1
|
Martínez MÁ, Salas-Huetos A, Fernández de la Puente M, Valle-Hita C, Marquès M, Del Egido-González C, Davila-Cordova E, Mestres C, Petersen MS, Babio N, Salas-Salvadó J. Exploring the association between urinary bisphenol A, S, and F levels and semen quality parameters: Findings from Led-Fertyl cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 263:120086. [PMID: 39353529 DOI: 10.1016/j.envres.2024.120086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Infertility is recognized as a multifaceted condition affecting approximately 15% of couples globally, influenced by various factors including genetic predisposition and environmental exposures. Among these environmental factors, bisphenol A (BPA) emerges as a prominent Endocrine-disrupting chemical (EDCs) widely distributed, leading to chronic human exposure in daily life. As regulations on BPA became more stringent, alternative substances such as bisphenol S (BPS) and bisphenol F (BPF) have emerged. Animal studies have demonstrated a dose-dependent decline in fertility and embryotoxicity following chronic exposure to BPA. However, literature data on human studies are limited and heterogeneous. Additionally, even less is known about the relationship between exposure to the BPA analogues (BPS and BPF) and sperm quality. Therefore, the present study aimed to examine the association between urinary concentrations of BPA, BPF, and BPS and semen quality parameters among 195 adult Spanish men from the Led-Fertyl study cohort using multiple linear regression models adjusted by potential confounding variables. Our results revealed an inverse association between log-transformed creatinine-adjusted concentration (ng/mg) of BPA and BPF levels and the percentage of sperm vitality (β: 3.56 %; 95%CI: 6.48 to -0.63 and β: 4.14 %; 95%CI: 6.97 to -1.31; respectively). Furthermore, participants in the highest quartile of BPA and BPF urinary concentration exhibited lower sperm vitality compared to those in the lowest quartile (β: 6.90 %; 95%CI: 11.60 to -2.15 and β: 9.68 %; 95%CI: 14.43 to -4.94; respectively). These results supply epidemiological evidence establishing a relationship between bisphenols urine exposure and sperm quality, suggesting that a re-evaluation of the overall safety of BPA alternatives is warranted.
Collapse
Affiliation(s)
- María Ángeles Martínez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Department of Pharmacology, therapeutics and Toxicology, Faculty of veterinary. Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Catalonia, Spain.
| | - Albert Salas-Huetos
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain; Universitat Rovira i Virgili, Departament de Ciències Mediques Bàsiques, Unitat de Medicina Preventiva, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - María Fernández de la Puente
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Cristina Valle-Hita
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Montse Marquès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Universitat Rovira i Virgili, Departament de Ciències Mèdiques Bàsiques, Laboratori de Toxicologia i Salut Ambiental. Center of Environmental, Food and Toxicological Technology-TecnATox. Reus, Spain
| | - Claudia Del Egido-González
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
| | - Estefanía Davila-Cordova
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Cristina Mestres
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, IISPV, Alimentaciò, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
| | - Maria Skaalum Petersen
- University of the Faroe Islands, Tórshavn, Faroe Islands; Department of Research, the National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Nancy Babio
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
3
|
Qi T, Jing D, Zhang K, Shi J, Qiu H, Kan C, Han F, Wu C, Sun X. Environmental toxicology of bisphenol A: Mechanistic insights and clinical implications on the neuroendocrine system. Behav Brain Res 2024; 460:114840. [PMID: 38157990 DOI: 10.1016/j.bbr.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA) is a widely used environmental estrogen found in a variety of products, including food packaging, canned goods, baby bottle soothers, reusable cups, medical devices, tableware, dental sealants, and other consumer goods. This substance has been found to have detrimental effects on both the environment and human health, particularly on the reproductive, immune, embryonic development, nervous, endocrine, and respiratory systems. This paper aims to provide a comprehensive review of the effects of BPA on the neuroendocrine system, with a primary focus on its impact on the brain, neurons, oligodendrocytes, neural stem cell proliferation, DNA damage, and behavioral development. Additionally, the review explores the clinical implications of BPA, specifically examining its role in the onset and progression of various diseases associated with the neuroendocrine metabolic system. By delving into the mechanistic analysis and clinical implications, this review aims to serve as a valuable resource for studying the impacts of BPA exposure on organisms.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Dongqing Jing
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunyan Wu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
4
|
Lu X, van der Meer TP, Kamali Z, van Faassen M, Kema IP, van Beek AP, Xu X, Huo X, Ani A, Nolte IM, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV, Snieder H. A genome-wide association study of 24-hour urinary excretion of endocrine disrupting chemicals. ENVIRONMENT INTERNATIONAL 2024; 183:108396. [PMID: 38150807 DOI: 10.1016/j.envint.2023.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Ubiquitous exposure to environmental endocrine disrupting chemicals (EDCs) instigates a major public health problem, but much remains unknown on the inter-individual differences in metabolism and excretion of EDCs. To examine this we performed a two-stage genome-wide association study (GWAS) for 24-hour urinary excretions of four parabens, two bisphenols, and nine phthalate metabolites. Results showed five genome-wide significant (p-value < 5x10-8) and replicated single nucleotide polymorphisms (SNPs) representing four independent signals that associated with mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP). Three of the four signals were located on chromosome 10 in a locus harboring the cytochrome P450 (CYP) genes CYP2C9, CYP2C58P, and CYP2C19 (rs117529685, pMECPP = 5.38x10-25; rs117033379, pMECPP = 1.96x10-19; rs4918798, pMECPP = 4.01x10-71; rs7895726, pMEHHP = 1.37x10-15, r2 with rs4918798 = 0.93). The other signal was on chromosome 6 close to the solute carrier (SLC) genes SLC17A1, SLC17A3, SLC17A4, and SCGN (rs1359232, pMECPP = 7.6x10-16). These four SNPs explained a substantial part (8.3 % - 9.2 %) of the variance in MECPP in the replication cohort. Bioinformatics analyses supported a likely causal role of CYP2C9 and SLC17A1 in metabolism and excretion of MECPP and MEHHP. Our results provide biological insights into mechanisms of phthalate metabolism and excretion with a likely causal role for CYP2C9 and SLC17A1.
Collapse
Affiliation(s)
- Xueling Lu
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Thomas P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangdong, China
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
5
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Dufour P, Pirard C, Lebrethon MC, Charlier C. Associations between endocrine disruptor contamination and thyroid hormone homeostasis in Belgian type 1 diabetic children. Int Arch Occup Environ Health 2023:10.1007/s00420-023-01974-9. [PMID: 37071173 DOI: 10.1007/s00420-023-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE Humans are daily exposed to many environmental pollutants, some of which being suspected to be thyroid disruptors. Some populations could be particularly susceptible to thyroid disruption, such like diabetics due to the well-known relation between the thyroid function and the control of carbohydrate homeostasis by pancreas. Therefore, the aim of this study was to investigate the associations between the exposure to several persistent and non-persistent chemicals and thyroid hormones levels in children with type 1 diabetes. METHODS Blood and urine sample were collected from 54 children diagnosed for type 1 diabetes mellitus. The concentrations of 7 phthalate metabolites, 4 parabens, 7 bisphenols, benzophenone 3 and triclosan were measured in urine, while 15 organochlorine pesticides, 4 polychlorinated biphenyls (PCBs) and 7 perfluoroalkyl substances were analyzed in serum samples. In the same time, the blood levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and glycated hemoglobin (Hb1Ac) were determined. RESULTS We highlighted positive associations between serum perfluorohexane sulfonate and urinary monoethylphthalate levels, and TSH level in blood. We also found that PCB 138 was positively associated to fT4 while urinary levels of bisphenol F were negatively correlated to this hormone. Finally, we observed positive associations between Hb1Ac levels and the contamination by PCB 153 and two urinary phthalate metabolites: mono-2-ethyl-5-hydroxyhexyl phthalate and mono-2-ethyl-5-oxoxyhexyl phthalate. CONCLUSION Our results showed that our small cohort of children with type 1 diabetes mellitus is potentially susceptible to thyroid disruptions by some pollutants. Moreover, for these children, both di-(2-ethylhexyl) phthalate metabolites would potentially hamper the glucose homeostasis. Nevertheless, additional studies are mandatory to further explore these findings.
Collapse
Affiliation(s)
- Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium.
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium.
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium
| | | | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULiège), CHU (B35), 1, Avenue de L'Hôpital, 4000, Liege, Belgium
- Center for Interdisciplinary Research On Medicines (C.I.R.M.), University of Liege (ULiège), CHU (B35), 4000, Liege, Belgium
| |
Collapse
|
7
|
Zhang C, Luo Y, Qiu S, Huang X, Jin K, Li J, Yang M, Hu D, Zheng X, Jiang Z, Wang M, Zou X, Wei Q. Associations between urinary concentrations of bisphenols and serum concentrations of sex hormones among US. Males. Environ Health 2022; 21:135. [PMID: 36550468 PMCID: PMC9773582 DOI: 10.1186/s12940-022-00949-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure and its structural analogs (BPS and BPF) might cause endocrine alterations and adverse physiological effects. Few studies to date have directly explored the association between its structural analogs (BPS, BPF) and sex hormones in adult male participants. Therefore, we aimed to assess the associations between BPA, BPS, BPF, and sex hormones in American adult men. METHODS We used data from the U.S. National Health and Nutrition Examination Survey 2011-2016. We excluded participants without data available on sex hormones and urinary bisphenols. Furthermore, participants consuming sex hormone medications were excluded. Multivariable regression models were performed to assess the association between bisphenols and sex hormones. RESULTS In this study, 2367 participants were included. Of 2367, in 1575 participants, the data on BPS and BPF were available. We found that a per unit increase in BPF was associated with 0.575 ng/dL higher total testosterone (TT) (Model 2: 95% CI: 0.047, 1.103, P = 0.033). However, there was no significant association between BPA or BPS and TT. Furthermore, increased BPA and BPS levels were associated with higher levels of sex hormone-binding globulin (SHBG) (Model 2: β = 0.364, 95% CI: 0.158, 0.571; β = 0.25, 95% CI: 0.071, 0.429, respectively). Additionally, participants in the highest BPA exposure quartile (quartile 4) had 4.072 nmol/L higher levels of SHBG than those in quartile 1 (Model 2: 95% CI: 0.746, 7.397, P = 0.017; P for trend =0.005). Both BPA and BPS were negatively associated with free testosterone (FT, nmol/L) after full adjustment (Model 2, β = - 0.01%, P = 0.0211, P = 0.0211; Model 2, β = - 0.01%, P = 0.0258, respectively). However, BPF was positively associated with FT (Model 2, β = 0.0029%, P = 0.0028). CONCLUSION Our study indicated that exposure to both BPA and its substitutions could alter sex hormone levels. This finding supports the possibility that human exposure to bisphenols at environmental levels might affect the endogenous hormone balance.
Collapse
Affiliation(s)
- Chichen Zhang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yuehong Luo
- Department of Anesthesia, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xinyi Huang
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kun Jin
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Mi Yang
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dan Hu
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhongyuan Jiang
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mingda Wang
- Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
8
|
Roggeman M, Gys C, Klimowska A, Bastiaensen M, Wielgomas B, Ait Bamai Y, Covaci A. Reviewing the variability in urinary concentrations of non-persistent organic chemicals: evaluation across classes, sampling strategies and dilution corrections. ENVIRONMENTAL RESEARCH 2022; 215:114332. [PMID: 36116496 DOI: 10.1016/j.envres.2022.114332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Various biomonitoring studies have been carried out to investigate the exposure of populations by measuring non-persistent organic chemicals in urine. To accurately assess the exposure, study designs should be carefully developed to maximise reproducibility and achieve good characterization of the temporal variability. To test these parameters, the intraclass correlation coefficients (ICCs) are calculated from repeated measurements and range from poor (<0.4) to excellent (≥0.75). Several studies have reported ICCs based on diverse study designs, but an overview, including recommendations for future studies, was lacking. Therefore, this review aimed to collect studies describing ICCs of non-persistent organic chemicals, discuss variations due to study design and formulate recommendations for future studies. More than 60 studies were selected, considering various chemical classes: bisphenols, pyrethroids, parabens, phthalates, alternative plasticizers and phosphate flame retardants. The variation in ICCs for an individual chemical was high (e.g. ICC of propyl paraben = 0.28-0.91), showing the large impact of the study design and of the specific exposure sources. The highest ICCs were reported for parabens (median = 0.52), while lowest ICCs were for 3-phenoxybenzoic acid (median = 0.08) and bisphenol A (median = 0.20). Overall, chemicals that had an exposure source with high variation, such as the diet, showed lower ICCs than those with more stable exposure sources, such as indoor materials. Urine correction by specific gravity had an overall positive effect on reducing the variability of ICCs. However, this effect was mostly seen in the adult population, while specific compounds showed less variation with creatinine correction. Single samples might not accurately capture the exposure to most non-persistent organic chemicals, especially when small populations are sampled. Future studies that examine compounds with low ICCs should take adequate measures to improve accuracy, such as correcting dilution with specific gravity or collecting multiple samples for one participant.
Collapse
Affiliation(s)
- Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Anna Klimowska
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Yu Ait Bamai
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku Sapporo, 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium.
| |
Collapse
|
9
|
Jia LL, Luan YL, Shen HM, Guo Y. Long-term stability of several endocrine disruptors in the first morning urine samples and their associations with lifestyle characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157873. [PMID: 35940260 DOI: 10.1016/j.scitotenv.2022.157873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Parabens, triclosan (TCS), bisphenols, benzophenones, and phthalates are typical endocrine disruptors (EDs) with short half-lives in the human body. The concentration levels of those EDs in a spot urine sample are frequently used in exposure assessment studies, and the reproducibility of urinary levels of these nonpersistent EDs should be considered. In the present study, we consecutively collected 45-day first morning void (FMV) urine samples, as well as daily questionnaires, in six recruited participants and measured the urinary concentrations of six parabens, TCS, nine bisphenols, five benzophenones, and ten phthalate metabolites by using high-performance liquid chromatography-tandem mass spectrometry. MeP, EtP, PrP, TCS, BPA, BPS, BPF, and most phthalate metabolites were frequently detected (over 62 % of samples). The intraclass correlation coefficients (ICCs) for ED concentrations in FMV urine samples ranged from fair to excellent for MeP (0.683), EtP (0.702), BPA (0.505), BPS (0.908), BPF (0.887), BP-3 (0.712), mMP (0.661), mEP (0.523), mBP (0.500), miBP (0.724), mBzP (0.961) and all metabolites of DEHP (0.867-0.957), whereas they were low for PrP (0.321) and TCS (0.306). After creatinine adjustment, the values of ICCs for most target EDs were increased with mild to significant improvement. The stability of ED concentrations was affected by daily diet (MeP, TCS, BPA, mMP, miBP, mBP and mBzP), food containers (PrP and mECPP), use of personal care products (HMWP metabolites), pharmaceuticals (EtP) and recorded activities (BPS, mEHP, mBzP, mEHHP and mEOHP), as confirmed by a general linear mixed model. Furthermore, extending the FMV sampling period improved the probability of acceptable reproducibility (ICCs > 0.40) of MeP, EtP, BP-3 and mEP concentrations. For BPS, BPF and HMWP metabolite concentrations showed high probabilities (>80 %) of acceptable reproducibility in the last three days, and the increasing sample size slowly improved the ability to discriminate the subjects. The results were exactly the opposite for BPA concentrations.
Collapse
Affiliation(s)
- Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yu-Ling Luan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Bi J, Wang F, Wei Y, Zhang Y, Jia C, He J, Yao J, Zhang Z, Li Z, Li P, He M. Association of serum bisphenol A levels with incident overweight and obesity risk and the mediating effect of adiponectin. CHEMOSPHERE 2022; 308:136287. [PMID: 36084821 DOI: 10.1016/j.chemosphere.2022.136287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Existing cross-sectional studies indicated a positive association of bisphenol A (BPA) with overweight and obesity. However, the relationship and potential mechanisms underlying this association remain to be elucidated in prospective studies. OBJECTIVE This study was designed to investigate whether serum BPA is associated with incident overweight and obesity risk, and to further explore whether adiponectin plays a mediating role in the association. METHODS We measured blood BPA and adiponectin in Chinese populations. The association of serum BPA with overweight and obesity risk was evaluated using multivariable logistic regression models. We further examined the mediating effect of adiponectin by causal mediation analysis. RESULTS Among 796 participants free of overweight and obesity at baseline, 133 individuals developed overweight and obesity during the follow-up period. Compared with those in the lowest quartile of serum BPA, those in the second and third quartiles were positively associated with incident overweight and obesity risk adjusting for covariates (all P-values < 0.05), whereas this association was not observed in the fourth quartile. Further spline analysis showed an inverted U-shaped dose-response relationship (Pnon-linear = 0.04). Furthermore, each unit of serum log10-transformed BPA levels was associated with higher changes in waist-to-height ratio and body roundness index (all P-values < 0.05). Mediation analysis indicated significant indirect effects of adiponectin on the associations of BPA with overweight and obesity prevalence (mediation proportion: 46.08%; P = 0.02), and BMI levels (mediation proportion: 30.32%; P = 0.03). CONCLUSION Serum BPA displayed a positive association with incident overweight and obesity risk in a non-monotonic pattern, and adiponectin might mediate the association. Further mechanistic studies are warranted.
Collapse
Affiliation(s)
- Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
12
|
Chen PP, Yang P, Liu C, Deng YL, Luo Q, Miao Y, Zhang M, Cui FP, Zeng JY, Shi T, Lu TT, Chen D, Wang LQ, Liu CP, Jiang M, Zeng Q. Urinary concentrations of phenols, oxidative stress biomarkers and thyroid cancer: Exploring associations and mediation effects. J Environ Sci (China) 2022; 120:30-40. [PMID: 35623770 DOI: 10.1016/j.jes.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, and the underlying mechanisms are also poorly understood. We conducted a case-control study by age- and sex-matching 143 thyroid cancer and 224 controls to investigate the associations between phenol exposures and the risk of thyroid cancer, and further to explore the mediating role of oxidative stress. We found that elevated urinary triclosan (TCS), bisphenol A (BPA) and bisphenol S (BPS) levels were associated with increased risk of thyroid cancer (all P for trends < 0.05), and the adjusted odds ratios (ORs) comparing the extreme exposure groups were 3.52 (95% confidence interval (CI): 2.08, 5.95), 2.06 (95% CI: 1.06, 3.97) and 7.15 (95% CI: 3.12, 16.40), respectively. Positive associations were also observed between urinary TCS, BPA and BPS and three oxidative stress biomarkers measured by 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), as well as between urinary 8-isoPGF2α and HNE-MA and the risk of thyroid cancer. Mediation analysis showed that urinary 8-isoPGF2α mediated 28.95%, 47.06% and 31.08% of the associations between TCS, BPA and BPS exposures and the risk of thyroid cancer, respectively (all P < 0.05). Our results suggest that exposure to TCS, BPA and BPS may be associated with increased risk of thyroid cancer and lipid peroxidation may be an intermediate mechanism. Further studies are warranted to confirm the findings.
Collapse
Affiliation(s)
- Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Long-Qiang Wang
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-Ping Liu
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Ming Jiang
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 , China.
| |
Collapse
|
13
|
Protective effects of polyphenols against endocrine disrupting chemicals. Food Sci Biotechnol 2022; 31:905-934. [DOI: 10.1007/s10068-022-01105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
|
14
|
Mok S, Lim JE, Lee A, Kim S, Kim S, Lee I, Kho Y, Park J, Kim S, Choi K, Moon HB. Within- and between-person variability of urinary phthalate metabolites and bisphenol analogues over seven days: Considerations of biomonitoring study design. ENVIRONMENTAL RESEARCH 2022; 209:112885. [PMID: 35131323 DOI: 10.1016/j.envres.2022.112885] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Urine was used as a part of a human biomonitoring study based on the excretion kinetics of less-persistent contaminants, such as phthalates and bisphenol A (BPA). Despite the advantages of being non-invasive and easy to collect, urine can show a large variability of concentrations of phthalate metabolites and BPA within a person depending on sampling time. Therefore, it is essential to assess the variability of urinary concentrations for comprehensive sampling design in the context of exposure and risk assessments. In this study, 18 phthalate metabolites and eight BPs were measured in all spot urine (n = 401) collected from 12 participants for seven consecutive days to evaluate within- and between-person variabilities. The intraclass correlation coefficients (ICCs) for all spot urines were poor for monomethyl phthalate (ICC: 0.002) and BPA (0.121) but were moderate for monoethyl phthalate (0.514) and monobenzyl phthalate (0.462). Based on the results of di (2-ethylhexyl) phthalate (DEHP) metabolites, the half-life and differences in metabolic capability seem to affect the ICCs. Urinary mono (2-ethylhexyl) phthalate (MEHP), a primary metabolite of DEHP, was suggested as a short-term exposure marker of DEHP in our study. Creatinine- and specific gravity-adjusted concentrations of phthalate metabolites and BPs resulted in increased ICCs, implying requirements for randomly collected spot urine. Most analytes in the first morning voids (FMVs) were correlated significantly with those in the daily composites, suggesting the feasibility of FMVs to estimate the daily exposure dose. This study facilitates a more comprehensive sampling design and data interpretation strategy for human biomonitoring studies.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Aram Lee
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sungmin Kim
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Sunmi Kim
- Chemical Safety Research Center, Chemical Platform Technology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea; Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, 34824, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
15
|
Diurnal Variation in Biomarkers of Exposure to Endocrine-Disrupting Chemicals and Their Association with Oxidative Damage in Norwegian Adults: The EuroMix Study. TOXICS 2022; 10:toxics10040181. [PMID: 35448442 PMCID: PMC9028082 DOI: 10.3390/toxics10040181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 11/23/2022]
Abstract
Much evidence on the adverse health effects of endocrine-disrupting chemicals (EDCs) has accumulated during recent decades. EDCs are commonly found in various foods and personal care products (PCP). Data documenting a diurnally varying EDC metabolism in humans is scarce. This study examined (i) the time-of-day effect on the diurnal magnitude and variance of urinary biomarkers of exposure to EDCs, and (ii) the association between EDC exposures and oxidative damage in a Norwegian adult subpopulation. This was a cross-sectional panel study using biobanked samples from the EuroMix project. During a typical weekday, participants were asked to collect all day’s urine voids and record dietary and PCP habitual uses in a diary. Collected time stamps of urine voids were classified into three distinct periods in the day (morning 6 a.m.−12 p.m., mid-day 12 p.m.−6 p.m., evening 6 p.m.−6 a.m.). Questionnaires regarding demographic characteristics, personal care product usage, and dietary habits were completed. Urinary levels of EDCs (phthalates, parabens, and bisphenols) were measured using mass spectrometry and adjusted for urinary volume using specific gravity. Urinary 4-hydroxynonenal (4HNE), a lipid peroxidation marker, was measured using an immunoassay kit. Linear mixed-effect models identified EDCs under the influence of a diurnal variation effect that was adjusted for dietary habits and PCP use and examined associations between EDC and 4HNE. p-values were FDR-adjusted. Most phthalates appeared to be diurnally varying with higher urinary levels towards the evening (q < 0.001) than those measured during mid-day; this strong diurnal variation effect was not present for parabens and bisphenols. Significant (q < 0.001) positive associations were observed between all phthalates, parabens, and bisphenols (except bisphenol S) and 4HNE. This study’s findings highlighted the diurnal variation of excretion for certain EDC, but not for others, in real-life conditions. The degree of EDC chronotoxicity in distinct diurnal windows of the day warrants further investigation with longitudinal human studies.
Collapse
|
16
|
Chen PP, Liu C, Zhang M, Miao Y, Cui FP, Deng YL, Luo Q, Zeng JY, Shi T, Lu TT, Yin WJ, Lu WQ, Yi GL, Qiu G, Zeng Q. Associations between urinary bisphenol A and its analogues and semen quality: A cross-sectional study among Chinese men from an infertility clinic. ENVIRONMENT INTERNATIONAL 2022; 161:107132. [PMID: 35149449 DOI: 10.1016/j.envint.2022.107132] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Human studies on association between bisphenol A (BPA) exposure and semen quality, mostly based on single urinary measurement, are inconsistent. There is limited human evidence on BPA analogues such as bisphenol F (BPF) and bisphenol S (BPS), and little is known on potential effects of bisphenol mixtures. We aimed to explore whether individual or mixtures of BPA, BPS and BPF assessed in repeated urinary measurements were associated with semen quality among 984 Chinese men from an infertility clinic. We found that higher BPA exposure was associated with increased odds ratios (ORs) of having below-reference sperm concentration, total sperm count, progressive motility and total motility (all P for trends < 0.05). Higher BPS exposure was associated with increased ORs of having below-reference progressive motility and total motility (both P for trends = 0.02); the ORs comparing extreme quartiles were 1.62 (95% CI: 1.07, 2.43) and 1.57 (95% CI: 1.06, 2.33), respectively. Elevated risks for each outcome were also observed when bisphenol mixtures were at ≥ 55th percentiles. For semen quality parameters modeled as continuous outcomes, inverse associations with individual BPA and BPS and bisphenol mixtures were still estimated. Our results suggested that higher exposure to individual BPA and BPS and bisphenol mixtures were associated with impaired semen quality.
Collapse
Affiliation(s)
- Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Jun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Gui-Lin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, Hubei, PR China
| | - GaoKun Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
17
|
Burns CJ, LaKind JS. Using the Matrix to bridge the epidemiology/risk assessment gap: a case study of 2,4-D. Crit Rev Toxicol 2021; 51:591-599. [PMID: 34796780 DOI: 10.1080/10408444.2021.1997911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The Matrix is designed to facilitate discussions between practitioners of risk assessment and epidemiology and, in so doing, to enhance the utility of epidemiology research for public health decision-making. The Matrix is comprised of nine fundamental "asks" of epidemiology studies, focusing on the types of information valuable to the risk assessment process. OBJECTIVE A 2,4-dichlorophenoxyacetic acid (2,4-D) case study highlights the extent to which existing epidemiology literature includes information generally needed for risk assessments and proffers suggestions that would assist in bridging the epidemiology/risk assessment gap. METHODS Thirty-one publications identified in the US Environmental Protection Agency 2,4-D epidemiology review were assessed. These studies focused on associations between 2,4-D exposure and non-Hodgkin lymphoma (NHL), respiratory effects, and birth outcomes. RESULTS Many of the papers met one or more specific elements of the Matrix. However, from this case study, it is clear that some aspects of risk assessment, such as evaluating source-to-intake pathways, are generally not considered in epidemiology research. Others are incorporated, but infrequently (e.g. dose-response information, harmonization of exposure categories). We indicated where additional analyses or modifications to future study design could serve to improve the translation. DISCUSSION Interaction with risk assessors during the study design phase and using the Matrix "asks" to guide the conversations could shape research and provide the basis for requests for funds to support these additional activities. The use of the Matrix as a foundation for communication and education across disciplines could produce more impactful and consequential epidemiology research for robust risk assessments and decision-making.
Collapse
Affiliation(s)
- Carol J Burns
- Burns Epidemiology Consulting, LLC, Sanford, MI, USA
| | - Judy S LaKind
- LaKind Associates, LLC, University of Maryland School of Medicine, Catonsville, MD, USA
| |
Collapse
|
18
|
Tait S, Carli F, Busani L, Ciociaro D, Della Latta V, Deodati A, Fabbrizi E, Pala AP, Maranghi F, Tassinari R, Toffol G, Cianfarani S, Gastaldelli A, La Rocca C. Italian Children Exposure to Bisphenol A: Biomonitoring Data from the LIFE PERSUADED Project. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211846. [PMID: 34831602 PMCID: PMC8621164 DOI: 10.3390/ijerph182211846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
A human biomonitoring (HBM) study on bisphenol A (BPA) in Italian children and adolescents was performed within the LIFE PERSUADED project, considering the residing areas, sex and age. The median urinary BPA level was 7.02 µg/L, with children living in the South of Italy or in urban areas having higher levels than those residing in the North or in rural areas. Children aged 4–6 years had higher BPA levels than those aged 7–10 and 11–14 years, but no differences were detected between sexes. The exposure in Italian children was higher compared to children from other countries, but lower than the HBM guidance value (135 µg/L). The estimated daily intake was 0.17 μg/kg body weight (bw) per day, about 24-fold below the temporary Tolerable Daily Intake of 4 μg/kg bw per day established by the European Food Safety Authority. However, this threshold was exceeded in 1.44% of the enrolled children, raising concern about the overall exposure of Italian young population.
Collapse
Affiliation(s)
- Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Fabrizia Carli
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Luca Busani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Demetrio Ciociaro
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Veronica Della Latta
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Annalisa Deodati
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (A.D.); (S.C.)
| | - Enrica Fabbrizi
- Unità Operativa Complessa Pediatria e Neonatologia, Ospedale Civile Augusto Murri, Via Augusto Murri, 21, 63900 Fermo, Italy;
- Civitanova Marche Hospital, ASUR MARCHE Area Vasta 3, 62012 Civitanova Marche, Italy
| | - Anna Paola Pala
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
| | - Giacomo Toffol
- Associazione Culturale Pediatri, Via Montiferru, 6, 09070 Narbolia, Italy;
| | - Stefano Cianfarani
- Dipartimento Pediatrico, Universitario Ospedaliero “Bambino Gesù” Children’s Hospital, Piazza di Sant’Onofrio, 4, 00165 Rome, Italy; (A.D.); (S.C.)
- Department of Systems Medicine, University of Rome Tor Vergata, Via Cracovia, 50, 00133 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet and University Hospital, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Amalia Gastaldelli
- National Research Council, Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.C.); (D.C.); (V.D.L.); (A.P.P.); (A.G.)
| | - Cinzia La Rocca
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.T.); (L.B.); (F.M.); (R.T.)
- Correspondence: ; Tel.: +39-06-4990-2992
| | | |
Collapse
|
19
|
Zhu H, Martinez-Moral MP, Kannan K. Variability in urinary biomarkers of human exposure to polycyclic aromatic hydrocarbons and its association with oxidative stress. ENVIRONMENT INTERNATIONAL 2021; 156:106720. [PMID: 34166875 PMCID: PMC8380707 DOI: 10.1016/j.envint.2021.106720] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Urinary concentrations of mono-hydroxylated metabolites of PAHs (OH-PAHs) have been used as biomarkers of these chemicals' exposure in humans. Little is known, however, with regard to intra- and inter-individual variability in OH-PAH concentrations and their association with oxidative stress. We conducted a longitudinal study of measurement of urinary concentrations of 15 OH-PAHs and 7 oxidative stress biomarkers (OSBs) of DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)], lipid [malondialdehyde (MDA) and F2-isoprostanes (PGF2α)] and protein [o,o'-dityrosine (diY)] peroxidation in 19 individuals for 44 consecutive days. Metabolites of naphthalene (OHNap), fluorene (OHFlu), phenanthrene (OHPhe), and pyrene (OHPyr) were found in >70% of 515 urine samples analyzed, at sum concentrations (∑OH-PAH) measured in the range of 0.46-60 ng/mL. After adjusting for creatinine, OHNap and ∑OH-PAH concentrations exhibited moderate predictability, with intra-class correlation coefficients (ICCs) ranging from 0.359 to 0.760. However, ICC values were low (0.001-0.494) for OHFlu, OHPhe, and OHPyr, which suggested poor predictability for these PAH metabolites. Linear mixed-effects analysis revealed that an unit increase in ∑OH-PAH concentration corresponded to 4.5%, 5.3%, 20%, and 21% increase in respective urinary 8-OHdG, MDA, PGF2α, and diY concentrations, suggesting an association with oxidative damage to DNA, lipids, and proteins. The daily intakes of PAHs, calculated from urinary concentrations of OH-PAHs, were 10- to 100-fold below the current reference doses. This study provides valuable information to design sampling strategies in biomonitoring studies and in assigning exposure classifications of PAHs in epidemiologic studies.
Collapse
Affiliation(s)
- Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Maria-Pilar Martinez-Moral
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University, School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
20
|
Gao Q, Niu Y, Wang B, Liu J, Zhao Y, Zhang J, Wang Y, Shao B. Estimation of lactating mothers' daily intakes of bisphenol A using breast milk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117545. [PMID: 34438484 DOI: 10.1016/j.envpol.2021.117545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Breast milk is a unique biological sample that reflects the exposure levels of both lactating mothers and infants. The exposure levels of BPA due to breast milk consumption for infants can be estimated easily, but the method to estimate the total daily intake (TDI) of lactating mothers from breast milk has not yet been established. In this study, BPA concentrations were detected in breast milk samples from 149 lactating mothers from Hunan, China. The median concentration of BPA in breast milk was 0.053 μg/L with a range of 0.001-2.535 μg/L, and a temporal decline trend was found for BPA concentrations in breast milk (p < 0.05). The median intake of BPA via breast milk was 26.8 ng/kg bw/day for 0-3-month-old infants and 7.0 ng/kg bw/day for 4-12-month-old infants. Based on the predicted concentrations of BPA in urine and blood via the conversion coefficients from breast milk, the TDIs of lactating mothers were estimated. The TDIs estimated from the simulated urine concentration were 84.0 ± 175.2 ng/kg bw/day for 0-3-month-old infants' mothers and 36.9 ± 80.8 ng/kg bw/day for 4-12-month-old infants' mothers. The dietary daily intakes estimated from the simulated blood concentration were 579.6 ± 370.8 ng/kg bw/day for 0-3-month-old infants' mothers and 280.1 ± 195.2 ng/kg bw/day for 4-12-month-old infants' mothers. When assuming the dietary daily intakes in Hunan of the fifth total diet study (TDS) as the "true" total dietary intake of our population, the contribution of diet was estimated to be 63.7%, which suggested that non-dietary BPA exposure may be underestimated.
Collapse
Affiliation(s)
- Qun Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Bin Wang
- Chinese Academy of Inspection and Quarantine Comprehensive Test Center, Beijing, 100123, China
| | - Jiaying Liu
- Department of Nurition and Health, China Agricultural University, Beijing, 100193, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
Hoffman K, Levasseur JL, Zhang S, Hay D, Herkert NJ, Stapleton HM. Monitoring Human Exposure to Organophosphate Esters: Comparing Silicone Wristbands with Spot Urine Samples as Predictors of Internal Dose. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:805-810. [PMID: 36159219 PMCID: PMC9496637 DOI: 10.1021/acs.estlett.1c00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Silicone wristbands present a noninvasive exposure assessment tool and an alternative to traditional biomonitoring; however, questions about their utility remain as validation studies are limited. We sought to determine if wristbands provide quantitative estimates of internal organophosphate ester (OPE) exposure. We evaluated internal dose by measuring metabolite masses excreted in 24-hour urine samples collected over five days among ten adults. We compared internal dose to OPE concentrations in paired wristbands worn during collection and, as a comparison, evaluated metabolite levels in spot urine samples. Three of six OPE metabolites evaluated were detected in >98% of urine samples, and 24 of 34 assessed OPEs were detected in at least one wristband. OPE uptake in wristbands was linear over time (range=0.54-61.8 ng/g/day). OPE concentrations in spot urine and wristbands were not correlated with total diphenyl phosphate (DPHP) excreted in urine, which may be due to the range of possible DPHP parent compounds or dietary exposure. However, for tris-(1,3-dichloro-2-propyl)phosphate (TDCIPP) and tris-(2-chloroisopropyl)phosphate (TCIPP), wristbands and spot urine samples were both moderately to strongly correlated with internal dose (all rs>0.56 and p<0.1), suggesting both perform well as integrated exposure estimates. Given the potential advantages of silicone wristbands, further studies investigating additional compounds are warranted.
Collapse
Affiliation(s)
- Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Duncan Hay
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
22
|
Kim JH, Shin HS, Lee WH. Impact of Endocrine-Disrupting Chemicals in Breast Milk on Postpartum Depression in Korean Mothers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094444. [PMID: 33922135 PMCID: PMC8122652 DOI: 10.3390/ijerph18094444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Previous human and animal studies have reported an association between endocrine-disrupting chemicals (EDCs) and anxiety/depression. This study aimed to determine how the concentrations of phthalate metabolites, bisphenol A, triclosan, and parabens in breast milk are associated with the risk of developing postpartum depression (PPD) in Korean mothers. We recruited 221 mothers who were receiving lactation coaching at breastfeeding clinics between July and September 2018. The breast milk samples were collected along with responses to the Edinburgh Postnatal Depression Scale. The multivariable logistic regression results revealed that the phthalate, bisphenol A, parabens, and triclosan levels in the breast milk were not significantly associated with the risk of PPD. This study was the first attempt to analyze the association between the levels of EDCs in breast milk and the risk of PPD. Considering that PPD is a condition that affects not only the women diagnosed with it, but also their children and families, the results of this study may have great relevance to populations in environmentally sensitive periods.
Collapse
Affiliation(s)
- Ju-Hee Kim
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-0461
| | - Hye-Sook Shin
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul 02447, Korea;
| | - Woo-Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
23
|
Morgan MK, Clifton MS. Dietary Exposures and Intake Doses to Bisphenol A and Triclosan in 188 Duplicate-Single Solid Food Items Consumed by US Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084387. [PMID: 33924247 PMCID: PMC8074762 DOI: 10.3390/ijerph18084387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
Few data exist on bisphenol A (BPA) or triclosan (TCS) residue levels in foods consumed by adults in everyday settings. In a further analysis of study data, the objectives were to determine BPA and TCS residue concentrations in duplicate-single solid food items consumed by adults and to estimate dietary exposure and intake doses per food item. A convenience sample of 50 adults was recruited in North Carolina (2009-2011). Participants completed 24 h food diaries and collected 24 h duplicate-diet solid food samples consumed on days 1 and 2 during sampling weeks 1, 2, and 6. A total of 188 of the collected 776 duplicate-diet solid food samples contained a single, solid food item. BPA and TCS residue levels were quantified in the 188 food items using GC-MS. BPA and TCS were detected in 37% and 58% of these food items, respectively. BPA concentrations were highest in a cheese and tomato sandwich (104 ng/g), whereas the highest TCS concentrations were in a burrito (22.1 ng/g). These chemicals co-occurred in 20% of the samples (maximum = 54.7 ng/g). Maximum dietary intake doses were 429 ng/kg/day for BPA in a vegetable soup with tortilla sample and 72.0 ng/kg/day for TCS in a burrito sample.
Collapse
|
24
|
Morgan MK, Clifton MS. Exposure to Triclosan and Bisphenol Analogues B, F, P, S and Z in Repeated Duplicate-Diet Solid Food Samples of Adults. TOXICS 2021; 9:47. [PMID: 33802249 PMCID: PMC8001473 DOI: 10.3390/toxics9030047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Triclosan (TCS) and bisphenol analogues are used in a variety of consumer goods. Few data exist on the temporal exposures of adults to these phenolic compounds in their everyday diets. The objectives were to determine the levels of TCS and five bisphenol analogues (BPB, BPF, BPP, BPS, and BPZ) in duplicate-diet solid food (DDSF) samples of adults and to estimate maximum dietary exposures and intake doses per phenol. Fifty adults collected 776 DDSF samples over a six-week monitoring period in North Carolina in 2009-2011. The levels of the target phenols were concurrently quantified in the DDSF samples using gas chromatography/mass spectrometry. TCS (59%), BPS (32%), and BPZ (28%) were most often detected in the samples. BPB, BPF, and BPP were all detected in <16% of the samples. In addition, 82% of the total samples contained at least one target phenol. The highest measured concentration of 394 ng/g occurred for TCS in the food samples. The adults' maximum 24-h dietary intake doses per phenol ranged from 17.5 ng/kg/day (BPB) to 1600 ng/kg/day (TCS). An oral reference dose (300,000 ng/kg/day) is currently available for only TCS, and the adult's maximum dietary intake dose was well below a level of concern.
Collapse
Affiliation(s)
- Marsha K. Morgan
- United States Environmental Protection Agency’s Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711, USA
| | - Matthew S. Clifton
- United States Environmental Protection Agency’s Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| |
Collapse
|
25
|
Giannattasio R, Lisco G, Giagulli VA, Settembrini S, De Pergola G, Guastamacchia E, Lombardi G, Triggiani V. Bone Disruption and Environmental Pollutants. Endocr Metab Immune Disord Drug Targets 2021; 22:704-715. [PMID: 33461478 DOI: 10.2174/1871530321666210118163538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endocrine Disrupting Chemicals (EDCs) are ubiquitous and may significantly contribute in environmental pollution, thus contaminating humans and wildlife. Environmental pollutants could interfere with bone homeostasis by means of different mechanisms, which include hormonal imbalance, direct osteoblasts toxicity and enanchment of osteoclasts activity, thus leading to osteopenia or osteoporosis. Among these, bisphenols, dioxins, polycyclic aromatic hydrocarbons, polychlorobiphenyls, poly- and perfluoroalkyls, phthalates, parabens, organotins and cadmium may play a role in bone distuption. METHODS PubMed/MEDLINE, ISI-web of knowledge and Google scholar databases were searched for medical subject headings terms and free-text word related to the aforementioned classes of chemicals and bone metabolism and remodelling for better clarifying and understanding the main mechanisms of bone disruption. RESULTS Several of EDCs act as xenoestrogens. Considering that estrogens play a significant role in regulating bone remodeling, most of these chemicals generate hormonal imbalance with possible detrimental consequences on bone tissue structure and its mechanical and non-mechanical properties. DISCUSSION A lot of evidences about bone distruptors came from in vitro studies or animal models, and conduct to equivocal results. In addition, a few data derived form humans and most of these data focused on the impact of EDCs on bone mineral density without considering their influence on long-term fracture risk. Moreover, it should be taken into account that humans are exposed to a mixture of EDCs and the final effect on bone metabolism might be the result of either a synergism or antagonist effects among them. Age of first exposure, cumulative dose exposure over time, and the usually observed non-monotonic dose-response curve for EDCs should be considered as other important variable influencing the final effect on bone metabolism. CONCLUSION Taking into account these variables, observational studies are needed to better analyze this issue both for echological purpose and to preserve bone health.
Collapse
Affiliation(s)
- Raffaele Giannattasio
- ASL Napoli 1 Centro, DS 29, SPS San Gennaro, Service of Endocrinology, Via San Gennaro dei Poveri 25, 80136, Naples. Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | - Silvio Settembrini
- ASL Napoli 1 Centro, DS 26, Metabolic, Endocrine and Diabetes Unit Pellegrini Hospital, Naples. Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari. Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| | | | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine - Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. School of Medicine, University of Bari, Piazza Giulio Cesare 11, Policlinico of Bari, Bari. Italy
| |
Collapse
|
26
|
Hagobian T, Delli-Bovi Z, Mercado A, Bird A, Guy M, Phelan S. Development and feasibility of randomized trial to reduce urinary bisphenols in women with obesity. Pilot Feasibility Stud 2021; 7:24. [PMID: 33436090 PMCID: PMC7802296 DOI: 10.1186/s40814-020-00744-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bisphenol exposure is widespread and correlated with diabetes and cardiovascular disease. Previous intervention studies have successfully lowered bisphenol exposure among women of normal weight. The primary objective of this study was to develop and test the feasibility of a 3-week behavioral change intervention, rooted in social cognitive theory, to lower a broad range of bisphenols (BPA, BPS, and BPF) in women with obesity. METHODS Thirty women with obesity (31.1 ± 5.6 kg/m2, 21.1 ± 3.1 years) were randomly assigned to an intervention or control. The intervention included weekly face-to-face meetings to reduce bisphenol exposures from food, cosmetics, and packaged products. Fasting urinary bisphenols, creatinine, and weight were assessed at study entry and after 3 weeks. RESULTS The intervention was evaluated as feasible (100% of enrollment and recruitment, 96% of retention and attendance at lesson plan visits, and 96% of a collection of urine samples). Adherence to the intervention was estimated based on completion of self-monitoring records; the number of daily records completed was 7.7 ± 1.3 (mean ± SD) after week 1, 7.1 ± 1.5 after week 2, and 4.4 ± 0.9 after week 3. In secondary analysis, there was a significant treatment × time effect on creatinine-corrected urinary BPS (- 1.42 μg/g creatinine in the intervention vs. - 0.09 μg/g creatinine in the control group). CONCLUSION In women with obesity, the 3-week intervention was considered feasible with promising preliminary results of decreasing BPS concentrations. These data warrant future large-scale clinical trial interventions to reduce bisphenol exposure and determine whether reductions in bisphenols positively impact diabetes and cardiovascular disease risk markers. This study was retroactively registered at ClinicalTrial.gov Identifier NCT03440307.
Collapse
Affiliation(s)
- Todd Hagobian
- Center for Health Research and Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA, 93407, USA.
| | - Zoe Delli-Bovi
- Center for Health Research and Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA, 93407, USA
| | - Adrian Mercado
- Center for Health Research and Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA, 93407, USA
| | - Alyssa Bird
- Center for Health Research and Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA, 93407, USA
| | - Megan Guy
- Center for Health Research and Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA, 93407, USA
| | - Suzanne Phelan
- Center for Health Research and Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA, 93407, USA
| |
Collapse
|
27
|
Gys C, Bastiaensen M, Malarvannan G, Ait Bamai Y, Araki A, Covaci A. Short-term variability of bisphenols in spot, morning void and 24-hour urine samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115747. [PMID: 33012567 DOI: 10.1016/j.envpol.2020.115747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Due to worldwide regulations on the application of the high production volume industrial chemical bisphenol A (BPA) in various consumer products, alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) are increasingly used. To assess human exposure to these chemicals, biomonitoring of urinary concentrations is frequently used. However, the short-term variability of alternative bisphenols has not been evaluated thoroughly yet, which is essential to achieve a correct estimation of exposure. In this study, we collected all spot urine samples from ten healthy adults for five consecutive days, and an additional 24 h pooled sample. We measured the concentrations of seven bisphenols (BPAF, BPF, BPA, BPB, BPZ, BPS and BPAP) in these samples using gas chromatography coupled to tandem mass spectrometry. BPA, BPF and BPS were frequently found in spot samples (>80%), while bisphenol AP (BPAP) was detected in 43% of spot samples. Calculations of intra-class correlation coefficients (ICCs) showed that reproducibility of these four bisphenols was relatively poor (<0.01-0.200) but improved when concentrations were corrected for urine dilution using creatinine levels (0.128-0.401). Of these four bisphenols, BPF showed the best reproducibility (ICC 0.200-0.439) and BPS the most variability (ICC <0.01-0.128). In general, the within-participant variability of bisphenol levels was the largest contributor to the total variance (47-100%). We compared repeated first morning voids to 24 h pooled urine and found no significantly different concentrations for BPA, BPF, BPS, or BPAP. Levels of BPA and BPF differed significantly depending on the sampling time throughout the day. The findings in this study suggest that collecting multiple samples per participant over a few days, in predefined time windows throughout the day, could result in a more reliable estimation of internal exposure to bisphenols.
Collapse
Affiliation(s)
- Celine Gys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Michiel Bastiaensen
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
28
|
Dagher JB, Hahn-Townsend CK, Kaimal A, Mansi MA, Henriquez JE, Tran DG, Laurent CR, Bacak CJ, Buechter HE, Cambric C, Spivey J, Chuang YJ, Campbell EJ, Mandal A, Mohankumar PS, MohanKumar SMJ. Independent and combined effects of Bisphenol A and Diethylhexyl Phthalate on gestational outcomes and offspring development in Sprague-Dawley rats. CHEMOSPHERE 2021; 263:128307. [PMID: 33297244 DOI: 10.1016/j.chemosphere.2020.128307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Bisphenol A (BPA) and Diethylhexyl Phthalate (DEHP) are well-studied endocrine disrupting chemicals (EDCs), however, the effects of mixtures of these EDCs are not. To assess the consequences of prenatal exposure to a mixture of these EDCs, dams were orally administered either saline (control), BPA (5 μg/kg BW/day), high dose DEHP (HD-D; 7.5 mg/kg BW/day), or a combination of BPA with HD-D in experiment 1; saline, BPA (5 μg/kg BW/day), low-dose DEHP (LD-D; 5 μg/kg BW/day) or a combination of BPA with LD-D in experiment 2. Gestational weights, number of abortions, litter size and weights, number of live births and stillbirths were recorded. Morphometric measures were obtained at birth and body weight, food and water intake were monitored weekly from postnatal weeks 3-12. Offspring were sacrificed at 16-24 weeks of age and organ weights were measured. The abortion rate of dams exposed to HD-D and the mixtures, BPA + LD-D and BPA + HD-D were higher at 9, 14 and 27% respectively. Prenatal exposure to BPA or HD-D significantly decreased relative thymus weights in male but not female offspring. Apoptotic cells were detected in thymus sections of both male and female offspring prenatally exposed to DEHP. Relative heart weights increased in BPA + HD-D exposed male offspring compared to the other groups. The results indicate that a mixture of BPA and DEHP, produced a pronounced effect on pregnancy outcomes. Male offspring appear to be more susceptible to the programming effects of these EDCs or their mixture suggesting a need to reconsider the possible additive, antagonistic or synergistic effects of EDC mixtures.
Collapse
Affiliation(s)
- Josephine Bou Dagher
- Biomedical Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, 30602, USA
| | - Coral K Hahn-Townsend
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Amrita Kaimal
- Biomedical Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, 30602, USA
| | - Maryam Al Mansi
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Joseph E Henriquez
- Department of Pharmacology and Toxicology, Michigan State University, E. Lansing, MI, 48824, USA
| | - Diane G Tran
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Christian R Laurent
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Caleb J Bacak
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Hannah E Buechter
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Celexis Cambric
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Jared Spivey
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Yen-Jun Chuang
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Elyssa J Campbell
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Abhyuday Mandal
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Puliyur S Mohankumar
- Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, E. Lansing, MI, 48824, USA
| | - Sheba M J MohanKumar
- Biomedical Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, 30602, USA; Department of Veterinary Biosciences and Diagnostic Imaging, Neuroscience Program, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA; Department of Pharmacology and Toxicology, Michigan State University, E. Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Kim S, Lee I, Lim JE, Lee A, Moon HB, Park J, Choi K. Dietary contribution to body burden of bisphenol A and bisphenol S among mother-children pairs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140856. [PMID: 32721674 DOI: 10.1016/j.scitotenv.2020.140856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 05/21/2023]
Abstract
Due to the health concerns over bisphenol A (BPA), bisphenol S (BPS) has been used as an alternative in greater quantity. Diet is considered as the major source of exposure to bisphenols; however, its contribution to the total body burden has not been fully understood. In the present study, a 3-day dietary intervention was carried out for a group of mother and child(ren) pairs (37 families, 93 subjects), and contribution of the dietary factors to body burden of both bisphenols was investigated. During the intervention, the participants were asked to refrain from the foods in cans and plastic containers, fast foods, and delivery foods. Urinary levels of BPA and BPS were measured before, during, and after the intervention. In addition, the questionnaire survey was conducted for potential contributors to BPA and BPS exposure. Following the intervention, urinary levels of BPA and BPS of the mothers decreased on average by 53.1% (95% CI: -30.0, -68.6), and 63.9% (95% CI: -37.1, -79.3), respectively. Among the children, urinary BPA concentrations decreased by 47.5% (95% CI: -25.6, -62.9) by the intervention. However, BPS levels in urine did not change in the children. Interestingly, urinary BPS concentrations of the children measured during the non-intervention period were greater than those of the mothers in the same period. Consumption frequencies of several food items, e.g., canned foods, take-out drinks, or fast foods, were significantly correlated with elevated levels of urinary BPA or BPS concentrations. The results of this intervention study emphasize the importance of dietary contribution to BPA exposure among the mothers and children. Our findings also show that non-dietary sources could be a more important contributor for certain people, especially to BPS exposure among children. Further studies are warranted to identify the sources of BPS exposure among children.
Collapse
Affiliation(s)
- Sunmi Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Inae Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Aram Lee
- College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
|
31
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
32
|
Concentration and Variability of Urinary Phthalate Metabolites, Bisphenol A, Triclosan, and Parabens in Korean Mother–Infant Pairs. SUSTAINABILITY 2020. [DOI: 10.3390/su12208516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Concentrations of toxic chemicals in mothers highly correlate with those in their children; moreover, the levels are higher in children than in mothers. Non-persistent chemicals with a short half-life including phthalate metabolites, bisphenol A (BPA), triclosan (TCS), and parabens are metabolized and excreted through urine. Therefore, we assessed the urine concentrations of phthalate metabolites, BPA, TCS, and parabens; correlated the concentrations with exposure levels; and assessed the within-individual variability of these chemicals in mothers and their infants. We collected 225 and 71 samples from 45 mothers and 36 infants, respectively. For the variability analysis, 189 and 42 samples were collected from nine mothers and their infants, respectively. The median concentrations of phthalate metabolites in the mothers and infants were 0.53–26.2 and 0.81–61.8 μg/L, respectively, and those of BPA, TCS, and parabens were 0.24–76.3 and 2.06–12.5 μg/L, respectively. The concentrations of monoethyl phthalate (MEP), mono-N-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), and BPA in the mothers were positively correlated with those in infants (0.45, 0.62, and 0.89, respectively; p < 0.05), whereas toxic chemical concentrations in infants were higher than those in the mothers. With respect to the within-individual intraclass correlation coefficient (ICC), the first morning void (FMV) of the mothers had high ICCs for all chemicals (range: 0.72–0.99), except for BPA, monobenzyl phthalate (MBzP), and monocarboxyoctyl phthalate (MCOP). The ICC values of most chemicals were moderate to high (range: 0.34–0.99) in the first morning void. However, there were different patterns of ICCs in the infants. These findings indicate the importance of mother–infant pair studies and the necessity of research in infants, as they have different exposure sources and pathways from adults.
Collapse
|
33
|
Lin Y, Qiu X, Liu J, Tseng CH, Allard P, Araujo JA, Zhu Y. Different temporal trends of exposure to Bisphenol A among international travelers between Los Angeles and Beijing. ENVIRONMENT INTERNATIONAL 2020; 141:105758. [PMID: 32402980 PMCID: PMC7283011 DOI: 10.1016/j.envint.2020.105758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/19/2023]
Abstract
Recent studies suggested a significant downward trend in population's exposure to bisphenol A (BPA) in the United States. However, the temporal trend of BPA exposure remains unclear in China - a populous country with substantial industrial activities but less efforts made to phase out BPA in consumer products. In addition, it is unclear to what extent a visit from the United States to China could affect human exposure to BPA. In this natural experiment, we measured the concentration of total BPA in 418 urine samples repeatedly collected from 55 Los Angeles residents before, during, and after they spent 10 weeks in Beijing from 2012 to 2017. We found that traveling from Los Angeles to Beijing led to a 2.91-fold (95% CI: 2.43 to 3.50) increase in urinary BPA levels, which fully returned to baseline after study participants came back to Los Angeles. From 2012 to 2017, urinary BPA concentrations decreased in Los Angeles by 25.5% per year (95% CI: -30.8% to -19.8%; p < 0.001) but did not change in Beijing (p = 0.24). Consequently, the concentration ratio of urinary BPA between Beijing and Los Angeles increased from 1.23 (95% CI: 0.82 to 1.85) in 2012 to 4.05 (95% CI: 2.75 to 5.97) in 2017. These results indicate that BPA exposures may increase among international travelers to China. Additional efforts are needed to reduce population's exposure to BPA in China.
Collapse
Affiliation(s)
- Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States; Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
34
|
Fu X, Xu J, Zhang R, Yu J. The association between environmental endocrine disruptors and cardiovascular diseases: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 187:109464. [PMID: 32438096 DOI: 10.1016/j.envres.2020.109464] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Except for known cardiovascular risk factors, long-term exposure to environmental endocrine disruptors (EEDs) - a class of exogenous chemicals, or a mixture of chemicals, that can interfere with any aspect of hormone action - has been shown to increase the risk of cardiovascular diseases (CVDs), which are still controversial. OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the association between EEDs, including nonylphenol (NP), bisphenol A (BPA), polychlorinated biphenyl (PCB), organo-chlorine pesticide (OCP) and phthalate (PAE) exposure and CVD risk. METHODS The heterogeneity between different studies was qualitatively and quantitatively evaluated using Q test and I2 statistical magnitude, respectively. Subgroup analysis was performed using chemical homologs - a previously unused grouping method - to extract data and perform meta-analysis to assess their exposure to CVD. RESULTS Twenty-nine literatures were enrolled with a total sample size of 88891. The results indicated that exposure to PCB138 and PCB153 were the risk factors for CVD morbidity (odds ratio (OR) = 1.35, 95% confidence interval (CI): 1.10-1.66; OR = 1.35, 95% CI: 1.13-1.62). Exposure to organo-chlorine pesticide (OCP) (OR = 1.12, 95% CI: 1.00-1.24), as well as with phthalate (PAE) (OR = 1.11, 95% CI: 1.06-1.17) and BPA (OR = 1.19, 95% CI: 1.03-1.37) were positively associated with CVD risk, respectively. BPA exposure concentration had no correlation with total cholesterol (TC), or low-density lipoprotein (LDL), but exhibited a correlation with gender, waist circumference (WC), high-density lipoprotein (HDL), age, and body mass index (BMI) (standardized mean difference (SMD)) = 1.51; 95% CI: =(1.01-2.25); SMD = 0.16; 95% CI: (0.08-0.23); SMD = -0.19; 95% CI: (-0.27-0.12); SMD = -0.78; 95% CI: (-1.42-0.14); SMD = 0.08; 95% CI: (0.00-0.16). CONCLUSIONS EED exposure is a risk factor for CVD. Long-term exposure to EEDs can influence cardiovascular health in humans. A possible synergistic effect may exist between the homologs. The mechanism of which needs to be further explored and demonstrated by additional prospective cohort studies, results of in vitro and in vivo analyses, as well as indices affecting CVD.
Collapse
Affiliation(s)
- Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Renyi Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
35
|
Sabbioni G, Berset JD, Day BW. Is It Realistic to Propose Determination of a Lifetime Internal Exposome? Chem Res Toxicol 2020; 33:2010-2021. [PMID: 32672951 DOI: 10.1021/acs.chemrestox.0c00092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomonitoring of xenobiotics has been performed for many years in occupational and environmental medicine. It has revealed hidden exposures and the exposure of workers could be reduced. Although most of the toxic effects of chemicals on humans were discovered in workers, the scientific community has more recently focused on environmental samples. In several countries, urinary and blood samples have been collected and analyzed for xenobiotics. Health, biochemical, and clinical parameters were measured in the biomonitoring program of the Unites States. The data were collected and evaluated as group values, comparing races, ages, and gender. The term exposome was created in order to relate chemical exposure to health effects together with the terms genome, proteome, and transcriptome. Internal exposures were mostly established with snapshot measurements, which can lead to an obvious misclassification of the individual exposures. Albumin and hemoglobin adducts of xenobiotics reflect the exposure of a larger time frame, up to 120 days. It is likely that only a small fraction of xenobiotics form such adducts. In addition, adduct analyses are more work intensive than the measurement of xenobiotics and metabolites in urine and/or blood. New technology, such as high-resolution mass spectrometry, will enable the discovery of new compounds that have been overlooked in the past, since over 300,000 chemicals are commercially available and most likely also present in the environment. Yet, quantification will be challenging, as it was for the older methods. At this stage, determination of a lifetime internal exposome is very unrealistic. Instead of an experimental approach with a large number of people, which is economically and scientifically not feasible, in silico methods should be developed further to predict exposure, toxicity, and potential health effects of mixtures. The computer models will help to focus internal exposure investigations on smaller groups of people and smaller number of chemicals.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Jean-Daniel Berset
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
| | - Billy W Day
- Medantox LLC, Pittsburgh, Pennsylvania 15241, United States.,ReNeuroGen LLC, Elm Grove, Wisconsin 53122, United States
| |
Collapse
|
36
|
González N, Marquès M, Cunha SC, Fernandes JO, Domingo JL, Nadal M. Biomonitoring of co-exposure to bisphenols by consumers of canned foodstuffs. ENVIRONMENT INTERNATIONAL 2020; 140:105760. [PMID: 32371307 DOI: 10.1016/j.envint.2020.105760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
For non-occupationally exposed adults, dietary intake is the main route of exposure to bisphenols (BPs), with canned foodstuffs playing a key role. This study was aimed at biomonitoring bisphenol A (BPA) and 5 more BP analogues (BPB, BPE, BPF, BPAF and BPZ) in spot urine and blood samples of a cohort of adults, who followed a diet based on a high consumption of canned food. To the best of our knowledge, this is the first study aimed at assessing the co-exposure of BP analogues in food and biological samples after a two-day duplicate diet study. The estimated total dietary exposure was 0.37 and 0.045 µg/kg body weight/day, for the canned-diet and control groups, respectively. BPA was the compound with the highest concentration in urine in comparison with the values of the remaining BP analogues. A high detection rate of BPA was noted in urine for both groups, 96% for the canned-diet group and 90% for the control group, while in blood it could be only quantified in 6% of the samples. The identification of other analogues was hardly related to diet, so it could be the result of other potential exposure sources, such as personal care products (PCPs) or air inhalation. After 2 days, the excretion of BPA was considerably higher in the canned-diet group subjects than those in the control group (7.02 vs. 1.89 µg/day), confirming that diet and canned foodstuffs are the main route of exposure to BPA. Anyhow, the temporary tolerable daily intake (t-TDI) established by the EFSA was not exceeded, even by those consumers with a diet rich in canned food. Moreover, spot urine samples provided accurate information about exposure and excretion of BPA, being the 4 h, instead of 24 h, the optimal sampling interval, when the collection of spot urine samples is not possible.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
37
|
Jiang Y, Li J, Xu S, Zhou Y, Zhao H, Li Y, Xiong C, Sun X, Liu H, Liu W, Peng Y, Hu C, Cai Z, Xia W. Prenatal exposure to bisphenol A and its alternatives and child neurodevelopment at 2 years. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121774. [PMID: 32001102 DOI: 10.1016/j.jhazmat.2019.121774] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/26/2023]
Abstract
While increasing evidence has shown that prenatal bisphenol A (BPA) exposure is adversely associated with child neurodevelopment, little is known about the neurodevelopmental effects of BPA alternatives, such as bisphenol S (BPS) and bisphenol F (BPF). We aimed to evaluate the relationships of repeated measurements of bisphenol exposure during pregnancy with child neurodevelopment. From 2014-2015, 456 mother-child pairs were included in the present study. Each had a spot urine sample in the first, second, and third trimester, respectively, during pregnancy for BPA, BPS, and BPF measurements. Children's neurodevelopment was assessed using the Bayley Scales of Infant Development at 2 years. In adjusted models, children's psychomotor development index scores decreased across quartiles of BPS concentrations [-5.52 (95 % CI: -10.06, -0.99) in the 4th quartile vs. 1 st quartile, P-trend = 0.01]. Each 10-fold increase in BPA concentrations was related to lower mental development index scores only in the second trimester [-2.87 (95 % CI: -4.98, -0.75), Ptrimester-int = 0.04]. However, prenatal BPF exposure was not significantly associated with child neurodevelopment. We provide evidence that prenatal exposure to BPA and BPS may affect child neurodevelopment.
Collapse
Affiliation(s)
- Yangqian Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
38
|
Bethea TN, Wesselink AK, Weuve J, McClean MD, Hauser R, Williams PL, Ye X, Calafat AM, Baird DD, Wise LA. Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment, Lifestyle and Fibroids. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:117-136. [PMID: 30692588 PMCID: PMC6661224 DOI: 10.1038/s41370-019-0114-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 05/22/2023]
Abstract
We performed a cross-sectional analysis to identify correlates of urinary concentrations of seven phenols (bisphenols A, F, and S; 2,4-dichlorophenol; 2,5-dichlorophenol; benzophenone-3; triclosan), triclocarban, and four parabens (butyl, ethyl, methyl, and propyl). We analyzed baseline data from 766 participants in the Study of Environment, Lifestyle, and Fibroids, a prospective cohort study of 1693 Black women aged 23-34 years residing in Detroit, Michigan (2010-2012). We collected data on demographic, behavioral, and anthropometric factors via telephone interviews, clinic visits, and self-administered questionnaires. For each biomarker, we used linear regression models to estimate mean differences in log-transformed, creatinine-corrected concentrations across factors of interest. Each biomarker was detected in >50% of participants. Median creatinine-corrected concentrations were the highest for methyl paraben (116.8 μg/g creatinine), propyl paraben (16.8 μg/g creatinine), and benzophenone-3 (13.4 μg/g creatinine). Variables most strongly associated with biomarker concentrations included season of urine collection, education, and body mass index (BMI). BMI was positively associated with bisphenol A and S and triclocarban concentrations and inversely associated with butyl and methyl paraben concentrations. In this cohort of Black women, exposure to phenols, parabens, and triclocarban was prevalent and several factors were associated with biomarker concentrations.
Collapse
Affiliation(s)
- Traci N Bethea
- Slone Epidemiology Center at Boston University, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaoyun Ye
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
39
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
40
|
González N, Cunha SC, Monteiro C, Fernandes JO, Marquès M, Domingo JL, Nadal M. Quantification of eight bisphenol analogues in blood and urine samples of workers in a hazardous waste incinerator. ENVIRONMENTAL RESEARCH 2019; 176:108576. [PMID: 31299620 DOI: 10.1016/j.envres.2019.108576] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) has been widely used in the manufacture of polycarbonate plastic and epoxy resins. In recent years, producers have started replacing BPA by other chemical analogues, such as bisphenol -S (BPS) and -F (BPF), all of them under the label "BPA-free". However, despite bisphenol (BP) analogues have a very similar structure, their endocrine-disrupting properties could differ from those of BPA. Unfortunately, information regarding human exposure to BP analogues is very limited, not only as single substances, but also as chemical mixtures. The aim of this study was to determine the levels of 8 BP analogues (A, S, F, B, AF, Z, E, and AP) in biological samples from a controlled cohort of workers in a hazardous waste incinerator (HWI) located in Constantí (Catalonia, Spain). Firstly, a chemical method to analyze a mixture of those 8 analogues in total blood and urine was optimized, being samples quantified by means of gas chromatography coupled to mass spectrometry (GC-MS). Furthermore, a biomonitoring study was performed by collecting samples of total blood and urine of 29 people working in the HWI. Among the 8 BP analogues assessed, BPA presented the highest levels in both biological samples, with mean total (free + conjugated) BPA concentrations of 0.58 and 0.86 μg/L in blood and urine, respectively. Free vs. total BPA levels presented a mean percentage of 79% in blood and 19% in urine. Beyond BPA, traces of BPB were also found in a single sample of blood. Furthermore, none of the remaining BP analogues was detected in blood or urine. Despite BPA has been regulated, it is still very present in the environment, being human exposure to this chemical still an issue of concern for the public health.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Sara C Cunha
- LAQV-REQUIMTE, Department of Bromatology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Carolina Monteiro
- LAQV-REQUIMTE, Department of Bromatology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Department of Bromatology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
41
|
Wambaugh JF, Bare JC, Carignan CC, Dionisio KL, Dodson RE, Jolliet O, Liu X, Meyer DE, Newton SR, Phillips KA, Price PS, Ring CL, Shin HM, Sobus JR, Tal T, Ulrich EM, Vallero DA, Wetmore BA, Isaacs KK. New Approach Methodologies for Exposure Science. CURRENT OPINION IN TOXICOLOGY 2019; 15:76-92. [PMID: 39748807 PMCID: PMC11694839 DOI: 10.1016/j.cotox.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical risk assessment relies on knowledge of hazard, the dose-response relationship, and exposure to characterize potential risks to public health and the environment. A chemical with minimal toxicity might pose a risk if exposures are extensive, repeated, and/or occurring during critical windows across the human life span. Exposure assessment involves understanding human activity, and this activity is confounded by interindividual variability that is both biological and behavioral. Exposures further vary between the general population and susceptible or occupationally exposed populations. Recent computational exposure efforts have tackled these problems through the creation of new tools and predictive models. These tools include machine learning to draw inferences from existing data and computer-enhanced screening analyses to generate new data. Mathematical models provide frameworks describing chemical exposure processes. These models can be statistically evaluated to establish rigorous confidence in their predictions. The computational exposure tools reviewed here are oriented toward 'high-throughput' application, that is, they are suitable for dealing with the thousands of chemicals in commerce with limited sources of chemical exposure information. These new tools and models are moving chemical exposure and risk assessment forward in the 21st century.
Collapse
Affiliation(s)
- John F. Wambaugh
- National Center for Computational Toxicology, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jane C. Bare
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Courtney C. Carignan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kathie L. Dionisio
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoyu Liu
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David E. Meyer
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Seth R. Newton
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Katherine A. Phillips
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Paul S. Price
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX 76019, USA
| | - Jon R. Sobus
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Tamara Tal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Elin M. Ulrich
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel A. Vallero
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Barbara A. Wetmore
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kristin K. Isaacs
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
42
|
LaKind JS, Pollock T, Naiman DQ, Kim S, Nagasawa A, Clarke J. Factors affecting interpretation of national biomonitoring data from multiple countries: BPA as a case study. ENVIRONMENTAL RESEARCH 2019; 173:318-329. [PMID: 30951958 DOI: 10.1016/j.envres.2019.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The use of biomonitoring data as an indicator of national levels of human exposure to environmental chemicals has grown in importance and prevalence. Nationally representative urinary bisphenol A (BPA) data are now available for Canada, the United States and Korea. Here we address the following questions: Are urinary BPA data from these countries comparable? What can be discerned regarding geographic and/or temporal similarities or differences? Are there generalizable lessons to be learned regarding comparison of biomonitoring results from different countries? METHODS We examined underlying methods and resultant urinary BPA data from national surveys of three countries: Canada (Canadian Health Measures Survey, CHMS, 2009-2015); United States (National Health and Nutrition Examination Survey, NHANES, 2009-2014); and Korea (Korean National Environmental Health Survey, KoNEHS, 2009-2014). We estimated BPA daily intakes on both a volume- and creatinine-adjusted basis. RESULTS The three countries use similar methods for analyzing urine samples for BPA and participate in external proficiency testing with acceptable results. Field blanks are only used in the CHMS program. There were program-specific differences in fasting times of participants. Median urinary BPA levels in Canada remained relatively constant over the three cycles (1.1-1.2 ng/ml), while US levels decreased (from 1.9 to 1.3 ng/ml) and Korean levels increased (from 0.7 to 1.1 ng/ml) over similar time periods. The most recent survey year data indicate that levels do not differ substantially across countries. Canadian urinary BPA levels have been stable; the subtle, non-significant decrease in intakes may be due to higher body weight in the more recent Canadian surveys. In contrast, the decrease in intakes in the US appears to be due to decreases in urinary BPA as body weights in the US have been stable. Estimated 95th percentile intakes are over an order of magnitude below current health-based guidance values. DISCUSSION Our assessment of urinary BPA data from Canada, the US and Korea indicates that methodological differences, methods for dilution adjustment, and population characteristics should be carefully considered when interpreting biomonitoring data. Despite the plethora of publications describing issues with use of creatinine levels for urinary dilution adjustment, there have been no major methodological advances that would assist in interpreting urinary chemical data. A combination of biomonitoring and traditional exposure assessment approaches may be needed to fully assess human exposures to BPA and other chemicals. CONCLUSIONS National biomonitoring surveys provide important information on population levels of chemicals such as BPA and can assist in understanding temporal and geographic similarities, differences, and trends. However, caution must be exercised when using these data to draw anything but broad conclusions, due to both intercountry methodological differences and factors affecting urinary chemical levels that are still poorly understood. While the issues raised in this paper do not appear to be a major concern specifically for the national-scale monitoring of BPA described here, they must be considered when comparing data for other chemicals measured as part of both national and smaller-scale biomonitoring-based research as well as for BPA data from other studies.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, Catonsville, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Tyler Pollock
- Canadian Health Measures Survey, Centre for Population Health Statistics, Statistics Canada, Ottawa, Ontario, Canada.
| | - Daniel Q Naiman
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Sungroul Kim
- Department of Environmental Health Sciences, Soon Chun Hyang University, Asan, South Korea.
| | - Audra Nagasawa
- Canadian Health Measures Survey, Centre for Population Health Statistics, Statistics Canada, Ottawa, Ontario, Canada.
| | - Janine Clarke
- Canadian Health Measures Survey, Centre for Population Health Statistics, Statistics Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
43
|
Atay E, Ertekin T, Yılmaz H, Güler HS, Al Ö, Nisari M, Yay A, Unur E, Özdamar S, Yalçın B. Impact of prenatal exposure to bisphenol A on pregnant rats: Fetal bone development and immunohistochemistry implications. Toxicol Ind Health 2019; 35:119-135. [PMID: 30803398 DOI: 10.1177/0748233718823146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND: Bisphenol A (BPA) is one of the most commonly produced chemicals in the world. BPA is used in products such as food packaging, personal care products, detergents, and plastic bottles. This study was conducted to determine the effect of BPA on fetal bone development. MATERIAL AND METHODS: In this study, 16 pregnant female Sprague-Dawley rats were used. The rats were divided into four groups: the control group and 0.5 mg/kg/day, 5 mg/kg/day, and 50 mg/kg/day dose BPA groups. The skeletal system development of fetuses was examined with double skeletal and immunohistochemistry (IHC) staining (tartrate resistant acid phosphatase (TRAP) and the alkaline phosphatase (AP) expressions) methods. RESULTS: The highest ossification rates in the humerus, radius, and ulna were detected as 41.05%, 39.25%, and 37.26% in the control group, respectively. The highest ossification rates in the femur, tibia, and fibula were detected as 23.04%, 30.73%, and 32.78% in the control group, respectively. Statistically significant differences were found between control and experimental groups in the TRAP and AP expression of the femur by IHC staining ( p < 0.001). CONCLUSION: Exposure to BPA during pregnancy adversely affected ossification and bone growth. A dose-dependent decrease was observed in the rate of ossification.
Collapse
Affiliation(s)
- Emre Atay
- 1 Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Tolga Ertekin
- 1 Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Halil Yılmaz
- 2 Department of Therapy and Rehabilitation, Kozakli Vocational School, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey
| | - Hatice Susar Güler
- 3 Department of Anatomy, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Özge Al
- 4 Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehtap Nisari
- 4 Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- 5 Department of Histology Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Erdoğan Unur
- 4 Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- 5 Department of Histology Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Betül Yalçın
- 5 Department of Histology Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
44
|
Wang YX, Liu C, Shen Y, Wang Q, Pan A, Yang P, Chen YJ, Deng YL, Lu Q, Cheng LM, Miao XP, Xu SQ, Lu WQ, Zeng Q. Urinary levels of bisphenol A, F and S and markers of oxidative stress among healthy adult men: Variability and association analysis. ENVIRONMENT INTERNATIONAL 2019; 123:301-309. [PMID: 30553203 DOI: 10.1016/j.envint.2018.11.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as alternatives to endocrine disrupting chemical bisphenol A (BPA). Evidence from in vitro and animal studies demonstrates that BPA, BPF and BPS induce oxidative stress, a proposed mechanism that is relevant to various adverse health effects. Evaluation in humans is hampered by the potentially high within-subject variability of urinary measurements. OBJECTIVE To evaluate the variability and associations of levels of BPA, BPS, BPF and 3 oxidative stress markers [i.e., 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)] in urine collected on multiple occasions over 3 months. METHOD A total of 529 spot urine samples, including 88 first morning voids (FMVs) and 24-h specimens, were gathered from 11 adult men on days 0, 1, 2, 3, 4, 30, 60 and 90 and analyzed for BPA, BPF, BPS, 8-OHdG, 8-isoPGF2α and HNE-MA. Intraclass correlation coefficients (ICCs) were estimated to characterize the reproducibility of urinary bisphenols and oxidative stress markers, and linear mixed models were applied to assess the associations between markers of exposure and response. RESULTS BPA and BPF were detected in ≥85% of the spot samples, while BPS in 13% of the samples. High degrees of within-subject variability were found for BPA, BPF, 8-OHdG, 8-isoPGF2α and HNE-MA in spot samples, FMVs and 24-h specimens (creatinine-corrected ICCs ≤ 0.37). The sensitivities were low-to-moderate (0.30-0.63) when using single spot samples or FMVs to predict high (>27th, or 36th percentile) 3-month average urinary levels of BPA, BPF, 8-OHdG, 8-isoPGF2α and HNE-MA. Collecting repeated specimens at different time points improved the accuracy of classification for markers of exposure and response. Elevated urinary BPA and BPF were associated with significantly higher levels of oxidative stress markers. CONCLUSIONS Repeated urinary specimens are required to characterize bisphenol exposure levels and the oxidative stress status of individuals. Exposure to BPA and BPF may partly contribute to the elevated urinary levels of oxidative stress makers in adult men.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi Wang
- Department of Pathology, Bengbu Medical College, Anhui, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Ming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun-Qing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
45
|
Martinez-Moral MP, Kannan K. How stable is oxidative stress level? An observational study of intra- and inter-individual variability in urinary oxidative stress biomarkers of DNA, proteins, and lipids in healthy individuals. ENVIRONMENT INTERNATIONAL 2019; 123:382-389. [PMID: 30572170 PMCID: PMC6396322 DOI: 10.1016/j.envint.2018.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 05/04/2023]
Abstract
Oxidative stress in humans is affected by the health and nutritional status as well as exposure to external environmental factors. To evaluate the effects of external factors, an assessment of baseline levels as well as diurnal variations in oxidative stress status of healthy individuals is needed. In this study, we examined intra- and inter-individual variability of oxidative stress biomarkers (OSBs) of lipids (malondialdehyde [MDA] and four F2-isoprostane isomers, namely, 8-isoprostaglandinF2α [8-PGF2α], 11β-prostaglandinF2α [11-PGF2α], 15(R)-prostaglandinF2α [15-PGF2α], and 8-iso,15(R)-prostaglandinF2α [8,15-PGF2α]); proteins (o,o'-dityrosine [diY]); and DNA (8-hydroxy-2'-deoxyguanosine [8-OHdG]) in urine from healthy individuals. The significance of creatinine correction, which is typically used to account for urinary dilution, on OSB concentrations was evaluated. Analysis of 515 urine samples, collected longitudinally from 19 healthy individuals daily for over a month, showed inter-individual coefficient of variation (CV) in concentrations from 112% for MDA to 272% for 15-PGF2α. Intra-individual CV in concentrations ranged from 29% for 8-OHdG to 149% for 15-PGF2α. MDA was the most abundant OSB found in urine. The intra- and inter-individual variability in F2-isoprostane concentrations were higher than the values calculated for diY, 8-OHdG, and MDA. All seven OSB concentrations were significantly correlated with each other and with creatinine. Creatinine normalization of OSB concentrations improved predictability in OSB concentrations over time. Our results suggest that 8-OHdG, showing the highest ICC (0.96), yielded more reproducible measurements with a low CV, and is the most suitable biomarker of OSB in spot urine samples. The measured concentrations and diurnal variability in urinary OSB levels in healthy individuals reported in this study are useful as a benchmark for future toxicological and epidemiological studies.
Collapse
Affiliation(s)
- Maria-Pilar Martinez-Moral
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box. 509, Albany, NY 12201, United States of America; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12201, United States of America
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box. 509, Albany, NY 12201, United States of America; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12201, United States of America; Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
46
|
LaKind JS, Idri F, Naiman DQ, Verner MA. Biomonitoring and Nonpersistent Chemicals—Understanding and Addressing Variability and Exposure Misclassification. Curr Environ Health Rep 2019; 6:16-21. [DOI: 10.1007/s40572-019-0227-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Chin KY, Pang KL, Mark-Lee WF. A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health. Int J Med Sci 2018; 15:1043-1050. [PMID: 30013446 PMCID: PMC6036156 DOI: 10.7150/ijms.25634] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor which can bind to the oestrogen receptor. It also possesses oestrogenic, antiandrogenic, inflammatory and oxidative properties. Since bone responds to changes in sex hormones, inflammatory and oxidative status, BPA exposure could influence bone health in humans. This review aimed to summarize the current evidence on the relationship between BPA and bone health derived from cellular, animal and human studies. Exposure to BPA (0.5-12.5 µM) decreased the proliferation of osteoblast and osteoclast precursor cells and induce their apoptosis. Bisphenol AF (10 nM) enhanced transforming growth factor beta signalling but bisphenol S (10 nM) inhibited Wnt signalling involved in osteoblast differentiation in vitro. In animals, BPA and its derivatives demonstrated distinct effects in different models. In prenatal/postnatal exposure, BPA increased femoral bone mineral content in male rats (at 25 ug/kg/day) but decreased femoral mechanical strength in female mice (at 10 µg/kg/day). In oestrogen deficiency models, BPA improved bone mineral density and microstructures in aromatase knockout mice (at very high dose, 0.1% or 1.0% w/w diet) but decreased trabecular density in ovariectomized rats (at 37 or 370 ug/kg/day). In contrast, bisphenol A diglycidyl ether (30 mg/kg/day i.p.) improved bone health in normal male and female rodents and decreased trabecular separation in ovariectomized rodents. Two cross-sectional studies have been performed to examine the relationship between BPA level and bone mineral density in humans but they yielded negligible association. As a conclusion, BPA and its derivatives could influence bone health and a possible gender effect was observed in animal studies. However, its effects in humans await verification from more comprehensive longitudinal studies in the future.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia
| | - Kok-Lun Pang
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia
| | - Wun Fui Mark-Lee
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
| |
Collapse
|