1
|
Jedynak P, Siroux V, Broséus L, Tost J, Busato F, Gabet S, Thomsen C, Sakhi AK, Sabaredzovic A, Lyon-Caen S, Bayat S, Slama R, Philippat C, Lepeule J. Epigenetic footprints: Investigating placental DNA methylation in the context of prenatal exposure to phenols and phthalates. ENVIRONMENT INTERNATIONAL 2024; 189:108763. [PMID: 38824843 DOI: 10.1016/j.envint.2024.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; ISGlobal, Barcelona, Spain
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Lucile Broséus
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Stephan Gabet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), 59000 Lille, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Norwegian Institue of Public Health, Oslo, Norway
| | | | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
2
|
Xie Z, Sun S, Ji H, Miao M, He W, Song X, Cao W, Wu Q, Liang H, Yuan W. Prenatal exposure to per- and polyfluoroalkyl substances and DNA methylation in the placenta: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132845. [PMID: 37898083 DOI: 10.1016/j.jhazmat.2023.132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Epidemiological studies regarding the relationship between per- and polyfluoroalkyl substances (PFAS) and DNA methylation were limited. We investigated the associations of maternal PFAS concentrations with placental DNA methylation and examined the mediating role of methylation changes between PFAS and infant development. We measured the concentrations of 11 PFAS in maternal plasma during early pregnancy and infant development at six months of age. We analyzed genome-wide DNA methylation in 16 placental samples using reduced representation bisulfite sequencing. Additionally, we measured DNA methylation levels using bisulfite amplicon sequencing in 345 mother-infant pairs for five candidate genes, including carbohydrate sulfotransferase 7 (CHST7), fibroblast growth factor 13 (FGF13), insulin receptor substrate 4 (IRS4), paired like homeobox 2Ap (PHOX2A), and plexin domain containing 1 (PLXDC1). We found that placental DNA methylation profiles related to PFOA mainly enriched in angiogenesis and neuronal signaling pathways. PFOA was associated with hypomethylation of IRS4 and PLXDC1, and PFNA was associated with PLXDC1 hypomethylation. There were positive associations of CHST7 methylation with PFTrDA and IRS4 methylation with PFDoA and PFTrDA. PLXDC1 hypomethylation mediated the association between PFOA and suspected developmental delay in infants. Future studies with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Songlin Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiuxia Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
3
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
4
|
Iwata H, Kobayashi S, Itoh M, Itoh S, Mesfin Ketema R, Tamura N, Miyashita C, Yamaguchi T, Yamazaki K, Masuda H, Ait Bamai Y, Saijo Y, Ito Y, Nakayama SF, Kamijima M, Kishi R. The association between prenatal per-and polyfluoroalkyl substance levels and Kawasaki disease among children of up to 4 years of age: A prospective birth cohort of the Japan Environment and Children's study. ENVIRONMENT INTERNATIONAL 2024; 183:108321. [PMID: 38061246 DOI: 10.1016/j.envint.2023.108321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024]
Abstract
Kawasaki disease (KD) is common among pediatric patients and is associated with an increased risk of later cardiovascular complications, though the precise pathophysiology of KD remains unknown. Per- and polyfluoroalkyl substances (PFAS) have gathered notoriety as the causal pathogens of numerous diseases as well as for their immunosuppressive effects. The present epidemiological study aims to assess whether PFAS may affect KD risk. We evaluated research participants included in the ongoing prospective nationwide birth cohort of the Japan Environment and Children's Study (JECS). Among the over 100,000 pregnant women enrolled in the JECS study, 28 types of PFAS were measured in pregnancy in a subset of participants (N = 25,040). The JECS followed their children born between 2011 and 2014 (n total infants = 25,256; n Kawasaki disease infants = 271), up to age four. Among the 28 types of PFAS, those which were detected in >60 % of participants at levels above the method reporting limit (MRL) were eligible for analyses. Multivariable logistic regressions were implemented on the seven eligible PFAS, adjusting for multiple comparison effects. Finally, we conducted Weighted Quantile Sum (WQS) and Bayesian kernel machine regression (BKMR) to assess the effects of the PFAS mixture on KD. Therefore, we ran the BKMR model using kernel mechanical regression equations to examine PFAS exposure and the outcomes of KD. Upon analysis, the adjusted multivariable regression results did not reach statistical significance for the seven eligible substances on KD, while odds ratios were all under 1.0. WQS regression was used to estimate the mixture effect of the seven eligible PFAS, revealing a negative correlation with KD incidence; similarly, BKMR implied an inverse association between the PFAS mixture effect and KD incidence. In conclusion, PFAS exposure was not associated with increased KD incidence.
Collapse
Affiliation(s)
- Hiroyoshi Iwata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Division of Epidemiological Research for Chemical Disorders, Research Center for Chemical Information and Management, National Institute of Occupational Safety and Health, 6-21-1, Nagao, Tama-ku, Kawasaki 214-8585, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyuki Masuda
- Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutical Sciences, University of Antwerp, University Square 1, 2610 Wilrijk, Belgium
| | - Yasuaki Saijo
- Division of Public Health and Epidemiology, Department of Social Medicine, Asahikawa Medical University, 1-1-1 Midorigaoka-higashi-2-jo, Asahikawa 078-8510, Japan
| | - Yoshiya Ito
- Faculty of Nursing, Japanese Red Cross Hokkaido College of Nursing, 664-1 Akebono-cho, Kitami 090-0011, Japan
| | - Shoji F Nakayama
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
5
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Niemiec SS, Kechris K, Pattee J, Yang IV, Adgate JL, Calafat AM, Dabelea D, Starling AP. Prenatal exposures to per- and polyfluoroalkyl substances and epigenetic aging in umbilical cord blood: The Healthy Start study. ENVIRONMENTAL RESEARCH 2023; 231:116215. [PMID: 37224946 PMCID: PMC10330919 DOI: 10.1016/j.envres.2023.116215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, environmentally persistent chemicals, and prenatal exposures have been associated with adverse child health outcomes. Prenatal PFAS exposure may lead to epigenetic age acceleration (EAA), defined as the discrepancy between an individual's chronologic and epigenetic or biological age. OBJECTIVES We estimated associations of maternal serum PFAS concentrations with EAA in umbilical cord blood DNA methylation using linear regression, and a multivariable exposure-response function of the PFAS mixture using Bayesian kernel machine regression. METHODS Five PFAS were quantified in maternal serum (median: 27 weeks of gestation) among 577 mother-infant dyads from a prospective cohort. Cord blood DNA methylation data were assessed with the Illumina HumanMethylation450 array. EAA was calculated as the residuals from regressing gestational age on epigenetic age, calculated using a cord-blood specific epigenetic clock. Linear regression tested for associations between each maternal PFAS concentration with EAA. Bayesian kernel machine regression with hierarchical selection estimated an exposure-response function for the PFAS mixture. RESULTS In single pollutant models we observed an inverse relationship between perfluorodecanoate (PFDA) and EAA (-0.148 weeks per log-unit increase, 95% CI: -0.283, -0.013). Mixture analysis with hierarchical selection between perfluoroalkyl carboxylates and sulfonates indicated the carboxylates had the highest group posterior inclusion probability (PIP), or relative importance. Within this group, PFDA had the highest conditional PIP. Univariate predictor-response functions indicated PFDA and perfluorononanoate were inversely associated with EAA, while perfluorohexane sulfonate had a positive association with EAA. CONCLUSIONS Maternal mid-pregnancy serum concentrations of PFDA were negatively associated with EAA in cord blood, suggesting a pathway by which prenatal PFAS exposures may affect infant development. No significant associations were observed with other PFAS. Mixture models suggested opposite directions of association between perfluoroalkyl sulfonates and carboxylates. Future studies are needed to determine the importance of neonatal EAA for later child health outcomes.
Collapse
Affiliation(s)
- Sierra S Niemiec
- Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jack Pattee
- Center for Innovative Design and Analysis, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Bian J, Zhao J, Zhao Y, Hao X, He S, Li Y, Huang L. Impact of individual factors on DNA methylation of drug metabolism genes: A systematic review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:401-415. [PMID: 37522536 DOI: 10.1002/em.22567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Individual differences in drug response have always existed in clinical treatment. Many non-genetic factors show non-negligible impacts on personalized medicine. Emerging studies have demonstrated epigenetic could connect non-genetic factors and individual treatment differences. We used systematic retrieval methods and reviewed studies that showed individual factors' impact on DNA methylation of drug metabolism genes. In total, 68 studies were included, and half (n = 36) were cohort studies. Six aspects of individual factors were summarized from the perspective of personalized medicine: parental exposure, environmental pollutants exposure, obesity and diet, drugs, gender and others. The most research (n = 11) focused on ABCG1 methylation. The majority of studies showed non-genetic factors could result in a significant DNA methylation alteration in drug metabolism genes, which subsequently affects the pharmacokinetic processes. However, the underlying mechanism remained unknown. Finally, some viewpoints were presented for future research.
Collapse
Affiliation(s)
- Jialu Bian
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Jinxia Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Shiyu He
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yuanyuan Li
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Lin Huang
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| |
Collapse
|
8
|
Petroff RL, Cavalcante RG, Langen ES, Dolinoy DC, Padmanabhan V, Goodrich JM. Mediation effects of DNA methylation and hydroxymethylation on birth outcomes after prenatal per- and polyfluoroalkyl substances (PFAS) exposure in the Michigan mother-infant Pairs cohort. Clin Epigenetics 2023; 15:49. [PMID: 36964604 PMCID: PMC10037903 DOI: 10.1186/s13148-023-01461-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/05/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are chemicals that are resistant to degradation and ubiquitous in our environments. PFAS may impact the developing epigenome, but current human evidence is limited to assessments of total DNA methylation. We assessed associations between first trimester PFAS exposures with newborn DNA methylation, including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC). DNA methylation mediation of associations between PFAS and birth outcomes were explored in the Michigan Mother Infant Pairs cohort. Nine PFAS were measured in maternal first trimester blood. Seven were highly detected and included for analysis: PFHxS, PFOA, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA. Bisulfite-converted cord blood DNA (n = 141) and oxidative-bisulfite-converted cord blood (n = 70) were assayed on Illumina MethylationEPIC BeadChips to measure total DNA methylation (5-mC + 5-hmC) and 5-mC/5-hmC. Correcting for multiple comparisons, beta regressions were used to assess associations between levels of PFAS and total methylation, 5-mC, or 5-hmC. Nonlinear mediation analyses were used to assess the epigenetic meditation effect between PFAS and birth outcomes. RESULTS PFAS was significantly associated with total methylation (q < 0.05: PFHxS-12 sites; PFOS-19 sites; PFOA-2 sites; PFNA-3 sites; PFDA-4 sites). In 72 female infants and 69 male infants, there were sex-specific associations between five PFAS and DNA methylation. 5-mC and 5-hmC were each significantly associated with thousands of sites for PFHxS, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA (q < 0.05). Clusters of 5-mC and 5-hmC sites were significant mediators between PFNA and PFUnDA and decreased gestational age (q < 0.05). CONCLUSIONS This study demonstrates the mediation role of specific types of DNA methylation on the relationship between PFAS exposure and birth outcomes. These results suggest that 5-mC and 5-hmC may be more sensitive to the developmental impacts of PFAS than total DNA methylation.
Collapse
Affiliation(s)
- Rebekah L Petroff
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Raymond G Cavalcante
- Epigenomics Core, Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth S Langen
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Epigenomics Core, Biomedical Research Core Facilities, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Perng W, Nakiwala D, Goodrich JM. What Happens In Utero Does Not Stay In Utero: a Review of Evidence for Prenatal Epigenetic Programming by Per- and Polyfluoroalkyl Substances (PFAS) in Infants, Children, and Adolescents. Curr Environ Health Rep 2023; 10:35-44. [PMID: 36414885 DOI: 10.1007/s40572-022-00387-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Review human literature on the relationship between prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and epigenetic modifications in infants, children, and adolescents < 18 years of age. RECENT FINDINGS Eleven studies were identified, with study populations located in the U.S., Taiwan, Japan, and the Kingdom of Denmark. Many studies (n = 5) were cross-sectional, with PFAS exposure and epigenetic outcomes measured in the same tissue collected at delivery via cord blood or dried newborn blood spots. The other six studies were prospective, with prenatal PFAS measured on maternal blood during pregnancy and DNA methylation (DNAm) assessed in cord blood and childhood peripheral leukocytes (n = 1 study). Epigenetic marks of interest included global DNAm measures (LINE-1, Alu, and an ELISA-based method), candidate genes (IFG2, H19, and MEST), and epigenome-wide DNA methylation via array-based methods (Infinium 450 K and EPIC). Two studies using array-based methods employed discovery and validation paradigms, in which a small subset of loci (n = 6 and n = 4) were replicated in the discovery population. One site (TNXB) was a hit in two independent studies. Collectively, loci associated with PFAS were in regions involved in growth and development, lipid metabolism, and nutrient metabolism. There is moderate human evidence supporting associations of prenatal PFAS exposure on DNAm at birth, with one study suggesting sustained effects into childhood. Future studies are warranted to link PFAS-associated DNAm to health outcomes, as well as to investigate the role of other epigenetic marks such as hydroxymethylation, miRNA expression, and histone modifications.
Collapse
Affiliation(s)
- Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Dorothy Nakiwala
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Itoh H, Harada KH, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Yokoyama K, Zhu J, Harada Sassa M, Yoshida T, Tsugane S, Iwasaki M. Association between serum concentrations of perfluoroalkyl substances and global DNA methylation levels in peripheral blood leukocytes of Japanese women: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159923. [PMID: 36356761 DOI: 10.1016/j.scitotenv.2022.159923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Global DNA methylation levels in peripheral blood leukocytes can be a biomarker for cancer risk; however, levels can be changed by various factors such as environmental pollutants. We investigated the association between serum concentrations of perfluoroalkyl substances (PFASs) and global DNA methylation levels of leukocytes in a cross-sectional study using the control group of a Japanese breast cancer case-control study [397 women with a mean age of 54.1 (SD 10.1) years]. Importantly, our analysis distinguished branched PFAS isomers as different from linear isomers. The serum concentrations of 20 PFASs were measured by in-port arylation gas-chromatography negative chemical ionization mass spectrometry. Global DNA methylation levels in peripheral blood leukocytes were measured using a luminometric methylation assay. Associations between log10-transformed serum PFAS concentrations and global DNA methylation levels were evaluated by regression coefficients in multivariable robust linear regression analyses. Serum concentrations of 13 PFASs were significantly associated with increased global DNA methylation levels in leukocytes. Global DNA methylation was significantly increased by 1.45 %-3.96 % per log10-unit increase of serum PFAS concentration. Our results indicate that exposure to PFASs may increase global DNA methylation levels in peripheral blood leukocytes of Japanese women.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, 183 Matsushiro, Matsushiro-cho, Nagano, Nagano 381-1231, Japan; Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shiro Yokoyama
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hiroshi Onuma
- Department of Breast and Thyroid Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, Nagano 380-8582, Japan
| | - Hideki Nishimura
- Department of Chest Surgery and Breast Surgery, Nagano Municipal Hospital, 1333-1 Tomitake, Nagano, Nagano 381-8551, Japan
| | - Ritsu Kusama
- Department of Surgery, Hokushin General Hospital, 1-5-63 Nishi, Nakano, Nagano 383-8505, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health, 4-1-26 Akasaka, Minato-ku, Tokyo 107-8402, Japan
| | - Jing Zhu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610061, China
| | - Mariko Harada Sassa
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
11
|
Wang H, Li W, Yang J, Wang Y, Du H, Han M, Xu L, Liu S, Yi J, Chen Y, Jiang Q, He G. Gestational exposure to perfluoroalkyl substances is associated with placental DNA methylation and birth size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159747. [PMID: 36309289 DOI: 10.1016/j.scitotenv.2022.159747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation is one potential mechanism for the effects of gestational exposure to perfluoroalkyl substances (PFASs) on fetal growth. We investigated 180 pregnant women who participated in a cohort study conducted in Tangshan City, Northern China, and determined the concentrations of 11 PFASs and the methylation of two genes related to fetal growth [insulin-like growth factor 2 (IGF2) and nuclear receptor subfamily 3 group C member 1 (NR3C1)] and one surrogate marker for global methylation [long interspersed nuclear element-1 (LINE-1)] in placenta tissue. Multiple linear regression analysis was performed to examine the associations of log transformed PFASs with the DNA methylation and birth size. Weighted quantile sum regression was used to determine the mixture effect of PFASs. After adjusting for potential confounders, perfluorooctane sulfonate (PFOS) was negatively associated with the overall methylation of LINE-1. PFASs mixture was negatively associated with the methylation of all CpG loci of LINE-1 and overall methylation of NR3C1. Perfluorootanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and the PFASs mixture showed negative associations with head circumference. After stratified by newborns' sex, PFOA, PFNA and the PFASs mixture was negatively associated with overall methylation of LINE-1 only in the male subgroup and the methylation of all CpG loci of LINE-1 was negatively associated with ponderal index only in the female subgroup. The interaction of newborns' sex with PFOS and PFOA on overall methylation of IGF2 was statistically significant and so was the interaction of sex with PFOS on overall methylation of LINE-1. These findings suggested that intrauterine exposure to PFASs affected placental DNA methylation and reduced fetal growth, which might be modified by sex.
Collapse
Affiliation(s)
- Hexing Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Wenyun Li
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jiaqi Yang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yuanping Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Hongyi Du
- Healthy Lifestyle Medical Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minghui Han
- Healthy Lifestyle Medical Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linji Xu
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Shuping Liu
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Jianping Yi
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Qingwu Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M, Zhang S, Zhang Y, Bi J, Yao J, He M. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17039-17051. [PMID: 36374530 DOI: 10.1021/acs.est.2c04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is associated with blood lipids in adults, but the underlying mechanisms remain unclear. This pilot study aimed to investigate the associations between PFOA or PFOS and epigenome-wide DNA methylation and assess the mediating effect of DNA methylation on the PFOA/PFOS-blood lipid association. We measured plasma PFOA/PFOS and leukocyte DNA methylation in 98 patients enrolled from the hospital between October 2018 and August 2019. The median plasma PFOA/PFOS levels were 0.85 and 2.29 ng/mL. Plasma PFOA and PFOS levels were significantly associated with elevated total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels. There were 63/87 CpG positions and 8/11 differentially methylated regions (DMRs) associated with plasma PFOA/PFOS levels, respectively. In addition, 5 CpG positions (annotated to AFF3, CREB5, NRG2, USF2, and intergenic region) and one DMR annotated to IRF6 may mediate the association between plasma PFOA/PFOS and LDL levels (mediated proportion from 7.29 to 46.77%); two CpG positions may mediate the association between plasma PFOA/PFOS and TC levels (annotated to CREB5 and USF2, mediated proportion is around 30%). The data suggest that PFOA/PFOS exposure alters DNA methylation. More importantly, the association of PFOA/PFOS with lipid indicators was partly mediated by DNA methylation changes in lipid metabolism-related genes.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Mulatibieke Keerman
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
13
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Phillips RV, Wei L, Cardenas A, Hubbard AE, McHale CM, Vermeulen R, Wei H, Smith MT, Zhang L, Lan Q, Rothman N. Epigenome-wide association studies of occupational exposure to benzene and formaldehyde. Epigenetics 2022; 17:2259-2277. [PMID: 36017556 PMCID: PMC9665125 DOI: 10.1080/15592294.2022.2115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Sufficient evidence supports a relationship between certain myeloid neoplasms and exposure to benzene or formaldehyde. DNA methylation could underlie benzene- and formaldehyde-induced health outcomes, but data in exposed human populations are limited. We conducted two cross-sectional epigenome-wide association studies (EWAS), one in workers exposed to benzene and another in workers exposed to formaldehyde. Using HumanMethylation450 BeadChips, we investigated differences in blood cell DNA methylation among 50 benzene-exposed subjects and 48 controls, and among 31 formaldehyde-exposed subjects and 40 controls. We performed CpG-level and regional-level analyses. In the benzene EWAS, we found genome-wide significant alterations, i.e., FWER-controlled P-values <0.05, in the mean and variance of methylation at 22 and 318 CpG sites, respectively, and in mean methylation of a large genomic region. Pathway analysis of genes corresponding to benzene-associated differential methylation sites revealed an impact on the AMPK signalling pathway. In formaldehyde-exposed subjects compared to controls, 9 CpGs in the DUSP22 gene promoter had genome-wide significant decreased methylation variability and a large region of the HOXA5 promoter with 44 CpGs was hypomethylated. Our findings suggest that DNA methylation may contribute to the pathogenesis of diseases related to benzene and formaldehyde exposure. Aberrant expression and methylation of HOXA5 previously has been shown to be clinically significant in myeloid leukaemias. The tumour suppressor gene DUSP22 is a potential biomarker of exposure to formaldehyde, and irregularities have been associated with multiple exposures and diseases.
Collapse
Affiliation(s)
- Rachael V. Phillips
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Linqing Wei
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Alan E. Hubbard
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Cliona M. McHale
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteit Utrecht (UU), Utrecht, The Netherlands
| | - Hu Wei
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Martyn T. Smith
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
15
|
Shen C, Ding J, Xu C, Zhang L, Liu S, Tian Y. Perfluoroalkyl Mixture Exposure in Relation to Fetal Growth: Potential Roles of Maternal Characteristics and Associations with Birth Outcomes. TOXICS 2022; 10:650. [PMID: 36355941 PMCID: PMC9695392 DOI: 10.3390/toxics10110650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl substances (PFASs) exposure is suggested to interfere with fetal growth. However, limited investigations considered the roles of parity and delivery on PFASs distributions and the joint effects of PFASs mixture on birth outcomes. In this study, 506 birth cohorts were investigated in Hangzhou, China with 14 PFASs measured in maternal serum. Mothers with higher maternal ages who underwent cesarean section were associated with elevated PFASs burden, while parity showed a significant but diverse influence. A logarithmic unit increment in perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononane sulfonate (PFNS) was significantly associated with a reduced birth weight of 0.153 kg (95% confidence interval (CI): -0.274, -0.031, p = 0.014), 0.217 kg (95% CI: -0.385, -0.049, p = 0.012), and 0.137 kg (95% CI: -0.270, -0.003, p = 0.044), respectively. Higher perfluoroheptanoic acid (PFHpA) and perfluoroheptane sulphonate (PFHpS) were associated with increased Apgar-1 scores. PFOA (Odds ratio (OR): 2.17, 95% CI: 1.27, 3.71, p = 0.004) and PFNS (OR:1.59, 95% CI: 1.01, 2.50, p = 0.043) were also risk factors to preterm birth. In addition, the quantile-based g-computation showed that PFASs mixture exposure was significantly associated with Apgar-1 (OR: 0.324, 95%CI: 0.068, 0.579, p = 0.013) and preterm birth (OR: 0.356, 95% CI: 0.149, 0.845, p = 0.019). In conclusion, PFASs were widely distributed in the maternal serum, which was influenced by maternal characteristics and significantly associated with several birth outcomes. Further investigation should focus on the placenta transfer and toxicities of PFASs.
Collapse
Affiliation(s)
- Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaxin Ding
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Zhang
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuren Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yonghong Tian
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
16
|
Zhao H, Xie J, Wu S, Sánchez OF, Zhang X, Freeman JL, Yuan C. Pre-differentiation exposure of PFOA induced persistent changes in DNA methylation and mitochondrial morphology in human dopaminergic-like neurons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119684. [PMID: 35764183 DOI: 10.1016/j.envpol.2022.119684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is abundant in environment due to its historical uses in consumer products and industrial applications. Exposure to low doses of PFOA has been associated with various disease risks, including neurological disorders. The underlying mechanism, however, remains poorly understood. In this study, we examined the effects of low dose PFOA exposure at 0.4 and 4 μg/L on the morphology, epigenome, mitochondrion, and neuronal markers of dopaminergic (DA)-like SH-SY5Y cells. We observed persistent decreases in H3K4me3, H3K27me3 and 5 mC markers in nucleus along with alterations in nuclear size and chromatin compaction percentage in DA-like neurons differentiated from SH-SY5Y cells exposed to 0.4 and 4 μg/L PFOA. Among the selected epigenetic features, DNA methylation pattern can be used to distinguish between PFOA-exposed and naïve populations, suggesting the involvement of epigenetic regulation. Moreover, DA-like neurons with pre-differentiation PFOA exposure exhibit altered network connectivity, mitochondrial volume, and TH expression, implying impairment in DA neuron functionality. Collectively, our results revealed the prolonged effects of developmental PFOA exposure on the fitness of DA-like neurons and identified epigenome and mitochondrion as potential targets for bearing long-lasting changes contributing to increased risks of neurological diseases later in life.
Collapse
Affiliation(s)
- Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xinle Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Schmidt S. Marks and Mechanisms: Unraveling Potential Health Impacts of PFAS via DNA Methylation. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:54001. [PMID: 35503736 PMCID: PMC9064019 DOI: 10.1289/ehp11287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
|
20
|
Liu Y, Eliot MN, Papandonatos GD, Kelsey KT, Fore R, Langevin S, Buckley J, Chen A, Lanphear BP, Cecil KM, Yolton K, Hivert MF, Sagiv SK, Baccarelli AA, Oken E, Braun JM. Gestational Perfluoroalkyl Substance Exposure and DNA Methylation at Birth and 12 Years of Age: A Longitudinal Epigenome-Wide Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37005. [PMID: 35266797 PMCID: PMC8911098 DOI: 10.1289/ehp10118] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND DNA methylation alterations may underlie associations between gestational perfluoroalkyl substances (PFAS) exposure and later-life health outcomes. To the best of our knowledge, no longitudinal studies have examined the associations between gestational PFAS and DNA methylation. OBJECTIVES We examined associations of gestational PFAS exposure with longitudinal DNA methylation measures at birth and in adolescence using the Health Outcomes and Measures of the Environment (HOME) Study (2003-2006; Cincinnati, Ohio). METHODS We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and perfluorohexane sulfonate (PFHxS) in mothers during pregnancy. We measured DNA methylation in cord blood (n=266) and peripheral leukocytes at 12 years of age (n=160) using the Illumina HumanMethylation EPIC BeadChip. We analyzed associations between log2-transformed PFAS concentrations and repeated DNA methylation measures using linear regression with generalized estimating equations. We included interaction terms between children's age and gestational PFAS. We performed Gene Ontology enrichment analysis to identify molecular pathways. We used Project Viva (1999-2002; Boston, Massachusetts) to replicate significant associations. RESULTS After adjusting for covariates, 435 cytosine-guanine dinucleotide (CpG) sites were associated with PFAS (false discovery rate, q<0.05). Specifically, we identified 2 CpGs for PFOS, 12 for PFOA, 8 for PFHxS, and 413 for PFNA; none overlapped. Among these, 2 CpGs for PFOA and 4 for PFNA were replicated in Project Viva. Some of the PFAS-associated CpG sites annotated to gene regions related to cancers, cognitive health, cardiovascular disease, and kidney function. We found little evidence that the associations between PFAS and DNA methylation differed by children's age. DISCUSSION In these longitudinal data, PFAS biomarkers were associated with differences in several CpGs at birth and at 12 years of age in or near genes linked to some PFAS-associated health outcomes. Future studies should examine whether DNA methylation mediates associations between gestational PFAS exposure and health. https://doi.org/10.1289/EHP10118.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Melissa N. Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - George D. Papandonatos
- Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Laboratory Medicine and Pathology, Brown University, Providence, Rhode Island, USA
| | - Ruby Fore
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Langevin
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jessie Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kim M. Cecil
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sharon K. Sagiv
- Department of Epidemiology, Berkeley School of Public Health, University of California, Berkeley, California, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Svoboda LK, Ishikawa T, Dolinoy DC. Developmental toxicant exposures and sex-specific effects on epigenetic programming and cardiovascular health across generations. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac017. [PMID: 36325489 PMCID: PMC9600458 DOI: 10.1093/eep/dvac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 05/15/2023]
Abstract
Despite substantial strides in diagnosis and treatment, cardiovascular diseases (CVDs) continue to represent the leading cause of death in the USA and around the world, resulting in significant morbidity and loss of productive years of life. It is increasingly evident that environmental exposures during early development can influence CVD risk across the life course. CVDs exhibit marked sexual dimorphism, but how sex interacts with environmental exposures to affect cardiovascular health is a critical and understudied area of environmental health. Emerging evidence suggests that developmental exposures may have multi- and transgenerational effects on cardiovascular health, with potential sex differences; however, further research in this important area is urgently needed. Lead (Pb), phthalate plasticizers, and perfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with numerous adverse human health effects. Notably, recent evidence suggests that developmental exposure to each of these toxicants has sex-specific effects on cardiovascular outcomes, but the underlying mechanisms, and their effects on future generations, require further investigation. This review article will highlight the role for the developmental environment in influencing cardiovascular health across generations, with a particular emphasis on sex differences and epigenetic mechanisms. In particular, we will focus on the current evidence for adverse multi and transgenerational effects of developmental exposures to Pb, phthalates, and PFAS and highlight areas where further research is needed.
Collapse
Affiliation(s)
- Laurie K Svoboda
- *Correspondence address. Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA. Tel: +734-764-2032; E-mail:
| | - Tomoko Ishikawa
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Jedynak P, Tost J, Calafat AM, Bourova-Flin E, Busato F, Forhan A, Heude B, Jakobi M, Rousseaux S, Schwartz J, Slama R, Vaiman D, Philippat C, Lepeule J. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118024. [PMID: 34523531 PMCID: PMC8590835 DOI: 10.1016/j.envpol.2021.118024] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/14/2023]
Abstract
In utero exposure to environmental chemicals, such as synthetic phenols, may alter DNA methylation in different tissues, including placenta - a critical organ for fetal development. We studied associations between prenatal urinary biomarker concentrations of synthetic phenols and placental DNA methylation. Our study involved 202 mother-son pairs from the French EDEN cohort. Nine phenols were measured in spot urine samples collected between 22 and 29 gestational weeks. We performed DNA methylation analysis of the fetal side of placental tissues using the IlluminaHM450 BeadChips. We evaluated methylation changes of individual CpGs in an adjusted epigenome-wide association study (EWAS) and identified differentially methylated regions (DMRs). We performed mediation analysis to test whether placental tissue heterogeneity mediated the association between urinary phenol concentrations and DNA methylation. We identified 46 significant DMRs (≥5 CpGs) associated with triclosan (37 DMRs), 2,4-dichlorophenol (3), benzophenone-3 (3), methyl- (2) and propylparaben (1). All but 2 DMRs were positively associated with phenol concentrations. Out of the 46 identified DMRs, 7 (6 for triclosan) encompassed imprinted genes (APC, FOXG1, GNAS, GNASAS, MIR886, PEG10, SGCE), which represented a significant enrichment. Other identified DMRs encompassed genes encoding proteins responsible for cell signaling, transmembrane transport, cell adhesion, inflammatory, apoptotic and immunological response, genes encoding transcription factors, histones, tumor suppressors, genes involved in tumorigenesis and several cancer risk biomarkers. Mediation analysis suggested that placental cell heterogeneity may partly explain these associations. This is the first study describing the genome-wide modifications of placental DNA methylation associated with pregnancy exposure to synthetic phenols or their precursors. Our results suggest that cell heterogeneity might mediate the effects of triclosan exposure on placental DNA methylation. Additionally, the enrichment of imprinted genes within the DMRs suggests mechanisms by which certain exposures, mainly to triclosan, could affect fetal development.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ekaterina Bourova-Flin
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Milan Jakobi
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
23
|
Miura R, Ikeda-Araki A, Ishihara T, Miyake K, Miyashita C, Nakajima T, Kobayashi S, Ishizuka M, Kubota T, Kishi R. Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal growth: The Hokkaido Study on Environment and Children's Health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147035. [PMID: 33872906 DOI: 10.1016/j.scitotenv.2021.147035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 05/16/2023]
Abstract
Prenatal exposure to phthalates negatively affects the offspring's health. In particular, epigenetic alterations, such as DNA methylation, may connect phthalate exposure with health outcomes. Here, we evaluated the association of di-2-ethylhexyl phthalate (DEHP) exposure in utero with cord blood epigenome-wide DNA methylation in 203 mother-child pairs enrolled in the Hokkaido Study on Environment and Children's Health, using the Illumina HumanMethylation450 BeadChip. Epigenome-wide association analysis demonstrated the predominant positive associations between the levels of the primary metabolite of DEHP, mono(2-ethylhexyl) phthalate (MEHP), in maternal blood and DNA methylation levels in cord blood. The genes annotated to the CpGs positively associated with MEHP levels were enriched for pathways related to metabolism, the endocrine system, and signal transduction. Among them, methylation levels of CpGs involved in metabolism were inversely associated with the offspring's ponderal index (PI). Further, clustering and mediation analyses suggested that multiple increased methylation changes may jointly mediate the association of DEHP exposure in utero with the offspring's PI at birth. Although further studies are required to assess the impact of these changes, this study suggests that differential DNA methylation may link phthalate exposure in utero to fetal growth and further imply that DNA methylation has predictive value for the offspring's obesity.
Collapse
Affiliation(s)
- Ryu Miura
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Hokkaido University Faculty of Health Sciences Japan
| | - Toru Ishihara
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan; Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Kunio Miyake
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan.
| |
Collapse
|
24
|
Kim S, Thapar I, Brooks BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116929. [PMID: 33751946 DOI: 10.1016/j.envpol.2021.116929] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 05/09/2023]
Abstract
Increasing studies are examining per- and polyfluoroalkyl substances (PFAS) induced toxicity and resulting health outcomes, including epigenetic modifications (e.g., DNA methylation, histone modification, microRNA expression). We critically reviewed current evidence from human epidemiological, in vitro, and animal studies, including mammalian and aquatic model organisms. Epidemiological studies identified the associations between perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) exposure and epigenetic changes in both adult populations and birth cohorts. For in vitro studies, various cell types including neuroblasts, preadipocytes, and hepatocytes have been employed to understand epigenetic effects of PFAS. In studies with animal models, effects of early life exposure to PFAS have been examined using rodent models, and aquatic models (e.g., zebrafish) have been more frequently used in recent years. Several studies highlighted oxidative stress as a key mediator between epigenetic modification and health effects. Collectively, previous research clearly suggest involvement of epigenetic mechanisms in PFAS induced toxicity, though these efforts have primarily focused on specific PFASs (i.e. mainly PFOS and PFOA) or endpoints (i.e. cancer). Additional studies are necessary to define specific linkages among epigenetic mechanisms and related biomarkers or phenotypical changes. In addition, future research is also needed for understudied PFAS and complex mixtures. Studies of epigenetic effects elicited by individual PFAS and mixtures are needed within an adverse outcome pathways framework, which will advance an understanding of PFAS risks to public health and the environment, and support efforts to design less hazardous chemicals.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| | - Isha Thapar
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Honors College, Baylor University, Waco, TX, 76706, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| |
Collapse
|
25
|
Kishi R, Ikeda-Araki A, Miyashita C, Itoh S, Kobayashi S, Ait Bamai Y, Yamazaki K, Tamura N, Minatoya M, Ketema RM, Poudel K, Miura R, Masuda H, Itoh M, Yamaguchi T, Fukunaga H, Ito K, Goudarzi H. Hokkaido birth cohort study on environment and children's health: cohort profile 2021. Environ Health Prev Med 2021; 26:59. [PMID: 34022817 PMCID: PMC8141139 DOI: 10.1186/s12199-021-00980-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Hokkaido Study on Environment and Children's Health is an ongoing study consisting of two birth cohorts of different population sizes: the Sapporo cohort and the Hokkaido cohort. Our primary objectives are to (1) examine the effects that low-level environmental chemical exposures have on birth outcomes, including birth defects and growth retardation; (2) follow the development of allergies, infectious diseases, and neurobehavioral developmental disorders, as well as perform a longitudinal observation of child development; (3) identify high-risk groups based on genetic susceptibility to environmental chemicals; and (4) identify the additive effects of various chemicals, including tobacco. METHODS The purpose of this report is to provide an update on the progress of the Hokkaido Study, summarize recent results, and suggest future directions. In particular, this report provides the latest details from questionnaire surveys, face-to-face examinations, and a collection of biological specimens from children and measurements of their chemical exposures. RESULTS The latest findings indicate different risk factors of parental characteristics on birth outcomes and the mediating effect between socioeconomic status and children that are small for the gestational age. Maternal serum folate was not associated with birth defects. Prenatal chemical exposure and smoking were associated with birth size and growth, as well as cord blood biomarkers, such as adiponectin, leptin, thyroid, and reproductive hormones. We also found significant associations between the chemical levels and neuro development, asthma, and allergies. CONCLUSIONS Chemical exposure to children can occur both before and after birth. Longer follow-up for children is crucial in birth cohort studies to reinforce the Developmental Origins of Health and Disease hypothesis. In contrast, considering shifts in the exposure levels due to regulation is also essential, which may also change the association to health outcomes. This study found that individual susceptibility to adverse health effects depends on the genotype. Epigenome modification of DNA methylation was also discovered, indicating the necessity of examining molecular biology perspectives. International collaborations can add a new dimension to the current knowledge and provide novel discoveries in the future.
Collapse
Affiliation(s)
- Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan. .,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Naomi Tamura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Machiko Minatoya
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan.,Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Mariko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Takeshi Yamaguchi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Hisanori Fukunaga
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,WHO Collaborating Centre for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| | - Kumiko Ito
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Houman Goudarzi
- Faculty of Medicine and Graduate School of Medicine, Center for Medical Education and International Relations, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
26
|
Robinson SL, Zeng X, Guan W, Sundaram R, Mendola P, Putnick DL, Waterland RA, Gunasekara CJ, Kannan K, Gao C, Bell EM, Yeung EH. Perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) and DNA methylation in newborn dried blood spots in the Upstate KIDS cohort. ENVIRONMENTAL RESEARCH 2021; 194:110668. [PMID: 33387539 PMCID: PMC7946760 DOI: 10.1016/j.envres.2020.110668] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are persistent organic pollutants which may alter prenatal development, potentially through epigenetic modifications. Prior studies examining PFOS/PFOA and DNA methylation have relatively few subjects (n < 200) and inconsistent results. We examined relations of PFOA/PFOS with DNA methylation among 597 neonates in the Upstate KIDS cohort study. PFOA/PFOS were quantified in newborn dried blood spots (DBS) using high-performance liquid chromatography/tandem mass spectrometry. DNA methylation was measured using the Infinium MethylationEPIC BeadChip with DNA extracted from DBS. Robust linear regression was used to examine the associations of PFOA/PFOS with DNA methylation at individual CpG sites. Covariates included sample plate, estimated cell type, epigenetically derived ancestry, infant sex and plurality, indicators of maternal socioeconomic status, and prior pregnancy loss. In supplemental analysis, we restricted the analysis to 2242 CpG sites previously identified as Correlated Regions of Systemic Interindividual Variation (CoRSIVs) which include metastable epialleles. At FDR<0.05, PFOA concentration >90th percentile was related to DNA methylation at cg15557840, near SCRT2, SRXN1; PFOS>90th percentile was related to 2 CpG sites in a sex-specific manner (cg19039925 in GVIN1 in boys and cg05754408 in ZNF26 in girls). When analysis was restricted to CoRSIVs, log-scaled, continuous PFOS concentration was related to DNA methylation at cg03278866 within PTBP1. In conclusion, there was limited evidence of an association between high concentrations of PFOA/PFOS and DNA methylation in newborn DBS in the Upstate KIDS cohort. These findings merit replication in populations with a higher median concentration of PFOA/PFOS.
Collapse
Affiliation(s)
- Sonia L Robinson
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| | - Xuehuo Zeng
- Glotech Inc., 1801 Research Blvd #605, Rockville, MD, 20850, United States.
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 55455, United States.
| | - Rajeshwari Sundaram
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY, 14214, United States.
| | - Diane L Putnick
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| | - Robert A Waterland
- Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Ste. 5080, Houston, TX, 77030, United States.
| | - Chathura J Gunasekara
- Departments of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, 1100 Bates St., Ste. 5080, Houston, TX, 77030, United States.
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, United States.
| | - Chongjing Gao
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, United States.
| | - Erin M Bell
- Departments of Environmental Health Sciences, And Epidemiology and Biostatistics, University at Albany School of Public Health, 1 University Place, Rensselaer, NY, 12144, United States.
| | - Edwina H Yeung
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892, United States.
| |
Collapse
|
27
|
Xu Y, Jurkovic-Mlakar S, Lindh CH, Scott K, Fletcher T, Jakobsson K, Engström K. Associations between serum concentrations of perfluoroalkyl substances and DNA methylation in women exposed through drinking water: A pilot study in Ronneby, Sweden. ENVIRONMENT INTERNATIONAL 2020; 145:106148. [PMID: 33007577 DOI: 10.1016/j.envint.2020.106148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widespread synthetic substances with various adverse health effects. A potential mechanism of toxicity for PFAS is via epigenetic changes, such as DNA methylation. However, few studies have evaluated associations between PFAS exposure and DNA methylation among adults, and data is especially scarce for women. Furthermore, exposure to environmental pollutants has been associated with epigenetic age acceleration, but no studies have yet evaluated whether PFAS is associated with epigenetic age acceleration. OBJECTIVES To investigate whether exposure to PFAS is associated with alteration of DNA methylation and epigenetic age acceleration among women. METHODS In this observational pilot study, 59 women (aged 20-47 years at enrollment in 2014) from Ronneby, Sweden, an area with historically high PFAS exposure due to local drinking water contamination, were divided into three PFAS exposure groups (low, medium, and high). Genome-wide methylation of whole-blood DNA was analyzed using the Infinium MethylationEPIC BeadChip. Ingenuity Pathway Analysis was used for in silico functional assessment. Epigenetic age acceleration was derived from the DNA methylation data using Horvath's epigenetic skin and blood clock. RESULTS 117 differentially methylated positions (q < 0.017) and one near-significantly differentially methylated region (S100A13, FWER = 0.020) were identified. In silico functional analyses suggested that genes with altered DNA methylation (q < 0.05) were annotated to cancer, endocrine system disorders, reproductive system disease, as well as pathways such as estrogen receptor signaling, cardiac hypertrophy signaling, PPARα/RXRα activation and telomerase signaling. No differences in epigenetic age acceleration between PFAS exposure groups were noted (p = 0.43). CONCLUSION The data suggests that PFAS exposure alters DNA methylation in women highly exposed to PFAS from drinking water. The observed associations should be verified in larger cohorts, and it should also be further investigated whether these changes in methylation also underlie potential phenotypic changes and/or adverse health effects of PFAS.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Simona Jurkovic-Mlakar
- CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Christian H Lindh
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Kristin Scott
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Karin Engström
- EPI@LUND, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
28
|
Starling AP, Liu C, Shen G, Yang IV, Kechris K, Borengasser SJ, Boyle KE, Zhang W, Smith HA, Calafat AM, Hamman RF, Adgate JL, Dabelea D. Prenatal Exposure to Per- and Polyfluoroalkyl Substances, Umbilical Cord Blood DNA Methylation, and Cardio-Metabolic Indicators in Newborns: The Healthy Start Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127014. [PMID: 33356526 PMCID: PMC7759236 DOI: 10.1289/ehp6888] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent chemicals widely detected in women of reproductive age. Prenatal PFAS exposure is associated with adverse health outcomes in children. We hypothesized that DNA methylation changes may result from prenatal PFAS exposure and may be linked to offspring cardio-metabolic phenotype. OBJECTIVES We estimated associations of prenatal PFAS with DNA methylation in umbilical cord blood. We evaluated associations of methylation at selected sites with neonatal cardio-metabolic indicators. METHODS Among 583 mother-infant pairs in a prospective cohort, five PFAS were quantified in maternal serum (median 27 wk of gestation). Umbilical cord blood DNA methylation was evaluated using the Illumina HumanMethylation450 array. Differentially methylated positions (DMPs) were evaluated at a false discovery rate ( FDR ) < 0.05 and differentially methylated regions (DMRs) were identified using comb-p (Šidák-adjusted p < 0.05 ). We estimated associations between methylation at candidate DMPs and DMR sites and the following outcomes: newborn weight, adiposity, and cord blood glucose, insulin, lipids, and leptin. RESULTS Maternal serum PFAS concentrations were below the median for females in the U.S. general population. Moderate to high pairwise correlations were observed between PFAS concentrations (ρ = 0.28 - 0.76 ). Methylation at one DMP (cg18587484), annotated to the gene TJAP1, was associated with perfluorooctanoate (PFOA) at FDR < 0.05 . Comb-p detected between 4 and 15 DMRs for each PFAS. Associated genes, some common across multiple PFAS, were implicated in growth (RPTOR), lipid homeostasis (PON1, PON3, CIDEB, NR1H2), inflammation and immune activity (RASL11B, RNF39), among other functions. There was suggestive evidence that two PFAS-associated loci (cg09093485, cg09637273) were associated with cord blood triglycerides and birth weight, respectively (FDR < 0.1 ). DISCUSSION DNA methylation in umbilical cord blood was associated with maternal serum PFAS concentrations during pregnancy, suggesting potential associations with offspring growth, metabolism, and immune function. Future research should explore whether DNA methylation changes mediate associations between prenatal PFAS exposures and child health outcomes. https://doi.org/10.1289/EHP6888.
Collapse
Affiliation(s)
- Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Guannan Shen
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Ivana V. Yang
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah J. Borengasser
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen E. Boyle
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Harry A. Smith
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard F. Hamman
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John L. Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
29
|
Ssebugere P, Sillanpää M, Matovu H, Wang Z, Schramm KW, Omwoma S, Wanasolo W, Ngeno EC, Odongo S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139913. [PMID: 32540660 DOI: 10.1016/j.scitotenv.2020.139913] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are known organic pollutants with adverse health effects on humans and the ecosystem. This paper synthesises literature about the status of the pollutants and their precursors, identifies knowledge gaps and discusses future perspectives on the study of PFASs in Africa. Limited data on PFASs prevalence in Africa is available because there is limited capacity to monitor PFASs in African laboratories. The levels of PFASs in Africa are higher in samples from urban and industrialized areas compared to rural areas. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the dominant PFASs in human samples from Africa. Levels of PFOS and PFOA in these samples are lower than or comparable to those from industrialized countries. PFOA and PFOS levels in drinking water in Africa are, in some cases, higher than the EPA drinking water guidelines suggesting potential risk to humans. The levels of PFASs in birds' eggs from South Africa are higher, while those in other environmental media from Africa are lower or comparable to those from industrialized countries. Diet influences the pollutant levels in fish, while size and sex affect their accumulation in crocodiles. No bioaccumulation of PFASs in aquatic systems in Africa could be confirmed due to small sample sizes. Reported sources of PFASs in Africa include municipal landfills, inefficient wastewater treatment plants, consumer products containing PFASs, industrial wastewater and urban runoff. Relevant stakeholders need to take serious action to identify and deal with the salient sources of PFASs on the African continent.
Collapse
Affiliation(s)
- Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Henry Matovu
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Karl-Werner Schramm
- Helmholtz Zentrum Müenchen, German National Research Centre for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Solomon Omwoma
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya
| | - William Wanasolo
- Department of Chemistry, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
30
|
Kim S, Stroski KM, Killeen G, Smitherman C, Simcik MF, Brooks BW. 8:8 Perfluoroalkyl phosphinic acid affects neurobehavioral development, thyroid disruption, and DNA methylation in developing zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139600. [PMID: 32474277 DOI: 10.1016/j.scitotenv.2020.139600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have reported potential neurotoxicity and epigenetic alteration associated with exposure to several per- and polyfluoroalkyl substances (PFASs). However, such information is limited to a few compounds (e.g., perfluorooctane sulfonate), primarily based on rodent experiments, and the underlying toxicological mechanism(s) for many PFAS in the environment remain poorly understood. In the present study, we investigated 8:8 perfluoroalkyl phosphinic acid (8:8 PFPiA), an under-studied PFAS with high persistency in the environment and biota, using the zebrafish model. We exposed zebrafish embryos (<4 hpf) to various concentrations of 8:8 PFPiA (0, 0.0116, 0.112, 0.343, 1.34, 5.79 μM) for 144 h. Although there was no significant change in survival, hatchability and malformations, zebrafish locomotor speed at 120 h significantly decreased in dark photoperiod. At 144 h, several genes related to thyroid hormones that are essential for neurodevelopment, including corticotropin releasing hormone b (crhb), iodothyronine deiodinase 3a (dio3a), thyroid-stimulating hormone receptor (tshr) and nkx2 homeobox1 (nkx 2.1), were up-regulated by 8:8 PFPiA at 5.79 μM. 8:8 PFPiA also significantly down-regulated a neurodevelopmental gene, elav like neuron-specific RNA binding protein (elavl3), at 1.34 and 5.79 μM; in addition, one oxidative stress gene was slightly but significantly up-regulated. Further, global DNA methylation was significantly decreased at higher treatment levels, identifying effects of 8:8 PFPiA on epigenetic regulation. However, promoter DNA methylation of selected genes (dio3, tshr, nkx2.1) were not statistically altered, though dio3 methylation showed a decreasing trend with 8:8 PFPiA exposure. Our results specifically advance an understanding of molecular toxicology of PFPiA and more broadly present an approach to define diverse responses during animal alternative assessments of PFASs.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Kevin M Stroski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA
| | - Grace Killeen
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA
| | | | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
31
|
Ouidir M, Mendola P, Buck Louis GM, Kannan K, Zhang C, Tekola-Ayele F. Concentrations of persistent organic pollutants in maternal plasma and epigenome-wide placental DNA methylation. Clin Epigenetics 2020; 12:103. [PMID: 32653021 PMCID: PMC7371466 DOI: 10.1186/s13148-020-00894-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Prenatal maternal plasma persistent organic pollutant (POP) concentrations have been associated with neonatal outcomes. However, the underlying mechanisms remain unknown. Placental epigenetic mechanisms may be involved, but no prior epigenome-wide studies have investigated the impact of maternal POPs on placental DNA methylation. We studied the association between maternal plasma POP concentration in early pregnancy and epigenome-wide placental DNA methylation among 260 pregnant women from the NICHD Fetal Growth Studies. Results Our analysis focused on POPs with more than 80% plasma concentrations above the limit of quantification, including 3 organochlorine pesticides (hexachlorobenzene, trans-nonachlor, p,p’-dichlorodiphenyldichloroethylene), 1 polybrominated diphenyl ether (PBDE 47), 3 polychlorinated biphenyls (138/158, 153, 180), and 6 poly- and perfluorinated alkyl substances (PFASs) (perfluorodecanoic acid, perfluorohexanesulfonic acid, perfluorononanoic acid, perfluorooctanesulfonic acid, perfluoroundecanoic acid (PFUnDA)). Using 5% false discovery rate, POPs were associated with a total of 214 differentially methylated CpG sites (nominal p values ranging from 2.61 × 10−21 to 2.11 × 10−7). Out of the 214 CpG sites, 24 (11%) were significantly correlated with placental expression of 21 genes. Notably, higher PFUnDA was associated with increased methylation at 3 CpG sites (cg13996963, cg12089439, cg18145877) annotated to TUSC3, and increased methylation at those 3 CpG sites was correlated with decreased expression of TUSC3 in the placenta. Increased methylation at cg18145877 (TUSC3) and decreased expression of TUSC3 were correlated with shorter birth length. Out of the 214 CpG sites, methylation at 44 CpG sites was correlated (p value < 0.10) with at least one neonatal anthropometry measure (i.e., birth weight, birth length, and head circumference). Seven CpG sites mediated (p value < 0.05) the association between PBDE 47 and neonatal anthropometry measures. Genes annotating the top differentially methylated CpG sites were enriched in pathways related to differentiation of embryonic cells (PBDE 47) and in pathways related to brain size and brain morphology (PFASs). Conclusions DNA methylation changes in the placenta were significantly associated with maternal plasma POPs concentration. The findings suggest that placental DNA methylation and gene expression mechanism may be involved in the prenatal toxicity of POPs and their association with neonatal anthropometry measures.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA
| | - Germaine M Buck Louis
- Office of the Dean, College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York, NY, USA.,Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Bethesda, MD, 20892-7004, USA.
| |
Collapse
|
32
|
Weng JC, Hong CI, Tasi JD, Shen CY, Su PH, Wang SL. The association between prenatal endocrine-disrupting chemical exposure and altered resting-state brain fMRI in teenagers. Brain Struct Funct 2020; 225:1669-1684. [PMID: 32448957 DOI: 10.1007/s00429-020-02089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
Many studies have reported that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse behavioral effects or cognitive dysfunction in children. This study aimed to investigate a relationship of the concentration of prenatal EDCs and brain function in teenagers. We recruited 59 mother-child pairs during the third trimester of pregnancy, and collected and examined the concentration of EDCs, such as heavy metals, phthalates and perfluoroalkyl substances (PFASs), in maternal urine and serum. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected in teenagers 13-16 years of age, and fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) were performed to find the association between maternal EDC concentrations and the functional development of the teenage brain. We found a correlation between MBP concentration and activity in the superior frontal gyrus, middle frontal gyrus, middle temporal gyrus and inferior temporal gyrus in the combined group of boys and girls. We also observed a correlation between MBzP concentration and activity in the anterior cingulum gyrus and insula in girls. We found a correlation between lead concentration and activity in the cuneus in the combined group. We also observed a correlation between MeHg concentration and activity in the superior temporal gyrus, caudate nucleus and putamen in the combined group. The PFOS results revealed a negative relationship between activity in the right putamen in boys, girls and the combined group after phthalate or heavy metals were applied as covariates. The PFNA results showed a negative correlation between activity in the left/right putamen and left caudate nucleus in boys, girls and the combined group after phthalate, heavy metals or PFOS were applied as covariates. We examined the correlations between maternal EDC concentrations and brain development and found that the associations with resting-state teenage brains in some circumstances are sex-related.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chi Ieong Hong
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jeng-Dau Tasi
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Yu Shen
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pen-Hua Su
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County 350, Taiwan.
| |
Collapse
|
33
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
34
|
Xu Y, Jurkovic-Mlakar S, Li Y, Wahlberg K, Scott K, Pineda D, Lindh CH, Jakobsson K, Engström K. Association between serum concentrations of perfluoroalkyl substances (PFAS) and expression of serum microRNAs in a cohort highly exposed to PFAS from drinking water. ENVIRONMENT INTERNATIONAL 2020; 136:105446. [PMID: 31926437 DOI: 10.1016/j.envint.2019.105446] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widespread synthetic substances with various adverse health effects. Not much is known about the modes of action of PFAS toxicity, but one likely mechanism is alteration of microRNA expression. OBJECTIVES To investigate whether PFAS exposure is associated with altered microRNA expression in serum. METHODS We selected women from the Ronneby cohort, with high exposure to perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS), emanating from drinking water contaminated by firefighting foam, and a control group of women from a neighbouring municipality without drinking water contamination. Serum levels of PFAS were analysed using LC/MS/MS. High coverage microRNA expression was analysed by next generation sequencing (NGS) in 53 individuals to screen for microRNAs associated with PFAS exposure. After verification by qPCR, associations between PFAS exposure and expression of 18 selected microRNAs were validated by qPCR in 232 individuals. In silico functional analyses were performed using Ingenuity pathway analysis (IPA). RESULTS Three microRNAs were consistently associated with PFAS exposure in the different steps of the study: miR-101-3p, miR-144-3p and miR-19a-3p (all downregulated with increasing exposure). In silico functional analyses suggested that these PFAS-associated microRNAs were annotated to e.g. cardiovascular function and disease, Alzheimer's disease, growth of cancer cell lines and cancer. Seven predicted target genes for the downregulated microRNAs were annotated to PFAS in IPA knowledge database: DNA methyltransferase 3 alpha (DNMT3a), epidermal growth factor receptor (EGFR), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), nuclear receptor subfamily 1, group H, member 3 (NR1H3), peroxisome proliferator-activated receptor alpha (PPARα), prostaglandin-endoperoxide synthase 2 (PTGS2), and tumour growth factor alpha (TGFα). DISCUSSION PFAS exposure was associated with downregulation of specific microRNAs. Further, in silico functional analyses suggest potential links between the specific PFAS-associated microRNAs, specific microRNA target genes and possibly also health effects.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Simona Jurkovic-Mlakar
- CANSEARCH Research Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Wahlberg
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristin Scott
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Engström
- EPI@LUND, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
35
|
Rager JE, Bangma J, Carberry C, Chao A, Grossman J, Lu K, Manuck TA, Sobus JR, Szilagyi J, Fry RC. Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reprod Toxicol 2020; 98:1-12. [PMID: 32061676 DOI: 10.1016/j.reprotox.2020.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
Environmental chemicals comprise a major portion of the human exposome, with some shown to impact the health of susceptible populations, including pregnant women and developing fetuses. The placenta and cord blood serve as important biological windows into the maternal and fetal environments. In this article we review how environmental chemicals (defined here to include man-made chemicals [e.g., flame retardants, pesticides/herbicides, per- and polyfluoroalkyl substances], toxins, metals, and other xenobiotic compounds) contribute to the prenatal exposome and highlight future directions to advance this research field. Our findings from a survey of recent literature indicate the need to better understand the breadth of environmental chemicals that reach the placenta and cord blood, as well as the linkages between prenatal exposures, mechanisms of toxicity, and subsequent health outcomes. Research efforts tailored towards addressing these needs will provide a more comprehensive understanding of how environmental chemicals impact maternal and fetal health.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jacqueline Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Celeste Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex Chao
- Oak Ridge Institute for Science and Education (ORISE) Participant, Research Triangle Park, NC, USA
| | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tracy A Manuck
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jon R Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - John Szilagyi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Tian J, Xu H, Zhang Y, Shi X, Wang W, Gao H, Bi Y. SAM targeting methylation by the methyl donor, a novel therapeutic strategy for antagonize PFOS transgenerational fertilitty toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109579. [PMID: 31505405 DOI: 10.1016/j.ecoenv.2019.109579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation have been suggested as possible mediators of long-term health effects of environmental stressors. This study aimed to evaluate the potential therapy of methylation of S-adenosyl-l-methionine (SAM) on PFOS induced trangeneral reproductive toxicity. In this study, postnatal 5d Sprague Dawley rats were randomly divided into four groups: control, PFOS, PFOS + SAM, and PFOS + Decitabine (DAC). The F0 rats were exposed to 5 mg/kg PFOS and SAM or DAC until PND60. The development of the offsprings were monitored without PFOS exposure. The fertility in F0, F1 rats, and change in F1 testes were observed. The results were as follows. The significant increase in F0 pregnancy rate, and survival rate in F1 offspring in PFOS + SAM relative to PFOS group were observed. Changes of birth weights and physical development in F1 offspring with SAM were approached as a corresponding variation of the control after the deparation period. No pregnant in F1 maternal rats in the PFOS and DAC groups were found, but pregnant in the SAM group. Significantly decrease in the percentage of abnormal seminiferous tubules and increase in expression of promyelocytic leukemia zinc finger (PLZF+) spermatogonial stem cells in F1 testis compared with the PFOS group. Taken together, Methyl donor SAM improve PLZF + spermatogonia stem cell proliferation, attenuate damage in testicular tissue structure, which subsequently improve the transgenerational growth retard and infertility induced by PFOS chronic stress.
Collapse
Affiliation(s)
- Jianying Tian
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, 430068, Hubei, China; Basic Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haiming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yawen Zhang
- Basic Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xinchen Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wencheng Wang
- Department of Neurology, People's Hospital of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Huanmin Gao
- Department of Neurology, People's Hospital of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Yongyi Bi
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, 430068, Hubei, China.
| |
Collapse
|
37
|
Miura R, Araki A, Minatoya M, Miyake K, Chen ML, Kobayashi S, Miyashita C, Yamamoto J, Matsumura T, Ishizuka M, Kubota T, Kishi R. An epigenome-wide analysis of cord blood DNA methylation reveals sex-specific effect of exposure to bisphenol A. Sci Rep 2019; 9:12369. [PMID: 31451752 PMCID: PMC6710292 DOI: 10.1038/s41598-019-48916-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to bisphenol A (BPA) in utero is associated with adverse health outcome of the offspring. Differential DNA methylation at specific CpG sites may link BPA exposure to health impacts. We examined the association of prenatal BPA exposure with genome-wide DNA methylation changes in cord blood in 277 mother-child pairs in the Hokkaido Study on Environment and Children’s Health, using the Illumina HumanMethylation 450 BeadChip. We observed that a large portion of BPA-associated differentially methylated CpGs with p-value < 0.0001 was hypomethylated among all newborns (91%) and female infants (98%), as opposed to being hypermethylated (88%) among males. We found 27 and 16 CpGs with a false discovery rate (FDR) < 0.05 in the analyses for males and females, respectively. Genes annotated to FDR-corrected CpGs clustered into an interconnected genetic network among males, while they rarely exhibited any interactions in females. In contrast, none of the enrichment for gene ontology (GO) terms with FDR < 0.05 was observed for genes annotated to the male-specific CpGs with p < 0.0001, whereas the female-specific genes were significantly enriched for GO terms related to cell adhesion. Our epigenome-wide analysis of cord blood DNA methylation implies potential sex-specific epigenome responses to BPA exposure.
Collapse
Affiliation(s)
- Ryu Miura
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Machiko Minatoya
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Kunio Miyake
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, Idea Consultants, Inc., Shizuoka, Japan
| | - Toru Matsumura
- Institute of Environmental Ecology, Idea Consultants, Inc., Shizuoka, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan.
| |
Collapse
|
38
|
Ladd-Acosta C, Feinberg JI, Brown SC, Lurmann FW, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Feinberg AP, Fallin MD, Volk HE. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. ENVIRONMENT INTERNATIONAL 2019; 126:363-376. [PMID: 30826615 PMCID: PMC6446941 DOI: 10.1016/j.envint.2019.02.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/05/2019] [Accepted: 02/10/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal air pollution exposure has been linked to many adverse health conditions in the offspring. However, little is known about the mechanisms underlying these associations. Epigenetics may be one plausible biologic link. Here, we sought to identify site-specific and global DNA methylation (DNAm) changes, in developmentally relevant tissues, associated with prenatal exposure to nitrogen dioxide (NO2) and ozone (O3). Additionally, we assessed whether sex-specific changes in methylation exist and whether DNAm changes are consistently observed across tissues. METHODS Genome-scale DNAm measurements were obtained using the Infinium HumanMethylation450k platform for 133 placenta and 175 cord blood specimens from Early Autism Risk Longitudinal Investigation (EARLI) neonates. Ambient NO2 and O3 exposure levels were based on prenatal address locations of EARLI mothers and the Environmental Protection Agency's AirNOW monitoring network using inverse distance weighting. We computed sample-level aggregate methylation measures for each of 5 types of genomic regions including genome-wide, open sea, shelf, shore, and island regions. Linear regression was performed for each genomic region; per-sample aggregate methylation measures were modeled as a function of quantitative exposure level with covariate adjustment. In addition, bumphunting was performed to identify differentially methylated regions (DMRs) associated with prenatal O3 and NO2 exposures in each tissue and by sex, with adjustment for technical and biological sources of variation. RESULTS We identified global and locus-specific changes in DNA methylation related to prenatal exposure to NO2 and O3 in 2 developmentally relevant tissues. Neonates with increased prenatal O3 exposure had lower aggregate levels of DNAm at CpGs located in open sea and shelf regions of the genome. We identified 6 DMRs associated with prenatal NO2 exposure, including 3 sex-specific. An additional 3 sex-specific DMRs were associated with prenatal O3 exposure levels. DMRs initially detected in cord blood samples (n = 4) showed consistent exposure-related changes in DNAm in placenta. However, the DMRs initially detected in placenta (n = 5) did not show DNAm differences in cord blood and, thus, they appear to be tissue-specific. CONCLUSIONS We observed global, locus, and sex-specific methylation changes associated with prenatal NO2 and O3 exposures. Our findings support DNAm is a biologic target of prenatal air pollutant exposures and highlight epigenetic involvement in sex-specific differential susceptibility to environmental exposure effects in 2 developmentally relevant tissues.
Collapse
Affiliation(s)
- Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shannon C Brown
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- A.J. Drexel Autism Institute and Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA, USA
| | - Andrew P Feinberg
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|