollutant mixture over one week. The MIP1β was higher with an increasing one-month average concentration of the air pollutant mixture (0.11, 95% CI: 0.00, 0.21). The IL-8 showed consistently positive association with the ambient air pollutant mixture for the exposure periods ranging from one week to one year. O3 predominantly showed positive weights in the associations between air pollutant mixtures and IL-8. These findings underscore the potential of proteomic indicators as markers for biological aging attributed to short-term air pollution exposure.
Collapse
Affiliation(s)
- Eunseon Gwak
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ji-Won Shin
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jong Tae Lee
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Korea University, Seoul, 02841, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Seung-Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Chen J, Lin P, Tang P, Zhu D, Ma R, Meng J. Spatiotemporal heterogeneity of the association between short-term exposure to carbon monoxide and COVID-19 incidence: A multistage time-series study in the continental United States. Heliyon 2024; 10:e33487. [PMID: 39040246 PMCID: PMC11260942 DOI: 10.1016/j.heliyon.2024.e33487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Background Previous research has established carbon monoxide (CO) as a significant air pollutant contributing to coronavirus disease 2019 (COVID-19) transmission. The spatiotemporal heterogeneity in the relationship between short-duration CO exposure and COVID-19 incidence remain underexplored. Investigating such heterogeneity plays a crucial role in designing region-specific cost-effective public health policies, exploring the reasons for heterogeneity, and understanding the temporal trends in the association between CO and an emerging infectious disease such as COVID-19. Methods The 49 states of the continental United States (U.S.) were examined in this study. Initially, we developed time-series generalized additive models (GAMs) for each state to assess the preliminary correlation between daily COVID-19 cases and short-term CO exposure from April 1, 2020, to December 31, 2021. Subsequently, the correlations were compiled utilizing Leroux-prior-based conditional autoregression (LCAR) to achieve a smoothed spatial distribution. Finally, we integrated a time-varying component into the GAM and LCAR to analyze temporal correlations and illuminate the factors contributing to spatiotemporal heterogeneity. Results Our analysis revealed that, across the 49 states, a 10-ppb increase in CO concentration was associated with a 1.33 % (95%CI: 0.86%-1.81 %) increase in COVID-19 cases on average. Furthermore, spatial variability was noted, with weaker correlations observed in the central and southeastern regions, stronger associations in the northeastern regions, and negligible associations in the western regions. Temporally, the correlation was not significant from April 2020 to June 2021, but began to increase steadily thereafter until the end of 2021. Additionally, vaccination and temperature were determined to be potential causes contributing to the heterogeneity, indicating stronger positive associations in areas with higher vaccination rates and temperatures. Conclusion The findings of this study underscore the importance of monitoring CO pollution in the central and northeastern US, especially in the aftermath of the pandemic.
Collapse
Affiliation(s)
- Jia Chen
- Department of Otolaryngology - Head and Neck Surgery, The Second People's Hospital of Chengdu, Chengdu, 610000, China
- Department of Otorhinolaryngology - Head and Neck Surgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Ping Lin
- Department of Otolaryngology - Head and Neck Surgery, The Second People's Hospital of Chengdu, Chengdu, 610000, China
| | - Ping Tang
- Department of Otolaryngology - Head and Neck Surgery, The Second People's Hospital of Chengdu, Chengdu, 610000, China
| | - Dajian Zhu
- Department of Otorhinolaryngology, The First People's Hospital of Shuangliu District / West China (Airport) Hospital Sichuan University, Chengdu, 610000, China
| | - Rong Ma
- People's Hospital of Xindu District, Chengdu, 610500, China
| | - Juan Meng
- Department of Otorhinolaryngology - Head and Neck Surgery, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Zhao J, Mei Y, Li A, Zhou Q, Zhao M, Xu J, Li Y, Li K, Yang M, Xu Q. Association between PM 2.5 constituents and cardiometabolic risk factors: Exploring individual and combined effects, and mediating inflammation. CHEMOSPHERE 2024; 359:142251. [PMID: 38710413 DOI: 10.1016/j.chemosphere.2024.142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The individual and combined effects of PM2.5 constituents on cardiometabolic risk factors are sparsely investigated. Besides, the key cardiometabolic risk factor that PM2.5 constituents targeted and the biological mechanisms remain unclear. METHOD A multistage, stratified cluster sampling survey was conducted in two typically air-polluted Chinese cities. The PM2.5 and its constituents including sulfate, nitrate, ammonium, organic matter, and black carbon were predicted using a machine learning model. Twenty biomarkers in three category were simultaneously adopted as cardiometabolic risk factors. We explored the individual and mixture association of long-term PM2.5 constituents with these markers using generalized additive model and quantile-based g-computation, respectively. To minimize potential confounding effects, we accounted for covariates including demographic, lifestyle, meteorological, temporal trends, and disease-related information. We further used ROC curve and mediation analysis to identify the key subclinical indicators and explore whether inflammatory mediators mediate such association, respectively. RESULT PM2.5 constituents was positively correlated with HOMA-B, TC, TG, LDL-C and LCI, and negatively correlated with PP and RC. Further, PM2.5 constituent mixture was positive associated with DBP, MAP, HbA1c, HOMA-B, AC, CRI-1 and CRI-2, and negative associated with PP and HDL-C. The ROC analysis further reveals that multiple cardiometabolic risk factors can collectively discriminate exposure to PM2.5 constituents (AUC>0.9), among which PP and CRI-2 as individual indicators exhibit better identifiable performance for nitrate and ammonium (AUC>0.75). We also found that multiple blood lipid indicators may be affected by PM2.5 and its constituents, possibly mediated through complement C3 or hsCRP. CONCLUSION Our study suggested associations of individual and combined PM2.5 constituents exposure with cardiometabolic risk factors. PP and CRI-2 were the targeted markers of long-term exposure to nitrate and ammonium. Inflammation may serve as a mediating factor between PM2.5 constituents and dyslipidemia, which enhance current understanding of potential pathways for PM2.5-induced preclinical cardiovascular responses.
Collapse
Affiliation(s)
- Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
9
|
Wen T, Puett RC, Liao D, Kanter J, Mittleman MA, Lanzkron SM, Yanosky JD. Short-term air pollution levels and sickle cell disease hospital encounters in South Carolina: A case-crossover analysis. ENVIRONMENTAL RESEARCH 2024; 252:118766. [PMID: 38583660 DOI: 10.1016/j.envres.2024.118766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Sickle cell disease (SCD) is a genetic disorder and symptoms may be sensitive to environmental stressors. Although it has been hypothesized that exposure to outdoor air pollution could trigger acute SCD events, evidence is limited. METHODS We obtained SCD administrative data on hospital encounters in South Carolina from 2002 to 2019. We estimated outdoor air pollutant (particulate matter<2.5 μm (PM2.5), ozone (O3), and PM2.5 elemental carbon (EC) concentrations at residential zip codes using spatio-temporal models. Using a random bi-directional, fixed-interval case-crossover study design, we investigated the relationship between air pollution exposure over 1-, 3-, 5-, 9-, and14-day periods with SCD hospital encounters. RESULTS We studied 8410 patients with 144,129 hospital encounters. We did not observe associations among all patients with SCD and adults for PM2.5, O3, and EC. We observed positive associations among children for 9- and 14-day EC (OR: 1.05 (95% confidence interval (CI): 1.02, 1.08) and OR: 1.05 (95% CI: 1.02, 1.09), respectively) and 9- and 14-day O3 (OR: 1.04 (95%CI: 1.00, 1.08)) for both. CONCLUSIONS Our findings suggest that short-term (within two-weeks) levels of EC and O3 and may be associated with SCD hospital encounters among children. Two-pollutant model results suggest that EC is more likely responsible for effects on SCD than O3. More research is needed to confirm our findings.
Collapse
Affiliation(s)
- Tong Wen
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Robin C Puett
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Julie Kanter
- Division of Hematology and Oncology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Murray A Mittleman
- Department of Epidemiology, TH Chan Harvard School of Public Health, Boston, MA, USA
| | - Sophie M Lanzkron
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
10
|
Jiang Y, Zhu X, Shen Y, He Y, Fan H, Xu X, Zhou L, Zhu Y, Xue X, Zhang Q, Du X, Zhang L, Zhang Y, Liu C, Niu Y, Cai J, Kan H, Chen R. Mechanistic insights into cardiovascular effects of ultrafine particle exposure: A longitudinal panel study. ENVIRONMENT INTERNATIONAL 2024; 187:108714. [PMID: 38718674 DOI: 10.1016/j.envint.2024.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated. OBJECTIVES This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved. METHODS A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses. RESULTS Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0-3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7-12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism. DISCUSSION This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways.
Collapse
Affiliation(s)
- Yixuan Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xinlei Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yu He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Hao Fan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xueyi Xu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Lu Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yixiang Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xiaowei Xue
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Qingli Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xihao Du
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Lina Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yue Niu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Jing Cai
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Renjie Chen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
11
|
Guo Z, Xue H, Fan L, Wu D, Wang Y, Chung Y, Liao Y, Ruan Z, Du W. Differential effects of size-specific particulate matter on frailty transitions among middle-aged and older adults in China: findings from the China Health and Retirement Longitudinal Study (CHARLS), 2015-2018. Int Health 2024; 16:182-193. [PMID: 37161970 PMCID: PMC10939306 DOI: 10.1093/inthealth/ihad033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND This study aimed to assess the long-term effects of size-specific particulate matter (PM) on frailty transitions in middle-aged and older Chinese adults. METHODS We included 13 910 participants ≥45 y of age from the China Health and Retirement Longitudinal Study (CHARLS) for 2015 and 2018 who were classified into three categories in 2015 according to their frailty states: robust, prefrail and frail. Air quality data were obtained from the National Urban Air Quality Real-time Publishing Platform. A two-level logistic regression model was used to examine the association between concentrations of PM and frailty transitions. RESULTS At baseline, the total number of robust, prefrail and frail participants were 7516 (54.0%), 4324 (31.1%) and 2070 (14.9%), respectively. Significant associations were found between PM concentrations and frailty transitions. For each 10 μg/m3 increase in the 3-y averaged 2.5-μm PM (PM2.5) concentrations, the risk of worsening in frailty increased in robust (odds ratio [OR] 1.06 [95% confidence interval {CI} 1.01 to 1.12]) and prefrail (OR 1.07 [95% CI 1.01 to 1.13]) participants, while the probability of improvement in frailty in prefrail (OR 0.91 [95% CI 0.84 to 0.98]) participants decreased. In addition, the associations of PM10 and coarse fraction of PM with frailty transitions showed similar patterns. CONCLUSIONS Long-term exposure to PM was associated with higher risks of worsening and lower risks of improvement in frailty among middle-aged and older adults in China.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lijun Fan
- Department of Medical Insurance, School of Public Health, Southeast University, Nanjing 210009, China
| | - Di Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yiming Wang
- Department of Medical Insurance, School of Public Health, Southeast University, Nanjing 210009, China
| | - Younjin Chung
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Yilan Liao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zengliang Ruan
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wei Du
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
12
|
Jia W, Fu Y, Zhang N, Zhang N, Wang T, Wang Z, Zhang N, Xu J, Yang X, Zhang Q, Li C, Zhang X, Yang W, Han B, Zhang L, Tang N, Bai Z. Ambient PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) associated with pro-thrombotic biomarkers among young healthy adults: A 16 times repeated measurements panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169433. [PMID: 38128672 DOI: 10.1016/j.scitotenv.2023.169433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Studies have shown that the cardio/cerebrovascular toxicity of ambient PM2.5 is related to its bound polycyclic aromatic hydrocarbons (PAHs). Currently, only a few studies have reported the relationship between PM2.5-bound PAHs and promoted blood coagulation and thrombosis, but there isn't a consistent conclusion. Therefore, we conducted a prospective panel study to investigate the association. Thirty-three young healthy adults participated in sixteen repeated visits from 2014 to 2018 in Tianjin, China. During each visit, three pro-thrombotic biomarkers: ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin motif 13), D-dimer and Myeloperoxidase (MPO) were measured. Before each visit, ambient PM2.5 samples were daily collected for one week. Sixteen PAHs were determined using Gas Chromatography-Mass Spectrometer, and the positive matrix factorization (PMF) model was applied to identify the sources. Linear mixed-effects models were fitted to investigate the associations between PM2.5-bound PAHs exposure and the biomarkers. Thirteen time-metrics were defined to identify significant time points of PM2.5-bound PAHs' effects. We observed that the increase of PM2.5-bound PAHs exposure was significantly associated with reduced ADAMTS13, elevated D-dimer and MPO. At lag0, each 5.7 ng/m3 increase in Benzo[j]fluoranthene and per 3.4 ng/m3 increase Dibenz[a,h]anthracene could make a maximum change of -19.08 % in ADAMTS13 and 132.60 % in D-dimer. Additionally, per 16.43 ng/m3 increase in Chrysene could lead to a maximum elevation of 32.14 % in MPO at lag4. The PM2.5-bound PAHs often triggered more significant changes at lag 3,4 and 6. The ambient PM2.5-bound PAHs originated from six sources: coal combustion (43.10 %), biomass combustion (20.77 %), diesel emission (14.78 %), gasoline emission (10.95 %), industrial emission (7.58 %), and cooking emission (2.83 %). The greatest contributors to alterations in ADAMTS13, D-dimer and MPO are industrial emission (-48.43 %), biomass combustion (470.32 %) and diesel emission (13.14 %) at lag4. Our findings indicated that short-term exposure to ambient PM2.5-bound PAHs can induce alterations of pro-thrombotic biomarkers among healthy adults.
Collapse
Affiliation(s)
- Wenhui Jia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yucong Fu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Nan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Ningyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Tong Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Changping Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
14
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
15
|
Guo LH, Zeeshan M, Huang GF, Chen DH, Xie M, Liu J, Dong GH. Influence of Air Pollution Exposures on Cardiometabolic Risk Factors: a Review. Curr Environ Health Rep 2023; 10:501-507. [PMID: 38030873 DOI: 10.1007/s40572-023-00423-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE OF REVIEW The increasing prevalence of cardiometabolic risk factors (CRFs) contributes to the rise in cardiovascular disease. Previous research has established a connection between air pollution and both the development and severity of CRFs. Given the ongoing impact of air pollution on human health, this review aims to summarize the latest research findings and provide an overview of the relationship between different types of air pollutants and CRFs. RECENT FINDINGS CRFs include health conditions like diabetes, obesity, hypertension etc. Air pollution poses significant health risks and encompasses a wide range of pollutant types, air pollutants, such as particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O2). More and more population epidemiological studies have shown a positive correlation between air pollution and CRFs. Although various pollutants have diverse effects on specific cellular molecular pathways, their main influence is on oxidative stress, inflammation response, and impairment of endothelial function. More and more studies have proved that air pollution can promote the occurrence and development of cardiovascular and metabolic risk factors, and the research on the relationship between air pollution and CRFs has grown intensively. An increasing number of studies are using new biological monitoring indicators to assess the occurrence and development of CRFs resulting from exposure to air pollution. Abnormalities in some important biomarkers in the population (such as homocysteine, uric acid, and C-reactive protein) caused by air pollution deserve more attention. Further research is warranted to more fully understand the link between air pollution and novel CRF biomarkers and to investigate potential prevention and interventions that leverage the mechanistic link between air pollution and CRFs.
Collapse
Affiliation(s)
- Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Guo-Feng Huang
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Duo-Hong Chen
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Min Xie
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Jun Liu
- Guangdong Ecological Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Lin L, Huang H, Lei F, Sun T, Chen Z, Qin K, Li M, Hu Y, Huang X, Zhang X, Zhang P, Zhang XJ, She ZG, Cai J, Yang S, Jia P, Li H. Long-Term Exposure to Fine Particulate Constituents and Vascular Damage in a Population with Metabolic Abnormality in China. J Atheroscler Thromb 2023; 30:1552-1567. [PMID: 37032101 PMCID: PMC10627764 DOI: 10.5551/jat.64062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
AIM To date, PM2.5-associated vascular damage in metabolic abnormalities has remained controversial. We knew little about the vascular damage of PM2.5 constituents. Thus, this study aimed to investigate the relationship between long-term exposure to PM2.5 and its constituents and vascular damage in metabolic abnormalities. METHODS A total of 124,387 participants with metabolic abnormalities (defined as at least one metabolic disorder, such as obesity, elevated blood pressure, elevated triglyceride level, elevated fasting glucose level, or low HDL cholesterol level) were recruited in this study from 11 representative centers in China between January 2011 and December 2017. PM2.5 and its constituents (black carbon [BC], organic matter [OM], sulfate [SO42-], nitrate [NO3-], and ammonium salts [NH4+]) were extracted. Elevated brachial-ankle pulse wave velocity (baPWV) (≥ 1,400 cm/s) and declined ankle-brachial index (ABI) (<0.9) indicated vascular damage. Multivariable logistic regression and Quantile g-Computation models were utilized to explore the impact on outcomes. RESULTS Of the 124,387 participants (median age, 49 years), 87,870 (70.64%) were men. One-year lag exposure to PM2.5 and its constituents was significantly associated with vascular damage in single pollutant models. The adjusted odds ratios (OR) for each 1-µg/m3 increase in PM2.5 was 1.013 (95% CI, 1.012-1.015) and 1.031 (95% CI, 1.025-1.037) for elevated baPWV and decreased ABI, respectively. PM2.5 constituents were also associated with vascular damage in multi-pollutant models. Among the PM2.5 constituents, BC (47.17%), SO42- (33.59%), and NH4+ (19.23%) have the highest contribution to elevated baPWV and NO3- (47.89%) and BC (23.50%) to declined ABI. CONCLUSION Chronic exposure to PM2.5 and PM2.5 constituents was related to vascular damage in the abnormal metabolic population in China. The heterogeneous contribution of different PM2.5 constituents to vessel bed damage is worthy of attention when developing targeted strategies.
Collapse
Affiliation(s)
- Lijin Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huxiang Huang
- Department of Respiratory and Critical Care Medicine, Huanggang central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tao Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ze Chen
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kun Qin
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Manyao Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
| | - Yingying Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xuewei Huang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyuan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shujuan Yang
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peng Jia
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan, China
- Hubei Luojia Laboratory, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Huanggang Institute of Translational Medicine, Huanggang, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Zhu Y, Xu H, Wang T, Xie Y, Liu L, He X, Liu C, Zhao Q, Song X, Zheng L, Huang W. Pro-inflammation and pro-atherosclerotic responses to short-term air pollution exposure associated with alterations in sphingolipid ceramides and neutrophil extracellular traps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122301. [PMID: 37541379 DOI: 10.1016/j.envpol.2023.122301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Air pollution has been associated with the development of atherosclerosis; however, the pathophysiological mechanisms underlying pro-atherosclerotic effects of air pollution exposure remain unclear. We conducted a prospective panel study in Beijing and recruited 152 participants with four monthly visits from September 2019 to January 2020. Linear mixed-effect models were applied to estimate the associations linking short-term air pollution exposure to biomarkers relevant to ceramide metabolism, pro-inflammation (neutrophil extracellular traps formation and systemic inflammation) and pro-atherosclerotic responses (endothelial stimulation, plaque instability, coagulation activation, and elevated blood pressure). We further explored whether ceramides and inflammatory indicators could mediate the alterations in the profiles of pro-atherosclerotic responses. We found that significant increases in levels of circulating ceramides of 9.7% (95% CIs: 0.7, 19.5) to 96.9% (95% CIs: 23.1, 214.9) were associated with interquartile range increases in moving averages of ambient air pollutant metrics, including fine particulate matter (PM2.5), black carbon, particles in size fractions of 100-560 nm, nitrogen dioxide, carbon monoxide and sulfur dioxide at prior up to 7 days. Higher air pollution levels were also associated with activated neutrophils (increases in citrullinated histone H3, neutrophil elastase, double-stranded DNA, and myeloperoxidase) and exacerbation of pro-atherosclerotic responses (e.g., increases in vascular endothelial growth factor, lipoprotein-associated phospholipase A2, matrix metalloproteinase-8, P-selectin, and blood pressure). Mediation analyses further showed that dysregulated ceramide metabolism and potentiated inflammation could mediate PM2.5-associated pro-atherosclerotic responses. Our findings extend the understanding on potential mechanisms of air pollution-associated atherosclerosis, and suggest the significance of reducing air pollution as priority in urban environments.
Collapse
Affiliation(s)
- Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xinghou He
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Changjie Liu
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
19
|
McHugh EG, Grady ST, Collins CM, Moy ML, Hart JE, Coull BA, Schwartz JD, Koutrakis P, Zhang J, Garshick E. Pulmonary, inflammatory, and oxidative effects of indoor nitrogen dioxide in patients with COPD. Environ Epidemiol 2023; 7:e271. [PMID: 37840862 PMCID: PMC10569754 DOI: 10.1097/ee9.0000000000000271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Indoor nitrogen dioxide (NO2) sources include gas heating, cooking, and infiltration from outdoors. Associations with pulmonary function, systemic inflammation, and oxidative stress in patients with chronic obstructive pulmonary disease (COPD) are uncertain. Methods We recruited 144 COPD patients at the VA Boston Healthcare System between 2012 and 2017. In-home NO2 was measured using an Ogawa passive sampling badge for a week seasonally followed by measuring plasma biomarkers of systemic inflammation (C-reactive protein [CRP] and interleukin-6 [IL-6]), urinary oxidative stress biomarkers (8-hydroxy-2'deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), and pre- and postbronchodilator spirometry. Linear mixed effects regression with a random intercept for each subject was used to assess associations with weekly NO2. Effect modification by COPD severity and by body mass index (BMI) was examined using multiplicative interaction terms and stratum-specific effect estimates. Results Median (25%ile, 75%ile) concentration of indoor NO2 was 6.8 (4.4, 11.2) ppb. There were no associations observed between NO2 with CRP, 8-OHdG, or MDA. Although the confidence intervals were wide, there was a reduction in prebronchodilator FEV1 and FVC among participants with more severe COPD (FEV1: -17.36 mL; -58.35, 23.60 and FVC: -28.22 mL; -91.49, 35.07) that was greater than in patients with less severe COPD (FEV1: -1.64 mL; -24.80, 21.57 and FVC: -6.22 mL; -42.16, 29.71). In participants with a BMI <30, there was a reduction in FEV1 and FVC. Conclusions Low-level indoor NO2 was not associated with systemic inflammation or oxidative stress. There was a suggestive association with reduced lung function among patients with more severe COPD and among patients with a lower BMI.
Collapse
Affiliation(s)
- Erin G McHugh
- Research and Development Service, VA Boston Healthcare System, Boston, Massachusetts
| | - Stephanie T Grady
- Research and Development Service, VA Boston Healthcare System, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Christina M Collins
- Research and Development Service, VA Boston Healthcare System, Boston, Massachusetts
| | - Marilyn L Moy
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jaime E Hart
- Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Joel D Schwartz
- Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - J Zhang
- Duke University Nicholas School of the Environment, Durham, North Carolina
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, Medical Service, VA Boston Healthcare System, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
20
|
Forte E. Particulate matter pollution and cardiovascular health. NATURE CARDIOVASCULAR RESEARCH 2023; 2:855-857. [PMID: 39196257 DOI: 10.1038/s44161-023-00342-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|
21
|
Wu Y, Meng Y, Yi W, Pan R, Liang Y, Li Y, Jin X, Sun X, Yan S, Mei L, Song J, Song S, Cheng J, Su H. The ratio of monocyte count and high-density lipoprotein cholesterol mediates the association between urinary tungsten and cardiovascular disease: a study from NHANES 2005-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85930-85939. [PMID: 37400701 DOI: 10.1007/s11356-023-28214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Tungsten (W) is an emerging contaminant that can damage multiple systems in humans. However, studies of its effects on cardiovascular disease (CVD) are limited. The monocyte count to high-density lipoprotein cholesterol ratio (MHR) is a composite inflammatory index of great concern in recent years, derived from lipid and cell inflammation parameters, that is used to indicate the risk of CVD. This study aimed to investigate the association between urinary W and CVD in the general population and compare the mediating effects of lipids, cell inflammatory parameters, and MHR to find a better target for intervention. We analyzed data from 9137 (≥ 20 years) participants in the National Health and Nutrition Examination Survey (NHANES), from 2005 to 2018. Restricted cubic splines (RCS) and survey-weighted generalized linear models (SWGLMs) were used to assess the relationship between W and CVD. Mediated analyses were used to explore lipids, cell inflammatory parameters, and MHR in the possible mediating pathways between W and CVD. In SWGLM, we found that W enhances the risk of CVD, especially congestive heart failure (CHF), coronary heart disease (CHD), and angina pectoris (AP). Women, higher age groups (≥ 55 years), and those with hypertension were vulnerable to W in the subgroup analysis. Mediation analysis showed that monocyte count (MC), white blood cell count (WBC), high-density lipoprotein cholesterol (HDL), and MHR played a mediating role between W and CVD in proportions of 8.49%, 3.70%, 5.18%, and 12.95%, respectively. In conclusion, our study shows that urinary W can increase the risk of CVD, especially for CHF, CHD, and AP. Women, older age groups, and people with hypertension seem to be more vulnerable to W. In addition, MC, WBC, HDL, and MHR mediated the association between W and CVD, especially MHR, which suggests that we should consider it as a priority intervention target in the future.
Collapse
Affiliation(s)
- Yudong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Yajie Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211112, Jiangsu, China
| | - Weizhuo Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Yunfeng Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Yuxuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Xiaoyu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Xiaoni Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Shuangshuang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Lu Mei
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Jian Song
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Shasha Song
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, 230032, Anhui, China.
| |
Collapse
|
22
|
Kulick ER, Eliot MN, Szpiro AA, Coull BA, Tinker LF, Eaton CB, Whitsel EA, Stewart JD, Kaufman JD, Wellenius GA. Long-term exposure to ambient particulate matter and stroke etiology: Results from the Women's Health Initiative. ENVIRONMENTAL RESEARCH 2023; 224:115519. [PMID: 36813070 PMCID: PMC10074439 DOI: 10.1016/j.envres.2023.115519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) air pollution is a leading cause of global disability and accounts for an annual 2.9 million deaths globally. PM is established as an important risk factor for cardiovascular disease, however the evidence supporting a link specifically between long-term exposure to ambient PM and incident stroke is less clear. We sought to evaluate the association of long-term exposure to different size fractions of ambient PM with incident stroke (overall and by etiologic subtypes) and cerebrovascular deaths within the Women's Health Initiative, a large prospective study of older women in the US. METHODS We studied 155,410 postmenopausal women without previous cerebrovascular disease enrolled into the study between 1993 and 1998, with follow-up through 2010. We assessed geocoded participant address-specific concentrations of ambient PM (fine [PM2.5], respirable [PM10] and coarse [PM10-2.5]), as well as nitrogen dioxide [NO2] using spatiotemporal models. We classified hospitalization events into ischemic, hemorrhagic, or other/unclassified stroke. Cerebrovascular mortality was defined as death from any stroke etiology. We used Cox proportional hazard models to calculate hazard ratios (HR) and 95% confidence intervals (CI), adjusting for individual and neighborhood-level characteristics. RESULTS During a median follow-up time of 15 years, participants experienced 4,556 cerebrovascular events. The hazard ratio for all cerebrovascular events was 2.14 (95% CI: 1.87, 2.44) comparing the top versus bottom quartiles of PM2.5. Similarly, there was a statistically significant increase in events comparing the top versus bottom quartiles of PM10 and NO2 (HR: 1.17; 95% CI: 1.03, 1.33 and HR:1.26; 95% CI: 1.12, 1.42). The strength of association did not vary substantially by stroke etiology. There was little evidence of an association between PMcoarse and incident cerebrovascular events. CONCLUSIONS Long-term exposure to fine (PM2.5) and respirable (PM10) particulate matter as well as NO2 was associated with a significant increase of cerebrovascular events among postmenopausal women. Strength of the associations were consistent by stroke etiology.
Collapse
Affiliation(s)
- Erin R Kulick
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| | - Melissa N Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Memorial Hospital of Rhode Island and Alpert Medical School of Brown University, Pawtucket, RI, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Joel D Kaufman
- Departments of Environmental and Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, WA, USA
| | - Gregory A Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA; Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
23
|
Hedbrant A, Engström C, Andersson L, Eklund D, Westberg H, Persson A, Särndahl E. Occupational quartz and particle exposure affect systemic levels of inflammatory markers related to inflammasome activation and cardiovascular disease. Environ Health 2023; 22:25. [PMID: 36907865 PMCID: PMC10009934 DOI: 10.1186/s12940-023-00980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The inflammatory responses are central components of diseases associated with particulate matter (PM) exposure, including systemic diseases such as cardiovascular diseases (CVDs). The aim of this study was to determine if exposure to PM, including respirable dust or quartz in the iron foundry environment mediates systemic inflammatory responses, focusing on the NLRP3 inflammasome and novel or established inflammatory markers of CVDs. METHODS The exposure to PM, including respirable dust, metals and quartz were determined in 40 foundry workers at two separate occasions per worker. In addition, blood samples were collected both pre-shift and post-shift and quantified for inflammatory markers. The respirable dust and quartz exposures were correlated to levels of inflammatory markers in blood using Pearson, Kendall τ and mixed model statistics. Analyzed inflammatory markers included: 1) general markers of inflammation, including interleukins, chemokines, acute phase proteins, and white blood cell counts, 2) novel or established inflammatory markers of CVD, such as growth/differentiation factor-15 (GDF-15), CD40 ligand, soluble suppressor of tumorigenesis 2 (sST2), intercellular/vascular adhesion molecule-1 (ICAM-1, VCAM-1), and myeloperoxidase (MPO), and 3) NLRP3 inflammasome-related markers, including interleukin (IL)-1β, IL-18, IL-1 receptor antagonist (IL-1Ra), and caspase-1 activity. RESULTS The average respirator adjusted exposure level to respirable dust and quartz for the 40 foundry workers included in the study was 0.65 and 0.020 mg/m3, respectively. Respirable quartz exposure correlated with several NLRP3 inflammasome-related markers, including plasma levels of IL-1β and IL-18, and several caspase-1 activity measures in monocytes, demonstrating a reverse relationship. Respirable dust exposure mainly correlated with non-inflammasome related markers like CXCL8 and sST2. CONCLUSIONS The finding that NLRP3 inflammasome-related markers correlated with PM and quartz exposure suggest that this potent inflammatory cellular mechanism indeed is affected even at current exposure levels in Swedish iron foundries. The results highlight concerns regarding the safety of current exposure limits to respirable dust and quartz, and encourage continuous efforts to reduce exposure in dust and quartz exposed industries.
Collapse
Affiliation(s)
- Alexander Hedbrant
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden.
| | - Christopher Engström
- Division of Mathematics and Physics, The School of Education, Culture and Communication, Mälardalen University, Box 883, 721 23, Västerås, Sweden
| | - Lena Andersson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, 701 85, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| | - Håkan Westberg
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, 701 85, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, 701 82, Örebro, Sweden
| |
Collapse
|
24
|
Mortillo M, Marsit CJ. Select Early-Life Environmental Exposures and DNA Methylation in the Placenta. Curr Environ Health Rep 2023; 10:22-34. [PMID: 36469294 PMCID: PMC10152976 DOI: 10.1007/s40572-022-00385-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
Abstract
PURPOSE OF REVIEW To summarize recent literature relating early-life environmental exposures on DNA methylation in the placenta, to identify how variation in placental methylation is regulated in an exposure-specific manner, and to encourage additional work in this area. RECENT FINDINGS Multiple studies have evaluated associations between prenatal environmental exposures and placental methylation in both gene-specific and epigenome-wide frameworks. Specific exposures lead to unique variability in methylation, and cross-exposure assessments have uncovered certain genes that demonstrate consistency in differential placental methylation. Exposure studies that assess methylation effects in a trimester-specific approach tend to find larger effects during the 1st trimester exposure. Earlier studies have more targeted gene-specific approaches to methylation, while later studies have shifted towards epigenome-wide, array-based approaches. Studies focusing on exposures such as air pollution, maternal smoking, environmental contaminants, and trace metals appear to be more abundant, while studies of socioeconomic adversity and circadian disruption are scarce but demonstrate remarkable effects. Understanding the impacts of early-life environmental exposures on placental methylation is critical to establishing the link between the maternal environment, epigenetic variation, and long-term health. Future studies into this field should incorporate repeated measures of exposure throughout pregnancy, in order to determine the critical windows in which placental methylation is most heavily affected. Additionally, the use of methylation-based scores and sequencing technology could provide important insights into epigenetic gestational age and uncovering more genomic regions where methylation is affected. Studies examining the impact of other exposures on methylation, including pesticides, alcohol, and other chemicals are also warranted.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| |
Collapse
|
25
|
Deng Z, Tan C, Pan J, Xiang Y, Shi G, Huang Y, Xiong Y, Xu K. Mining biomarkers from routine laboratory tests in clinical records associated with air pollution health risk assessment. ENVIRONMENTAL RESEARCH 2023; 216:114639. [PMID: 36309217 DOI: 10.1016/j.envres.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Clinical laboratory in hospital can produce amounts of health data every day. The purpose of this study was to mine biomarkers from clinical laboratory big data associated with the air pollution health risk assessment using clinical records. 13, 045, 629 clinical records of all 27 routine laboratory tests in Changsha Central Hospital, including ALB, TBIL, ALT, DBIL, AST, TP, UREA, UA, CREA, GLU, CK, CKMB, LDL-C, TG, TC, HDL-C, CRP, WBC, Na, K, Ca, Cl, APTT, PT, FIB, TT, RBC and those daily air pollutants concentration monitoring data of Changsha, including PM2.5, PM10, SO2, NO2, CO, and O3 from 2014 to 2016, were retrieved. The moving average method was used to the biological reference interval was established. The tests results were converted into daily abnormal rate. After data cleaning, GAM statistical model construction and data analysis, a concentration-response relationship between air pollutants and daily abnormal rate of routine laboratory tests was observed. Our study found that PM2.5 had a stable association with TP (lag07), ALB (lag07), ALT (lag07), AST (lag07), TBIL (lag07), DBIL (lag07), UREA (lag07), CREA (lag07), UA (lag07), CK (lag 06), GLU (lag07), WBC (lag07), Cl (lag07) and Ca (lag07), (P < 0.05); O3 had a stable association with AST (lag01), CKMB (lag06), TG (lag07), TC (lag05), HDL-C (lag07), K (lag05) and RBC (lag07) (P < 0.05); CO had a stable association with UREA (lag07), Na (lag7) and PT (lag07) (P < 0.05); SO2 had a stable association with TP (lag07) and LDL-C (lag0) (P < 0.05); NO2 had a stable association with APTT (lag7) (P < 0.05). These results showed that different air pollutants affected different routine laboratory tests and presented different pedigrees. Therefore, biomarkers mined from routine laboratory tests may potentially be used to low-cost assess the health risks associated with air pollutants.
Collapse
Affiliation(s)
- Zhonghua Deng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China; Department of Medical Laboratory, Hunan Provincial People's Hospital, Changsha, 410005, PR China; The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, PR China
| | - Chaochao Tan
- Department of Medical Laboratory, Hunan Provincial People's Hospital, Changsha, 410005, PR China; The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, PR China
| | - Jianhua Pan
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Yangen Xiang
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Guomin Shi
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Yue Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yican Xiong
- Department of Gastrointestinal Pediatric Surgery, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Keqian Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
26
|
Mei Y, Li A, Zhao J, Zhou Q, Zhao M, Xu J, Li R, Li Y, Li K, Ge X, Guo C, Wei Y, Xu Q. Association of long-term air pollution exposure with the risk of prediabetes and diabetes: Systematic perspective from inflammatory mechanisms, glucose homeostasis pathway to preventive strategies. ENVIRONMENTAL RESEARCH 2023; 216:114472. [PMID: 36209785 DOI: 10.1016/j.envres.2022.114472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Limited evidence suggests the association of air pollutants with a series of diabetic cascades including inflammatory pathways, glucose homeostasis disorder, and prediabetes and diabetes. Subclinical strategies for preventing such pollutants-induced effects remain unknown. METHODS We conducted a cross-sectional study in two typically air-polluted Chinese cities in 2018-2020. One-year average PM1, PM2.5, PM10, SO2, NO2, and O3 were calculated according to participants' residence. GAM multinomial logistic regression was performed to investigate the association of air pollutants with diabetes status. GAM and quantile g-computation were respectively performed to investigate individual and joint effects of air pollutants on glucose homeostasis markers (glucose, insulin, HbA1c, HOMA-IR, HOMA-B and HOMA-S). Complement C3 and hsCRP were analyzed as potential mediators. The ABCS criteria and hemoglobin glycation index (HGI) were examined for their potential in preventive strategy. RESULTS Long-term air pollutants exposure was associated with the risk of prediabetes [Prevalence ratio for O3 (PR_O3) = 1.96 (95% CI: 1.24, 3.03)] and diabetes [PR_PM1 = 1.18 (95% CI: 1.05, 1.32); PR_PM2.5 = 1.08 (95% CI: 1.00, 1.16); PR_O3 = 1.35 (95% CI: 1.03, 1.74)]. PM1, PM10, SO2 or O3 exposure was associated with glucose-homeostasis disorder. For example, O3 exposure was associated with increased levels of glucose [7.67% (95% CI: 1.75, 13.92)], insulin [19.98% (95% CI: 4.53, 37.72)], HOMA-IR [34.88% (95% CI: 13.81, 59.84)], and decreased levels of HOMA-S [-25.88% (95% CI: -37.46, -12.16)]. Complement C3 and hsCRP played mediating roles in these relationships with proportion mediated ranging from 6.95% to 60.64%. Participants with HGI ≤ -0.53 were protected from the adverse effects of air pollutants. CONCLUSION Our study provides comprehensive insights into air pollutant-associated diabetic cascade and suggests subclinical preventive strategies.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
27
|
Liu F, Zhang K, Chen G, He J, Pan M, Zhou F, Wang X, Tong J, Guo Y, Li S, Xiang H. Sustained air pollution exposures, fasting plasma glucose, glycated haemoglobin, prevalence and incidence of diabetes: a nationwide study in China. Int J Epidemiol 2022; 51:1862-1873. [PMID: 35947763 DOI: 10.1093/ije/dyac162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Evidence remains limited and inconsistent for the associations between sustained air pollution exposures and diabetes development. This study aimed to determine the potential effects of particulate matter with a diameter of ≤10 micrometres (PM10), particulate matter with a diameter of ≤2.5 micrometres (PM2.5) and nitrogen dioxide (NO2) on alterations of fasting plasma glucose (FPG), glycated haemoglobin (HbA1c), in particular, on prevalence and incidence of diabetes. METHODS Cross-sectional analyses were conducted based on 9628 participants aged ≥45 years from the baseline survey (2011) of the China Health and Retirement Longitudinal Study (CHARLS), whereas cohort analyses were based on 3510 individuals without diabetes at baseline in the third survey (2015). Residences of participants were geocoded and the air pollution exposures were estimated using a satellite-based spatiotemporal model. Linear, logistic and modified Poisson regression models, adjusting for multiple confounders, were applied to assess the associations between air pollution and FPG, HbA1c, prevalence and incidence of diabetes, respectively. RESULTS Associations between PM10, PM2.5 and increased levels of FPG and HbA1c were identified. The levels of FPG and HbA1c increased by 0.025 mmol/L (95% CI: 0.007, 0.044) and 0.011 mmol/L (95% CI: 0.002, 0.019), respectively, for a 10-μg/m3 increase in PM10, and the levels of FPG and HbA1c increased by 0.061 mmol/L (95% CI: 0.028, 0.096) and 0.016 mmol/L (95% CI: 0.000, 0.031), respectively, for a 10-μg/m3 increase in PM2.5. There were also positive associations between diabetes prevalence and PM2.5 and PM10. In the cohort analyses, PM10, PM2.5 and NO2 were associated with a higher incidence of diabetes. CONCLUSION Air pollution was allied to diabetes development in elderly Chinese populations. Considering the impact of the dramatic increase in the incidence and prevalence of diabetes in China, interventions to improve air quality are urgently needed.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Ke Zhang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie He
- Department of Environmental Health Sciences, School of Public Health, University of Michigan-Ann Arbor, Ann Arbor, USA
| | - Mengnan Pan
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Feng Zhou
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Xiangxiang Wang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Jiahui Tong
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan, China
- Global Health Institute, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
28
|
Wang K, Wang W, Lei L, Lan Y, Liu Q, Ren L, Wu S. Association between short-term exposure to ambient air pollution and biomarkers of coagulation: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 215:114210. [PMID: 36030918 DOI: 10.1016/j.envres.2022.114210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Ambient air pollution is one of the major global risk factors for cardiovascular health, and coagulation changes have been proposed to mediate this risk. Plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), soluble P-selectin (sP-selectin) and tissue plasminogen activator (t-PA) are major coagulation biomarkers. However, there has been no systematic meta-analysis to summarize associations of ambient air pollution with these coagulation biomarkers. To assess the overall associations between ambient particulate matter (PM2.5, PM10), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO) and major coagulation biomarkers including PAI-1, vWF, sP-selectin and t-PA based on the existing epidemiological research. We performed a systematic literature search of publications reporting the associations of ambient air pollutants (PM2.5, PM10, O3, NO2, and CO) with coagulation biomarkers (PAI-1, vWF, sP-selectin and t-PA) in PubMed, Web of Science, EMBASE, and Scopus databases as of April 5, 2022. Then, we performed a random-effect meta-analysis, which included 27 articles, and then identified the potential sources of heterogeneity. The pooled percent changes of coagulation biomarkers per 10 μg/m3 increase in short-term exposure to ambient PM2.5 were 2.43% (95% CI: 0.59%, 4.29%) in PAI-1, 1.08% (95% CI: 0.21%, 1.96%) in vWF and 1.14% (95% CI: 0.59%, 1.68%) in sP-selectin, respectively. We also found significant associations of short-term exposure to ambient O3 with PAI-1 (1.62%, 95% CI: 0.01%, 3.25%), sP-selectin (9.59%, 95% CI:2.78%, 16.86%) and t-PA (0.45%, 95% CI: 0.02%, 0.88%), respectively. Short-term exposures to ambient PM10, NO2 and CO were not significantly associated with changes in coagulation biomarkers. In conclusion, short-term exposures to PM2.5 and O3 are associated with significant increases in coagulation biomarkers, suggesting an activated coagulation state upon air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
29
|
Wang J, Li D, Sun Y, Tian Y. Air pollutants, genetic factors, and risk of chronic kidney disease: Findings from the UK Biobank. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114219. [PMID: 36306611 DOI: 10.1016/j.ecoenv.2022.114219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Experiment studies have suggested the emerging role of air pollutants in chronic kidney disease (CKD). However, only a few population studies conducted in Asia and North America have assessed their association, and the conclusions remained controversial. This study aims to investigate the effect of air pollutants exposure on CKD in the European population and first explores the modification effect of genetic risk on this association. METHODS 458,968 participants from the UK Biobank were included in this study. Cox proportional hazards model was used to assess the associations of air pollutants (PM2.5, PM10, NO2, and NOx) with incident CKD. A genetic risk score of 53 single nucleotide polymorphisms was constructed to represent the genetic susceptibility to CKD. To assess the interaction effect between air pollutants and the genetic risk, we added a multiplicative interaction term and did a stratified analysis. RESULTS During a median follow-up of 11.7 years, 16,637 incidents of CKD were identified. We observed positive associations between air pollutants exposure and CKD risk with the HRs for CKD were 1.09 (1.07, 1.11), 1.08 (1.06, 1.10), 1.05 (1.03, 1.07), 1.06 (1.04, 1.08) with per IQR (interquartile range) increment in PM2.5, PM10, NO2, and NOx, respectively. Stratified analysis showed that the associations between air pollutants and CKD were modest and marginal in the high genetic risk population (P > 0.05), while the associations were statistically significant in the low and intermediate genetic risk groups. CONCLUSIONS Our study indicated that exposure to various air pollutants, including PM2.5, PM10, NO2, and NOx, was associated with an elevated risk of CKD. This finding provide evidence that formulating strategies to improve air quality can be helpful to reduce the burden of CKD.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dankang Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaohua Tian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Khreis H, Bredell C, Wai Fung K, Hong L, Szybka M, Phillips V, Abbas A, Lim YH, Jovanovic Andersen Z, Woodcock J, Brayne C. Impact of long-term air pollution exposure on incidence of neurodegenerative diseases: A protocol for a systematic review and exposure-response meta-analysis. ENVIRONMENT INTERNATIONAL 2022; 170:107596. [PMID: 36308811 DOI: 10.1016/j.envint.2022.107596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ambient air pollution is a pervasive and ubiquitous hazard, which has been linked to premature morbidity and a growing number of morbidity endpoints. Air pollution may be linked to neurodegeneration, and via this or other pathways, to neurodegenerative diseases. Emerging evidence suggests that air pollution may contribute to neurodegenerative diseases such as dementia, Parkinson's Disease (PD), Multiple Sclerosis (MS) and Motor Neuron Diseases (MND), although this evidence remains inconsistent and very limited for MS and MND. In addition, this evidence base is rapidly emerging and would benefit from a wide and critical synthesis, including a better understanding of heterogeneity. OBJECTIVES In this paper, we present a protocol for a systematic review and meta-analysis and specify our methods a priori. The main aim of the planned systematic review is to answer the question of whether long-term exposure (>1 year) to ambient (outdoor) air pollution (exposure, compared to lower exposure) increases the risk of adult (population) incidence of neurodegenerative diseases (outcomes) in epidemiological observational studies (study design). Another aim is to meta-analyze the associations between long-term exposure to ambient air pollutants and the risk of the selected outcomes and assess the shape of exposure-response functions. To set the stage for the proposed work, we also overview the existing epidemiological evidence in this protocol, but do not critically evaluate it, as these results will be fully presented in the planned systematic review. SEARCH AND STUDY ELIGIBILITY We will search the electronic databases Medline (via Ovid), Embase (via Ovid), Cochrane Library, Cinahl (via Ebscohost), Global Health (via Ebscohost), PsycINFO (via Ebscohost), Scopus, Web of Science (Core Collection), from inception to October 2022. Eligible studies must contain primary research investigating the link between 1-year + exposure to any outdoor air pollutant, from any source, and dementia, PD, MS, and MND, or dementia subtypes: Alzheimer's Disease, vascular dementia, and mixed dementia. The search strategy and eligibility criteria are pre-determined and described in full in this protocol. STUDY APPRAISAL AND SYNTHESIS METHODS Articles will be stored and screened using Rayyan QCRI. Title and abstract screening, full text review, data extraction, risk of bias assessment and data preparation for statistical analysis will be conducted independently by two reviewers using pre-defined forms and criteria, described in this protocol. All these steps will also be piloted and the forms and/or methods adapted if issues arise. Meta-analysis and assessment of the shape of the exposure-response functions will be conducted if four independent exposure-outcomes pairs are available, and the remainder of results will be synthesized in the forms of tables and via a narrative summary. Certainty in the body of evidence will be assessed using the OHAT approach. This protocol describes the planned analysis and synthesis a priori and serves to increase transparency and impact of this systematic review and meta-analysis.
Collapse
Affiliation(s)
- Haneen Khreis
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom.
| | - Christiaan Bredell
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Kwan Wai Fung
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Lucy Hong
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Magdalena Szybka
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Veronica Phillips
- University of Cambridge Medical Library, University of Cambridge School of Clinical Medicine, Hills Rd, Cambridge CB2 0SP, United Kingdom
| | - Ali Abbas
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Youn-Hee Lim
- Section of Environmental and Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 15 Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental and Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 15 Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - James Woodcock
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge CB2 0SR, United Kingdom
| |
Collapse
|
31
|
Wang Y, Xin Y, Wang XX, Zhang YL, Zhang Y, Wang Y, Peng L, Wu YC. Ambient fine particulate pollution hysteresis triggers wake-up stroke and rapidly triggers non-wake-up stroke: a case-crossover study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82243-82255. [PMID: 35748992 DOI: 10.1007/s11356-022-21458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric pollutants increase the risk of acute ischemic stroke (AIS) which has been widely reported. However, little is known about the relationships between air pollution and specific subsets of AIS, such as wake-up stroke (WUS) and non-wake-up stroke (non-WUS). This study aimed to explore the relationship between WUS and non-WUS and atmospheric pollutants. A total of 1432 patients (331 WUS patients and 1101 non-WUS patients) were admitted to a tertiary hospital from 2016 to 2019. A time-stratified case-crossover design and a conditional logistic regression model to study the associations of change in pollutant concentration with WUS and non-WUS events were constructed. Data analysis revealed that WUS-related risks increased 48 to 72 h after the increase in the PM2.5 concentration (each 10 μg/m3 increase, lag 0-72 h) [threshold OR (95% CI):18 μg/m3 1.03 (0.94-1.11), 35 μg/m3 1.01 (0.92-1.12), 50 μg/m3 1.04 (0.91-1.19)]; the non-WUS-related risk increased 1 to 6 h after the increase in the PM2.5 concentration (each 10 μg/m3 increase, lag 0-1 h) [threshold OR (95% CI):18 μg/m3 1.01 (0.98-1.03), 35 μg/m3 1.00 (0.97-1.04), 50 μg/m3 1.01 (0.96-1.05)] (lag 0-6 h) [threshold OR (95% CI): 18 μg/m3 1.00 (0.97-1.03), 35 μg/m3 1.00 (0.97-1.04), 50 μg/m3 1.01 (0.97-1.06)]; O3 exposure was related to WUS events, and its impact on WUS events was stronger and longer-lasting (1-96 h) than its impact on non-WUS events (1-6 h). Greater than or equal to 65 years of age, overweight (BMI ≥ 25), and diabetes had a significantly greater risk of WUS associated with increased PM2.5 concentration in the previous 12-96 h than patients without these conditions. Patients with hypertension and smoking had a significant risk of non-WUS associated with increased PM2.5 concentration in the previous 1-6 h. The increase in PM2.5 concentration in the cold season increased the risk of both WUS and non-WUS events. Ambient air pollution hysteresis triggers WUS and rapidly triggers non-WUS, even if the degree of pollutant is relatively low. Patients with elderly, overweight, and diabetes appeared particularly susceptible to WUS, and patients with hypertension and smoking history were susceptible to non-WUS. We need to expand the sample for further investigation into mechanisms by which environmental pollutants trigger WUS or non-WUS.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
| | - Yuan Xin
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xi-Xi Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
| | - Yu-Lei Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yu Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, 200135, People's Republic of China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
32
|
Xu R, Tian Q, Wei J, Ye Y, Li Y, Lin Q, Wang Y, Liu L, Shi C, Xia W, Liu Y. Short-term exposure to ambient air pollution and readmissions for heart failure among 3660 post-discharge patients with hypertension in older Chinese adults. J Epidemiol Community Health 2022; 76:984-990. [PMID: 36198486 DOI: 10.1136/jech-2022-219676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Despite ambient air pollution being associated with various adverse cardiovascular outcomes, the acute effects of ambient air pollution on hospital readmissions for heart failure (HF) among post-discharge patients with hypertension remain less understood. METHODS We conducted a time-stratified case-crossover study among 3660 subjects 60 years or older who were admitted to hospital for HF after discharge for hypertension in Guangzhou, China during 2016-2019. For each subject, individualised residential exposures to ambient particulate matter with an aerodynamic diameter ≤1 µm (PM1), ≤2.5 µm (PM2.5), ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone were extracted from our validated grid dataset. RESULTS An IQR increase of lag 04-day exposure to PM1 (IQR: 11.6 μg/m3), PM2.5 (IQR 21.9 μg/m3), PM10 (IQR 35.0 μg/m3), SO2 (IQR 4.4 μg/m3), NO2 (IQR 23.3 μg/m3) and CO (IQR 0.25 mg/m3) was significantly associated with a 9.77% (95% CI 2.21% to 17.89%), 8.74% (95% CI 1.05% to 17.00%), 13.93% (95% CI 5.36% to 23.20%), 10.81% (95% CI 1.82% to 20.60%), 14.97% (95% CI 8.05% to 22.34%) and 7.37% (95% CI 0.98% to 14.16%) increase in odds of HF readmissions, respectively. With adjustment for other pollutants, the association for NO2 exposure remained stable, while the associations for PM1, PM2.5, PM10, SO2 and CO exposures became insignificant. Overall, an estimated 19.86% of HF readmissions were attributable to NO2 exposure, while reducing NO2 exposure to the WHO and China air quality standards would avoid 12.87% and 0.54% of readmissions, respectively. No susceptible populations were observed by sex, age or season. CONCLUSION Short-term exposure to ambient NO2 was significantly associated with an increased odds of HF readmissions among post-discharge patients with hypertension in older Chinese adults.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi Tian
- Department of Statistics, Guangzhou Health Technology Identification and Human Resources Assessment Center, Guangzhou, Guangdong, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland at College Park, College Park, Maryland, USA
| | - Yunshao Ye
- Department of Statistics, Guangzhou Health Technology Identification and Human Resources Assessment Center, Guangzhou, Guangdong, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiaoxuan Lin
- Department of Statistics, Guangzhou Health Technology Identification and Human Resources Assessment Center, Guangzhou, Guangdong, China
| | - Yaqi Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Li W, Lin G, Xiao Z, Zhang Y, Li B, Zhou Y, Ma Y, Chai E. A review of respirable fine particulate matter (PM2.5)-induced brain damage. Front Mol Neurosci 2022; 15:967174. [PMID: 36157076 PMCID: PMC9491465 DOI: 10.3389/fnmol.2022.967174] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Respirable fine particulate matter (PM2.5) has been one of the most widely publicized indicators of pollution in recent years. Epidemiological studies have established a strong association between PM2.5, lung disease, and cardiovascular disease. Recent studies have shown that PM2.5 is also strongly associated with brain damage, mainly cerebrovascular damage (stroke) and neurological damage to the brain (changes in cognitive function, dementia, psychiatric disorders, etc.). PM2.5 can pass through the lung–gas–blood barrier and the “gut–microbial–brain” axis to cause systemic oxidative stress and inflammation, or directly enter brain tissue via the olfactory nerve, eventually damaging the cerebral blood vessels and brain nerves. It is worth mentioning that there is a time window for PM2.5-induced brain damage to repair itself. However, the exact pathophysiological mechanisms of brain injury and brain repair are not yet fully understood. This article collects and discusses the mechanisms of PM2.5-induced brain injury and self-repair after injury, which may provide new ideas for the prevention and treatment of cerebrovascular and cerebral neurological diseases.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical Medical College of Gansu University of Chinese Medical, Lan Zhou, China
- Cerebrovascular Disease Center of Gansu Provincial People's Hospital, Lan Zhou, China
- Key Laboratory of Cerebrovascular Diseases in Gansu Province, Lan Zhou, China
| | - Guohui Lin
- Day Treatment Center II of Gansu Provincial Maternity and Child-Care Hospital, Lan Zhou, China
| | - Zaixing Xiao
- Cerebrovascular Disease Center of Gansu Provincial People's Hospital, Lan Zhou, China
- Key Laboratory of Cerebrovascular Diseases in Gansu Province, Lan Zhou, China
| | - Yichuan Zhang
- Cerebrovascular Disease Center of Gansu Provincial People's Hospital, Lan Zhou, China
- Key Laboratory of Cerebrovascular Diseases in Gansu Province, Lan Zhou, China
| | - Bin Li
- Cerebrovascular Disease Center of Gansu Provincial People's Hospital, Lan Zhou, China
- Key Laboratory of Cerebrovascular Diseases in Gansu Province, Lan Zhou, China
| | - Yu Zhou
- Key Laboratory of Cerebrovascular Diseases in Gansu Province, Lan Zhou, China
- The First School of Clinical Medicine of Lanzhou University, Lan Zhou, China
| | - Yong Ma
- Cerebrovascular Disease Center of Gansu Provincial People's Hospital, Lan Zhou, China
- Key Laboratory of Cerebrovascular Diseases in Gansu Province, Lan Zhou, China
| | - Erqing Chai
- Cerebrovascular Disease Center of Gansu Provincial People's Hospital, Lan Zhou, China
- Key Laboratory of Cerebrovascular Diseases in Gansu Province, Lan Zhou, China
- *Correspondence: Erqing Chai
| |
Collapse
|
34
|
Déméautis T, Delles M, Tomaz S, Monneret G, Glehen O, Devouassoux G, George C, Bentaher A. Pathogenic Mechanisms of Secondary Organic Aerosols. Chem Res Toxicol 2022; 35:1146-1161. [PMID: 35737464 DOI: 10.1021/acs.chemrestox.1c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Air pollution represents a major health problem and an economic burden. In recent years, advances in air pollution research has allowed particle fractionation and identification of secondary organic aerosol (SOA). SOA is formed from either biogenic or anthropogenic emissions, through a mass transfer from the gaseous mass to the particulate phase in the atmosphere. They can have deleterious impact on health and the mortality of individuals with chronic inflammatory diseases. The pleiotropic effects of SOA could involve different and interconnected pathogenic mechanisms ranging from oxidative stress, inflammation, and immune system dysfunction. The purpose of this review is to present recent findings about SOA pathogenic roles and potential underlying mechanisms focusing on the lungs; the latter being the primary exposed organ to atmospheric pollutants.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Marie Delles
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Sophie Tomaz
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Guillaume Monneret
- Pathophysiology of Immunosuppression Associated with Systemic Inflammatory Responses, EA7426 (PI3), Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Digestive and Endocrine Surgery Department, University Hospital of Lyon, Lyon South Hospital,165 Chemin du Grand Revoyet 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Pulmonology Department, Croix Rousse Hospital, Lyon Civil Hospices, Lyon 1 Claude Bernard University, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Christian George
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
35
|
Gamrad-Streubel L, Haase LM, Rudolph KK, Rühle K, Bachand AM, Crawford L, Mundt KA, Bünger J, Pallapies D, Taeger D, Casjens S, Molkenthin A, Neumann S, Giesen J, Neumann V, Brüning T, Birk T. Underground salt and potash workers exposed to nitrogen oxides and diesel exhaust: assessment of specific effect biomarkers. Int Arch Occup Environ Health 2022; 95:1817-1828. [PMID: 35583687 PMCID: PMC9630174 DOI: 10.1007/s00420-022-01876-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Purpose Occupational exposure limits (OEL) for nitrogen oxides (NO, NO2) and diesel exhaust (EC-DPM) were reassessed by the German authorities in 2016/2017. We performed a clinical cross-sectional study among salt and potash underground workers exposed to these substances at relatively high levels to examine possible indicators of acute effects on workers’ health. Methods We measured post- versus pre-shift differences in cardiovascular, inflammatory, immune, and respiratory effect biomarkers and assessed their associations with personal exposures measured during the same shift. We also compared post- versus pre-shift differences in biomarker levels between exposure groups defined based on work site and job type. Results None of the above-ground workers exceeded the OEL for NO2 and only 5% exceeded the OEL for EC-DPM exposure. Among underground workers, 33% of miners and 7% underground maintenance workers exceeded the OEL for NO2; the OEL for EC-DPM was exceeded by 56% of miners and 17% of maintenance workers. Some effect biomarkers (thrombocytes, neutrophils, MPO, TNF-α, IgE, FeNO) showed statistically significant differences between pre- versus post-shift measurements; however, there were no consistent associations between pre- and post-shift differences and exposure group or personal exposure measurements during the shift. Conclusions We did not find evidence of associations between workplace exposure to NO, NO2 or EC-DPM and clinically relevant indicators of acute cardiovascular, inflammatory and immune, or respiratory effects among salt and potash underground workers in Germany. Supplementary Information The online version contains supplementary material available at 10.1007/s00420-022-01876-2.
Collapse
Affiliation(s)
- Lisa Gamrad-Streubel
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz1, 45127, Essen, Germany.
| | - Lisa-Marie Haase
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz1, 45127, Essen, Germany
| | - Katharina K Rudolph
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz1, 45127, Essen, Germany
| | - Katrin Rühle
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz1, 45127, Essen, Germany
| | | | | | | | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Dirk Pallapies
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Dirk Taeger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Anja Molkenthin
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Savo Neumann
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Jörg Giesen
- Institute for the Research On Hazardous Substances (IGF), Bochum, Germany
| | - Volker Neumann
- Institute for the Research On Hazardous Substances (IGF), Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Thomas Birk
- Environment and Health, Ramboll Deutschland GmbH, City Tower-Limbecker Platz1, 45127, Essen, Germany
| |
Collapse
|
36
|
Wu YH, Wu CD, Chung MC, Chen CH, Wu LY, Chung CJ, Hsu HT. Long-Term Exposure to Fine Particulate Matter and the Deterioration of Estimated Glomerular Filtration Rate: A Cohort Study in Patients With Pre-End-Stage Renal Disease. Front Public Health 2022; 10:858655. [PMID: 35462847 PMCID: PMC9024125 DOI: 10.3389/fpubh.2022.858655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/11/2022] [Indexed: 12/01/2022] Open
Abstract
Limited literature has explored the effect of air pollutants on chronic kidney disease (CKD) progression, especially for patients with pre-end-stage renal disease (pre-ESRD). In this study, we reported the linear and nonlinear relationships of air pollutants of particles with diameter <2.5 μm (PM2.5) and nitrogen dioxide (NO2) with estimated glomerular filtration rate (eGFR) deterioration after adjusting for smoking status and other traditional clinical factors. This study adopted a retrospective cohort of patients with stage 3b to stage 5 CKD (N = 11,479) from Taichung Veterans General Hospital during January 2006 to December 2020. The eGFR deterioration was defined as a decline in eGFR > 5 ml/min/1.73 m2/year. Hybrid kriging/land-use regression models were used to estimate the individual exposure levels of PM2.5 and NO2. The relationships of air pollutants with eGFR deterioration were evaluated using Cox proportional hazard models. After adjusting for smoking status, baseline eGFR stages, and other traditional clinical factors, the risk of eGFR deterioration was found to increase with increasing PM2.5 and NO2 level (p < 0.0001 and p = 0.041, respectively), especially for those exposed to PM2.5 ≥ 31.44 μg/m3 or NO2 ≥ 15.00 ppb. Similar results were also found in the two-pollutant models. Nonlinear dose-response relationships of eGFR deterioration were observed for concentrations of 26.11 μg/m3 for PM2.5 and 15.06 ppb for NO2. In conclusion, linear and nonlinear associations between PM2.5 and NO2 levels and the incidence risk of eGFR deterioration were observed in patients with pre-ESRD.
Collapse
Affiliation(s)
- Yu-Hsien Wu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- Adjunct Associate Research Fellow, National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Laing-You Wu
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Jung Chung
- Department of Public Health, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Tsung Hsu
- Department of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Luna-Carrascal J, Quintana-Sosa M, Olivero-Verbel J. Genotoxicity biomarkers in car repair workers from Barranquilla, a Colombian Caribbean City. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:263-275. [PMID: 34839807 DOI: 10.1080/15287394.2021.2000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exposure to chemicals and particles generated in automotive repair shops is a common and underestimated problem. The objective of this study was to assess the genotoxic status of auto repair workers with (1) a questionnaire to gather sociodemographic information and self-reported exposure to hazardous chemicals and (2) measurement of various biochemical parameters. Blood and oral mucosa samples were collected from 174 male volunteers from Barranquilla, Colombia, aged 18-55 years: 87 were active car repairmen and 87 were individuals with no known exposure to hazardous chemicals. Peripheral blood lymphocytes were collected for the comet and cytokinesis-blocking micronucleus (CBMN) assays, while oral mucosal epithelium extracted to quantify micronucleated cells (MNC). DNA was extracted to assess polymorphisms in the DNA repair (XRCC1) and metabolism-related genes (GSTT1 and GSTM1) using PCR-RFLP. DNA damage and frequency of micronuclei (MN) in lymphocytes and oral mucosa were significantly higher in exposed compared to control group. In both groups genotypes and allelic variants for XRCC1 and GSTT1 met the Hardy-Weinberg equilibrium (HWE). In contrast, GSTM1 deviated from HWE. In the exposed group genotypic variants were not correlated with DNA damage or MN presence in cells. DNA damage and occurrence of MN in mucosa and lymphocytes correlated with age and time of service (occupational exposure ≥ 3 years). In summary, workers in car repair shops exhibited genotoxic effects depending upon exposure duration in the workplace which occurred independent of DNA repair XRCC1 gene and metabolism genes GSTT1 and GSTM1. Date demonstrate that health authorities improve air quality in auto repair facilities to avoid occupational DNA damage.
Collapse
Affiliation(s)
- Jaime Luna-Carrascal
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Milton Quintana-Sosa
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
38
|
Peng S, Lu T, Liu Y, Li Z, Liu F, Sun J, Chen M, Wang H, Xiang H. Short-term exposure to fine particulate matter and its constituents may affect renal function via oxidative stress: A longitudinal panel study. CHEMOSPHERE 2022; 293:133570. [PMID: 35007609 PMCID: PMC8976286 DOI: 10.1016/j.chemosphere.2022.133570] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/06/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been reported to increase the risks of chronic kidney disease. However, limited research has assessed the effect of PM2.5 and its constituents on renal function, and the underlying mechanism has not been well characterized. We aimed to evaluate the association of PM2.5 and its constituents with kidney indicators and to explore the roles of systematic oxidative stress and inflammation in the association. We conducted a longitudinal panel study among 35 healthy adults before-, intra- and after-the 2019 Wuhan Military World Games. We repeatedly measured 6 renal function parameters and 5 circulating biomarkers of oxidative stress and inflammation at 6 rounds of follow-ups. We monitored hourly personal PM2.5 concentrations with 3 consecutive days and measured 10 metals (metalloids) and 16 polycyclic aromatic hydrocarbons (PAHs) components. The linear mixed-effect models were applied to examine the association between PM2.5 and renal function parameters, and the mediation analysis was performed to explore potential bio-pathways. PM2.5 concentrations across Wuhan showed a slight decrease during the Military Games. We observed significant associations between elevated blood urea nitrogen (BUN) levels and PM2.5 and its several metals and PAHs components. For an interquartile range (IQR) increase of PM2.5, BUN increased 0.42 mmol/L (95% CI: 0.14 to 0.69). On average, an IQR higher of lead (Pb), cadmium (Cd), arsenic (As), selenium (Se), thallium (Tl) and Indeno (1,2,3-cd) pyrene (IPY) were associated with 0.90, 0.65, 0.29, 0.27, 0.26 and 0.90 mmol/L increment of BUN, respectively. Moreover, superoxide dismutase was positively associated with PM2.5 and mediated 18.24% association. Our research indicated that exposure to PM2.5 might affect renal function by activating oxidative stress pathways, in which the constituents of Pb, Cd, As, Se, Tl and IPY might contribute to the associations.
Collapse
Affiliation(s)
- Shouxin Peng
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Tianjun Lu
- Department of Earth Science and Geography, California State University Dominguez Hills, 1000 E. Victoria St, Carson, CA, 90747, USA
| | - Yisi Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Zhaoyuan Li
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Jinhui Sun
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Meijin Chen
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China
| | - Huaiji Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan, 430024, China.
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan, 430071, China; Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
39
|
Faraji M, Mohammadi A, Najmi M, Fallahnezhad M, Sabetkish N, Kazemnejad A, Shokouhi Shoormasti R, Fazlollahi MR, Pourpak Z, Moin M. Exposure to road noise and asthma prevalence in adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23512-23519. [PMID: 34806147 DOI: 10.1007/s11356-021-17531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Noise has been reported as one of the most important risk factors for asthma, but there are some disagreements. This study aimed to investigate the effect of road noise on asthma prevalence in adults. In the current study, 3172 adults were interviewed through the ECRHS standardized questionnaire in Tehran, the capital of Iran. Exposure to road noise was assessed considering distance of individual participants from the noise monitoring stations via the spatial analysis in GIS software. Logistic regression was used to assess the effect of noise on the symptoms of asthma. Findings showed a significant positive association between wheezing with dyspnea as the best marker for asthma and noise levels at daytime (OR 1.03; 0.98-1.05) and nighttime (OR 1.05; 0.84-1.09). Also, a significant positive association was obtained between daytime and nighttime noise levels and other asthma symptoms including wheezing, nocturnal chest tightness, nocturnal dyspnea, wheezing without cold, nocturnal cough, and asthma medication. Association between current asthma and noise level was not significant. There was a significant association between population age and current asthma prevalence (P = 0.001). Therefore, chronic exposure to road noise especially in the nighttime could increase asthma prevalence. So, control of noise sources can be suggested to diminish asthma in adults.
Collapse
Affiliation(s)
- Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Mohammadi
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Najmi
- Center of Non-Communicable Diseases Management, Deputy for Health, Ministry of Health and Medical Education, Tehran, Iran
| | | | - Nastaran Sabetkish
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, No 62, Dr. Qarib's Street, Keshavarz Boulevard, 14185863, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Raheleh Shokouhi Shoormasti
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, No 62, Dr. Qarib's Street, Keshavarz Boulevard, 14185863, Tehran, Iran
| | - Mohammad Reza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, No 62, Dr. Qarib's Street, Keshavarz Boulevard, 14185863, Tehran, Iran.
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, No 62, Dr. Qarib's Street, Keshavarz Boulevard, 14185863, Tehran, Iran
| | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, No 62, Dr. Qarib's Street, Keshavarz Boulevard, 14185863, Tehran, Iran
| |
Collapse
|
40
|
Zazueta C, Jimenez-Uribe AP, Pedraza-Chaverri J, Buelna-Chontal M. Genetic Variations on Redox Control in Cardiometabolic Diseases: The Role of Nrf2. Antioxidants (Basel) 2022; 11:antiox11030507. [PMID: 35326157 PMCID: PMC8944632 DOI: 10.3390/antiox11030507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The transcription factor Nrf2 is a master regulator of multiple cytoprotective genes that maintain redox homeostasis and exert anti-inflammatory functions. The Nrf2-Keap1 signaling pathway is a paramount target of many cardioprotective strategies, because redox homeostasis is essential in cardiovascular health. Nrf2 gene variations, including single nucleotide polymorphisms (SNPs), are correlated with cardiometabolic diseases and drug responses. SNPs of Nrf2, KEAP1, and other related genes can impair the transcriptional activation or the activity of the resulting protein, exerting differential susceptibility to cardiometabolic disease progression and prevalence. Further understanding of the implications of Nrf2 polymorphisms on basic cellular processes involved in cardiometabolic diseases progression and prevalence will be helpful to establish more accurate protective strategies. This review provides insight into the association between the polymorphisms of Nrf2-related genes with cardiometabolic diseases. We also briefly describe that SNPs of Nrf2-related genes are potential modifiers of the pharmacokinetics that contribute to the inter-individual variability.
Collapse
Affiliation(s)
- Cecilia Zazueta
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I.Ch., Mexico City 14080, Mexico;
| | - Alexis Paulina Jimenez-Uribe
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.J.-U.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.P.J.-U.); (J.P.-C.)
| | - Mabel Buelna-Chontal
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, I.Ch., Mexico City 14080, Mexico;
- Correspondence:
| |
Collapse
|
41
|
Li T, Fang J, Tang S, Du H, Zhao L, Wang Y, Deng F, Liu Y, Du Y, Cui L, Shi W, Wang Y, Wang J, Zhang Y, Dong X, Gao Y, Shen Y, Dong L, Zhou H, Sun Q, Dong H, Peng X, Zhang Y, Cao M, Zhi H, Zhou J, Shi X. PM2.5 Exposure associated with Microbiota Gut-Brain Axis: Multi-omics Mechanistic Implications from the China BAPE study. Innovation (N Y) 2022; 3:100213. [PMID: 35243467 PMCID: PMC8866089 DOI: 10.1016/j.xinn.2022.100213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have shown that PM2.5 may activate the hypothalamus-pituitary-adrenal (HPA) axis by inducing hormonal changes, potentially explaining the increase in neurological and cardiovascular risks. In addition, an association between PM2.5 and gut microbiota and metabolites was established. The above evidence represents crucial parts of the gut-brain axis (GBA). In view of this evidence, we proposed a hypothesis that PM2.5 exposure may affect the HPA axis through the gastrointestinal tract microbiota pathway (GBA mechanism), leading to an increased risk of neurological and cardiovascular diseases. We conducted a real-world prospective repeated panel study in Jinan, China. At each visit, we measured real-time personal PM2.5 and collected fecal and blood samples. A linear mixed-effects model was used to analyze the association between PM2.5 and serum biomarkers, gut microbiota, and metabolites. We found that PM2.5 was associated with increased serum levels of hormones, especially the adrenocorticotropic hormone (ACTH) and cortisol, which are reliable hormones of the HPA axis. Gut microbiota and tryptophan metabolites and inflammation, which are important components of the GBA, were significantly associated with PM2.5. We also found links between PM2.5 and changes in the nervous and cardiovascular outcomes, e.g., increases of 19.77% (95% CI: −36.44, 125.69) in anxiety, 1.19% (95% CI: 0.65, 1.74) in fasting blood glucose (FBG), 2.09% (95% CI: 1.48, 2.70) in total cholesterol (TCHOL), and 0.93% (95% CI: 0.14, 1.72) in triglycerides (TG), were associated with 10 μg/m3 increase in PM2.5 at the lag 0–72 h, which represent the main effects of GBA. This study indicated the link between PM2.5 and the microbiota GBA for the first time, providing evidence of the potential mechanism for PM2.5 with neurological and cardiovascular system dysfunction. This is a real-world population based panel study using multi-omics technology Link between PM2.5 and microbiota gut-brain axis is reported for the first time PM2.5 affected gut microbiota, tryptophan metabolism, and inflammatory factors Important hormones of the HPA axis increased with PM2.5 exposure PM2.5 was associated with nervous and cardiovascular outcomes
Collapse
Affiliation(s)
- Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Liang Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yan Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yingjian Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yu Shen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huichan Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiumiao Peng
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Meng Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Hong Zhi
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Jingyang Zhou
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong 250014, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Corresponding author
| |
Collapse
|
42
|
Xu Z, Wang W, Liu Q, Li Z, Lei L, Ren L, Deng F, Guo X, Wu S. Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118336. [PMID: 34634403 DOI: 10.1016/j.envpol.2021.118336] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. OBJECTIVES To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. METHODS A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. RESULTS The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m3 increase in short-term exposure to O3, NO2, and SO2, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m3 increase in NO2 was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. CONCLUSION Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Collapse
Affiliation(s)
- Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lihua Ren
- Division of Maternal and Child Nursing, School of Nursing, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
43
|
Hedbrant A, Eklund D, Andersson L, Bryngelsson IL, Persson A, Westberg H, Särndahl E. Effects on white blood cell counts and the NLRP3 inflammasome due to dust and cobalt exposure in the hard metal industry. Biomarkers 2021; 27:60-70. [PMID: 34872432 DOI: 10.1080/1354750x.2021.2013538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION In light of potential negative health effects of cobalt exposure, a characterization of inflammatory mechanisms in exposed individuals is warranted. The current study investigated cobalt exposure in the Swedish hard metal industry and its relationship to inflammatory markers, including NLRP3 inflammasome activation and white blood cell (WBC) counts. MATERIALS AND METHODS Inhalable cobalt and dust exposures, and systemic cobalt levels, were determined for 72 workers in the hard metal industry and linear regression models were applied to correlate exposure to markers of inflammasome activation and WBC counts. RESULTS Mean exposures to inhalable dust (0.11 mg/m3) and cobalt (0.0034 mg/m3) were below the Swedish occupational exposure limits, and these low exposures did not correlate with any investigated outcomes. Instead, cobalt blood levels significantly correlated with a ca 10% decrease in IL-18 plasma levels per 10 nM cobalt increase. Furthermore, pre-shift cobalt blood and/or urine levels significantly correlated with some WBC measures, including decreased neutrophil-to-lymphocyte ratio, increased lymphocyte-to-monocyte ratio, and lymphocyte counts. CONCLUSION The low inhalable particle exposures had no impact on WBC counts and inflammasome activation. Instead, systemic cobalt levels, which also include skin exposure, demonstrated possible suppressive effects on inflammatory responses in cobalt-exposed individuals in the hard metal industry.
Collapse
Affiliation(s)
- Alexander Hedbrant
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Daniel Eklund
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Lena Andersson
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden.,Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden
| | - Ing-Liss Bryngelsson
- Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden
| | - Alexander Persson
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Håkan Westberg
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden.,Department of Occupational and Environmental Medicine, Örebro University Hospital, Örebro, Sweden
| | - Eva Särndahl
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| |
Collapse
|
44
|
Acute Effects of Particulate Matter on All-Cause Mortality in Urban, Rural, and Suburban Areas, Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412895. [PMID: 34948503 PMCID: PMC8701500 DOI: 10.3390/ijerph182412895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Background: Short-term exposure to particulate matter (PM) has been related to mortality worldwide. Most evidence comes from studies conducted in major cities, while little is known on the effects of low concentrations of PM and in less urbanized areas. We aim to investigate the relationship between PM and all-cause mortality at national level in Italy. Methods: Daily numbers of all-cause mortality were collected for all 8092 municipalities of Italy, from 2006 to 2015. A satellite-based spatiotemporal model was developed to estimate daily PM10 (inhalable particles) and PM2.5 (fine particles) concentrations at 1-km resolution. Multivariate Poisson regression models were fit to estimate the association between daily PM and mortality at province level, and then, results were pooled with a random-effects meta-analysis. Associations were estimated by combination of age and sex and degree of urbanization of the municipalities. Flexible functions were estimated to explore the shape of the associations at low PM concentrations. Results: We analyzed 5,884,900 deaths (40% among subjects older than 85 years, 60% occurring outside the main urban areas). National daily mean (interquartile range) PM10 and PM2.5 concentrations were 23 (14) μg/m3 and 15 (11) μg/m3, respectively. Relative increases of mortality per 10 μg/m3 variation in lag 0–5 (average of last six days since death) PM10 and PM2.5 were 1.47% (95% Confidence Intervals (CI): 1.15%, 1.79%) and 1.96% (1.33%, 2.59%), respectively. Associations were highest among elderly and women for PM10 only, similar between rural and urbanized areas, and were present even at low concentrations, e.g., below WHO guidelines. Conclusions: Air pollution was robustly associated with peaks in daily all-cause mortality in Italy, both in large cities and in less urbanized areas of Italy. Current WHO Air Quality Guidelines (2021) for PM10 and PM2.5 are not sufficient to protect public health.
Collapse
|
45
|
Frailty Related to the Exposure to Particulate Matter and Ozone: The Korean Frailty and Aging Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211796. [PMID: 34831552 PMCID: PMC8623935 DOI: 10.3390/ijerph182211796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
This study aims to identify the association between the concentration of particulate matter <2.5 μm (PM2.5), <10 μm (PM10), and ozone (O3) and frailty. The Korean Frailty Scale (KFS, 0-6 points) assessing physical, psychological, and social frailty, was applied to 2912 community-dwelling older adults between April 2016 and December 2017. Daily average concentrations of PM2.5, PM10, and O3 (2015-2017) were obtained and matched with the residential areas. The frailty risk associated with exposure to PM2.5, PM10, and O3 was evaluated using multiple logistic regression after adjusting for age, sex, BMI, lifestyle, socioeconomic status, and comorbidity. Participants were categorized into robust (0 points, 28.7%), pre-frail (1-2 points, 50.1%), and frail (≥3 points, 21.2%) groups. Each 1 μg/m3 increase of PM2.5 and PM10 increased the odds ratios (ORs) and 95% confidence intervals (CIs) of the frail group compared to the robust group: 1.055 (1.002, 1.112) and 1.095 (1.060, 1.131), and the pre-frail group: 1.053 (1.017, 1.090) and 1.062 (1.037, 1.087), respectively. Each 1-ppb increase of O3 increased the OR (95% CI) of the frail group: 1.041 (1.023, 1.059) and the pre-frail group: 1.005 (0.985, 1.025). PM2.5, PM10, and O3 may be associated dose-dependently with the frailty.
Collapse
|
46
|
Fitton CA, Cox B, Chalmers JD, Belch JJF. An 18 year data-linkage study on the association between air pollution and acute limb ischaemia. VASA 2021; 50:462-467. [PMID: 34743586 DOI: 10.1024/0301-1526/a000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: There is limited information regarding the effects of air pollutants, such as nitrogen oxides (NOx), nitric oxide (NO2), nitrous oxide (NO) and particulate matter with a diameter smaller than 10 μm (PM10), on acute limb ischaemia (ALI), a peripheral arterial disease (PAD) often with a poor clinical outcome. Patients and methods: We conducted an 18-year retrospective cohort study using routinely collected healthcare records from Ninewells Hospital, Dundee, and Perth Royal Infirmary, in Tayside, Scotland, UK from 2000 to 2017. ALI hospitalisation events and deaths were linked to daily NOx, NO2, NO and PM10 levels extracted from publicly available data over this same time period. Distributed lag models were used to estimate risk ratios for ALI hospitalisation and for ALI mortality, adjusting for temperature, humidity, day of the week, month and public holiday. Results: 5,608 hospital admissions in 2,697 patients were identified over the study period (mean age 71.2 years, ±11.1). NOx and NO were associated with an increase of ALI hospital admissions on days of exposure to pollutant (p=.018), while PM10 was associated with a cumulative (lag 0-9 days) increase (p=.027) of ALI hospital admissions in our study. There was no increase of ALI mortality associated with pollution levels. Conclusions: ALI hospital admissions were positively associated with ambient NOx and NO on day of high measured pollution levels and a cumulative effect was seen with PM10.
Collapse
Affiliation(s)
- Catherine A Fitton
- University of Dundee NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - James D Chalmers
- University of Dundee NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK
| | - Jill J F Belch
- University of Dundee NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
47
|
Fandiño-Del-Rio M, Kephart JL, Williams KN, Malpartida G, Barr DB, Steenland K, Koehler K, Checkley W. Household air pollution and blood markers of inflammation: A cross-sectional analysis. INDOOR AIR 2021; 31:1509-1521. [PMID: 33749948 PMCID: PMC8380676 DOI: 10.1111/ina.12814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/19/2021] [Indexed: 05/08/2023]
Abstract
Household air pollution (HAP) from biomass stoves is a leading risk factor for cardiopulmonary outcomes; however, its toxicity pathways and relationship with inflammation markers are poorly understood. Among 180 adult women in rural Peru, we examined the cross-sectional exposure-response relationship between biomass HAP and markers of inflammation in blood using baseline measurements from a randomized trial. We measured markers of inflammation (CRP, IL-6, IL-10, IL-1β, and TNF-α) with dried blood spots, 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM2.5 ), black carbon (BC), and carbon monoxide (CO), and 48-h kitchen concentrations of nitrogen dioxide (NO2 ) in a subset of 97 participants. We conducted an exposure-response analysis between quintiles of HAP levels and markers of inflammation. Markers of inflammation were more strongly associated with kitchen area concentrations of BC than PM2.5 . As expected, kitchen area BC concentrations were positively associated with TNF-α (pro-inflammatory) concentrations and negatively associated with IL-10, an anti-inflammatory marker, controlling for confounders in single- and multi-pollutant models. However, contrary to expectations, kitchen area BC and NO2 concentrations were negatively associated with IL-1β, a pro-inflammatory marker. No associations were identified for IL-6 or CRP, or for any marker in relation to personal exposures.
Collapse
Affiliation(s)
- Magdalena Fandiño-Del-Rio
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Josiah L. Kephart
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Kendra N. Williams
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gary Malpartida
- Molecular Biology and Immunology Laboratory, Research Laboratory of Infectious Diseases, Department of Cell and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
- Biomedical Research Unit, Asociación Benéfica PRISMA, Lima, Perú
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Fongsodsri K, Chamnanchanunt S, Desakorn V, Thanachartwet V, Sahassananda D, Rojnuckarin P, Umemura T. Particulate Matter 2.5 and Hematological Disorders From Dust to Diseases: A Systematic Review of Available Evidence. Front Med (Lausanne) 2021; 8:692008. [PMID: 34336895 PMCID: PMC8316685 DOI: 10.3389/fmed.2021.692008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) in the air enters the human body by diffusion into the blood. Therefore, hematological abnormalities might occur because of these toxic particles, but few studies on this issue have been reported. According to Cochrane guidance, we performed a systematic review on the relationship between exposure to PM2.5 and the risk of hematological disorders. Ten articles were included in this review. Anemia was found among children and elderly populations with 2- to 5-year PM2.5 exposure. Young children from mothers exposed to air pollution during pregnancy had a higher incidence of leukemia similar to the elderly. Supporting these data, outdoor workers also showed abnormal epigenetic modifications after exposure to very high PM2.5 levels. Adults living in high PM2.5 areas for 2 years were more likely to develop thrombocytosis. Finally, elderly populations with 7- to 8-year PM2.5 exposure showed increased risks of venous thromboembolism. In conclusion, the associations between PM2.5 and hematological aberrations among high-risk people with long-term exposure were reported.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Varunee Desakorn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vipa Thanachartwet
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangjai Sahassananda
- Information Technology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Japan
| |
Collapse
|
49
|
Karakis I, Baumfeld Y, Landau D, Gat R, Shemesh N, Yitshak-Sade M, Tirosh O, Sarov B, Novack L. Exposure to metals and morbidity at eight years follow-up in women of childbearing age. Sci Rep 2021; 11:11429. [PMID: 34075123 PMCID: PMC8169725 DOI: 10.1038/s41598-021-90904-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
This exploratory study was aimed to investigate the link between toxic metal content in women's urine and their morbidity 2 years before and 6 years after the test. Concentrations of 25 metals in urine were analyzed for 111 pregnant women collected prior to delivery. All women were of Arab-Bedouin origin. Information on primary care and hospital visits during the study period was obtained. In a Poisson regression model, a health outcome was regressed over metal exposure and other factors. A Weighted Quantile Sum Regression (WQS) approach was used to indicate metals dominating in their possible impact on women's morbidity. Obesity was the most frequently diagnosed condition in this population (27.9%). Diagnoses in a neurological category accounted for 36.0%, asthma or respiratory-25.2%, psychiatric-12.6%, cardiovascular-14.4% and cancer or benign growth-for 13.5%. Based on WQS analysis, cancer and benign growth were mostly attributed to the increased levels of cadmium, cardiovascular outcomes were linked with lead, and obesity was found associated with elevated levels of nickel. Hematological, neurological and respiratory outcomes were attributed to multiple non-essential metals. The health and exposure profile of women in the study warrants a periodic biomonitoring in attempt to identify and reduce exposure to potentially dangerous elements.
Collapse
Affiliation(s)
- Isabella Karakis
- Environmental Epidemiology, Ministry of Health, Jerusalem, Israel
| | - Yael Baumfeld
- Obstetric and Gynecology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Daniella Landau
- Neonatology Department, Soroka University Medical Center, Beer-Sheva, Israel
| | - Roni Gat
- Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar Shemesh
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maayan Yitshak-Sade
- Icahn School of Medicine At Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Ofir Tirosh
- The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Batia Sarov
- Department of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lena Novack
- Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva, Israel.
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Clinical Research Center, Soroka University Medical Center, POB 651, 84101, Beer-Sheva, Israel.
| |
Collapse
|
50
|
Chen K, Breitner S, Wolf K, Stafoggia M, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, Lavigne E, Matus P, Valdés N, Kan H, Jaakkola JJK, Ryti NRI, Huber V, Scortichini M, Hashizume M, Honda Y, Nunes B, Madureira J, Holobâcă IH, Fratianni S, Kim H, Lee W, Tobias A, Íñiguez C, Forsberg B, Åström C, Ragettli MS, Guo YLL, Chen BY, Li S, Milojevic A, Zanobetti A, Schwartz J, Bell ML, Gasparrini A, Schneider A. Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities. Lancet Planet Health 2021; 5:e191-e199. [PMID: 33838734 DOI: 10.1016/s2542-5196(21)00026-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. METHODS We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure-response curve and evaluated the possibility of a threshold below which health is not affected. FINDINGS Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32-1·50) increase in daily total mortality. The pooled exposure-response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure-response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. INTERPRETATION This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. FUNDING EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council.
Collapse
Affiliation(s)
- Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Ana M Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Shilu Tong
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD, Australia; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Patricia Matus
- Department of Public Health, Universidad de los Andes, Santiago, Chile
| | - Nicolás Valdés
- Faculty of Nursing and Midwifery, Universidad de los Andes, Santiago, Chile
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai, China
| | - Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Finnish Meteorological Institute, Helsinki, Finland
| | - Niilo R I Ryti
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Veronika Huber
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, Spain; Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | | | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Baltazar Nunes
- Department of Epidemiology, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal; Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana Madureira
- Department of Enviromental Health, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | | | - Simona Fratianni
- Department of Earth Sciences, University of Torino, Turin, Italy
| | - Ho Kim
- Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Whanhee Lee
- Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Carmen Íñiguez
- Department of Statistics and Computational Research, University of Valencia, Valencia, Spain; Ciberesp, Madrid, Spain
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Christofer Åström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Martina S Ragettli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Yue-Liang Leon Guo
- Environmental and Occupational Medicine, National Taiwan University and NTU Hospital, Taipei, Taiwan; National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan
| | - Bing-Yu Chen
- National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Ai Milojevic
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|