1
|
Dow C, Kadawathagedara M, Ghozal M, Charles MA, Adel-Patient K, Dereumeaux C, de Lauzon-Guillain B. Prenatal exposure to heavy metals and childhood atopic disease. ENVIRONMENTAL RESEARCH 2025; 270:121062. [PMID: 39920965 DOI: 10.1016/j.envres.2025.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
INTRODUCTION Our objective was to determine the relationship between biomarkers of exposure to eleven heavy metals measured at birth and atopic disease in offspring up to 5.5 years. METHODS Heavy metals were measured in women of the ELFE cohort from: maternal urine (n = 804; arsenic [As], cadmium [Ca], cesium [Cs], chromium [Cr], cobalt [Co], nickel [Ni], antimony [Sb], tin [Sn] and vanadium [V]), hair (n = 1649; mercury [Hg]), and cord blood (n = 1525; lead [Pb]) collected at birth. Data on atopic diseases (eczema, food allergy, wheezing, asthma, and rhinitis) were collected from 2 months to 5.5 years. Five multimorbidity clusters were previously identified using latent class analysis: "asymptomatic", "early wheeze without asthma", "allergies without asthma", "asthma only", and "multimorbidity". Multinomial logistic regression was performed, using the asymptomatic cluster as the reference, to determine the relationship between heavy metal concentrations and atopic diseases. RESULTS Concentrations of Co were negatively associated with the multimorbidity cluster in the whole sample (OR 0.66 [95% CI 0.49, 0.89]). In boys, Cs was associated with lower odds of belonging to the early wheeze without asthma (0.71 [0.52, 0.97]) and multimorbidity clusters (0.54 [0.35, 0.82), while Sn was negatively associated with the multimorbidity cluster (0.66 [0.46, 0.96]). Results with binary outcomes supported findings from cluster analyses. CONCLUSION Exposure to some heavy metals assessed at delivery was inversely associated with the risk of atopic diseases, especially among boys. Further research should focus on heavy metal subtypes to distinguish between the more and less toxic forms.
Collapse
Affiliation(s)
- Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France.
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Marie-Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Karine Adel-Patient
- Université Paris Saclay, CEA, INRAE, MTS/Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | | | | |
Collapse
|
2
|
Thépaut E, Tebby C, Bisson M, Brochot C, Ratier A, Zaros C, Personne S, Chardon K, Zeman F. Prenatal exposure to chlorpyrifos of French children from the Elfe cohort. Int J Hyg Environ Health 2025; 263:114480. [PMID: 39423757 DOI: 10.1016/j.ijheh.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The organophosphate pesticide chlorpyrifos was widely used in the European Union before its ban in 2020 and was associated with neurodevelopmental disorders. However, within the concept of Developmental Origins of Health and Disease, in utero exposure to chlorpyrifos can lead to neurodevelopmental effects in developing children. OBJECTIVE The aim of this study was to estimate fetal exposure to chlorpyrifos using biomonitoring data measured in Elfe pregnant women and a physiologically based pharmacokinetic (PBPK) approach and compare exposure to toxicological reference values. METHODS A pregnancy-PBPK model was developed based on an existing adult chlorpyrifos model and a new toxicological reference value was proposed for neurodevelopmental effects. The pregnant women exposure was estimated based on dialkylphosphate (DAP) levels in urine assuming constant exposure to chlorpyrifos and compared to both the existing toxicological reference value and the new proposed draft toxicological reference value. Fetal internal concentrations in target tissues were then predicted using the developed pregnancy-PBPK model. Urinary concentrations of the chlorpyrifos-specific metabolite (TCPy) were also predicted for comparison with other biomonitoring data. RESULTS The median daily exposure to chlorpyrifos for the French pregnant women from the Elfe cohort was estimated at 6.3x10-4 μg/kg body weight/day. The predicted urinary excretion of TCPy, the chlorpyrifos-specific metabolite, is in the same range as observed in other European cohorts (mean: 2.13 μg/L). Predicted brain chlorpyrifos levels were similar in pregnant women and their fetus and were 10-fold higher than the predicted blood chlorpyrifos levels. It was estimated that 6% and 20% of the pregnant women population had been exposed to levels exceeding the general population and draft toxicological reference values, respectively. CONCLUSIONS Prenatal exposure to chlorpyrifos was estimated for the French population based on data from the Elfe cohort. Internal chlorpyrifos concentrations in target tissues (brain and blood) were predicted for fetuses at the end of the pregnancy. Under a conservative assumption, a small percentage of the population was identified as being exposed to levels exceeding the toxicological reference values.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cleo Tebby
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité expertise en toxicologie / écotoxicologie des substances chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Aude Ratier
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Cécile Zaros
- INED French Institute for Demographic Studies, ELFE Joint Unit Campus Condorcet 9, 93322 Aubervilliers CEDEX, France
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox (UMR_I 01), UPJV, Université de Picardie Jules Verne, 80025, Amiens, France.
| |
Collapse
|
3
|
Shukla AK, Ahamad S, Kukshal P. Computational insights into maternal environmental pollutants and folate pathway regulation. Reprod Toxicol 2024:108825. [PMID: 39732410 DOI: 10.1016/j.reprotox.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets. Molecular modeling, docking, and dynamics simulations revealed that folate receptors (FOLR1, FOLR2, and FOLR3) and transporters (SLC19A1 and SLC46) are major targets. Among these, FOLR3 exhibited the strongest interactions with toxicants such as Dichlorodiphenyltrichloroethane (DDT), Bisphenols, Dioxin, and other investigated toxicants. Toxicity profiling showed that even minimal exposure to these pollutants significantly impacts maternal health and disrupts folate metabolism, leading to fetal malformations. This study highlights the critical role of maternal toxicants in hindering the folate pathway, with severe implications for fetal development.
Collapse
Affiliation(s)
- Adarsh Kumar Shukla
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102.
| | - Shadab Ahamad
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102
| | - Prachi Kukshal
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102.
| |
Collapse
|
4
|
Saferin N, Haseeb I, Taha AM, Beecroft SE, Pillai S, Neifer AE, Lakkuru R, Kistler BP, Nawor CN, Malik I, Hasan D, Carlson JA, Zade KK, Dressel SP, Carney EM, Shah R, Gautam S, Vergis J, Neifer KL, Johnson ZV, Gustison ML, Hall FS, Burkett JP. Folate prevents the autism-related phenotype caused by developmental pyrethroid exposure in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625285. [PMID: 39651146 PMCID: PMC11623627 DOI: 10.1101/2024.11.25.625285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Neurodevelopmental disorders (NDDs) have dramatically increased in prevalence to an alarming one in six children, and yet both causes and preventions remain elusive. Recent human epidemiology and animal studies have implicated developmental exposure to pyrethroid pesticides, one of the most common classes of pesticides in the US, as an environmental risk factor for autism and neurodevelopmental disorders. Our previous research has shown that low-dose chronic developmental pyrethroid exposure (DPE) changes folate metabolites in the adult mouse brain. We hypothesize that DPE acts directly on molecular targets in the folate metabolism pathway, and that high-dose maternal folate supplementation can prevent or reduce the biobehavioral effects of DPE. We exposed pregnant prairie vole dams chronically to vehicle or low-dose deltamethrin (3 mg/kg/3 days) with or without high-dose folate supplementation (methylfolate, 5 mg/kg/3 days). The resulting DPE offspring showed broad deficits in five behavioral domains relevant to neurodevelopmental disorders (including the social domain); increased plasma folate concentrations; and increased neural expression of SHMT1, a folate cycle enzyme. Maternal folate supplementation prevented most of the behavioral phenotypes (except for repetitive behaviors) and caused potentially compensatory changes in neural expression of FOLR1 and MTHFR, two folate-related proteins. We conclude that DPE causes neurodevelopmental disorder-relevant behavioral deficits; DPE directly alters aspects of folate metabolism; and preventative interventions targeting folate metabolism are effective in reducing, but not eliminating, the behavioral effects of DPE.
Collapse
Affiliation(s)
- Nilanjana Saferin
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ibrahim Haseeb
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Adam M. Taha
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sarah E. Beecroft
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sangeetha Pillai
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Asha E. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Rudhasri Lakkuru
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Brian P. Kistler
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Charlotte N. Nawor
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Isa Malik
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Dena Hasan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jonathan A. Carlson
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kareem K. Zade
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sydnee P. Dressel
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Eileen M. Carney
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Radha Shah
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Shudhant Gautam
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - John Vergis
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kari L. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Zachary V. Johnson
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Morgan L. Gustison
- Department of Psychology, The University of Western Ontario, London, ON, Canada (current); Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - F. Scott Hall
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - James P. Burkett
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
5
|
Alcala CS, Lamadrid-Figueroa H, Tamayo-Ortiz M, Mercado-Garcia A, Midya V, Just AC, Foppa-Pedretti N, Colicino E, Téllez-Rojo MM, Wright RO, Wright RJ, Carroll KN, Rosa MJ. Prenatal exposure to phthalates and childhood wheeze and asthma in the PROGRESS cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176311. [PMID: 39293757 PMCID: PMC11567787 DOI: 10.1016/j.scitotenv.2024.176311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Prenatal phthalate exposure may influence lung development and lead to wheezing and asthma in childhood, and these associations may vary by sex. Despite ubiquity of exposure, there is limited epidemiologic data on these associations in Latin America. METHODS We assessed 593 mother-child dyads enrolled in the Programming Research in Obesity, Growth, Environment, and Social Stressors birth cohort in Mexico City. We quantified 15 phthalate metabolites in 2nd and 3rd trimester maternal urine. Report of ever wheeze, wheeze in the past 12 months (current wheeze) and ever asthma were obtained using a validated survey when children were 4 and 6 years of age. We examined individual associations with modified Poisson models. Mixture effects were assessed using Bayesian Weighted Quantile Sum (BWQS) regression. All models were adjusted for child's sex, maternal age and education at enrollment, and parity. RESULTS In Poisson models, a doubling of mono (carboxy-isononyl) phthalate (MCNP) during the 2nd trimester was associated with higher risk of wheeze (RR: 1.14, 95 % CI: 1.01, 1.29), and asthma (RR: 1.44, 95 % CI: 1.05, 1.97) at 4 years of age. Higher concentrations of the sum of di-isononyl phthalate metabolites (∑DiNP) during the 2nd trimester were also associated with asthma at 4 years of age (RR: 1.30, 95 % CI: 1.04, 1.61). Mixture associations of phthalate metabolite concentrations during the 2nd trimester and asthma at 4 years of age were stronger in males (BWQS, OR: 1.94, 95 % CI: 0.90, 4.60; 90 % CrI: 1.04, 3.73) compared to females (BWQS, OR: 1.23, 95 % CI: 0.56, 2.88; 90 % CrI: 0.61, 2.55). Additionally, we observed stronger inverse associations between prenatal phthalate mixtures during the 3rd trimester and current wheeze at 4 and 6 years of age in females (BWQS, OR: 0.54, 90 % CrI: 0.35, 0.82; OR: 0.45, 90 % CrI: 0.22, 0.84) compared to males (BWQS, OR: 0.95, 90 % Cri: 0.68, 1.35; OR: 0.97, 90 % CrI: 0.59, 1.54). CONCLUSIONS Prenatal phthalate metabolite concentrations were associated with respiratory outcomes in childhood, with some evidence of sex specific effects. Future work investigating phthalate exposure and wheeze trajectories/lung function will be important for understanding how these may predict later disease.
Collapse
Affiliation(s)
- Cecilia S Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA.
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Cuernavaca, Morelos, Mexico
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health. Cuernavaca, Morelos, Mexico
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| | - Allan C Just
- Department of Epidemiology, Brown University School of Public Health, USA
| | - Nicolo Foppa-Pedretti
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health. Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, USA
| | - Kecia N Carroll
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, USA
| | - Maria Jose Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
6
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Assessment of maternal phthalate exposure in urine across three trimesters and at delivery (umbilical cord blood and placenta) and its influence on birth anthropometric measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174910. [PMID: 39053554 DOI: 10.1016/j.scitotenv.2024.174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalates, commonly used in plastic manufacturing, have been linked to adverse reproductive effects. Our research from the Saudi Early Autism and Environment Study (2019-2022), involving 672 participants, focused on the impacts of maternal phthalate exposure on birth anthropometric measures. We measured urinary phthalate metabolites in 390 maternal samples collected during each of the three trimesters of pregnancy and in cord serum and placental samples obtained at delivery. We employed various statistical methods to analyze our data. Intraclass correlation coefficients were used to assess the consistency of phthalate measurements, generalized estimating equations were used to explore temporal variations across the trimesters, and linear regression models, adjusted for significant confounders and Bonferroni correction, were used for each birth outcome. Exposure to six phthalates was consistently high across trimesters, with 82 %-100 % of samples containing significant levels of all metabolites, except for mono-benzyl phthalate. We found a 3.15 %-3.73 % reduction in birth weight (BWT), 1.39 %-1.69 % reduction in head circumference (HC), and 3.63 %-5.45 % reduction in placental weight (PWT) associated with a one-unit increase in certain urinary di(2-ethylhexyl) phthalate (DEHP) metabolites during the first trimester. In the second trimester, exposure to MEP, ∑7PAE, and ∑LMW correlated with a 3.15 %-4.5 % increase in the APGAR 5-min score and increases in PWT by 8.98 % for ∑7PAE and 9.09 % for ∑LMW. Our study also highlighted the maternal-to-fetal transfer of DEHP metabolites, indicating diverse impacts on birth outcomes and potential effects on developmental processes. Our study further confirmed the transfer of DEHP metabolites from mothers to fetuses, evidenced by variable rates in the placenta and cord serum, with an inverse relationship suggesting a passive transfer mechanism. Additionally, we observed distinct phthalate profiles across these matrices, adversely impacting birth outcomes. In serum, we noticed increases associated with DEHP metabolites, with birth gestational age rising by 1.01 % to 1.11 %, HC by 2.84 % to 3.67 %, and APGAR 5-min scores by 3.77 % to 3.87 %. Conversely, placental analysis revealed a different impact: BWT decreased by 3.54 % to 4.69 %, HC reductions ranged from 2.57 % to 4.69 %, and chest circumference decreased by 7.13 %. However, the cephalization index increased by 3.67 %-5.87 %. These results highlight the complex effects of phthalates on fetal development, indicating their potential influence on crucial developmental processes like sexual maturation and brain development.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Hu CY, Alcala CS, Lamadrid-Figueroa H, Tamayo-Ortiz M, Mercado-Garcia A, Rivera Rivera N, Just AC, Gennings C, Téllez-Rojo MM, Wright RO, Wright RJ, Carroll KN, Rosa MJ. Associations of prenatal exposure to phthalates and their mixture with lung function in Mexican children. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134863. [PMID: 38885590 PMCID: PMC11250751 DOI: 10.1016/j.jhazmat.2024.134863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Early life phthalates exposure has been associated with adverse respiratory outcomes. However, evidence linking prenatal phthalates exposure and childhood lung function has been inconclusive. Additionally, few studies have examined phthalates exposure as a mixture and explored sexually dimorphic associations. We aimed to investigate sex-specific associations of prenatal phthalates mixtures with childhood lung function using the PROGRESS cohort in Mexico (N = 476). Prenatal phthalate concentrations were measured in maternal urine collected during the 2nd and 3rd trimesters. Children's lung function was evaluated at ages 8-13 years. Individual associations were assessed using multivariable linear regression, and mixture associations were modeled using repeated holdout WQS regression and hierarchical BKMR; data was stratified by sex to explore sex-specific associations. We identified significant interactions between 2nd trimester phthalates mixture and sex on FEV1 and FVC z-scores. Higher 2nd trimester phthalate concentrations were associated with higher FEV1 (β = 0.054, 95 %CI: 0.005, 0.104) and FVC z-scores (β = 0.074, 95 % CI: 0.024, 0.124) in females and with lower measures in males (FEV1, β = -0.017, 95 %CI: -0.066, 0.026; FVC, β = -0.014, 95 %CI: -0.065, 0.030). This study indicates that prenatal exposure to phthalates is related to childhood lung function in a sex-specific manner.
Collapse
Affiliation(s)
- Cheng-Yang Hu
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cecilia S Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadya Rivera Rivera
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Allan C Just
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology, Brown University School of Public Health, 121 S Main St, Providence, RI 02903, USA
| | - Chris Gennings
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Kecia N Carroll
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA.
| |
Collapse
|
8
|
Tagne-Fotso R, Riou M, Saoudi A, Zeghnoun A, Frederiksen H, Berman T, Montazeri P, Andersson AM, Rodriguez-Martin L, Akesson A, Berglund M, Biot P, Castaño A, Charles MA, Cocco E, Den Hond E, Dewolf MC, Esteban-Lopez M, Gilles L, Govarts E, Guignard C, Gutleb AC, Hartmann C, Kold Jensen T, Koppen G, Kosjek T, Lambrechts N, McEachan R, Sakhi AK, Snoj Tratnik J, Uhl M, Urquiza J, Vafeiadi M, Van Nieuwenhuyse A, Vrijheid M, Weber T, Zaros C, Tarroja-Aulina E, Knudsen LE, Covaci A, Barouki R, Kolossa-Gehring M, Schoeters G, Denys S, Fillol C, Rambaud L. Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data - The European Joint Programme HBM4EU. ENVIRONMENT INTERNATIONAL 2024; 190:108912. [PMID: 39116556 DOI: 10.1016/j.envint.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Bisphenol A (BPA; or 4,4'-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. OBJECTIVE We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18-73 years (n = 4,226) and its determinants. METHODS Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. RESULTS Total BPA was quantified in 85-100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA's BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. CONCLUSION This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France.
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Abdessattar Saoudi
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Abdelkrim Zeghnoun
- Department of Data Support, Data Processing and Analysis, Santé publique France, Saint-Maurice, France
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem, Israel
| | - Parisa Montazeri
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Agneta Akesson
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet (KI), Stockholm, Sweden
| | - Pierre Biot
- Federal Public Service Health, Food Chain Safety and Environment, Brussels, Belgium
| | - Argelia Castaño
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marie-Aline Charles
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France; Inserm UMR 1153, Centre for Research in Epidemiology and Statistics (CRESS), Team Early Life Research on Later Health, University of Paris, Villejuif, France
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Elly Den Hond
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - Marta Esteban-Lopez
- National Center for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Liese Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Cedric Guignard
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | | | - Tina Kold Jensen
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark (SDU), Odense, Denmark
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tina Kosjek
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Nathalie Lambrechts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Janja Snoj Tratnik
- Jozef Stefan Institute (JSI), Department of Environmental Sciences, Ljubljana, Slovenia
| | - Maria Uhl
- German Environment Agency (UBA), Berlin, Germany
| | - Jose Urquiza
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - An Van Nieuwenhuyse
- Department Health Protection, Laboratoire national de santé (LNS), Dudelange, Luxembourg; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Belgium
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Till Weber
- German Environment Agency (UBA), Berlin, Germany
| | - Cécile Zaros
- French Institute for Demographic Studies (INED), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, Aubervilliers, France
| | | | | | - Adrian Covaci
- Toxicological Center, University of Antwerp, Belgium
| | - Robert Barouki
- Inserm UMR S-1124, University of Paris, T3S, Paris, France; Biochemistry, Metabolomics, and Proteomics Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sebastien Denys
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Clemence Fillol
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé publique France, The French Public Health Agency (SpFrance, ANSP), 12 rue du Val d'Osne, Saint-Maurice Cedex 94415, France
| |
Collapse
|
9
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Phthalate exposure during pregnancy and its association with thyroid hormones: A prospective cohort study. Int J Hyg Environ Health 2024; 261:114421. [PMID: 39002474 DOI: 10.1016/j.ijheh.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Phthalate esters (PAEs) possess endocrine-disrupting properties. Studies in humans have indicated that in utero phthalate exposure affects maternal thyroid hormones, which are essential for fetal growth and development. However, these studies also reported inconsistent results on the relationship between phthalates and thyroid hormones. This prospective cohort study aimed to assess phthalate exposure across the three trimesters of pregnancy and its association with thyroid hormone levels. From 2019 to 2022, we recruited 672 pregnant women, and two urine samples and one blood sample were collected from each participant during the pregnancy. We examined the urine samples from 663, 335, and 294 women in the first, second, and third trimester, respectively, for the following seven phthalate metabolites: monoethyl phthalate (MEP) from diethyl phthalate (DEP); mono-n-butyl phthalate (MnBP) and mono-iso-butyl phthalate (MiBP) from dibutyl phthalate (DBP); monobenzyl phthalate (MBzP) from butyl benzyl phthalate; and three di(2-ethylhexyl) phthalate (DEHP) metabolites, mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP). Additionally, we examined the levels of free thyroxine (FT4), thyroid-stimulating hormone (TSH), and total triiodothyronine (TT3) in the serum samples of the following participants: 596, 627, and 576 in the first trimester; 292, 293, and 282 in the second trimester; and 250, 250, and 248 in the third trimester, respectively. Other than MBzP, which was detected in 25%-33% of the samples, other metabolites were detectable in >86% of urine samples, indicating widespread exposure to DEP, DBP, and DEHP. The detected phthalate exposure levels in our cohort were significantly higher than those reported in other countries. Metabolite levels varied across the trimesters, implying changes in exposure and metabolism throughout pregnancy. The observed variability in urinary concentrations of phthalate metabolites, which ranged from poor to moderate, underscores the importance of taking multiple measurements during pregnancy for precise exposure assessment. Using a linear mixed model, we analyzed the effects of repeated phthalate exposure on thyroid hormone levels while adjusting for potential confounders. We observed significant linear trends in FT4, TSH, and, to a lesser extent, TT3 across quartiles of specific phthalate metabolites. Comparing the highest to the lowest quartiles, we found a significant increase in FT4 levels, ranging from 2 to 3.7%, associated with MEP; MECPP; MEHHP; and the sum of seven metabolites (∑7PAE), three DEHP metabolites (∑3DEHP), two DBP metabolites (∑DBP), and both low molecular weight (∑LMW) and high molecular weight metabolites. Increased TSH levels (5%-16%) were observed for all phthalate metabolites (except MEHHP) and their molar sums, including ∑7PAE. For TT3, a significant increase was observed with MEP (2.2%) and a decrease was observed with ∑DBP (-2.7%). A higher TSH/FT4 ratio was observed with the highest quartiles (third or fourth) of several phthalate metabolites: MEP (8.8%), MiBP (8.7%), MnBP (22.2%), ∑7PAE (15.3%), ∑DBP (16.4%), and ∑LMW (18.6%). These hormonal alterations, most notably in the second and third trimesters, suggest that phthalate exposure may impact fetal growth and development by affecting maternal thyroid function.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Dow C, Kadawathagedara M, Ghozal M, Charles MA, Adel-Patient K, Dereumeaux C, de Lauzon-Guillain B. Maternal diet quality during pregnancy and biomarkers of potentially toxic trace element exposure: Data from the ELFE cohort. Food Chem Toxicol 2024; 190:114793. [PMID: 38852759 DOI: 10.1016/j.fct.2024.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The contribution of the diet to potentially toxic trace element exposure in pregnancy has been rarely addressed. The objective of the present study was to determine the association between the maternal diet during pregnancy and biomarkers of exposure for arsenic (As), mercury (Hg) and lead (Pb) at delivery. As was assessed in maternal urine, Hg in maternal hair, and Pb in cord blood, as a proxy for in utero exposure. Based on 2995 women from the ELFE nationwide birth cohort, higher scores for dietary patterns considered healthy were associated with higher concentrations of As and Hg in maternal matrices. Levels of cord blood Pb were inconsistently associated with dietary patterns considered healthy, and lower with a dietary pattern driven by milk and breakfast cereals. Lower levels of Hg were associated with higher Western dietary pattern scores. In conclusion, higher levels of maternal urinary As and hair Hg are associated with diets considered as "Healthy", while cord blood Pb was not strongly correlated with dietary exposure.
Collapse
Affiliation(s)
- Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France.
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Marie-Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, CRESS, Paris, France
| | - Karine Adel-Patient
- Universié Paris Saclay, CEA, INRAE, MTS/Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | | | | |
Collapse
|
11
|
Oleko A, Saoudi A, Zeghnoun A, Pecheux M, Cirimele V, Mihai Cirtiu C, Berail G, Szego E, Denys S, Fillol C. Exposure of the general French population to metals and metalloids in 2014-2016: Results from the Esteban study. ENVIRONMENTAL RESEARCH 2024; 252:118744. [PMID: 38579993 DOI: 10.1016/j.envres.2024.118744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The purpose of the Esteban study was to describe levels of various biomarkers of exposure to several environmental pollutants, including metals and metalloids, among the French population. This paper describes the distribution of concentrations of 28 metals and metalloids in two different populations, and estimates the main determinants of exposure to total arsenic, the sum of inorganic arsenic (iAs) and its two metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), cadmium, chromium, copper, mercury and nickel. METHODS Esteban is a cross-sectional study conducted between 2014 and 2016 on a random sample of 2503 adults (18-74 years old) and 1104 children (6-17 years old) from the general population. The data collected included biological samples (blood, hair, and urines), socio-demographic characteristics, environmental and occupational exposure, and information on dietary factors and lifestyle. The geometric mean and percentiles of the distribution were estimated for each metal. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. RESULTS Only four metals had a quantification rate below 90% in adults (beryllium, iridium, palladium, and platinum), and three metals in children (beryllium, iridium, and platinum). The concentrations of total arsenic, cadmium, chromium and mercury were higher than those found in most international studies. The determinants significantly associated with exposure were mainly diet and smoking. CONCLUSIONS Esteban provided a nationwide description of 28 metal and metalloid exposure levels for adults (some never measured before) and for the first time in children. The study results highlighted widespread exposure to several metals and metalloids. These results could be used to advocate public health decisions for continued efforts to reduce harmful exposure to toxic metals. The Reference values (RV95) built from Esteban could also be used to support future government strategies.
Collapse
Affiliation(s)
- Amivi Oleko
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France.
| | - Abdessattar Saoudi
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Abdelkrim Zeghnoun
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Marie Pecheux
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Vincent Cirimele
- ChemTox 3 Rue Grüninger, Parc D'Innovation F, Illkirch Graffenstaden, 67400, France
| | - Ciprian Mihai Cirtiu
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec (INSPQ), 945 Av., Wolfe, Québec, G1V 5B3, Canada
| | - Géraldine Berail
- Laboratoire de l'Environnement et de l'Alimentation de la Vendée (LEA Vendée), La Roche sur Yon, France
| | - Emmanuelle Szego
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Sébastien Denys
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| | - Clémence Fillol
- Santé Publique France, French Public Health Agency, 12 Rue Du Val D'Osne, 94415, Saint Maurice Cedex, France
| |
Collapse
|
12
|
Thépaut E, Bisson M, Brochot C, Personne S, Appenzeller BMR, Zaros C, Chardon K, Zeman F. PBPK modeling to support risk assessment of pyrethroid exposure in French pregnant women. ENVIRONMENTAL RESEARCH 2024; 251:118606. [PMID: 38460660 DOI: 10.1016/j.envres.2024.118606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Pyrethroids are widely used pesticides and are suspected to affect children's neurodevelopment. The characterization of pyrethroid exposure during critical windows of development, such as fetal development and prenatal life, is essential to ensure a better understanding of pyrethroids potential effects within the concept of Developmental Origins of Health and Disease. OBJECTIVE The aim of this study was to estimate maternal exposure of French pregnant women from biomonitoring data and simulate maternal and fetal internal concentrations of 3 pyrethroids (permethrin, cypermethrin and deltamethrin) using a multi-substance pregnancy-PBPK (physiologically based pharmacokinetics) model. The estimated maternal exposures were compared to newly proposed toxicological reference values (TRV) children specific also called draft child-specific reference value to assess pyrethroid exposure risk during pregnancy i.e. during the in utero exposure period. METHODS A pregnancy-PBPK model was developed based on an existing adult pyrethroids model. The maternal exposure to each parent compound of pregnant women of the Elfe (French Longitudinal Study since Childhood) cohort was estimated by reverse dosimetry based on urinary biomonitoring data. To identify permethrin and cypermethrin contribution to their common urinary biomarkers of exposure, an exposure ratio based on biomarkers in hair was tested. Finally, exposure estimates were compared to current and draft child-specific reference values derived from rodent prenatal and postnatal exposure studies. RESULTS The main contributor to maternal pyrethroid diet intake is cis-permethrin. In blood, total internal concentrations main contributor is deltamethrin. In brain, the major contributors to internal pyrethroid exposure are deltamethrin for fetuses and cis-permethrin for mothers. Risk is identified only for permethrin when referring to the draft child-specific reference value. 2.5% of the population exceeded permethrin draft child-specific reference value. CONCLUSIONS A new reverse dosimetry approach using PBPK model combined with human biomonitoring data in urine and hair was proposed to estimate Elfe pregnant population exposure to a pyrethroids mixture with common metabolites.
Collapse
Affiliation(s)
- Elisa Thépaut
- Unité Toxicologie ExpérimentAle et Modélisation / Péritox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France
| | - Michèle Bisson
- Unité Expertise en Toxicologie / écotoxicologie des Substances Chimiques, INERIS, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France
| | - Céline Brochot
- Unité Toxicologie ExpérimentAle et Modélisation / Péritox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France; Current affiliation: Certara UK Ltd, Simcyp Division, Sheffield, UK
| | - Stéphane Personne
- Péritox (UMR_I 01), UPJV/INERIS, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Cécile Zaros
- UMS Elfe, INED French Institute for Demographic Studies, 93322, Aubervilliers CEDEX, France
| | - Karen Chardon
- Péritox (UMR_I 01), UPJV/INERIS, Université de Picardie Jules Verne, 80025, Amiens, France
| | - Florence Zeman
- Unité Toxicologie ExpérimentAle et Modélisation / Péritox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
13
|
Hansen S, Xu S, Huber S, Alvarez MV, Odland JØ. Profile of per- and polyfluoroalkyl substances, source appointment, and determinants in Argentinean postpartum women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170096. [PMID: 38224894 DOI: 10.1016/j.scitotenv.2024.170096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals with potential adverse health effects. Information concerning PFAS concentrations in relation to pregnancy is scarce in South America and non-existent in Argentina. AIM We aimed to investigate an extended maternal PFAS profile herein serum concentrations in a regional and global view, source appointment, and determinants in Argentinean women. METHODS A cross-sectional study with a sampling period from 2011 to 2012 included 689 women from Ushuaia and Salta in Argentina. Serum samples collected two days postpartum were analyzed by ultra-high pressure liquid chromatography coupled to electrospray negative ionisation tandem-quadrupole mass-spectrometry. Principal Component Analysis (PCA) following absolute principal component score-multiple linear regression (APCS-MLR) was used for PFAS source appointments. Determinants of PFAS were explored through a MLR approach. A review of previous studies within the same period was conducted to compare with present levels. RESULTS Argentinean PFAS concentrations were the lowest worldwide, with PFOS (0.74 ng/mL) and PFOA (0.11 ng/mL) as the dominant substances. Detection frequencies largely aligned with the compared studies, indicating the worldwide PFAS distribution considering the restrictions. The PCA revealed region-specific loading patterns of two component groups of PFAS, a mixture of replaced and legacy substances in Ushuaia and long-chain in Salta. This might relate to a mix of non-diet and diet exposure in Ushuaia and diet in Salta. Region, age, lactation, parity, household members, migration, bottled water, and freshwater fish were among the determinants of various PFAS. CONCLUSION This is the first study to monitor human PFAS exposure in Argentina. Maternal PFAS concentrations were the lowest observed worldwide in the same period. Exposure contributions are suggested to be affected by restrictions and substitutions. Given the limited population-based studies and the emergence of PFAS, it is essential to conduct further monitoring of PFAS in Argentina and South America.
Collapse
Affiliation(s)
- Solrunn Hansen
- Department of Health and Care Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Shanshan Xu
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, 5009 Bergen, Norway.
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | | - Jon Øyvind Odland
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Department of General Hygiene I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia; School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
14
|
Rouget F, Bihannic A, Le Bot B, Mercier F, Gilles E, Garlantezec R, Multigner L, Cordier S, Arnaud A, Pladys P, Chevrier C. Meconium Concentrations of Pesticides and Risk of Hypospadias: A Case-Control Study in Brittany, France. Epidemiology 2024; 35:185-195. [PMID: 37934147 DOI: 10.1097/ede.0000000000001688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
BACKGROUND Hypospadias is a male genital tract defect for which an increase in prevalence has been documented over the last few decades. A role for environmental risk factors is suspected, including prenatal exposure to pesticides. OBJECTIVES To study the risk of hypospadias in association with multiple pesticide measurements in meconium samples. METHODS The Brittany Registry of Congenital Anomalies (France) conducted a case-control study between 2012 and 2018. Cases were hypospadias, ascertained by a pediatrician and a pediatric surgeon, excluding genetic conditions, following European Surveillance of Congenital Anomalies guidelines (N = 69). Controls (N = 135) were two male infants without congenital anomaly born after each case in the same maternity unit. Mothers in the maternity units completed a self-administered questionnaire, we collected medical data from hospital records, and medical staff collected meconium samples. We performed chemical analysis of 38 pesticides (parent compound and/or metabolite) by UHPLC/MS/MS following strict quality assurance/quality control criteria and blind to case-control status. We carried out logistic regression accounting for frequency-matching variables and major risk factors. RESULTS Among the 38 pesticides measured, 16 (42%) were never detected in the meconium samples, 18 (47%) were in <5% of samples, and 4 (11%) in ≥5% of the samples. We observed an association between the detection of fenitrothion in meconium and the risk of hypospadias (OR = 2.6 [1.0-6.3] with n cases = 13, n controls = 21), but not the other pesticides. CONCLUSIONS Our small study provides a robust assessment of fetal exposure. Fenitrothion's established antiandrogenic activities provide biologic plausibility for our observations. Further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Florence Rouget
- From the Brittany Registry of Congenital Anomalies, CHU Rennes, University of Rennes, Inserm, EHESP, Irset - UMR 1085, Rennes, France
| | - Adèle Bihannic
- Brittany Registry of Congenital Anomalies, CHU Rennes, Rennes, France
| | - Barbara Le Bot
- University of Rennes, EHESP, Inserm, Irset - UMR 1085, Rennes, France
| | - Fabien Mercier
- University of Rennes, EHESP, Inserm, Irset - UMR 1085, Rennes, France
| | - Erwann Gilles
- University of Rennes, EHESP, Inserm, Irset - UMR 1085, Rennes, France
| | - Ronan Garlantezec
- CHU Rennes, University of Rennes, Inserm, EHESP, Irset - UMR 1085, Rennes, France
| | - Luc Multigner
- University of Rennes, Inserm, EHESP, Irset - UMR 1085, Rennes, France
| | - Sylvaine Cordier
- University of Rennes, Inserm, EHESP, Irset - UMR 1085, Rennes, France
| | - Alexis Arnaud
- Department of Pediatric Surgery, CHU Rennes, Rennes, France
| | - Patrick Pladys
- CHU Rennes, University of Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| | - Cécile Chevrier
- University of Rennes, Inserm, EHESP, Irset - UMR 1085, Rennes, France
| |
Collapse
|
15
|
Philibert P, Stévant I, Déjardin S, Girard M, Sellem E, Durix Q, Messager A, Gonzalez AA, Mialhe X, Pruvost A, Poulat F, Boizet-Bonhoure B. Intergenerational effects on fertility in male and female mice after chronic exposure to environmental doses of NSAIDs and 17α-ethinylestradiol mixtures. Food Chem Toxicol 2023; 182:114085. [PMID: 37844793 DOI: 10.1016/j.fct.2023.114085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, Nîmes, France.
| | - Isabelle Stévant
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France; The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Stéphanie Déjardin
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Mélissa Girard
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France
| | - Eli Sellem
- Research and Development Department, Allice, Biology of Reproduction, INRA Domaine de Vilvert, Jouy en Josas, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de La Recherche Scientifique, INSERM, Université de Montpellier UMR9002, Montpellier, France.
| | - Aurélie Messager
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Pruvost
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, Gif-sur-Yvette, France.
| | - Francis Poulat
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de La Gonade, Institut de Génétique Humaine, Centre National de La Recherche Scientifique, Université de Montpellier UMR9002, Montpellier, France.
| |
Collapse
|
16
|
Li Y, Zhang L, Liu J, Wu M, Li C, Yang J, Wang L. Environmental concentrations of cadmium and zinc and associating metabolomics profile alternations in urine of pregnant women in the first trimester: A prospective cohort study in Taiyuan, North China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115611. [PMID: 37897977 DOI: 10.1016/j.ecoenv.2023.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
especially to pregnant women. In recent years, zinc (Zn) supplementation has attracted increasing attention among pregnant women. Thus, understanding the effects and interactions of Cd and Zn in pregnant women is critical. This study aimed to assess the urinary levels of Cd and Zn in pregnant women during early pregnancy, examine associated alterations in urine metabolomics, and identify potential metabolic biomarkers among distinct Cd and Zn groups. Urine samples from 185 pregnant women were collected, and inductively coupled plasma mass spectrometry (ICP-MS) was used to detect Cd and Zn contents. The women were then divided into four groups according to median contents of Cd and Zn. Alterations in the metabolite profile were assessed using a liquid chromatograph mass spectrometer (LC-MS). The results showed that the gravidity of pregnant women was closely related to urinary Cd levels and that the urinary Zn contents of pregnant women with morning sickness in the first trimester were lower than that of non-morning-sick pregnant women. A total of 51 metabolites exhibited significant differential expression in the high level of Cd and Zn (HCdHZn) compared with low level of Cd and Zn (LCdLZn), the diagnostic performance of these 51 metabolites were assessed using receiver operating characteristic curve analysis and revealed that octadecylamine was a promising diagnostic indicator for evaluating the combined effects of Zn and Cd. Metabolomics analysis showed that the arginine and proline pathways were upregulated in HCdHZn compared with that in LCdLZn, suggesting a potential risk of obesity. Although higer levels of bovinic acid in HCdHZn vs. HCdLZn (high level of Cd and low level of Zn) indicated that Zn has antioxidant and anti-inflammatory properties, excessive Zn may still cause harmful effect to the human health and should be supplemented with caution. The study findings may be valuable for potential risk ahissessment of the combined effects of Cd-Zn and their interactions in pregnant women.
Collapse
Affiliation(s)
- Yingjun Li
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Liuyuan Zhang
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Liu
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Meiqiong Wu
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Changqing Li
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030000, China
| | - Jia Yang
- Department of prevention and health care, Shanxi Provincial Children's Hospital, Taiyuan 030013, China
| | - Li Wang
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
17
|
Lahimer M, Abou Diwan M, Montjean D, Cabry R, Bach V, Ajina M, Ben Ali H, Benkhalifa M, Khorsi-Cauet H. Endocrine disrupting chemicals and male fertility: from physiological to molecular effects. Front Public Health 2023; 11:1232646. [PMID: 37886048 PMCID: PMC10598475 DOI: 10.3389/fpubh.2023.1232646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The deleterious effects of chemical or non-chemical endocrine disruptors (EDs) on male fertility potential is well documented but still not fully elucidated. For example, the detection of industrial chemicals' metabolites in seminal plasma and follicular fluid can affect efficiency of the gametogenesis, the maturation and competency of gametes and has guided scientists to hypothesize that endocrine disrupting chemicals (EDCs) may disrupt hormonal homoeostasis by leading to a wide range of hormonal control impairments. The effects of EDCs exposure on reproductive health are highly dependent on factors including the type of EDCs, the duration of exposure, individual susceptibility, and the presence of other co-factors. Research and scientists continue to study these complex interactions. The aim of this review is to summarize the literature to better understand the potential reproductive health risks of EDCs in France.
Collapse
Affiliation(s)
- Marwa Lahimer
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
- Exercise Physiology and Physiopathology: from Integrated to Molecular “Biology, Medicine and Health” (Code: LR19ES09), Sousse, Tunisia
| | - Maria Abou Diwan
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Debbie Montjean
- Fertilys, Centres de Fertilité, Laval and Brossard, QC, Canada
| | - Rosalie Cabry
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Mounir Ajina
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Moncef Benkhalifa
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Hafida Khorsi-Cauet
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| |
Collapse
|
18
|
Conley JM, Lambright CS, Evans N, Farraj AK, Smoot J, Grindstaff RD, Hill D, McCord J, Medlock-Kakaley E, Dixon A, Hines E, Gray LE. Dose additive maternal and offspring effects of oral maternal exposure to a mixture of three PFAS (HFPO-DA, NBP2, PFOS) during pregnancy in the Sprague-Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164609. [PMID: 37271399 PMCID: PMC10681034 DOI: 10.1016/j.scitotenv.2023.164609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aimen K Farraj
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacob Smoot
- ORISE Participant, U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Rachel D Grindstaff
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Erin Hines
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
19
|
Tagne-Fotso R, Zeghnoun A, Saoudi A, Balestier A, Pecheux M, Chaperon L, Oleko A, Marchand P, Le Bizec B, Vattier L, Bouchart V, Limon G, Le Gléau F, Denys S, Fillol C. Exposure of the general French population to herbicides, pyrethroids, organophosphates, organochlorines, and carbamate pesticides in 2014-2016: Results from the Esteban study. Int J Hyg Environ Health 2023; 254:114265. [PMID: 37748265 DOI: 10.1016/j.ijheh.2023.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Esteban is a nationwide cross-sectional study conducted in France in 2014-2016, including 2503 adults aged 18-74 years old and 1104 children aged 6-17 years old, as part of the French Human Biomonitoring programme. The present paper describes the biological levels of five families of pesticides analysed on random sub-samples of 900 adults and 500 children for urine concentrations, and 759 adults and 255 children for serum concentrations, and the determinants of exposure. Organophosphates, carbamates and herbicides were measured in urine by UPLC-MS/MS; chlorophenols and pyrethroids were measured in urine by GC-MS/MS; specific organochlorines were measured in serum by GC-HRMS. Multivariate analyses were performed to identify the determinants of exposure using a generalized linear model. Pyrethroid metabolites were quantified in 99% of adults and children, with the exeption of F-PBA, which was quantified in 31% of adults and 27% of children, respectively. Carbamates and some specific organophosphates were barely or not quantified. DMTP was quantified in 82% of adults and 93% of children, and γ-HCH (lindane) was quantified in almost 50% of adults and children. Concentration levels of pesticide biomarkers were consistent with comparable international studies, except for β-HCH, DMTP, and the deltamethrin metabolite Br2CA, whose levels were sometimes higher in France. Household insecticide use and smoking were also associated with higher levels of pyrethroids. All pyrethroids concentration levels were below existing health-based HBM guidance values, HBM-GVsGenPop, except for 3-PBA, for which approximately 1% and 10% of children were above the lower and upper urine threshold values of 22 μg/L and 6.4 μg/L, respectively. Esteban provides a French nationwide description of 70 pesticide biomarkers for the first time in children. It also describes some pesticide biomarkers for the first time in adults, including glyphosate and AMPA. For the latter, urine concentration levels were overall higher in children than in adults. Our results highlight a possible beneficial impact of existing regulations on adult exposure to organochlorine and organophosphate pesticides between 2006 and 2016, as concentration levels decreased over this period.
Collapse
Affiliation(s)
- Romuald Tagne-Fotso
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France.
| | - Abdelkrim Zeghnoun
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Abdessattar Saoudi
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Anita Balestier
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Marie Pecheux
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Laura Chaperon
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Amivi Oleko
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | | | | | | | | | | | | | - Sébastien Denys
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| | - Clémence Fillol
- Santé Publique France, The National Public Health Agency, 12 Rue Du Val D'Osne, Saint-Maurice Cedex, 94415, France
| |
Collapse
|
20
|
Ubong D, Stewart L, Sepai O, Knudsen LE, Berman T, Reynders H, Van Campenhout K, Katsonouri A, Van Nieuwenhuyse A, Ingelido AM, Castaño A, Pedraza-Díaz S, Eiríksdóttir ÁV, Thomsen C, Hartmann C, Gjorgjev D, De Felip E, Tolonen H, Santonen T, Klanova J, Norström K, Kononenko L, Silva MJ, Uhl M, Kolossa-Gehring M, Apel P, Jõemaa M, Jajcaj M, Estokova M, Luijten M, Lebret E, von Goetz N, Holcer NJ, Probst-Hensch N, Cavaleiro R, Barouki R, Tarroja E, Balčienė RM, Strumylaite L, Latvala S, Namorado S, Szigeti T, Ingi Halldorsson T, Olafsdottir K, Wasowicz W. Application of human biomonitoring data to support policy development, raise awareness and environmental public health protection among countries within the HBM4EU project. Int J Hyg Environ Health 2023; 251:114170. [PMID: 37207539 DOI: 10.1016/j.ijheh.2023.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Most countries have acknowledged the importance of assessing and quantifying their population's internal exposure from chemicals in air, water, soil, food and other consumer products due to the potential health and economic impact. Human biomonitoring (HBM) is a valuable tool which can be used to quantify such exposures and effects. Results from HBM studies can also contribute to improving public health by providing evidence of individuals' internal chemical exposure as well as data to understand the burden of disease and associated costs thereby stimulating the development and implementation of evidence-based policy. To have a holistic view on HBM data utilisation, a multi-case research approach was used to explore the use of HBM data to support national chemical regulations, protect public health and raise awareness among countries participating in the HBM4EU project. The Human Biomonitoring for Europe (HBM4EU) Initiative (https://www.hbm4eu.eu/) is a collaborative effort involving 30 countries, the European Environment Agency (EEA) and the European Commission (contracting authority) to harmonise procedures across Europe and advance research into the understanding of the health impacts of environmental chemical exposure. One of the aims of the project was to use HBM data to support evidence based chemical policy and make this information timely and directly available for policy makers and all partners. The main data source for this article was the narratives collected from 27 countries within the HBM4EU project. The countries (self-selection) were grouped into 3 categories in terms of HBM data usage either for public awareness, policy support or for the establishment HBM programme. Narratives were analysed/summarised using guidelines and templates that focused on ministries involved in or advocating for HBM; steps required to engage policy makers; barriers, drivers and opportunities in developing a HBM programme. The narratives reported the use of HBM data either for raising awareness or addressing environmental/public health issues and policy development. The ministries of Health and Environment were reported to be the most prominent entities advocating for HBM, the involvement of several authorities/institutions in the national hubs was also cited to create an avenue to interact, discuss and gain the attention of policy makers. Participating in European projects and the general population interest in HBM studies were seen as drivers and opportunities in developing HBM programmes. A key barrier that was cited by countries for establishing and sustaining national HBM programmes was funding which is mainly due to the high costs associated with the collection and chemical analysis of human samples. Although challenges and barriers still exist, most countries within Europe were already conversant with the benefits and opportunities of HBM. This article offers important insights into factors associated with the utilisation of HBM data for policy support and public awareness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dragan Gjorgjev
- Institute of Public Health, Republic of North Macedonia, Macedonia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Coiffier O, Lyon-Caen S, Boudier A, Quentin J, Gioria Y, Pin I, Bayat S, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Philippat C, Siroux V. Prenatal exposure to synthetic phenols and phthalates and child respiratory health from 2 to 36 months of life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121794. [PMID: 37178953 DOI: 10.1016/j.envpol.2023.121794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Exposure to phthalates and synthetic phenols is ubiquitous. Some of them are suspected to impact child respiratory health, although evidence still remains insufficient. This study investigated the associations between prenatal exposure to phthalates and phenols, individually and as a mixture, and child respiratory health assessed by objective lung function measures since 2 months of age. Among 479 mother-child pairs from the SEPAGES cohort, 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites were measured in 2 pools including each 21 urine samples collected at the 2nd and 3rd pregnancy trimesters. Lung function was measured at 2 months using tidal breathing flow-volume loops and nitrogen multiple-breath washout, and at 3 years using oscillometry. Asthma, wheezing, bronchitis and bronchiolitis were assessed by repeated questionnaires. A cluster-based analysis was applied to identify exposure patterns to phenols and phthalates. Adjusted associations between clusters as well as each individual exposure biomarker and child respiratory health were estimated by regression models. We identified four prenatal exposure patterns: 1) low concentrations of all biomarkers (reference, n = 106), 2) low phenols-moderate phthalates (n = 162), 3) high concentrations of all biomarkers except bisphenol S (n = 109), 4) high parabens-moderate other phenols-low phthalates (n = 102). At 2 months, cluster 2 infants had lower functional residual capacity and tidal volume and higher ratio of time to peak tidal expiratory flow to expiratory time (tPTEF/tE) and cluster 3 had lower lung clearance index and higher tPTEF/tE. Clusters were not associated with respiratory health at 3 years but in the single-pollutant models, parabens were associated with increased area of the reactance curve, bronchitis (methyl, ethyl parabens) and bronchiolitis (propyl paraben). Our results suggested that prenatal exposure to mixtures of phthalates reduced lung volume in early life. Single exposure analyses suggested associations of parabens with impaired lung function and increased risk of respiratory diseases.
Collapse
Affiliation(s)
- Ophélie Coiffier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Joane Quentin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Yoann Gioria
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Isabelle Pin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | | | | | | | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France.
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| |
Collapse
|
22
|
Cervetto C, Pistollato F, Amato S, Mendoza-de Gyves E, Bal-Price A, Maura G, Marcoli M. Assessment of neurotransmitter release in human iPSC-derived neuronal/glial cells: a missing in vitro assay for regulatory developmental neurotoxicity testing. Reprod Toxicol 2023; 117:108358. [PMID: 36863571 PMCID: PMC10112275 DOI: 10.1016/j.reprotox.2023.108358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) and their differentiated neuronal/glial derivatives have been recently considered suitable to assess in vitro developmental neurotoxicity (DNT) triggered by exposure to environmental chemicals. The use of human-relevant test systems combined with in vitro assays specific for different neurodevelopmental events, enables a mechanistic understanding of the possible impact of environmental chemicals on the developing brain, avoiding extrapolation uncertainties associated with in vivo studies. Currently proposed in vitro battery for regulatory DNT testing accounts for several assays suitable to study key neurodevelopmental processes, including NSC proliferation and apoptosis, differentiation into neurons and glia, neuronal migration, synaptogenesis, and neuronal network formation. However, assays suitable to measure interference of compounds with neurotransmitter release or clearance are at present not included, which represents a clear gap of the biological applicability domain of such a testing battery. Here we applied a HPLC-based methodology to measure the release of neurotransmitters in a previously characterized hiPSC-derived NSC model undergoing differentiation towards neurons and glia. Glutamate release was assessed in control cultures and upon depolarization, as well as in cultures repeatedly exposed to some known neurotoxicants (BDE47 and lead) and chemical mixtures. Obtained data indicate that these cells have the ability to release glutamate in a vesicular manner, and that both glutamate clearance and vesicular release concur in the maintenance of extracellular glutamate levels. In conclusion, analysis of neurotransmitter release is a sensitive readout that should be included in the envisioned battery of in vitro assays for DNT testing.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| | | | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, JRC, Ispra, Italy.
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| |
Collapse
|
23
|
Fauconnier MB, Albert C, Tondreau A, Maumy L, Rouzier R, Bonneau C. [Bisphenol A and breast cancer: State of knowledge and meta-analysis]. Bull Cancer 2023; 110:151-159. [PMID: 36543681 DOI: 10.1016/j.bulcan.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Bisphenol A is an endocrine disruptor used in the composition of food containers. It was partially banned in France in 2015 and classified as a "very high-risk substance" in 2017. Bisphenol A's carcinogenic effects have been demonstrated in animal testing. Bisphenol A acts through estrogen-dependent and estrogen-independent pathways. It induces epigenetic changes and impacts the microenvironment of the mammary gland. However, the role of bisphenol A exposure in the development of breast cancer in humans remains controversial. This study documents the current thinking on bisphenol A with an analysis of the mechanisms and a meta-analysis. MATERIALS AND METHODS A literature review and a statistical analysis of linear regression type, with the creation of a Forest plot, were used to perform the meta-analysis of 9 studies including 10,695 patients. RESULTS Nine case-control studies, published between 1990 and 2021, investigating the association between breast cancer and mean urinary, blood or tissue bisphenol A levels were selected. The meta-analysis did not find a significant association between bisphenol A exposure and the development of breast cancer with an OR=(1 IC95% [0.92-1.08]). DISCUSSION This meta-analysis does not show a link between breast cancer and bisphenol A exposure. Nevertheless, the analysis of a pathogenic link between bisphenol A and breast cancer requires additional cohort studies to conclude because of methods of available studies.
Collapse
Affiliation(s)
| | - Casilda Albert
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Ambre Tondreau
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Louise Maumy
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Roman Rouzier
- Institut François-Baclesse, département de chirurgie, 3, avenue du Général Harris, 14000 Caen, France; Inserm U900, Institut Curie, Saint-Cloud, France
| | - Claire Bonneau
- Institut Curie-Saint-Cloud, département de chirurgie, 35, rue Dailly, 92210 Saint-Cloud, France; Inserm U900, Institut Curie, Saint-Cloud, France.
| |
Collapse
|
24
|
Fábelová L, Beneito A, Casas M, Colles A, Dalsager L, Den Hond E, Dereumeaux C, Ferguson K, Gilles L, Govarts E, Irizar A, Lopez Espinosa MJ, Montazeri P, Morrens B, Patayová H, Rausová K, Richterová D, Rodriguez Martin L, Santa-Marina L, Schettgen T, Schoeters G, Haug LS, Uhl M, Villanger GD, Vrijheid M, Zaros C, Palkovičová Murínová Ľ. PFAS levels and exposure determinants in sensitive population groups. CHEMOSPHERE 2023; 313:137530. [PMID: 36509187 PMCID: PMC9846180 DOI: 10.1016/j.chemosphere.2022.137530] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants. The first exposure to PFAS occurs in utero, after birth it continues via breast milk, food intake, environment, and consumer products that contain these chemicals. Our aim was to identify determinants of PFAS concentrations in sensitive population subgroups- pregnant women and newborns. METHODS Nine European birth cohorts provided exposure data on PFAS in pregnant women (INMA-Gipuzkoa, Sabadell, Valencia, ELFE and MoBa; total N = 5897) or newborns (3xG study, FLEHS 2, FLEHS 3 and PRENATAL; total N = 940). PFOS, PFOA, PFHxS and PFNA concentrations were measured in maternal or cord blood, depending on the cohort (FLEHS 2 measured only PFOS and PFOA). PFAS concentrations were analysed according to maternal characteristics (age, BMI, parity, previous breastfeeding, smoking, and food consumption during pregnancy) and parental educational level. The association between potential determinants and PFAS concentrations was evaluated using multiple linear regression models. RESULTS We observed significant variations in PFAS concentrations among cohorts. Higher PFAS concentrations were associated with higher maternal age, primipara birth, and educational level, both for maternal blood and cord blood. Higher PFAS concentrations in maternal blood were associated with higher consumption of fish and seafood, meat, offal and eggs. In cord blood, higher PFHxS concentrations were associated with daily meat consumption and higher PFNA with offal consumption. Daily milk and dairy consumption were associated with lower concentrations of PFAS in both, pregnant women and newborns. CONCLUSION High detection rates of the four most abundant PFAS demonstrate ubiquitous exposure of sensitive populations, which is of concern. This study identified several determinants of PFAS exposure in pregnant women and newborns, including dietary factors, and these findings can be used for proposing measures to reduce PFAS exposure, particularly from dietary sources.
Collapse
Affiliation(s)
- L Fábelová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - A Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - M Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - A Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Dalsager
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - E Den Hond
- Provincial Institute of Hygiene (PIH), Antwerp, Belgium
| | | | - K Ferguson
- National Institute of Environmental Health Sciences (NIEHS), North Carolina, USA
| | - L Gilles
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - E Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - A Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain
| | - M J Lopez Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | | | - B Morrens
- Faculty of Social Sciences, University of Antwerp, Belgium
| | - H Patayová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - K Rausová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - D Richterová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia
| | - L Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L Santa-Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain; Biodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, 20013 San Sebastian, Spain
| | - T Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, Aachen, Germany
| | - G Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - L S Haug
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Uhl
- Umweltbundesamt, Vienna, Austria
| | - G D Villanger
- Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - M Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5 28029 Madrid, Spain
| | - C Zaros
- Institut national d'études démographiques (INED), Aubervilliers, France
| | - Ľ Palkovičová Murínová
- Slovak Medical University in Bratislava, Faculty of Public Health, Department of Environmental Medicine, Bratislava, Slovakia.
| |
Collapse
|
25
|
Mahfouz Y, Harmouche-Karaki M, Matta J, Mahfouz M, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, Moussa G, Chahrour N, Osseiran C, Skaiky F, Narbonne JF. Serum levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in a sample of Lebanese pregnant women: The role of dietary, anthropometric, and environmental factors. ENVIRONMENTAL RESEARCH 2023; 216:114647. [PMID: 36367504 DOI: 10.1016/j.envres.2022.114647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are unintentionally produced, toxic environmental chemicals that persist for long years and bioaccumulate along the food chain, contaminating humans through diet. A particularly critical population subgroup is pregnant women given the adverse health effects on fetuses and newborns. Several anthropogenic sources of exposure to PCDD/Fs exist in Lebanon. Therefore, the aim of the present cross-sectional study is to measure the levels of PCDD/Fs in a sample of pregnant women in Lebanon and to explore potential associated factors. In this study, we measured serum concentrations of seven dioxins and ten furans, among 423 pregnant women recruited at delivery, using gas chromatography MS/MS. Among 269 participants, maternal sociodemographic information was collected including vicinity to landfills, incineration, pesticide use, industrial activity, and smoking. Anthropometric data were registered regarding pre-pregnancy body mass index (BMI), pre-pregnancy weight loss from restrictive diet, and gestational weight gain. Intake of major food groups generally related to PCDD/Fs was reported (fish, red meat, poultry, and dairy). Bivariate and multivariate analyses were performed to identify associations. PCDD/Fs were detected in 0 to 56.1% of the sample. Geometric mean concentrations were 75.5 (2.35) pg/g lipid and 2.25 (1.39) TEQ2005 pg/g lipid for total dioxins, and 2.66 (1.76) pg/g lipid and 0.34 (1.78) TEQ2005 pg/g lipid for total furans. Levels were relatively lower than levels previously observed in France, Germany, Mexico, Ghana, and Japan. Red meat consumption was the most consistently associated factor with a 2.38-2.57 fold increase in PCDD/F levels. Pre-pregnancy weight loss showed inverse associations with PCDD/F congeners. Vicinity to illegal incineration was also associated with a 2.32-2.43 fold increase in PCDD/F levels. In conclusion, results showed the importance of dietary, anthropometric, and environmental factors in the present sample's exposure to PCDD/Fs, in a region that contains anthropogenic sources of contamination.
Collapse
Affiliation(s)
- Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Joseph Matta
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon; Industrial Research Institute, Lebanese University Campus, Hadath Baabda, Lebanon.
| | - Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Pascale Salameh
- Clinical and Epidemiological Research Laboratory, Faculty of Pharmacy, Lebanese University, Hadath, Lebanon; School of Medicine, Lebanese American University, Byblos, Lebanon; Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Lebanon; Department of Primary Care and Population Health, University of Nicosia Medical School, 2417, Nicosia, Cyprus.
| | - Hassan Younes
- UniLaSalle University, 19 Pierre Waguet Street, 60026 Beauvais, France.
| | - Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon.
| | - Ramzi Finan
- Lebanese Society of Obstetrics and Gynecology, Adliye, Beit El- Tabib - 3rd Floor, Beirut, Lebanon; Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B. 166830, Beirut, Lebanon.
| | - Georges Abi-Tayeh
- Faculty of Medicine, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B. 166830, Beirut, Lebanon; Lebanese Fertility Society, Adliye, Beit El- Tabib, Beirut, Lebanon.
| | | | - Ghada Moussa
- Department of Obstetrics and Gynecology, Chtoura Hospital, Zahle, Beqaa, Lebanon.
| | - Nada Chahrour
- Department of Obstetrics and Gynecology, SRH University Hospital, Nabatieh, Lebanon.
| | - Camille Osseiran
- Department of Obstetrics and Gynecology, Kassab Hospital, Saida, Lebanon.
| | - Farouk Skaiky
- Department of Molecular Biology, General Management, Al Karim Medical Laboratories, Saida, Lebanon; Faculty of Public Health, Lebanese University, Saida, Lebanon.
| | | |
Collapse
|
26
|
Andersen HR, Rambaud L, Riou M, Buekers J, Remy S, Berman T, Govarts E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. TOXICS 2022; 10:789. [PMID: 36548622 PMCID: PMC9788618 DOI: 10.3390/toxics10120789] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem 9446724, Israel
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
27
|
Rousseau M, Rouzeau C, Bainvel J, Pelé F. Domestic Exposure to Chemicals in Household Products, Building Materials, Decoration, and Pesticides: Guidelines for Interventions During the Perinatal Period from the French National College of Midwives. J Midwifery Womens Health 2022; 67 Suppl 1:S113-S134. [PMID: 36480667 DOI: 10.1111/jmwh.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION We are exposed to numerous pollutants inside our homes. The perinatal period represents a particular window of vulnerability during which these exposures can have negative health effects over a more or less long term. The objective of this article is to formulate guidelines for health care professionals and intended for parents to reduce exposure to chemical pollutants at home, based on the scientific literature and already existing guidelines. METHODS We have followed the methodological procedures set forth by the French authority for health (HAS) to establish guidelines to limit exposure to pollutants in homes. This narrative review of the scientific literature was conducted with two principal objectives: (1) to identify priority substances emitted within homes and that have a reprotoxic potential and (2) to identify measures to limit exposure to these residential pollutants. The guidelines were developed from the data in the literature and from advice already made available by diverse institutions about environmental health during the perinatal period. RESULTS Domestic pollutants are numerous and come from both common (that is, shared, eg, painting, cleaning, and maintenance work) and specific (use of household pesticides) sources. Numerous pollutants are suspected or known to produce developmental toxicity, that is, to be toxic to children during developmental stages. Removing some products from the home, protecting the vulnerable (ie, pregnant women and young children) from exposure, and airing the home are among the preventive measures proposed to limit exposure to these chemical substances. CONCLUSION Health care professionals can provide advice to parents during the perinatal period to diminish exposure to household pollutants. The lack of interventional studies nonetheless limits the level of evidence for most of these recommendations.
Collapse
Affiliation(s)
- Mélie Rousseau
- Association pour la Prévention de la Pollution Atmosphérique (APPA), Loos, France
| | - Camille Rouzeau
- Département de médecine générale, Université de Rennes 1, Rennes, France
| | - Justine Bainvel
- Département de médecine générale, Université de Rennes 1, Rennes, France
| | - Fabienne Pelé
- Département de médecine générale, Université de Rennes 1, Rennes, France.,Université de Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), Rennes, F-35000, France
| |
Collapse
|
28
|
Lecorguillé M, Camier A, Kadawathagedara M. Weight Changes, Nutritional Intake, Food Contaminants, and Supplements in Women of Childbearing Age, including Pregnant Women: Guidelines for Interventions during the Perinatal Period from the French National College of Midwives. J Midwifery Womens Health 2022; 67 Suppl 1:S135-S148. [PMID: 36480662 DOI: 10.1111/jmwh.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Adequate maternal nutrition is crucial for a healthy pregnancy and optimal fetal growth. Many women in France of childbearing age start their pregnancy in an unfavorable nutritional status. Recent studies highlight the value of paying attention to weight issues from the preconceptional period. It is important to call attention to the need for folate supplementation and to promote a varied and balanced diet throughout pregnancy to cover essential nutritional needs.
Collapse
Affiliation(s)
| | - Aurore Camier
- Université de Paris, CRESS, INSERM, INRAE, Paris, F-75004, France
| | | |
Collapse
|
29
|
Oleko A, Pecheux M, Saoudi A, Zeghnoun A, Hulin M, Le Barbier M, Menard C, Denys S, Fillol C. Estimation of blood lead levels in the French population using two complementary approaches: Esteban (2014-2016) as part of the human biomonitoring program and the national surveillance system for childhood lead poisoning (2015-2018). ENVIRONMENTAL RESEARCH 2022; 213:113630. [PMID: 35679905 DOI: 10.1016/j.envres.2022.113630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Used widely for centuries, lead is a common environmental pollutant. As a cumulative toxic, its presence in the body is always evidence of exposure, and health effects occur without threshold. Though regulated by European directives, lead requires close monitoring due to its environmental persistence and toxicity. METHODS The first data source was the French surveillance system for monitoring childhood lead poisoning, which records the screening results of children (-18 years), providing data on their temporal and geographical distribution, characteristics, and risk factors. The second data source was Esteban, a cross-sectional study conducted in 2014-2016 on a random sample of the French population as part of the human biomonitoring program. The Esteban lead study concerns 904 children (6-17 years) and 999 adults (18-74 years), providing data on biological samples, sociodemographic characteristics, occupational exposure, environmental and dietary factors. RESULTS The surveillance system highlighted that lead poisoning affected 10% of children screened between 2015 and 2018. The main risk factor remains housing. Esteban confirmed this observation, finding a general mean of blood lead level (BLL) at 9.9 and 18.5 μg/L for children and adults, respectively. In children, parents' occupation increased BLLs. In adults, the greatest exposure factors were smoking, age, place of residence, alcohol, bread-based products, and homegrown livestock products. In both, drinking tap water and year of housing construction increased BLLs. CONCLUSIONS The surveillance system showed a high number of children with lead poisoning despite the implementation of prevention measures, which mainly concern lead paints in old and degraded homes. To help identify children at risk, healthcare providers need to know about exposure from housing and the emerging sources identified in the Esteban survey. Despite lower BLLs, the well-known risk factors of lead exposure persist, meaning prevention efforts must continue in order to limit their impact on the population.
Collapse
Affiliation(s)
- Amivi Oleko
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France.
| | - Marie Pecheux
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Abdesattar Saoudi
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Abdelkrim Zeghnoun
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Marion Hulin
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Mélina Le Barbier
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Céline Menard
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Sébastien Denys
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| | - Clémence Fillol
- Santé Publique France, French Public Health Agency, 12 Rue du Val d'Osne, 94415, Saint Maurice Cedex, France
| |
Collapse
|
30
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
31
|
Meslin M, Beausoleil C, Zeman FA, Antignac JP, Kolossa-Gehring M, Rousselle C, Apel P. Human Biomonitoring Guidance Values (HBM-GVs) for Bisphenol S and Assessment of the Risk Due to the Exposure to Bisphenols A and S, in Europe. TOXICS 2022; 10:228. [PMID: 35622642 PMCID: PMC9146466 DOI: 10.3390/toxics10050228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/14/2023]
Abstract
Within the European Joint Programme HBM4EU, Human Biomonitoring Guidance Values (HBM-GVs) were derived for several prioritised substances. In this paper, the derivation of HBM-GVs for the general population (HBM-GVGenPop) and workers (HBM-GVworker) referring to bisphenol S (BPS) is presented. For the general population, this resulted in an estimation of the total urinary concentration of BPS of 1.0 µg/L assuming a 24 h continuous exposure to BPS. For workers, the modelling was refined in order to reflect continuous exposure during the working day, leading to a total urinary concentration of BPS of 3.0 µg/L. The usefulness for risk assessment of the HBM-GVs derived for BPS and bisphenol A (BPA) is illustrated. Risk Characterisation Ratios (RCRs) were calculated leading to a clear difference between risk assessments performed for both bisphenols, with a very low RCR regarding exposure to BPA., contrary to that obtained for BPS. This may be due to the endocrine mediated endpoints selected to derive the HBM-GVs for BPS, whereas the values calculated for BPA are based on the temporary Tolerable Daily Intake (t-TDI) from EFSA set in 2015. A comparison with the revised TDI recently opened for comments by EFSA is also discussed. Regarding the occupational field, results indicate that the risk from occupational exposure to both bisphenols cannot be disregarded.
Collapse
Affiliation(s)
- Matthieu Meslin
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (M.M.); (C.B.)
| | - Claire Beausoleil
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (M.M.); (C.B.)
| | - Florence Anna Zeman
- French National Institute for Industrial Environment and Risks (INERIS), Parc ALATA BP2, 60550 Verneuil en Halatte, France;
| | - Jean-Philippe Antignac
- Oniris, National Research Institute for Agriculture, Food and the Environment (INRAE), LABERCA, 44300 Nantes, France;
| | - Marike Kolossa-Gehring
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany; (M.K.-G.); (P.A.)
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (M.M.); (C.B.)
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany; (M.K.-G.); (P.A.)
| |
Collapse
|
32
|
Free Cortisol Mediates Associations of Maternal Urinary Heavy Metals with Neonatal Anthropometric Measures: A Cross-Sectional Study. TOXICS 2022; 10:toxics10040167. [PMID: 35448428 PMCID: PMC9032588 DOI: 10.3390/toxics10040167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022]
Abstract
Prenatal exposure to heavy metals is known to be associated with adverse birth outcomes and oxidative stress biomarkers. In this study, we examined whether maternal free cortisol or 8-Hydroxy-2-Deoxyguanosine (8-OHdG) could mediate associations between maternal heavy metal exposure and birth outcomes. A total of 182 healthy pregnant women were recruited. Heavy metals (including Pb, Hg, and Cd), free-cortisol, and 8-OHdG were analyzed in urine at delivery. Birth outcomes including birth weight, length, Ponderal index, and head circumference were measured. To examine associations of maternal urinary heavy metals with biomarkers and birth outcomes, generalized linear models were employed. Birth length was positively associated with Pb (β = 0.78, 95% CI: 0.09−1.46) and Hg (β = 0.84, 95% CI: 0.23−1.45) (both p < 0.05). The Ponderal index, a measure of a newborn’s leanness, was negatively associated with maternal urinary Pb (β = −0.23, 95% CI: −0.46−−0.07) and Hg (β = −0.26, 95% CI: −0.44−−0.08) (both p < 0.05). No association between maternal Cd and birth outcomes was observed. Most heavy metals showed positive associations with free cortisol and 8-OHdG. Free cortisol was identified as a mediator underlying the observed relationship between Hg and birth length or Ponderal index. This study observed adverse birth outcomes from maternal exposures to Pb and Hg. Increased free cortisol related to Hg exposure was suggested as a possible causal pathway from Hg exposure to birth outcomes such as the Ponderal index.
Collapse
|
33
|
Knowledge, Attitudes, and Behaviors Regarding Chemical Exposure among a Population Sample of Reproductive-Aged Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053015. [PMID: 35270707 PMCID: PMC8910600 DOI: 10.3390/ijerph19053015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
We examined the knowledge and attitudes of reproductive-age women toward environmental chemicals and determined how these affect consumer behaviors. At the 2018 Minnesota State Fair, a large community sample of reproductive-age women was recruited to complete a survey on environmental health attitudes and behaviors. Descriptive statistics, chi-square tests, and logistic regression models were used to characterize current attitudes about chemicals. Multivariable logistic regression models examined how sociodemographic characteristics predict knowledge, attitudes, and consumer behaviors. A total of 871 women completed the survey; 74% strongly agreed that chemicals in the environment are dangerous, and 44% of women reported having heard of phthalates, while only 29% reported always practicing at least one environmentally healthy behavior (such as consuming food and beverages from safe plastics). Older age (35-39 versus 18-24: aOR 2.3, 95% CI 1.3, 4.3; 40-44 versus 18-24; aOR 2.0, 95% CI 1.2, 3.2) and working in a healthcare profession (aOR: 1.7, 95% CI: 1.2, 2.5) were associated with strong agreement that chemicals in the environmental are dangerous. Women who strongly agreed chemicals are dangerous were more likely to practice consumer behaviors to reduce their exposure. Interventions targeting knowledge and attitudes towards environmental chemicals could be an effective strategy for reducing harmful exposures.
Collapse
|
34
|
Palát J, Kukučka P, Codling GP, Price EJ, Janků P, Klánová J. Application of 96-well plate SPE method for analysis of persistent organic pollutants in low volume blood serum samples. CHEMOSPHERE 2022; 287:132300. [PMID: 34563784 DOI: 10.1016/j.chemosphere.2021.132300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Though many persistent organic pollutants (POPs) are closely regulated the human population is still exposed to these ubiquitous chemicals from the environment and diet. Safe management and human biomonitoring of POPs is necessary to understand the risk of exposure. Within human biomonitoring the mass of sample is often limited, therefore robust methods using smaller sample amounts are necessary. This study developed a 96-well plate solid phase extraction (SPE) method for determination of selected POPs: polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and non-persistent novel flame retardants (NFRs) in low volume blood serum. Non-destructive clean-up coupling Oasis HLB extraction plate with Phree phospholipid removal plate was employed. Extraction efficiency was determined at low and high concentrations in certified reference materials NIST SRM 1957 and 1958, respectively. Target compounds deviated from certified values on average by 15% and 21% for SRM 1957 and SRM 1958, respectively. Observed limit of detections (LODs) ranged from 0.36 pg/mL (PCB 180) to 66.07 pg/mL (δ-HCH). The applicability for real samples is demonstrated on 48 samples from pregnant women enrolled in the pilot phase of the CELSPAC: TNG study. In total, 30 target compounds were detected in at least one sample. The method developed here provides a fast and reliable analysis of human blood serum with possibility to introduce automation for the sample preparation procedure.
Collapse
Affiliation(s)
- Jiří Palát
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Garry P Codling
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, SK, S7N 5B3, Saskatoon, Canada
| | - Elliott J Price
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Petr Janků
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic; Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Jana Klánová
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
35
|
Regrain C, Zeman FA, Guedda M, Chardon K, Bach V, Brochot C, Bonnard R, Tognet F, Malherbe L, Létinois L, Boulvert E, Marlière F, Lestremau F, Caudeville J. Spatio-temporal assessment of pregnant women exposure to chlorpyrifos at a regional scale. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:156-168. [PMID: 33824416 DOI: 10.1038/s41370-021-00315-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The aim of this study was to use an integrated exposure assessment approach, combining spatiotemporal modeling of environmental exposure and fate of the chemical to assess the exposure of vulnerable populations. In this study, chlorpyrifos exposure of pregnant women in Picardy was evaluated at a regional scale during 1 year. This approach provided a mapping of exposure indicators of pregnant women to chlorpyrifos over fine spatial and temporal resolutions using a GIS environment. METHODS Fate and transport models (emission, atmospheric dispersion, multimedia exposure, PBPK) were combined with environmental databases in a GIS environment. Quantities spread over agricultural fields were simulated and integrated into a modeling chain coupling models. The fate and transport of chlorpyrifos was characterized by an atmospheric dispersion statistical metamodel and the dynamiCROP model. Then, the multimedia model Modul'ERS was used to predict chlorpyrifos daily exposure doses which were integrated in a PBPK model to compute biomarker of exposure (TCPy urinary concentrations). For the concentration predictions, two scenarios (lower bound and upper bound) were built. RESULTS At fine spatio-temporal resolutions, the cartography of biomarkers in the lower bound scenario clearly highlights agricultural areas. In these maps, some specific areas and hotspots appear as potentially more exposed specifically during application period. Overall, predictions were close to biomonitoring data and ingestion route was the main contributor to chlorpyrifos exposure. CONCLUSIONS This study demonstrated the feasibility of an integrated approach for the evaluation of chlorpyrifos exposure which allows the comparison between modeled predictions and biomonitoring data.
Collapse
Affiliation(s)
- Corentin Regrain
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
- LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
- PériTox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Florence Anna Zeman
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Toxicologie Expérimentale et Modélisation (TEAM), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Mohammed Guedda
- LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Karen Chardon
- PériTox (UMR_I 01), UPJV/INERIS, UPJV, Amiens, France
| | | | - Céline Brochot
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Toxicologie Expérimentale et Modélisation (TEAM), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Roseline Bonnard
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Frédéric Tognet
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Modélisation Atmosphérique et Cartographie Environnementale (MOCA), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Laure Malherbe
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Instrumentation et Exploitation de la Donnée (INDO), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Laurent Létinois
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Instrumentation et Exploitation de la Donnée (INDO), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Emmanuelle Boulvert
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Fabrice Marlière
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Accompagnement à la surveillance de la qualité de l'air et des eaux de surfaces (ASUR), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - François Lestremau
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Méthodes & Développements en Analyses pour l'Environnement (ANAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France
| | - Julien Caudeville
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Impact Sanitaire et Exposition (ISAE), Parc ALATA BP2, 60550, Verneuil-en-Halatte, France.
- PériTox (UMR_I 01), INERIS/UPJV, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.
| |
Collapse
|
36
|
Lozano M, Murcia M, Soler-Blasco R, Casas M, Zubero B, Riutort-Mayol G, Gil F, Olmedo P, Grimalt JO, Amorós R, Lertxundi A, Vrijheid M, Ballester F, Llop S. Exposure to metals and metalloids among pregnant women from Spain: Levels and associated factors. CHEMOSPHERE 2022; 286:131809. [PMID: 34388877 DOI: 10.1016/j.chemosphere.2021.131809] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Humans are regularly exposed to metals and metalloids present in air, water, food, soil and domestic materials. Most of them can cross the placental barrier and cause adverse impacts on the developing foetus. OBJECTIVES To describe the prenatal concentrations of metals and metalloids and to study the associated sociodemographic, environmental and dietary factors in pregnant Spanish women. METHODS Subjects were 1346 pregnant women of the INMA Project, for whom the following metals arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), thallium (Tl) and zinc (Zn) were determined in urine, at both the first and the third trimesters of gestation. Sociodemographic, dietary and environmental information was collected through questionnaires during pregnancy. Multiple linear mixed models were built in order to study the association between each metal and metalloid concentrations and the sociodemographic, environmental and dietary factors. RESULTS The most detected compounds were As, Co, Mo, Sb, Se and Zn at both trimesters. Zn was the element found in the highest concentrations at both trimesters and Tl was detected in the lowest concentrations. We observed significant associations between As, Cd, Cu, Sb, Tl and Zn concentrations and working situation, social class and age. Seafood, meat, fruits, nuts, vegetables and alcohol intake affected the levels of all the metals but Cd and Cu. Proximity to industrial areas, fields and air pollution were related to all metals except Cd, Sb and Se. CONCLUSIONS This is the first large prospective longitudinal study on the exposure to metals and metalloids during pregnancy and associated factors to include several cohorts in Spain. The present study shows that some modifiable lifestyles, food intakes and environmental factors could be associated with prenatal exposure to metal(loid)s, which may be considered in further studies to assess their relationship with neonatal health outcomes.
Collapse
Affiliation(s)
- Manuel Lozano
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain.
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Servicio de Análisis de Sistemas de Información Sanitaria, Conselleria de Sanitat, Generalitat Valenciana, Valencia, Spain
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Begotxu Zubero
- Preventive Medicine and Public Health Department, University of Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Health Research Institute, Biodonostia, San Sebastian, Gipuzkoa, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Spain
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Rubén Amorós
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health Department, University of Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Health Research Institute, Biodonostia, San Sebastian, Gipuzkoa, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
37
|
Al-Saleh I. The relationship between urinary phthalate metabolites and polycystic ovary syndrome in women undergoing in vitro fertilization: Nested case-control study. CHEMOSPHERE 2022; 286:131495. [PMID: 34293567 DOI: 10.1016/j.chemosphere.2021.131495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Certain endocrine disruptor chemicals are involved in the pathogenesis of polycystic ovary syndrome (PCOS), a hormonal disease related to infertility in women. Phthalates are the most common plasticizers found in several consumer products. Experimental and epidemiologic evidence suggests that some phthalates disrupt endocrine functions in reproductive mechanisms and development. We previously measured the levels of eight phthalate metabolites in the urine of 599 Saudi women who underwent in vitro fertilization (IVF) treatment and were enrolled in a prospective study (2015-2017). The current nested case-control study aimed to determine the association between urinary levels of phthalate metabolites and PCOS. Overall, 441 women from the IVF study were identified as eligible for this study. Women in the case group included those diagnosed with PCOS (N = 82). The control group comprised those unable to conceive due to male azoospermia or who underwent preimplantation genetic diagnosis (N = 359). Most urinary phthalate metabolite levels were several-fold higher than those reported in national surveys from other countries. The ratio of luteinizing hormone to follicle-stimulating hormone, an index of PCOS, was significantly higher in the case than in the control group, with no indication of its association with phthalate metabolites. The logistic regression model was applied after adjusting for confounders to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for each metabolite modeled as a natural logarithm (ln). For each ln-unit increase in the sum of the four di (2-ethylhexyl) phthalate (∑4DEHP) metabolites as well as two individual metabolites, mono-(2-ethyl-5-oxohexyl) phthalate and mono-(2-ethyl-5-carboxypentyl) phthalate, the odds of PCOS increased by 40.5% [OR = 1.405 (95% CI: 1.025, 1.925)], 41.1% [OR = 1.055 (95% CI: 1.055, 1.885)], and 38.6% [OR = 1.386 (95% CI: 1.033, 1.86)], respectively. In contrast, the % odds of PCOS decreased marginally significantly by 44% [OR = 0.560 (95% CI: 0.313, 1.002)] with an ln-unit increase of %MEHP4, the ratio of mono-(2-ethylhexyl) phthalate to ∑4DEHP. These findings suggest that DEHP may contribute to PCOS, and further investigation is required to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
38
|
El Ouazzani H, Fortin S, Venisse N, Dupuis A, Rouillon S, Cambien G, Gourgues AS, Pierre-Eugène P, Rabouan S, Migeot V, Albouy-Llaty M. Perinatal Environmental Health Education Intervention to Reduce Exposure to Endocrine Disruptors: The PREVED Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010070. [PMID: 35010328 PMCID: PMC8750995 DOI: 10.3390/ijerph19010070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 05/21/2023]
Abstract
Environmental health promotion interventions may reduce endocrine disruptor (ED) exposure. The PREVED (PREgnancy, preVention, Endocrine Disruptors) project was developed to improve knowledge, to enhance risk perception, and to change exposure behavior. Our objective was to present the phases of the PREVED project using the RE-AIM method. PREVED intervention consisted of three workshops during pregnancy. Reach, adoption, and implementation phases were assessed with qualitative studies. Efficacy study consisted of a three-arm randomized controlled trial (RCT) on 268 pregnant women: (i) control group (leaflet), (ii) intervention group in neutral location, (iii) intervention group in contextualized location. The main outcome was the percentage evolution of participants who reported consuming canned food. Secondary outcomes were evolution of psycho-social scores, evolution of ED presence in urine, and ED presence in colostrum. The intervention adoption was centered on upper-privileged women, but implementation assessment showed that key features (highly practical intervention) seemed to be carried out and had initiated some behavior changes. A total of 268 pregnant women participated in the intervention and 230 in a randomized controlled trial (control group: 86 and intervention groups: 172). We found no significant differences in consumption of canned food and in percentage of women having a decrease of bisphenol A or parabens in urine, but we found a significant increase in the evolution of risk perception score and overall psychosocial score in intervention groups (respectively: +15.73 control versus +21.03 intervention, p = 0.003 and +12.39 versus +16.20, p = 0.02). We found a significant difference in percentage of women with butylparaben detection between control group and intervention groups (13% versus 3%, p = 0.03). PREVED intervention is the first intervention research dedicated to perinatal environmental health education in France. By sharing know-how/experience in a positive non-alarmist approach, it improved risk perception, which is key to behavior change, aiming to reduce perinatal ED exposure. Including women in precarious situations remains a major issue.
Collapse
Affiliation(s)
- Houria El Ouazzani
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, 86031 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France;
| | - Simon Fortin
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
| | - Nicolas Venisse
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France;
- Ecology and Biology of Interaction, CNRS UMR 7267, 86073 Poitiers, France
| | - Antoine Dupuis
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, 86031 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France;
- Ecology and Biology of Interaction, CNRS UMR 7267, 86073 Poitiers, France
| | - Steeve Rouillon
- APHP Laboratory of Pharmacology, GH Henri Mondor, 94010 Creteil, France;
| | - Guillaume Cambien
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, 86031 Poitiers, France
- Ecology and Biology of Interaction, CNRS UMR 7267, 86073 Poitiers, France
| | - Anne-Sophie Gourgues
- BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France;
| | - Pascale Pierre-Eugène
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, 86031 Poitiers, France
- Ecology and Biology of Interaction, CNRS UMR 7267, 86073 Poitiers, France
| | - Sylvie Rabouan
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, 86031 Poitiers, France
- Ecology and Biology of Interaction, CNRS UMR 7267, 86073 Poitiers, France
| | - Virginie Migeot
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, 86031 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France;
| | - Marion Albouy-Llaty
- Center of Clinical Investigation Inserm 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France; (H.E.O.); (S.F.); (N.V.); (A.D.); (G.C.); (P.P.-E.); (S.R.); (V.M.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, 86031 Poitiers, France
- BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France;
- Ecology and Biology of Interaction, CNRS UMR 7267, 86073 Poitiers, France
- Correspondence:
| |
Collapse
|
39
|
Sáez C, Sánchez A, Yusà V, Dualde P, Fernández SF, López A, Corpas-Burgos F, Aguirre MÁ, Coscollà C. Health Risk Assessment of Exposure to 15 Essential and Toxic Elements in Spanish Women of Reproductive Age: A Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13012. [PMID: 34948623 PMCID: PMC8701213 DOI: 10.3390/ijerph182413012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
This case study investigates the exposure of 119 Spanish women of reproductive age to 5 essential (Co, Cu, Mn, V, Zn) and 10 toxic (Ba, Be, Cs, Ni, Pb, Pt, Sb, Th, Al, U) elements and assesses their risk. The essential elements (Co, Cu, Mn, V, and Zn) showed average concentrations (GM: geometric mean) of 0.8, 35, 0.5, 0.2, and 347 μg/L, respectively. Five of the toxic elements (Ba, Cs, Ni, Al, U) exhibited detection frequencies of 100%. The GM concentrations of the novel toxic elements were 12 μg/L (Al), 0.01 μg/L (Pt), 0.02 μg/L (U), 0.12 μg/L (Th), 0.009 μg/L (Be) and 4 μg/L (Cs). The urine analysis was combined with a survey to assess any variations between subgroups and potential predictors of exposure to elements in the female population. Significant differences were obtained between the rural and urban areas studied for the toxic element Cs, with higher levels found in mothers living in urban areas. In relation to diet, statistically significantly higher levels of essential (Cu) and toxic (Ba) elements were detected in women with a high consumption of fish, while mothers who consumed a large quantity of legumes presented higher levels of the toxic element Ni (p = 0.0134). In a risk-assessment context, hazard quotients (HQs) greater than 1 were only observed for the essential elements Zn and Cu in P95. No deficiency was found regarding the only essential element for which a biomonitoring equivalent for nutritional deficit is available (Zn). For the less-studied toxic elements (Al, Pt, U, Th, Be, and Cs), HQs were lower than 1, and thus, the health risk due to exposure to these elements is expected to be low for the female population under study.
Collapse
Affiliation(s)
- Carmen Sáez
- Public Health Laboratory of Alicante, 6 Plaza de España, 03010 Alicante, Spain; (C.S.); (A.S.)
- Department of Analytical Chemistry, Nutrition and Food Science, Institute of Materials, University of Alicante, 03080 Alicante, Spain;
| | - Alfredo Sánchez
- Public Health Laboratory of Alicante, 6 Plaza de España, 03010 Alicante, Spain; (C.S.); (A.S.)
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
- Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| | - Sandra F. Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
- Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| | - Miguel Ángel Aguirre
- Department of Analytical Chemistry, Nutrition and Food Science, Institute of Materials, University of Alicante, 03080 Alicante, Spain;
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020 Valencia, Spain; (V.Y.); (P.D.); (S.F.F.); (A.L.); (F.C.-B.)
| |
Collapse
|
40
|
Conley JM, Lambright CS, Evans N, Cardon M, Medlock-Kakaley E, Wilson VS, Gray LE. A mixture of 15 phthalates and pesticides below individual chemical no observed adverse effect levels (NOAELs) produces reproductive tract malformations in the male rat. ENVIRONMENT INTERNATIONAL 2021; 156:106615. [PMID: 34000504 PMCID: PMC8380680 DOI: 10.1016/j.envint.2021.106615] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 05/10/2023]
Abstract
Humans carry residues of multiple synthetic chemicals at any given point in time. Research has demonstrated that compounds with varying molecular initiating events (MIE) that disrupt common key events can act in concert to produce cumulative adverse effects. Congenital defects of the male reproductive tract are some of the most frequently diagnosed malformations in humans and chemical exposures in utero can produce these effects in laboratory animals and humans. Here, we hypothesized that in utero exposure to a mixture of pesticides and phthalates, each of which produce male reproductive tract defects individually, would produce cumulative effects even when each chemical is present at a no observed adverse effect level (NOAEL) specific for male reproductive effects. Pregnant Sprague-Dawley rats were exposed via oral gavage to a fixed-ratio dilution mixture of 5 pesticides (vinclozolin, linuron, procymidone, prochloraz, pyrifluquinazon), 1 pesticide metabolite (dichlorodiphenyldichloroethylene (DDE)), and 9 phthalates (dipentyl, dicyclohexyl, di-2-ethylhexyl, dibutyl, benzyl butyl, diisobutyl, diisoheptyl, dihexyl, and diheptyl) during the critical window of rat fetal masculinization (gestation day 14-18). The top dose (100% dose) contained each compound at a concentration 2-fold greater than the individual chemical NOAEL followed by a dilution series that represented each chemical at NOAEL, NOAEL/2, NOAEL/4, NOAEL/8, NOAEL/15, NOAEL/100, NOAEL/1000. Reduced fetal testis gene expression occurred at NOAEL/15, reduced fetal testis testosterone production occurred at NOAEL/8, reduced anogenital distance, increased nipple retention, and delayed puberty occurred at NOAEL/4, and severe effects including genital malformations and weight reductions in numerous reproductive tissues occurred at NOAEL/2. This study demonstrates that these phthalates and pesticides acted cumulatively to produce adverse effects at doses below which any individual chemical had been shown to produce an effect alone and even though they have different MIEs.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Mary Cardon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - Vickie S Wilson
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment/Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
41
|
Dvorakova D, Pulkrabova J, Gramblicka T, Polachova A, Buresova M, López ME, Castaño A, Nübler S, Haji-Abbas-Zarrabi K, Klausner N, Göen T, Mol H, Koch HM, Vaccher V, Antignac JP, Haug LS, Vorkamp K, Hajslova J. Interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs) for flame retardant analysis in biological matrices: Results from the HBM4EU project. ENVIRONMENTAL RESEARCH 2021; 202:111705. [PMID: 34297934 DOI: 10.1016/j.envres.2021.111705] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The European Human Biomonitoring Initiative (HBM4EU) is coordinating and advancing human biomonitoring (HBM). For this purpose, a network of laboratories delivering reliable analytical data on human exposure is fundamental. The analytical comparability and accuracy of laboratories analysing flame retardants (FRs) in serum and urine were investigated by a quality assurance/quality control (QA/QC) scheme comprising interlaboratory comparison investigations (ICIs) and external quality assurance schemes (EQUASs). This paper presents the evaluation process and discusses the results of four ICI/EQUAS rounds performed from 2018 to 2020 for the determination of ten halogenated flame retardants (HFRs) represented by three congeners of polybrominated diphenyl ethers (BDE-47, BDE-153 and BDE-209), two isomers of hexabromocyclododecane (α-HBCD and γ-HBCD), two dechloranes (anti-DP and syn-DP), tetrabromobisphenol A (TBBPA), decabromodiphenylethane (DBDPE), and 2,4,6-tribromophenol (2,4,6-TBP) in serum, and four metabolites of organophosphorus flame retardants (OPFRs) in urine, at two concentration levels. The number of satisfactory results reported by laboratories increased during the four rounds. In the case of HFRs, the scope of the participating laboratories varied substantially (from two to ten) and in most cases did not cover the entire target spectrum of chemicals. The highest participation rate was reached for BDE-47 and BDE-153. The majority of participants achieved more than 70% satisfactory results for these two compounds over all rounds. For other HFRs, the percentage of successful laboratories varied from 44 to 100%. The evaluation of TBBPA, DBDPE, and 2,4,6-TBP was not possible because the number of participating laboratories was too small. Only seven laboratories participated in the ICI/EQUAS scheme for OPFR metabolites and five of them were successful for at least two biomarkers. Nevertheless, the evaluation of laboratory performance using Z-scores in the first three rounds required an alternative approach compared to HFRs because of the small number of participants and the high variability of experts' results. The obtained results within the ICI/EQUAS programme showed a significant core network of comparable European laboratories for HBM of BDE-47, BDE-153, BDE-209, α-HBCD, γ-HBCD, anti-DP, and syn-DP. On the other hand, the data revealed a critically low analytical capacity in Europe for HBM of TBBPA, DBDPE, and 2,4,6-TBP as well as for the OPFR biomarkers.
Collapse
Affiliation(s)
- Darina Dvorakova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic.
| | - Jana Pulkrabova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Andrea Polachova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Martina Buresova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Stefanie Nübler
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Karin Haji-Abbas-Zarrabi
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Nadine Klausner
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM), Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, Wageningen, Netherlands
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Vincent Vaccher
- Oniris, INRAE, UMR 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France
| | - Jean-Philippe Antignac
- Oniris, INRAE, UMR 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), F-44307, Nantes, France
| | - Line Småstuen Haug
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jana Hajslova
- University of Chemistry and Technology (UCT), Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
42
|
Pistollato F, Carpi D, Mendoza-de Gyves E, Paini A, Bopp SK, Worth A, Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod Toxicol 2021; 105:101-119. [PMID: 34455033 PMCID: PMC8522961 DOI: 10.1016/j.reprotox.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.
Collapse
Affiliation(s)
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
43
|
Ougier E, Ganzleben C, Lecoq P, Bessems J, David M, Schoeters G, Lange R, Meslin M, Uhl M, Kolossa-Gehring M, Rousselle C, Vicente JL. Chemical prioritisation strategy in the European Human Biomonitoring Initiative (HBM4EU) - Development and results. Int J Hyg Environ Health 2021; 236:113778. [PMID: 34089975 DOI: 10.1016/j.ijheh.2021.113778] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
The European Human Biomonitoring Initiative (HBM4EU1) has established a European Union-wide human biomonitoring (HBM) programme to generate knowledge on human internal exposure to chemical pollutants and their potential health impacts in Europe, in order to support policy makers' efforts to ensure chemical safety and improve health in Europe. A prioritisation strategy was necessary to determine and meet the most important needs of both policy makers and risk assessors, as well as common national needs of participating countries and a broad range of stakeholders. This strategy consisted of three mains steps: 1) mapping of knowledge gaps identified by policy makers, 2) prioritisation of substances using a scoring system, and 3) generation of a list of priority substances reflective of the scoring, as well as of public policy priorities and available resources. For the first step, relevant ministries and agencies at EU and national levels, as well as members of the Stakeholder Forum each nominated up to 5 substances/substance groups of concern for policy-makers. These nominations were collated into a preliminary list of 48 substances/substance groups, which was subsequently shortened to a list of 23 after considering the total number of nominations each substance/substance group received and the nature of the nominating entities. For the second step, a panel of 11 experts in epidemiology, toxicology, exposure sciences, and occupational and environmental health scored each of the substances/substance groups using prioritisation criteria including hazardous properties, exposure characteristics, and societal concern. The scores were used to rank the 23 substances/substance groups. In addition, substances were categorised according to the level of current knowledge about their hazards, extent of human exposure (through the availability of HBM data), regulatory status and availability of analytical methods for biomarker measurement. Finally, in addition to the ranking and categorisation of the substances, the resources available for the project and the alignment with the policy priorities at European level were considered to produce a final priority list of 9 substances/substance groups for research activities and surveys within the framework of the HBM4EU project.
Collapse
Affiliation(s)
- Eva Ougier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France.
| | - Catherine Ganzleben
- European Environment Agency (EEA), Kongens Nytorv 6, 1050, Copenhagen, Denmark
| | - Pierre Lecoq
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Jos Bessems
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Madlen David
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Rosa Lange
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Matthieu Meslin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Maria Uhl
- Environment Agency Austria (EAA), Spittelauer Lände 5, 1090, Vienna, Austria
| | | | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - Joana Lobo Vicente
- European Environment Agency (EEA), Kongens Nytorv 6, 1050, Copenhagen, Denmark
| |
Collapse
|
44
|
Fénichel P, Coquillard P, Brucker-Davis F, Marchand P, Cano-Sancho G, Boda M, Antignac JP, Iannelli A, Gugenheim J, Le Bizec B, Chevalier N. Sustained bloodstream release of persistent organic pollutants induced by extensive weight loss after bariatric surgery: Implications for women of childbearing age. ENVIRONMENT INTERNATIONAL 2021; 151:106400. [PMID: 33611106 DOI: 10.1016/j.envint.2021.106400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lipophilic persistent organic pollutants (POPs) are stored in adipose tissues and released in case of weight loss. OBJECTIVES To analyze the kinetics and characteristics of this release during drastic weight loss after bariatric surgery and compare the results in case of women of childbearing age (WCBA) with critical blood concentration thresholds. METHODS 100 morbidly obese patients (73 women including 53 of childbearing age and 27 men) were screened before and 3, 6 and 12 months after bariatric surgery for serum concentrations of 67 congeners or metabolites of banned or not yet banned organohalogenated persistent pollutants, including highly lipophilic polychlorobiphenyls (PCBs), organochlorine pesticides (OCPs), brominated flame retardants (BFRs), and less lipophilic perfluorinated alkylated substances (PFASs). RESULTS Circulating levels of all chemicals, except PFASs, increased progressively after surgery, reaching after one year an increase between 30 and 139% compared to initial pre-surgical levels; median levels increased for PCB153 from 36.8 to 86.4 ng/g lw (+130%), for dichlorodiphenyldichloroethylene (p,p'-DDE) from 59.8 to 136.1 ng/g lw (+120%), and for hexachlorobenzene (HCB) from 9.8 to 20.3 ng/g lw (+110%). Weight loss averaging 30% of initial body weight at 12 months in both sexes (mean: 40.0 kg for men, 36.1 kg for women), was the main parameter related to the concentration increases (3.1 to 3.6% per kilogram weight loss). They were not dependent on initial BMI, presence of metabolic syndrome or type of surgical procedure but influenced by gender and biochemical properties such as degree of chlorination for PCBs and/or lipophilicity since PFASs did not increase at all. ∑PCB6 in blood after one year exceeded the critical concentration threshold for 24.5% women of childbearing age (13/53) versus 3.6% (2/53) before surgery. DISCUSSION Massive weight loss within the first year following bariatric surgery is associated with a sustained increase of circulating lipophilic POPs. Short- and long-term consequences should be considered, mostly for childbearing age obese women, because of potential health risks for the future fetus and breastfeeding infant.
Collapse
Affiliation(s)
- Patrick Fénichel
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France.
| | | | - Françoise Brucker-Davis
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France.
| | | | | | - Mireille Boda
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France.
| | | | - Antonio Iannelli
- Department of DigestiveSurgery, Archet II Hospital, Université Côte d'Azur, Nice, France.
| | - Jean Gugenheim
- Department of DigestiveSurgery, Archet II Hospital, Université Côte d'Azur, Nice, France.
| | | | - Nicolas Chevalier
- Université Côte d'Azur, University Hospital of Nice, Department of Endocrinology, Diabetology and Reproduction, Nice, France; Université Côte d'Azur, INSERM U1065, C3M, Nice, France.
| |
Collapse
|
45
|
Enderle I, Costet N, Cognez N, Zaros C, Caudeville J, Garlantezec R, Chevrier C, Nougadere A, De Lauzon-Guillain B, Le Lous M, Beranger R. Prenatal exposure to pesticides and risk of preeclampsia among pregnant women: Results from the ELFE cohort. ENVIRONMENTAL RESEARCH 2021; 197:111048. [PMID: 33766571 DOI: 10.1016/j.envres.2021.111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Preeclampsia is a pregnancy-specific syndrome caused by abnormal placentation. Although environmental chemicals, including some pesticides, are suspected of impairing placentation and promoting preeclampsia, its relationship with preeclampsia has been insufficiently explored. OBJECTIVES We aimed to investigate the relation between non-occupational exposure to pesticides during pregnancy and the risk of preeclampsia. METHODS The study cohort comprised 195 women with and 17,181 without preeclampsia from the ELFE birth cohort. We used toxicogenomic approaches to select 41 pesticides of interest for their possible influence on preeclampsia. We assessed household pesticide use (self-reported data), environmental exposure to agricultural pesticides (geographic information systems), and dietary exposure (food-frequency questionnaire with data from monitoring pesticide residues in food and water). Dietary exposures to pesticides were grouped into clusters of similar exposures to resolve collinearity issues. For each exposure source, pesticides were mutually adjusted, and odds ratios estimated with logistic regression models. RESULTS The quantity of prochloraz applied within a kilometer of the women's homes was higher in women with than without preeclampsia (fourth quartile vs. others; adjusted odds ratio [aOR] = 1.54; 95%CI: 1.02, 2.35), especially when preeclampsia was diagnosed before 34 weeks of gestation (aOR = 2.25; 95%CI: 1.01, 5.06). The reverse was observed with nearby cypermethrin application (aOR = 0.59, 95%CI: 0.36, 0.96). In sensitivity analyses, women with preeclampsia receiving antihypertensive treatment had a significantly higher probability of using herbicides at home during pregnancy than women without preeclampsia (aOR = 2.20; 95%CI: 1.23, 3.93). No statistically significant association was found between dietary exposure to pesticide residues and preeclampsia. DISCUSSION While the most of the associations examined remained statistically non-significant, our results suggest the possible influence on preeclampsia of residential exposures to prochloraz and some herbicides. These estimations are supported by toxicological and mechanistic data.
Collapse
Affiliation(s)
- Isabelle Enderle
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France.
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Noriane Cognez
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Zaros
- French Institute for Demographic Studies (Ined), French Institute for Medical Research and Health (Inserm), French Blood Agency, ELFE Joint Unit, F-75020, Paris, France
| | - Julien Caudeville
- INERIS (French National Institute for Industrial Environment and Risks), 60550, Verneuil-en-Halatte, France
| | - Ronan Garlantezec
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, F-35000, Rennes, France
| | - Alexandre Nougadere
- ANSES, Risk Assessment Department, 14 Rue Pierre et Marie Curie, F-94701, Maisons-Alfort, France
| | | | - Maela Le Lous
- Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| | - Rémi Beranger
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France; Department of Obstetrics and Gynecology and Reproductive Medicine, Anne de Bretagne University Hospital, Rennes, France
| |
Collapse
|
46
|
Burden of osteoporosis and costs associated with human biomonitored cadmium exposure in three European countries: France, Spain and Belgium. Int J Hyg Environ Health 2021; 234:113747. [PMID: 33862487 DOI: 10.1016/j.ijheh.2021.113747] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal widespread in the environment leading to human exposure in particular through diet (when smoking is excluded), as documented by recent human biomonitoring (HBM) surveys. Exposure to Cd at environmental low-exposure levels has been associated with adverse effects such as renal toxicity and more recently bone effects. The implication, even if limited, of Cd in the etiology of osteoporosis can be of high importance at the population level given the significant prevalence of osteoporosis and the ubiquitous and life-long exposure to Cd. Therefore, the osteoporosis cases attributable to Cd exposure was estimated in three European countries (Belgium, France and Spain), based on measured urinary Cd levels from HBM studies conducted in these countries. The targeted population was women over 55 years old, for which risk levels associated with environmental Cd exposure were available. Around 23% of the cases were attributed to Cd exposure. Moreover, in a prospective simulation approach of lifelong urinary Cd concentrations assuming different intakes scenarios, future osteoporosis attributable cases were calculated, based on urinary Cd levels measured in women aged under 55. Between 6 and 34% of the considered populations under 55 years were at risk for osteoporosis. Finally, the costs associated to the burden of osteoporosis-related fractures attributable to Cd for each country targeted in this paper were assessed, standing for a major contributing role of Cd exposure in the overall social costs related to osteoporosis. Absolute costs ranged between 0.12 (low estimate in Belgium) and 2.6 billion Euros (high estimate in France) in women currently over 55 years old and at risk for fractures. Our results support the importance of reducing exposure of the general population to Cd.
Collapse
|
47
|
Al-Saleh I, Elkhatib R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M, McWalter P, Alkhenizan A. Potential health risks of maternal phthalate exposure during the first trimester - The Saudi Early Autism and Environment Study (SEAES). ENVIRONMENTAL RESEARCH 2021; 195:110882. [PMID: 33621597 DOI: 10.1016/j.envres.2021.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Phthalates are the most ubiquitous contaminants that we are exposed to daily due to their wide use as plasticizers in various consumer products. A few studies have suggested that in utero exposure to phthalates can disturb fetal growth and development in humans, because phthalates can interfere with endocrine function. We collected spot urine samples from 291 pregnant women in their first trimester (9.8 ± 2.3 gestational weeks) recruited in an ongoing prospective cohort study in Saudi Arabia. A second urine sample was collected within 1-7 d after enrollment. The aims of this study were to: (1) assess the extent of exposure to phthalates during the first trimester and (2) estimate the risk from single and cumulative exposures to phthalates. Most phthalate metabolites' urinary levels were high, several-fold higher than those reported in relevant studies from other countries. The highest median levels of monoethyl phthalate, mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), and mono-(2-ethylhexyl) phthalate (MEHP) in μg/l (μg/g creatinine) were 245.62 (197.23), 114.26 (99.45), 39.59 (34.02), and 23.51 (19.92), respectively. The MEHP levels were highest among three di (2-ethylhexyl) phthalate (DEHP) metabolites. %MEHP4, the ratio of MEHP to four di (2-ethylhexyl) phthalate metabolites (∑4DEHP), was 44%, indicating interindividual differences in metabolism and excretion. The hazard quotient (HQ) of individual phthalates estimated based on the reference dose (RfD) of the U.S. Environmental Protection Agency indicated that 58% (volume-based) and 37% (creatinine-based) of the women were at risk of exposure to ∑4DEHP (HQ > 1). Based on the tolerable daily intake (TDI) from the European Food Safety Authority, 35/12% (volume-/creatinine-based data) of the women were at risk of exposure to two dibutyl phthalate (∑DBP) metabolites (MiBP and MnBP). The cumulative risk was assessed using the hazard index (HI), the sum of HQs of all phthalates. The percentages of women (volume-/creatinine-based data) at health risks with an HI > 1 were 64/40% and 42/22% based on RfD and TDI, respectively. In view of these indices for assessing risk, our results for the anti-androgenic effects of exposing pregnant women to ∑4DEHP and ∑DBP early during pregnancy are alarming.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Patricia McWalter
- Family Medicine and Polyclinics Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| | - Abdullah Alkhenizan
- Family Medicine and Polyclinics Department, King Faisal Specialist Hospital and Research Centre, P.O.Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
48
|
Helou K, Matta J, Harmouche-Karaki M, Sayegh N, Younes H, Mahfouz Y, Mahfouz M, Karake S, Finan R, Abi-Tayeh G, Narbonne JF. Maternal and cord serum levels of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) among Lebanese pregnant women and predictors of exposure. CHEMOSPHERE 2021; 266:129211. [PMID: 33316473 DOI: 10.1016/j.chemosphere.2020.129211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this study, the six indicator non-dioxin-like polychlorinated biphenyls NDL-PCBs (PCB28, PCB52, PCB101, PCB138, PCB153, PCB180), as well as four organochlorine pesticides (OCPs), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichlorethylene (DDE) were measured in 98 maternal and 49 cord sera samples of a group of Lebanese women who gave birth in three hospitals in Greater Beirut, between March and July 2018. Results showed that the levels of these persistent organic pollutants (POPs) in maternal serum were below critical limits as well as those in other countries (Tunisia, France, Portugal, Spain, Poland, Greenland, Canada, Brazil, and China). The ratios of cord serum concentrations to maternal serum concentrations of analyzed POPs were higher than 1. PCB maternal serum concentrations were found to be linked to illegal incineration (OR = 5.78; p = 0.004) as well as eggs (OR = 4.68; p = 0.027) and fruits and vegetables consumption (OR = 3.92; p = 0.016). OCP concentrations were linked to red meat and cold cuts intake (OR = 3.67-4.59; p = 0.001-0.004). While PCB levels were not correlated to newborns anthropometric measurements, OCP levels in cord serum were found to be positively linked to the birth length of newborns (p = 0.014-0.027).
Collapse
Affiliation(s)
- Khalil Helou
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.
| | - Joseph Matta
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon; Industrial Research Institute, Lebanese University Campus, Hadeth Baabda, Lebanon.
| | - Mireille Harmouche-Karaki
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.
| | - Nicole Sayegh
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.
| | - Hassan Younes
- UniLaSalle University, 19 Pierre Waguet Street, 60026, Beauvais, France.
| | - Yara Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.
| | - Maya Mahfouz
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.
| | - Sara Karake
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.
| | - Ramzi Finan
- Lebanese Society of Obstetrics and Gynecology, Adliye, Beit El- Tabib - 3rd Floor, Beirut, Lebanon; Faculty of Medicine, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint-Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B.: 166830, Beirut, Lebanon.
| | - Georges Abi-Tayeh
- Faculty of Medicine, Saint-Joseph University of Beirut, Medical Sciences Campus, Damascus Road, Beirut, Lebanon; Hotel-Dieu de France, Saint-Joseph University of Beirut Hospital, Blvd Alfred Naccache, P.O.B.: 166830, Beirut, Lebanon; Lebanese Fertility Society, Adliye, Beit El- Tabib, Beirut, Lebanon.
| | | |
Collapse
|
49
|
Fillol C, Oleko A, Saoudi A, Zeghnoun A, Balicco A, Gane J, Rambaud L, Leblanc A, Gaudreau É, Marchand P, Le Bizec B, Bouchart V, Le Gléau F, Durand G, Denys S. Exposure of the French population to bisphenols, phthalates, parabens, glycol ethers, brominated flame retardants, and perfluorinated compounds in 2014-2016: Results from the Esteban study. ENVIRONMENT INTERNATIONAL 2021; 147:106340. [PMID: 33422968 DOI: 10.1016/j.envint.2020.106340] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND As part of the French Human Biomonitoring (HBM) programme, the Esteban study described, among other things, biomarkers levels of various chemicals in adults (18-74 years old) and children (6-17 years old). This paper describes the design of the study and provides, for the first time, data on the biological exposure of the general French population to a wide range of contaminants posing a threat to human health which are currently found in domestic environments. METHODS Esteban is a cross-sectional study conducted on a nationwide sample of the French general population. Exposure biomarkers of six families of contaminants deemed detrimental to adults' and children's health were measured in biological samples collected either at participants' homes by a nurse, or brought to a National Health Insurance examination centre. All participants were randomly selected (2503 adults and 1104 children). The geometric mean and percentiles of the distribution of levels were estimated for each biomarker. Most of the descriptive statistical analyses were performed taking into account the sampling design. RESULTS Results provided a nationwide description of biomarker levels. Bisphenols (A, S and F), and some metabolites of phthalates and perfluorinated compounds (PFCs) (specifically, PFOS and PFOA) were quantified in almost all the biological samples analysed. Higher levels were observed in children (except for PFCs). Levels were coherent with international studies, except for bisphenols S and F, brominated flame retardants (BFRs) and parabens (with higher levels reported in the USA than in France). CONCLUSION AND PERSPECTIVES This study is the first to provide a representative assessment of biological exposure to domestic contaminants at the French population level. Our results show that the French general population was exposed to a wide variety of pollutants in 2014-2016, and identify the determinants of exposure. These findings will be useful to stakeholders who wish to advocate an overall reduction in the French population's exposure to harmful substances. Similar future studies in France will help to measure temporal trends, and enable public policies focused on the reduction of those chemicals in the environment to be evaluated.
Collapse
Affiliation(s)
- Clémence Fillol
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France.
| | - Amivi Oleko
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Abdesattar Saoudi
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Abdelkrim Zeghnoun
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Alexis Balicco
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Jessica Gane
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Loïc Rambaud
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Alain Leblanc
- Centre de Toxicologie du Québec (CTQ), Institut National de Santé Publique du Québec (INSPQ), Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut National de Santé Publique du Québec (INSPQ), Canada
| | - Philippe Marchand
- Oniris, INRAE, LABERCA Route de Gachet, Site de la Chantrerie, CS 50707, 44307 Nantes Cedex 3, France
| | - Bruno Le Bizec
- Oniris, INRAE, LABERCA Route de Gachet, Site de la Chantrerie, CS 50707, 44307 Nantes Cedex 3, France
| | - Valérie Bouchart
- LABEO, 1 Route de Rosel, Saint Contest, 14053 Caen Cedex 4, France
| | | | - Gaël Durand
- LABOCEA, 120 avenue de Rochon, CS10052, 29280 Plouzané, France
| | - Sébastien Denys
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| |
Collapse
|
50
|
Hou Y, Li S, Xia L, Yang Q, Zhang L, Zhang X, Liu H, Huo R, Cao G, Huang C, Tian X, Sun L, Cao D, Zhang M, Zhang Q, Tang N. Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142085. [PMID: 32898782 DOI: 10.1016/j.scitotenv.2020.142085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are considered to be related to diabetes, but studies of the association between phenolic EDCs and gestational diabetes mellitus (GDM) are limited. OBJECTIVES To assess associations of maternal urinary bisphenol A (BPA), nonylphenol (NP), and 2-tert-octylphenol (2-t-OP) with GDM occurrence. METHODS A cross-sectional study was performed among 390 Chinese women at 24-28 weeks of gestation. GDM was diagnosed with a 2-h 75-g oral glucose tolerance test (OGTT). BPA, NP, and 2-t-OP concentrations were determined in urine samples. Linear and logistic regression tests evaluated associations of BPA, NP, and 2-t-OP with blood glucose levels and GDM prevalence. RESULTS The 2-t-OP concentrations in GDM patients were significantly higher than in non-GDM women with median values of 2.23 μg/g Cr and 1.79 μg/g Cr, respectively. No significant difference was observed in BPA and NP. Urinary 2-t-OP was positively associated with blood glucose levels after adjustment for several confounding factors and urinary BPA and NP. Higher 2-t-OP levels were associated with higher odds of GDM (OR: 5.78; 95% CI: 2.04, 16.37), whereas higher NP levels were associated with lower odds (OR: 0.22; 95% CI: 0.05, 0.85) in the adjusted models. In addition, compared to the first quartile of 2-t-OP, the adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for GDM in the second, third, and fourth quartiles were 2.81 (1.23, 6.42), 3.01 (1.30, 6.93), and 5.49 (2.24, 13.46), respectively. CONCLUSION Our study indicates that, for the first time to our knowledge, exposure to 2-t-OP is associated with a higher risk of GDM. However, higher NP exposure is associated with lower GDM risk. Further studies are necessary to affirm the associations of 2-t-OP and NP with GDM, and to elucidate the causality of these findings.
Collapse
Affiliation(s)
- Yaxing Hou
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Liting Xia
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Ran Huo
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Guanghan Cao
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Chunyun Huang
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Xiubiao Tian
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Lirong Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Deqing Cao
- Central Laboratory of Preventive Medicine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|