1
|
Chen M, Chen Q, Liao G, Sun C, Liu C, Meng X, Li W, Qiu A, Bukulmez O, Kan H, Wang F, Tse LA, Teng X. Associations of maternal PM2.5 exposure with preterm birth and miscarriage in women undergoing in vitro fertilization: a retrospective cohort study. Front Endocrinol (Lausanne) 2025; 16:1460976. [PMID: 39931239 PMCID: PMC11808209 DOI: 10.3389/fendo.2025.1460976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Background Excessive exposure to PM2.5 can be detrimental to reproductive health. The objective of this study was to investigate the potential associations between ambient PM2.5 exposure during different periods and negative pregnancy outcomes, such as miscarriage and preterm birth, in patients who underwent assisted reproductive technology (ART). Methods This retrospective cohort study examined the outcomes of 2,839 infertile women aged ≤ 45 years who underwent their first fresh or frozen-thawed embryo transfer at the Shanghai First Maternity and Infant Hospital between April 2016 and December 2019. Satellite data were used to determine the daily average levels of PM2.5, and exposure was categorized as excessive if it exceeded the WHO's interim target 2 level of 50 µg/m3. The analysis was conducted separately for seven different periods. Our study used multinomial logistic regression models to explore the potential associations between PM2.5 exposure and adverse pregnancy outcomes. Sensitivity analysis was conducted by excluding women who underwent blastocyst transfer. Results Daily PM2.5 exposure exceeding the threshold (50 µg/m3) was associated with an increased risk of miscarriage during the period after confirmation of clinical pregnancy or biochemical pregnancy, with adjusted odds ratios (AORs) of 2.22 (95% CI 1.75-2.81) and 2.23 (95% CI 1.68-2.96), respectively. Moreover, for each increase of 10 µg/m3 above the threshold for PM2.5, there was a 46% elevated risk of preterm birth (AOR = 1.46, 95% CI 1.09-1.94) during the period after the confirmation of clinical pregnancy and a 61% elevated risk of preterm birth (AOR = 1.61, 95% CI 1.16-2.23) during the period after the confirmation of biochemical pregnancy. Our stratified analyses revealed that women with an endometrial thickness <11 mm or who underwent frozen embryo transfer were more vulnerable to PM2.5 exposure, leading to higher rates of preterm birth. Conclusion Excessive PM2.5 exposure after biochemical pregnancy or clinical pregnancy was associated with increased risks of preterm birth and miscarriage among women who underwent ART.
Collapse
Affiliation(s)
- Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiaoyu Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gengze Liao
- JC School of Public Health and Primary Care, the Chinese University of Hong
Kong, Hong Kong, Hong Kong SAR, China
| | - Chunyan Sun
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Wentao Li
- Department of Obstetrics and Gynecology, Monash Medical Centre, Monash University, Melbourne, VIC, Australia
| | - Andong Qiu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Feng Wang
- JC School of Public Health and Primary Care, the Chinese University of Hong
Kong, Hong Kong, Hong Kong SAR, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, the Chinese University of Hong
Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoming Teng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Lan C, Guan Y, Luo H, Ma X, Yang Y, Bao H, Hao C, He X, Zhang H, Gao N, Lin W, Ren M, Wu T, Wang C, Ni X, Shen C, Zhang J, Ma J, Zhang R, Bi Y, Zhuang L, Miao R, Song Z, An T, Liu Z, Pan B, Fang M, Liu J, Bai Z, Meng F, Chen Y, Lu X, Guo Y, Cao Y, Lu Q, Wang B. Observed Effects on Very Early Pregnancy Linked to Ambient PM 2.5 Exposure in China among Women Undergoing In Vitro Fertilization-Embryo Transfer. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:918-928. [PMID: 39722841 PMCID: PMC11667290 DOI: 10.1021/envhealth.4c00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 12/28/2024]
Abstract
The adverse effect of ambient PM2.5 exposure on very early pregnancy (VEP) remains controversial among epidemiological studies but is supported by toxicological evidence. We adopted a multicenter retrospective cohort of 141,040 cycles to evaluate the effect of PM2.5 exposure on the VEP using the in vitro fertilization and embryo transfer platform and high-resolution PM2.5 data in China. We first investigated the association between PM2.5 exposure 1 week before and 1 week after the embryo transfer date and VEP. The average PM2.5 concentrations of the 2 weeks were approximately 47 μg/m3. The pooled results revealed a negative association between women's accumulated PM2.5 exposure during the 2 weeks near the day of embryo transfer and success odds of VEP with the relative risk of 0.999 (95% CI: 0.997-0.999) at each increase of 10 μg/m3. The women with the fresh cycle or one transplanted embryo were considered as a vulnerable population. Furthermore, seven periods for the fresh cycle and five periods for the frozen cycle from 85 days before oocyte retrieval to the day of gestational sac detection by ultrasound detection were defined. For these exposure periods, no association between the average PM2.5 exposure and VEP risk was identified. Our study provided large-scale population evidence for the association between PM2.5 exposure near embryo transfer day and VEP and identified vulnerable populations among women undergoing in vitro fertilization-embryo transfer.
Collapse
Affiliation(s)
- Changxin Lan
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health and Family Planning Commission of
the People’s Republic of China, Beijing 100191, China
| | - Yichun Guan
- Department
of Reproductive Medicine, the Third Affiliated
Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haining Luo
- Reproductive
Medicine Center, Tianjin Central Hospital
of Gynecology Obstetrics, Maternity Hospital of Nankai University, Tianjin 300052, China
| | - Xiaoling Ma
- The
First Hospital of Lanzhou University, the First Clinical Medical School
of Lanzhou University, Lanzhou 730000, China
| | - Yihua Yang
- Guangxi
Reproductive Medical Center, the First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongchu Bao
- Reproductive
Medicine Centre, Yuhuangding Hospital of
Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Cuifang Hao
- Qingdao
Women and Children’s Hospital, Affiliated
Hospital of Qingdao University, Qingdao 266555, China
| | - Xiaojin He
- Reproductive
Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai 200080, China
| | - Han Zhang
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health and Family Planning Commission of
the People’s Republic of China, Beijing 100191, China
| | - Ning Gao
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health and Family Planning Commission of
the People’s Republic of China, Beijing 100191, China
| | - Weinan Lin
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health and Family Planning Commission of
the People’s Republic of China, Beijing 100191, China
| | - Mengyuan Ren
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health and Family Planning Commission of
the People’s Republic of China, Beijing 100191, China
| | - Tianxiang Wu
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health and Family Planning Commission of
the People’s Republic of China, Beijing 100191, China
| | - Chao Wang
- Department
of Obstetrics and Gynecology, the First
Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Engineering Research Center
of Biopreservation and Artificial Organs,
Ministry of Education, Hefei 230022, China
| | - Xiaoqing Ni
- Department
of Obstetrics and Gynecology, the First
Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Engineering Research Center
of Biopreservation and Artificial Organs,
Ministry of Education, Hefei 230022, China
| | - Chunyan Shen
- Department
of Reproductive Medicine, the Third Affiliated
Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jianrui Zhang
- Department
of Reproductive Medicine, the Third Affiliated
Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Junfang Ma
- Reproductive
Medicine Center, Tianjin Central Hospital
of Gynecology Obstetrics, Maternity Hospital of Nankai University, Tianjin 300052, China
| | - Rui Zhang
- The
First Hospital of Lanzhou University, the First Clinical Medical School
of Lanzhou University, Lanzhou 730000, China
| | - Yin Bi
- Guangxi
Reproductive Medical Center, the First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lili Zhuang
- Reproductive
Medicine Centre, Yuhuangding Hospital of
Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Ruichao Miao
- Qingdao
Women and Children’s Hospital, Affiliated
Hospital of Qingdao University, Qingdao 266555, China
| | - Ziyi Song
- Medical
Center for Human Reproduction, Beijing Chao-Yang
Hospital, Capital Medical University, Beijing 100020, China
| | - Tong An
- Medical
Center for Human Reproduction, Beijing Chao-Yang
Hospital, Capital Medical University, Beijing 100020, China
| | - Zhengteng Liu
- Reproductive
Medicine Centre, Yuhuangding Hospital of
Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Bo Pan
- Yunnan
Provincial Key Lab of Soil Carbon Sequestration and Pollution Control,
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingliang Fang
- Department
of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jing Liu
- MOE
Key Laboratory of Environmental Remediation and Ecosystem Health,
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhipeng Bai
- State
Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fangang Meng
- Beijing
Neurosurgical Institute, Beijing Tiantan
Hospital, Capital Medical University, Beijing 100070, China
| | - Yuanchen Chen
- Key
Laboratory of Microbial Technology for Industrial Pollution Control
of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Xiaoxia Lu
- Laboratory
for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| | - Yuming Guo
- Climate,
Air Quality Research Unit, School of Public Health and Preventive
Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Yunxia Cao
- Department
of Obstetrics and Gynecology, the First
Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Engineering Research Center
of Biopreservation and Artificial Organs,
Ministry of Education, Hefei 230022, China
| | - Qun Lu
- Medical
Center for Human Reproduction, Beijing Chao-Yang
Hospital, Capital Medical University, Beijing 100020, China
- Center
of Reproductive Medicine, Peking University
People’s Hospital, Beijing 100044, China
| | - Bin Wang
- Department
of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute
of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health and Family Planning Commission of
the People’s Republic of China, Beijing 100191, China
- Laboratory
for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Wang M, Liu A, Li X, Ran M, Tian Y, Wang J, Han B, Bai Z, Zhang Y. Periovulatory PM 2.5 constituent exposures and human clinically recognized early pregnancy loss: Susceptible exposure time windows and high-risk constituents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125238. [PMID: 39491581 DOI: 10.1016/j.envpol.2024.125238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Evidence for effects of PM2.5 chemical constituent exposures during the periovulatory period on pregnancy complications was limited. We explored the associations of maternal PM2.5 and constituent exposures from the 12th week before to 4th week after ovulation with human clinically recognized early pregnancy loss (CREPL). From July 2017 to January 2024, 828 CREPL and 828 normal early pregnancy (NEP) participants were recruited in Tianjin, China. Daily residential exposures to PM2.5 and five main constituents of all participants were estimated using data of the Tracking Air Pollution in China platform. Nonlinear and linear associations between weekly pollutant exposures and CREPL were estimated using conditional logistic regression models combined with distributed lag nonlinear and distributed lag models, respectively. The risk of CREPL increased with per 10 μg/m³ increment in PM2.5 and per 1 μg/m³ increment in sulfate, nitrate, and ammonium exposures during specific weeks from the 5th week before to 2nd week after ovulation, with the largest OR (95% CI) of CREPL associated with PM2.5, sulfate, nitrate, and ammonium being 1.73 (1.07, 2.78), 1.71 (1.18, 2.46), 1.80 (1.12, 2.90), and 1.61 (1.01, 2.56), respectively. CREPL was positively associated with the 10th to 90th percentiles exposure to organic matter during the 2nd and 3rd week after ovulation. In analyses for constituent residuals, the five constituents were all independently related to CREPL, with organic matter being the highest risk constituent, and nitrate and ammonium affecting at the initial stage of preantral follicle development. In conclusion, periovulatory PM2.5 and constituent exposures were associated with increased risk of CREPL. Women planning a pregnancy are advised to take exposure precautions starting from the follicular development period.
Collapse
Affiliation(s)
- Mengyuan Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ao Liu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuesong Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mingyue Ran
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yinuo Tian
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, 98195, Washington, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Chu M, Yang J, Gong C, Li X, Wang M, Han B, Huo Y, Wang J, Bai Z, Zhang Y. Effects of fine particulate matter mass and chemical components on oxidative DNA damage in human early placenta. ENVIRONMENTAL RESEARCH 2024; 263:120136. [PMID: 39393454 DOI: 10.1016/j.envres.2024.120136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
The effects of chemical components of ambient fine particulate matter (PM2.5) on human early maternal-fetal interface are unknown. We estimated the associations of PM2.5 and component exposures with placental villi 8-hydroxy-2'-deoxyguanosine (8-OHdG) in 142 normal early pregnancy (NEP) and 142 early pregnancy loss (EPL) from December 2017 to December 2022. We used datasets accessed from the Tracking Air Pollution in China platform to estimate maternal daily PM2.5 and component exposures. Effect of average PM2.5 and component exposures during the post-conception period (i.e., from ovulation to villi collection) on the concentration of villi 8-OHdG were analyzed using multivariable linear regression models. Distributed lag and cumulative effects of PM2.5 and component exposures during the periovulatory period and within ten days before villi collection on villi 8-OHdG were analyzed using distributed lag non-linear models combined with multivariable linear regression models. Per interquartile range increase in average PM2.5, black carbon (BC), and organic matter (OM) exposures during the post-conception period increased villi 8-OHdG in all subjects (β = 34.48% [95% CI: 9.33%, 65.42%], β = 35.73% [95% CI: 9.08%, 68.89%], and β = 54.71% [95% CI: 21.56%, 96.91%], respectively), and in EPL (β = 63.37% [95% CI: 16.00%, 130.10%], β = 47.43% [95% CI: 4.30%, 108.39%], and β = 72.32% [95% CI: 18.20%, 151.21%], respectively), but not in NEP. Specific weekly lag effects of PM2.5, BC, and OM exposures during the periovulatory period increased villi 8-OHdG in all subjects. Ten-day cumulative and lag effects of PM2.5, BC, and OM increased villi 8-OHdG in all subjects and EPL, but not in NEP; and the effects of OM were robust after adjusting for BC, ammonium, nitrate, or sulfate in two-pollutant models. In conclusion, placental oxidative DNA damage in early pregnancy was associated with maternal exposure to PM2.5, especially its chemical components BC and OM.
Collapse
Affiliation(s)
- Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuesong Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengyuan Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yan Huo
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
5
|
Zupo R, Castellana F, Nawrot TS, Lampignano L, Bortone I, Murgia F, Campobasso G, Gruszecka Kosowska A, Giannico OV, Sardone R. Air pollutants and ovarian reserve: a systematic review of the evidence. Front Public Health 2024; 12:1425876. [PMID: 39376999 PMCID: PMC11457886 DOI: 10.3389/fpubh.2024.1425876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Background Growing evidence indicates an association between ambient air pollution and decreased human reproductive potential. This study aims to systematically review the association between air pollutants and female ovarian reserve. Methods The literature was searched in six electronic databases through June 2024. Screening the 136 articles retrieved for inclusion criteria resulted in the selection of 15 human observational studies that evaluated the effect of environmental pollutants on ovarian reserve markers. The study protocol was registered on the International Prospective Register of Systematic Reviews (PROSPERO, registration code: CRD42023474218). Results The study design of the selected studies was found to be cross-sectional (2 of 15), retrospective cohort (10 of 15), prospective cohort (2 of 15), and case-control (1 of 15). The study population was distributed as follows: Asians (53%, eight studies), Americans (33%, five studies), and Europeans (14%, two studies). The main findings showed a higher body of evidence for the environmental pollutants PM2.5, PM10, and NO2, while a low body of evidence for PM1, O3, SO2, and a very low body of evidence for benzene, formaldehyde, and benzo(a)pyrene, yet consistently showing significant inverse association data. The overall methodological quality of the selected studies was rated moderated across the 14 domains of the National Institutes of Health (NIH) toolkit. Conclusion The data suggest that increased exposure to air pollutants seems to be associated with reduced ovarian reserve, with the most substantial evidence for pollutants such as PM2.5, PM10, and NO2. However, more evidence is needed to draw conclusions about causality.
Collapse
Affiliation(s)
- Roberta Zupo
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare, Bari, Italy
| | - Fabio Castellana
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, Piazza Giulio Cesare, Bari, Italy
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, Leuven, Belgium
| | | | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari "Aldo Moro", Bari, Italy
| | - Ferdinando Murgia
- Department of Obstetrics and Gynecology, "Miulli" General Hospital, Bari, Italy
| | | | - Agnieskza Gruszecka Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Al. Mickiewicza, Krakow, Poland
| | | | - Rodolfo Sardone
- Unit of Statistics and Epidemiology, Local Health Authority of Taranto, Taranto, Italy
- Department of Eye and Vision Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Chen Y, Kuang T, Zhang T, Cai S, Colombo J, Harper A, Han TL, Xia Y, Gulliver J, Hansell A, Zhang H, Baker P. Associations of air pollution exposures in preconception and pregnancy with birth outcomes and infant neurocognitive development: analysis of the Complex Lipids in Mothers and Babies (CLIMB) prospective cohort in Chongqing, China. BMJ Open 2024; 14:e082475. [PMID: 38960456 PMCID: PMC11227797 DOI: 10.1136/bmjopen-2023-082475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVES To investigate the associations of traffic-related air pollution exposures in early pregnancy with birth outcomes and infant neurocognitive development. DESIGN Cohort study. SETTING Eligible women attended six visits in the maternity clinics of two centres, the First Affiliated Hospital of Chongqing Medical University and Chongqing Health Centre for Women and Children. PARTICIPANTS Women who were between 20 and 40 years of age and were at 11-14 weeks gestation with a singleton pregnancy were eligible for participation. Women were excluded if they had a history of premature delivery before 32 weeks of gestation, maternal milk allergy or aversion or severe lactose intolerance. 1273 pregnant women enrolled in 2015-2016 and 1174 live births were included in this analysis. EXPOSURES Air pollution concentrations at their home addresses, including particulate matter with diameter ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2), during pre-conception and each trimester period were estimated using land-use regression models. OUTCOME MEASURES Birth outcomes (ie, birth weight, birth length, preterm birth, low birth weight, large for gestational age and small for gestational age (SGA) status) and neurodevelopment outcomes measured by the Chinese version of Bayley Scales of Infant Development. RESULTS An association between SGA and per-IQR increases in NO2 was found in the first trimester (OR: 1.57, 95% CI: 1.06 to 2.32) and during the whole pregnancy (OR: 1.33, 99% CI: 1.01 to 1.75). Both PM2.5 and NO2 exposure in the 90 days prior to conception were associated with lower Psychomotor Development Index scores (β: -6.15, 95% CI: -8.84 to -3.46; β: -2.83, 95% CI: -4.27 to -1.39, respectively). Increased NO2 exposure was associated with an increased risk of psychomotor development delay during different trimesters of pregnancy. CONCLUSIONS Increased exposures to NO2 during pregnancy were associated with increased risks of SGA and psychomotor development delay, while increased exposures to both PM2.5 and NO2 pre-conception were associated with adverse psychomotor development outcomes at 12 months of age. TRIAL REGISTRATION NUMBER ChiCTR-IOR-16007700.
Collapse
Affiliation(s)
- Yingxin Chen
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Tao Kuang
- Department of Public Health and Management, Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ting Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Samuel Cai
- Department of Health Sciences, University of Leicester, Leicester, Leicestershire, UK
| | | | | | - Ting-Li Han
- University of Auckland Liggins Institute, Auckland, New Zealand
- Canada - China -New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing, China
| | - Yinyin Xia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | | | - Anna Hansell
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philip Baker
- College of Medicine, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
de Castro KR, Almeida GHDR, Matsuda M, de Paula Vieira R, Martins MG, Rici REG, Saldiva PHN, Veras MM. Exposure to urban ambient particles (PM2.5) before pregnancy affects the expression of endometrial receptive markers to embryo implantation in mice: Preliminary results. Tissue Cell 2024; 88:102368. [PMID: 38583225 DOI: 10.1016/j.tice.2024.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Air pollution (AP) is one of the main recent concerns in reproductive healthy due to its potential to promote negative outcomes during pregnancy and male and female fertility. Several studies have demonstrated that AP exposure has been linked to increased embryonic implantation failures, alterations in embryonic, fetal and placental development. For a well-succeeded implantation, both competent blastocyst and receptive endometrium are required. Based on the lack of data about the effect of AP in endometrial receptivity, this study aimed to evaluate he particulate matter (PM) exposure impact on uterine receptive markers in mice and associate the alterations to increased implantation failures due to AP. For this study, ten dams per group were exposed for 39 days to either filter (F) or polluted air (CAP). At fourth gestational day (GD4), females were euthanized. Morphological, ultrastructural, immunohistochemical and molecular analysis of uterine and ovarian samples were performed. CAP-exposed females presented a reduced number of corpus luteum; glands and epithelial cells were increased with pinopodes formation impairment. Immunohistochemistry analysis revealed decreased LIF protein levels. These preliminary data suggests that PM exposure may exert negative effects on endometrial receptivity by affecting crucial parameters to embryonic implantation as uterine morphological differentiation, corpus luteum quantity and LIF expression during implantation window.
Collapse
Affiliation(s)
- Karla Ribeiro de Castro
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | | | - Monique Matsuda
- Division of Ophthalmology and Laboratory of Investigation in Ophthalmology (LIM33), School of Medicine, University of São Paulo, São Paulo State, Brazil
| | - Rodolfo de Paula Vieira
- Human Movement and Rehabilitation Post-Graduation Program, Evangelical University of Goiás -UniEVANGÉLICA, Anápolis, GO, Brazil
| | - Marco Garcia Martins
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Rose Eli Grassi Rici
- Department of Surgery, Faculty of the Veterinary Medicine and Animal Science, University of São Paulo, São Paulo State, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Mariana Matera Veras
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil.
| |
Collapse
|
8
|
Wesselink AK, Kirwa K, Hystad P, Kaufman JD, Szpiro AA, Willis MD, Savitz DA, Levy JI, Rothman KJ, Mikkelsen EM, Laursen ASD, Hatch EE, Wise LA. Ambient air pollution and rate of spontaneous abortion. ENVIRONMENTAL RESEARCH 2024; 246:118067. [PMID: 38157969 PMCID: PMC10947860 DOI: 10.1016/j.envres.2023.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Spontaneous abortion (SAB), defined as a pregnancy loss before 20 weeks of gestation, affects up to 30% of conceptions, yet few modifiable risk factors have been identified. We estimated the effect of ambient air pollution exposure on SAB incidence in Pregnancy Study Online (PRESTO), a preconception cohort study of North American couples who were trying to conceive. Participants completed questionnaires at baseline, every 8 weeks during preconception follow-up, and in early and late pregnancy. We analyzed data on 4643 United States (U.S.) participants and 851 Canadian participants who enrolled during 2013-2019 and conceived during 12 months of follow-up. We used country-specific national spatiotemporal models to estimate concentrations of particulate matter <2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) during the preconception and prenatal periods at each participant's residential address. On follow-up and pregnancy questionnaires, participants reported information on pregnancy status, including SAB incidence and timing. We fit Cox proportional hazards regression models with gestational weeks as the time scale to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of time-varying prenatal concentrations of PM2.5, NO2, and O3 with rate of SAB, adjusting for individual- and neighborhood-level factors. Nineteen percent of pregnancies ended in SAB. Greater PM2.5 concentrations were associated with a higher incidence of SAB in Canada, but not in the U.S. (HRs for a 5 μg/m3 increase = 1.29, 95% CI: 0.99, 1.68 and 0.94, 95% CI: 0.83, 1.08, respectively). NO2 and O3 concentrations were not appreciably associated with SAB incidence. Results did not vary substantially by gestational weeks or season at risk. In summary, we found little evidence for an effect of residential ambient PM2.5, NO2, and O3 concentrations on SAB incidence in the U.S., but a moderate positive association of PM2.5 with SAB incidence in Canada.
Collapse
Affiliation(s)
- Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, USA.
| | - Kipruto Kirwa
- Department of Environmental Health, Boston University School of Public Health, USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, USA
| | - Joel D Kaufman
- Departments of Environmental and Occupational Health Sciences, Epidemiology, and Medicine, University of Washington School of Public Health, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington School of Public Health, USA
| | - Mary D Willis
- Department of Epidemiology, Boston University School of Public Health, USA
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, USA
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, USA
| | - Ellen M Mikkelsen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Denmark
| | - Anne Sofie Dam Laursen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Denmark
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, USA
| |
Collapse
|
9
|
Geng L, Yang Y, Chen Y, Ye T, Qiu A, Bukulmez O, Mol BW, Norman RJ, Teng X, Xiang J, Chen M. Association between ambient temperature exposure and pregnancy outcomes in patients undergoing in vitro fertilization in Shanghai, China: a retrospective cohort study. Hum Reprod 2023; 38:2489-2498. [PMID: 37759343 DOI: 10.1093/humrep/dead192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
STUDY QUESTION Does ambient temperature exposure affect outcomes including clinical pregnancy and live birth in women undergoing IVF? SUMMARY ANSWER Both extreme cold and hot ambient temperatures were significantly associated with adverse pregnancy outcomes of IVF cycles. WHAT IS KNOWN ALREADY Heat exposure has been linked to adverse pregnancy outcomes worldwide. However, the effect of ambient temperature on infertile women undergoing IVF treatment is unclear. STUDY DESIGN, SIZE, DURATION A retrospective cohort study was conducted from a database of 3452 infertile women who underwent their first fresh or frozen embryo transfer in the Shanghai First Maternity and Infant Hospital from April 2016 to December 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Daily mean ambient temperature exposure for each patient was obtained based on their residential address. Temperature-stratified multiple logistic regression analysis was performed to investigate associations between temperature exposure and pregnancy outcomes after controlling for confounders. Vulnerable sub-groups were identified using forest plots. MAIN RESULTS AND THE ROLE OF CHANCE The clinical pregnancy rate and live birth rate were 45.7% and 37.1%, respectively. Regarding clinical pregnancy, a higher temperature during cold weather was significantly associated with a higher pregnancy rate in the period about 11 weeks before ovarian stimulation (adjusted odds ratio (aOR) = 1.102, 95% CI: 1.012-1.201). Regarding live birth, an increased temperature during cold weather was significantly related to a higher live birth rate in the period after confirmation of clinical pregnancy or biochemical pregnancy, with the aORs of 6.299 (95% CI: 3.949-10.047) or 10.486 (95% CI: 5.609-19.620), respectively. However, a higher temperature during hot weather was negatively associated with the live birth rate in the periods after confirmation of clinical pregnancy or biochemical pregnancy, with the aORs at 0.186 (95% CI: 0.121-0.285) or 0.302 (95% CI: 0.224-0.406), respectively. Moreover, the decline in live birth rates during cold and hot weather was accompanied by increased rates of early miscarriage (P < 0.05). Stratified analyses identified susceptibility characteristics among the participants. LIMITATIONS, REASONS FOR CAUTION Climate monitoring data were used to represent individual temperature exposure levels according to the patient's residential address in the study. We were not able to obtain information of personal outdoor activity and use of indoor air conditioners in this retrospective study, which may affect actual temperature exposure. WIDER IMPLICATIONS OF THE FINDINGS This study highlights that the ambient temperature exposure should be taken into account during IVF treatment and afterwards. There is a need to be alert to extremes in cold and hot ambient temperatures, especially during the period of follicle development and pregnancy. With this knowledge, clinicians can scientifically determine the timing of IVF treatment and reinforce patients' awareness of self-protection to minimize adverse pregnancy outcomes associated with extreme temperatures. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a grant from the Clinical Research Plan of Shanghai Hospital Development Center [SHDC2020CR4080], a grant from the Science and Technology Commission of Shanghai Municipality [19411960500], and two grants from the National Natural Science Foundation of China [81871213, 81671468]. B.W.M. is supported by a NHMRC Investigator grant (GNT1176437). B.W.M. reports consultancy for ObsEva, and research grants from Merck KGaA, Ferring and Guerbet. The other authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Lulu Geng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yifeng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andong Qiu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ben W Mol
- Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash University, Melbourne, VIC, Australia
| | - Robert J Norman
- Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, SA, Australia
| | - Xiaoming Teng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Xu Q, Guan Q, Lu Y, Xu J, Deng S, Dong C, Zhang X, Li W, Xia Y. Effect of short-term ambient air pollution exposure on early miscarriage and pregnancy hormones with critical window identification. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132328. [PMID: 37666168 DOI: 10.1016/j.jhazmat.2023.132328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Pregnancy hormones are particularly important in early miscarriage, and some evidence suggests that exposure to air pollution is associated with pregnancy hormones and miscarriage. However, the effects of air pollution on pregnancy hormone-mediated miscarriages have not yet been investigated. METHODS We collected air pollution exposure measurements and pregnancy hormone tests from the participants. Logistic regression models were used to investigate the association between air pollution and early miscarriages. A distributed lag nonlinear model (DLNM) was used to investigate non-linear and delayed associations and identify the crucial window. We performed mediation analysis to estimate the potential association that may exist between pregnancy hormone levels and early miscarriage. RESULTS Short-term exposure to CO and SO2 was associated with early miscarriage. Lag 22-28 days of exposure to both CO and SO2 and lag 15-21 days of exposure to CO were significantly positively associated with early miscarriage, with an obvious exposure dose response. Serum progesterone concentration explained 36.79 % of the association between lag 15-28 days of CO exposure and early miscarriage. CONCLUSION This study provides evidence for the association between short-term exposure to air pollution and early miscarriage, and provides clues for further exploration of biological mechanisms.
Collapse
Affiliation(s)
- Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingying Lu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Siting Deng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaochen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wen Li
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Sun N, Bursac Z, Dryden I, Lucchini R, Dabo-Niang S, Ibrahimou B. Bayesian spatiotemporal modelling for disease mapping: an application to preeclampsia and gestational diabetes in Florida, United States. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109283-109298. [PMID: 37770738 PMCID: PMC10726673 DOI: 10.1007/s11356-023-29953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Morbidities generally show patterns of concentration that vary by space and time. Disease mapping models are useful in estimating the spatiotemporal patterns of disease risks and are therefore pivotal for effective disease surveillance, resource allocation, and the development of prevention strategies. This study considers six spatiotemporal Bayesian hierarchical models based on two spatial conditional autoregressive priors. It could serve as a guideline on the development and application of Bayesian hierarchical models to assess the emerging risk trends, risk clustering, and spatial inequality trends, with estimation of covariables' effects on the interested disease risk. The method is applied to the Florida Birth Record data between 2006 and 2015 to study two cardiovascular risk factors: preeclampsia and gestational diabetes. High-risk clusters were detected in North Central Florida for preeclampsia and in Central Florida for gestational diabetes. While the adjusted disease trend was stable, spatial inequality peaked in 2011-2012 for both diseases. Exposure to PM2.5 at first or/and second trimester increased the risk of preeclampsia and gestational diabetes, but the magnitude is less severe compared to previous studies. In conclusion, this study underscores the significance of selecting appropriate disease mapping models in estimating the intricate spatiotemporal patterns of disease risk and suggests the importance of localized interventions to reduce health disparities. The result also identified an opportunity to study potential risk factors of preeclampsia, as the spike of risk in North Central Florida cannot be explained by current covariables.
Collapse
Affiliation(s)
- Ning Sun
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Zoran Bursac
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Ian Dryden
- Department of Mathematics and Statistics, College of Arts, Science and Education, Florida International University, Miami, FL, USA
| | - Roberto Lucchini
- Environmental Health Science Department, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Sophie Dabo-Niang
- Laboratory PAINLEVE UMR 8524, Inria-MODAL, University of Lille, BP 60149, 59653, Villeneuve d'ascq cedex, France
| | - Boubakari Ibrahimou
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
| |
Collapse
|
12
|
Fernández ACG, Basilio E, Benmarhnia T, Roger J, Gaw SL, Robinson JF, Padula AM. Retrospective analysis of wildfire smoke exposure and birth weight outcomes in the San Francisco Bay Area of California. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:025009. [PMID: 37324234 PMCID: PMC10261910 DOI: 10.1088/2752-5309/acd5f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Despite the occurrence of wildfires quadrupling over the past four decades, the health effects associated with wildfire smoke exposures during pregnancy remains unknown. Particulate matter less than 2.5 μms (PM2.5) is among the major pollutants emitted in wildfire smoke. Previous studies found PM2.5 associated with lower birthweight, however, the relationship between wildfire-specific PM2.5 and birthweight is uncertain. Our study of 7923 singleton births in San Francisco between January 1, 2017 and March 12, 2020 examines associations between wildfire smoke exposure during pregnancy and birthweight. We linked daily estimates of wildfire-specific PM2.5 to maternal residence at the ZIP code level. We used linear and log-binomial regression to examine the relationship between wildfire smoke exposure by trimester and birthweight and adjusted for gestational age, maternal age, race/ethnicity, and educational attainment. We stratified by infant sex to examine potential effect modification. Exposure to wildfire-specific PM2.5 during the second trimester of pregnancy was positively associated with increased risk of large for gestational age (OR = 1.13; 95% CI: 1.03, 1.24), as was the number of days of wildfire-specific PM2.5 above 5 μg m-3 in the second trimester (OR = 1.03; 95% CI: 1.01, 1.06). We found consistent results with wildfire smoke exposure in the second trimester and increased continuous birthweight-for-gestational age z-score. Differences by infant sex were not consistent. Counter to our hypothesis, results suggest that wildfire smoke exposures are associated with increased risk for higher birthweight. We observed strongest associations during the second trimester. These investigations should be expanded to other populations exposed to wildfire smoke and aim to identify vulnerable communities. Additional research is needed to clarify the biological mechanisms in this relationship between wildfire smoke exposure and adverse birth outcomes.
Collapse
Affiliation(s)
- Anna Claire G Fernández
- School of Public Health, University of California, Berkeley
- School of Medicine, University of California, San Francisco
| | - Emilia Basilio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego
| | | | - Stephanie L Gaw
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Joshua F Robinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco
| |
Collapse
|
13
|
Zhang X, Zhang F, Gao Y, Zhong Y, Zhang Y, Zhao G, Zhu S, Zhang X, Li T, Chen B, Han A, Wei J, Zhu W, Li D. Synergic effects of PM 1 and thermal inversion on the incidence of small for gestational age infants: a weekly-based assessment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023:10.1038/s41370-023-00542-0. [PMID: 37019981 DOI: 10.1038/s41370-023-00542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The synergic effects of thermal inversion (TI) and particulate matter with an aerodynamic diameter ≤1 μm (PM1) exposure and incidence of small for gestational age (SGA) was not clear. OBJECTIVE We aimed to explore the independent effects of prenatal TI and PM1 exposure on incidence of SGA and their potential interactive effects. METHODS A total of 27,990 pregnant women who delivered in Wuhan Children's Hospital from 2017 to 2020 were included. The daily mean concentration of PM1 was obtained from ChinaHighAirPollutants (CHAP) and matched with the residential address of each woman. Data on TI was derived from National Aeronautics and Space Administration (NASA). The independent effects of PM1 and TI exposures on SGA in each gestational week were estimated by the distributed lag model (DLM) nested in Cox regression model, and the potential interactive effects of PM1 and TI on SGA were investigated by adapting the relative excess risk due to interaction (RERI) index. RESULTS Per 10 μg/m3 increase in PM1 was associated with an increase in the risk of SGA at 1-3 and 17-23 gestational weeks, with the strongest effect at the first gestational week (HR = 1.043, 95%CI: 1.008, 1.078). Significant links between one day increase of TI and SGA were found at the 1-4 and 13-23 gestational weeks and the largest effects were observed at the 17th gestational week (HR = 1.018, 95%CI: 1.009, 1.027). Synergistic effects of PM1 and TI on SGA were detected in the 20th gestational week, with RERI of 0.208 (95%CI: 0.033,0.383). IMPACT STATEMENT Both prebirth PM1 and TI exposure were significantly associated with SGA. Simultaneous exposure to PM1 and TI might have synergistic effect on SGA. The second trimester seems to be a sensitive window of environmental and air pollution exposure.
Collapse
Affiliation(s)
- Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yan Gao
- Department of Neonatology, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222006, China
| | - Yuanyuan Zhong
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Bingbing Chen
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Aojing Han
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Dejia Li
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
14
|
Pang L, Yu W, Lv J, Dou Y, Zhao H, Li S, Guo Y, Chen G, Cui L, Hu J, Zhao Y, Zhao Q, Chen ZJ. Air pollution exposure and ovarian reserve impairment in Shandong province, China: The effects of particulate matter size and exposure window. ENVIRONMENTAL RESEARCH 2023; 218:115056. [PMID: 36521537 DOI: 10.1016/j.envres.2022.115056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lack of evidence exists on whether air pollution exposure may affect ovarian reserve, especially for Chinese women. OBJECTIVES To explore the association between exposure to various air pollutants and anti-Müllerian hormone (AMH), a predictor of ovarian reserve, over different exposure windows in Shandong Province, China. METHODS We enrolled 18,878 women who had AMH measurements in the Center for Reproductive Medicine, Shandong University during 2010-2019. Daily average concentrations of ambient particulate matter with diameters ≤1 μm/2.5 μm/10 μm (PM1, PM2.5, and PM10), nitrogen dioxide (NO2) and ozone (O3) were developed at a spatial resolution of 0.01° × 0.01°, and assigned to the residential addresses. Three exposure windows were considered, i.e., the process from primary to small antral follicle stage (W1), from primary to secondary follicle stage (W2), and from secondary to small antral follicle stage (W3). The air pollution-AMH association was fitted using the multivariable linear mixed effect model with adjustment for potential confounders. Stratified analyses were performed by age group, overweight status, residential region, and educational level. RESULTS The level of AMH changed by -8.8% (95% confidence interval (CI): -12.1%, -5.3%), -2.1% (95% CI: -3.5%, -0.6%), -1.9% (95% CI: -3.3%, -0.5%), and -4.5% (95% CI: -7.1%, -1.9%) per 10 μg/m3 increase in PM1, PM2.5, PM10, and NO2, respectively, during W1. The effect estimates were significant during W2 for PM1, PM2.5 and NO2 while minimal association was observed in W3. Greater vulnerability for certain air pollutants were observed for women who lived in inland areas and were less educated. CONCLUSIONS We found that ovarian reserve was negatively associated with air pollution exposure for women, particularly from the primary to secondary follicle stage. The effect estimate increased by the reduction in the diameter of PMs, which also varied across population sub-groups.
Collapse
Affiliation(s)
- Lihong Pang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Wenhao Yu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiale Lv
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Yunde Dou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Jingmei Hu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Yueran Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
15
|
Yang J, Chu M, Gong C, Gong X, Han B, Chen L, Wang J, Bai Z, Zhang Y. Ambient fine particulate matter exposures and oxidative protein damage in early pregnant women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120604. [PMID: 36347414 DOI: 10.1016/j.envpol.2022.120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The association between oxidative protein damage in early pregnant women and ambient fine particulate matter (PM2.5) is unknown. We estimated the effect of PM2.5 exposures within seven days before blood collection on serum 3-nitrotyrosine (3-NT) and advanced oxidation protein products (AOPP) in 100 women with normal early pregnancy (NEP) and 100 women with clinically recognized early pregnancy loss (CREPL). Temporally-adjusted land use regression model was applied for estimation of maternal daily PM2.5 exposure. Daily nitrogen dioxide (NO2) exposure of each participant was estimated using city-level concentrations of NO2. Single-day lag effect of PM2.5 was analyzed using multivariable linear regression model. Net cumulative effect and distributed lag effect of PM2.5 and NO2 within seven days were analyzed using distributed lag non-linear model. In all 200 subjects, the serum 3-NT were significantly increased with the single-day lag effects (4.72%-8.04% increased at lag 0-2), distributed lag effects (2.32%-3.49% increased at lag 0-2), and cumulative effect within seven days (16.91% increased). The single-day lag effects (7.41%-10.48% increased at lag 0-1), distributed lag effects (3.42%-5.52% increased at lag 0-2), and cumulative effect within seven days (24.51% increased) of PM2.5 significantly increased serum 3-NT in CREPL group but not in NEP group. The distributed lag effects (2.62%-4.54% increased at lag 0-2) and cumulative effect within seven days (20.25% increased) of PM2.5 significantly increased serum AOPP in early pregnant women before the coronavirus disease (COVID-19) pandemic but not after that, similarly to the effects of NO2 exposures. In conclusion, PM2.5 exposures were associated with oxidative stress to protein in pregnant women in the first trimester, especially in CREPL women. Analysis of NO2 exposures suggested that combustion PM2.5 was the crucial PM2.5 component. Wearing masks may be potentially preventive in PM2.5 exposure and its related oxidative protein damage.
Collapse
Affiliation(s)
- Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
16
|
Chen WJ, Rector AM, Guxens M, Iniguez C, Swartz MD, Symanski E, Ibarluzea J, Ambros A, Estarlich M, Lertxundi A, Riano-Galán I, Sunyer J, Fernandez-Somoano A, Chauhan SP, Ish J, Whitworth KW. Susceptible windows of exposure to fine particulate matter and fetal growth trajectories in the Spanish INMA (INfancia y Medio Ambiente) birth cohort. ENVIRONMENTAL RESEARCH 2023; 216:114628. [PMID: 36279916 PMCID: PMC9847009 DOI: 10.1016/j.envres.2022.114628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
While prior studies report associations between fine particulate matter (PM2.5) exposure and fetal growth, few have explored temporally refined susceptible windows of exposure. We included 2328 women from the Spanish INMA Project from 2003 to 2008. Longitudinal growth curves were constructed for each fetus using ultrasounds from 12, 20, and 34 gestational weeks. Z-scores representing growth trajectories of biparietal diameter, femur length, abdominal circumference (AC), and estimated fetal weight (EFW) during early (0-12 weeks), mid- (12-20 weeks), and late (20-34 weeks) pregnancy were calculated. A spatio-temporal random forest model with back-extrapolation provided weekly PM2.5 exposure estimates for each woman during her pregnancy. Distributed lag non-linear models were implemented within the Bayesian hierarchical framework to identify susceptible windows of exposure for each outcome and cumulative effects [βcum, 95% credible interval (CrI)] were aggregated across adjacent weeks. For comparison, general linear models evaluated associations between PM2.5 averaged across multi-week periods (i.e., weeks 1-11, 12-19, and 20-33) and fetal growth, mutually adjusted for exposure during each period. Results are presented as %change in z-scores per 5 μg/m3 in PM2.5, adjusted for covariates. Weeks 1-6 [βcum = -0.77%, 95%CrI (-1.07%, -0.47%)] were identified as a susceptible window of exposure for reduced late pregnancy EFW while weeks 29-33 were positively associated with this outcome [βcum = 0.42%, 95%CrI (0.20%, 0.64%)]. A similar pattern was observed for AC in late pregnancy. In linear regression models, PM2.5 exposure averaged across weeks 1-11 was associated with reduced late pregnancy EFW and AC; but, positive associations between PM2.5 and EFW or AC trajectories in late pregnancy were not observed. PM2.5 exposures during specific weeks may affect fetal growth differentially across pregnancy and such associations may be missed by averaging exposure across multi-week periods, highlighting the importance of temporally refined exposure estimates when studying the associations of air pollution with fetal growth.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Alison M Rector
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Monica Guxens
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre (Erasmus MC), Rotterdam, the Netherlands
| | - Carmen Iniguez
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, València, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain
| | - Michael D Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Elaine Symanski
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Jesús Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Albert Ambros
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Marisa Estarlich
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain; Faculty of Nursing and Chiropody, Universitat de València, València, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Isolina Riano-Galán
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Servicio de Pediatría, Endocrinología pediátrica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Jordi Sunyer
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Ana Fernandez-Somoano
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; IUOPA-Área de Medicina Preventiva y Salud Pública, Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Suneet P Chauhan
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jennifer Ish
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Durham, NC, USA
| | - Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Gong C, Chu M, Yang J, Gong X, Han B, Chen L, Bai Z, Wang J, Zhang Y. Ambient fine particulate matter exposures and human early placental inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120446. [PMID: 36265729 DOI: 10.1016/j.envpol.2022.120446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The effect of fine particulate matter (PM2.5) on human early maternal-fetal interface is unknown. We explored the association between maternal exposure to ambient PM2.5 and inflammation in placental villus of 114 women with clinically recognized early pregnancy loss (CREPL) and 114 women with normal early pregnancy (NEP). Temporally-adjusted land use regression models were used to estimate maternal daily PM2.5 exposure during pregnancy. Villus interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured using multiplex cytokines detection platform. Single-day lag effect of PM2.5 exposure within ten days before early placental villus collection was estimated using multivariable linear regression model. Distributed lag and net cumulative effects of PM2.5 exposures within ten and 30 days before villus collection, as well as five single weeks during the periovulatory period, were estimated using distributed lag non-linear models. In all 228 subjects, after adjusting for group (CREPL or NEP), temporal confounders, and demographic characteristics, both single-day and distributed lag effects of PM2.5 exposure at lag 8 significantly increased villus IL-6; distributed lag effects of PM2.5 exposure in the first and second weeks before ovulation increased IL-1β, and PM2.5 exposure in the third week after ovulation increased IL-6 and TNF-α. In CREPL, single-day lag effect significantly increased IL-1β (at lag 1), IL-6 (at lag 8), and TNF-α (at lag 5); distributed lag effect increased IL-6 (at lag 4-lag 8) and TNF-α (at lag 4-lag 6); and cumulative effect within ten days before villus collection increased IL-6. There was no statistically significant cumulative effect in NEP. In summary, maternal PM2.5 exposure was associated with placental inflammation in human early pregnancy, particularly with increased villus IL-6 in CREPL. Whether maternal-fetal interface inflammation related to PM2.5 exposure during the periovulatory period or later contributes to CREPL or other adverse pregnancy outcomes requires further study.
Collapse
Affiliation(s)
- Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
18
|
Wang C, Yu G, Menon R, Zhong N, Qiao C, Cai J, Wang W, Zhang H, Liu M, Sun K, Kan H, Zhang J. Acute and chronic maternal exposure to fine particulate matter and prelabor rupture of the fetal membranes: A nation-wide survey in China. ENVIRONMENT INTERNATIONAL 2022; 170:107561. [PMID: 36209598 DOI: 10.1016/j.envint.2022.107561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Prelabor rupture of the fetal membranes (PROM) is a major contributor to adverse perinatal outcomes. Some epidemiologic studies explored the association between maternal PM2.5 exposure and PROM but failed to treat the labor induction and prelabor cesarean section as censored observations. OBJECTIVE We aimed to evaluated whether acute and chronic maternal ambient PM2.5 exposure may increase the risk of PROM in China. METHODS This study was based on the China Labor and Delivery Survey, a nationwide multicenter investigation. Included in the current analysis were 45,879 singleton spontaneous births in 96 hospitals in mainland China from 2015 to 2017. Outcomes were PROM, preterm PROM (<37 weeks' gestation) and term PROM (≥37 weeks' gestation). Daily concentration of PM2.5 at 1 km spatial resolution was estimated by gap-filling model. Generalized linear mixed model and mixed effects Cox model were applied to assess the associations of acute (from 0 to 4 days before delivery) and chronic (average gestational and trimester-specific) ambient PM2.5 exposure with outcomes, respectively. RESULTS Significant associations were found between acute PM2.5 exposures (per interquartile range increase) and the risk of preterm PROM (OR = 1.11; 95 % CI: 1.03, 1.19 for PM2.5 on delivery day; OR = 1.10; 95 % CI: 1.02, 1.18 for PM2.5 1 day before delivery) but not for term PROM. An interquartile range increase in PM2.5 during the second trimester was associated with elevated risks of PROM (HR = 1.14; 95 % CI: 1.07, 1.22), preterm PROM (HR = 1.22; 95 % CI: 1.02, 1.45) and term PROM (HR = 1.13; 95 % CI: 1.06, 1.22), respectively. Women who were less educated, obese, or gave birth in a cold season appeared to be more sensitive to ambient PM2.5 exposure. CONCLUSION Our findings suggest that both acute and chronic maternal exposures to ambient PM2.5 during pregnancy are risk factors for PROM.
Collapse
Affiliation(s)
- Cuiping Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology/Cell Biology at the University Texas Medical Branch at Galveston, TX, U.S.A
| | - Nanbert Zhong
- The New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, U.S.A
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Cai
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Weidong Wang
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Huijuan Zhang
- Department of Pathology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Liu
- Department of Obstetrics, Shanghai Oriental Hospital, Tongji University, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Zhou W, Ming X, Chen Q, Liu X, Yin P. The acute effect and lag effect analysis between exposures to ambient air pollutants and spontaneous abortion: a case-crossover study in China, 2017-2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67380-67389. [PMID: 35522417 PMCID: PMC9492619 DOI: 10.1007/s11356-022-20379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/18/2022] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Recent studies demonstrated that living in areas with high ambient air pollution may have adverse effects on pregnancy outcomes, but few studies have investigated its association with spontaneous abortion. Further investigation is needed to explore the acute effect and lag effect of air pollutants exposure on spontaneous abortion. OBJECTIVE To investigate the acute effect and lag effect between exposure to ambient air pollutants and spontaneous abortion. METHODS Research data of spontaneous abortion were collected from the Chongqing Health Center for Women and Children (CQHCWC) in China. The daily ambient air pollution exposure measurements were estimated for each woman using inverse distance weighting from monitoring stations. A time-stratified, case-crossover design combined with distributed lag linear models was applied to assess the associations between spontaneous pregnancy loss and exposure to each of the air pollutants over lags 0-7 days, adjusted for temperature and relative humidity. RESULTS A total of 1399 women who experienced spontaneous pregnancy loss events from November 1, 2016, to September 30, 2019, were selected for this study. Maternal exposure to particulate matter 2.5 (PM2.5), particle matter 10 (PM10) nitrogen dioxide (NO2), and sulfur dioxide (SO2) exhibited a significant association with spontaneous abortion. For every 20 μg/m3 increase in PM2.5, PM10, NO2, and SO2, the RRs were 1.18 (95% CI: 1.06, 1.34), 1.12 (95% CI, 1.04-1.20), 1.15 (95% CI: 1.02, 1.30), and 1.92 (95% CI: 1.18, 3.11) on lag day 3, lag day 3, lag day 0, and lag day 3, respectively. In two-pollutant model combined with PM2.5 and PM10, a statistically significant increase in spontaneous abortion incidence of 18.0% (RR = 1.18, 95% CI: 1.06, 1.32) was found for a 20 μg/m3 increase in PM2.5 exposure, and 11.2% (RR = 1.11, 95% CI: 1.03, 1.20) for a 20 μg/m3 increase in PM10 exposure on lag day 3, similar to single-pollutant model analysis. CONCLUSION Maternal exposure to high levels of PM2.5, PM10, NO2, and SO2 during pregnancy may increase the risk of spontaneous abortion for acute effects and lag effects. Further research to explore sensitive exposure time windows is needed.
Collapse
Affiliation(s)
- Wenzheng Zhou
- Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Xin Ming
- Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaoli Liu
- Chongqing Health Center for Women and Children, Chongqing, 401147, China.
| | - Ping Yin
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
20
|
Outdoor Air Pollution and Pregnancy Loss: a Review of Recent Literature. CURR EPIDEMIOL REP 2022. [DOI: 10.1007/s40471-022-00304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose of Review
This review summarizes recent literature about the impacts of outdoor air pollution on pregnancy loss (spontaneous abortion/miscarriage and stillbirth), identifies challenges and opportunities, and provides recommendations for actions.
Recent Findings
Both short- and long-term exposures to ubiquitous air pollutants, including fine particulate matter < 2.5 and < 10 μm, may increase pregnancy loss risk. Windows of susceptibility include the entire gestational period, especially early pregnancy, and the week before event. Vulnerable subpopulations were not consistently explored, but some evidence suggests that pregnant parents from more disadvantaged populations may be more impacted even at the same exposure level.
Summary
Given environmental conditions conductive to high air pollution exposures become more prevalent as the climate shifts, air pollution’s impacts on pregnancy is expected to become a growing public health concern. While awaiting larger preconception studies to further understand causal impacts, multi-disciplinary efforts to minimize exposures among pregnant women are warranted.
Collapse
|
21
|
Zhang B, Gong X, Han B, Chu M, Gong C, Yang J, Chen L, Wang J, Bai Z, Zhang Y. Ambient PM 2.5 exposures and systemic inflammation in women with early pregnancy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154564. [PMID: 35302014 DOI: 10.1016/j.scitotenv.2022.154564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The association between ambient fine particulate matter (PM2.5) and systemic inflammation in women with early pregnancy is unclear. This study estimated the effects of PM2.5 exposures on inflammatory biomarkers in women with normal early pregnancy (NEP) or clinically recognized early pregnancy loss (CREPL). Serum interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured in 228 early pregnant women recruited in Tianjin, China. Maternal PM2.5 exposures at lag 0 through lag 30 before blood collection were estimated using temporally-adjusted land use regression models. Daily exposures to ambient PM10, NO2, SO2, CO and 8-hours maximum ozone were estimated using city-level concentrations. Single-day lag effects at lag 0 through lag 7 were estimated using multivariable linear regression models. Distributed lag effects and cumulative effects over the preceding seven days and 30 days were estimated using distributed lag non-linear models. Serum IL-1β (8.0% increase at lag 3), IL-6 (33.9% increase at lag 5) and TNF-α (12.7% increase at lag 5) in early pregnant women were significantly increased with an interquartile range increase in PM2.5 exposures adjusted for temporal confounders and demographic characteristics. These effects were robust in several two-pollutant models. Distributed lag effects over the preceding 30 days also showed that the three cytokines were significantly increased with PM2.5 on some lag days. Among all cumulative effects of PM2.5 on the three cytokines in all subjects or in the two groups, only IL-6 was significantly increased in CREPL women over the preceding seven days and 30 days. No significant cumulative effect of PM2.5 was observed in NEP women. In conclusion, exposure to ambient PM2.5 may induce systemic inflammation in women in the first trimester of pregnancy. Whether the PM2.5-related cumulative increase in maternal IL-6 is involved in the pathogenic mechanisms of early pregnancy loss needs to be identified in future research.
Collapse
Affiliation(s)
- Bumei Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
22
|
Ambient Air Pollution Exposure Assessments in Fertility Studies: a Systematic Review and Guide for Reproductive Epidemiologists. CURR EPIDEMIOL REP 2022; 9:87-107. [DOI: 10.1007/s40471-022-00290-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Purpose of Review
We reviewed the exposure assessments of ambient air pollution used in studies of fertility, fecundability, and pregnancy loss.
Recent Findings
Comprehensive literature searches were performed in the PUBMED, Web of Science, and Scopus databases. Of 168 total studies, 45 met the eligibility criteria and were included in the review. We find that 69% of fertility and pregnancy loss studies have used one-dimensional proximity models or surface monitor data, while only 35% have used the improved models, such as land-use regression models (4%), dispersion/chemical transport models (11%), or fusion models (20%). No published studies have used personal air monitors.
Summary
While air pollution exposure models have vastly improved over the past decade from a simple, one-dimensional distance or air monitor data to models that incorporate physiochemical properties leading to better predictive accuracy, precision, and increased spatiotemporal variability and resolution, the fertility literature has yet to fully incorporate these new methods. We provide descriptions of each of these air pollution exposure models and assess the strengths and limitations of each model, while summarizing the findings of the literature on ambient air pollution and fertility that apply each method.
Collapse
|
23
|
Lu Y, Zhang Y, Guan Q, Xu L, Zhao S, Duan J, Wang Y, Xia Y, Xu Q. Exposure to multiple trace elements and miscarriage during early pregnancy: A mixtures approach. ENVIRONMENT INTERNATIONAL 2022; 162:107161. [PMID: 35219936 DOI: 10.1016/j.envint.2022.107161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to some conventional trace elements has been found to be associated with miscarriage; however, evidence for combined exposure is inconclusive. Therefore, it is important to explore the joint associations between toxic and essential trace elements and miscarriage. METHODS This cross-sectional study measured a wide range of element levels in the whole blood of pregnant women by using inductively coupled plasma mass spectrometry. The associations between individual elements and miscarriage were appraised using logistic regression model. Multi-exposure models, including Bayesian kernel machine regression (BKMR) and weighted quantile sum regression (WQS), were used to explore the mixed exposure to elements. Furthermore, grouped weighted quantile sum (GWQS) considered multiple elements with different magnitudes and directions of associations. RESULTS In logistic regression, the odds ratios (ORs) with a 95% confidence interval (CI) in the highest quartiles were 5.45 (2.00, 15.91) for barium, 0.28 (0.09, 0.76) for copper, and 0.32 (0.12, 0.83) for rubidium. These exposure-outcome associations were confirmed and supplemented by BKMR, which indicated a positive association for barium and negative associations for copper and rubidium. In WQS, a positive association was found between mixed elements and miscarriage (OR: 1.71; 95% CI: 1.07, 2.78), in which barium (75.7%) was the highest weighted element. The results of GWQS showed that the toxic trace element group dominated by barium was significantly associated with increased ORs (OR: 2.71; 95% CI: 1.74, 4.38). Additionally, a negative association was observed between the essential trace element group and miscarriage (OR: 0.32; 95% CI: 0.18, 0.54), with rubidium contributing the most to the result. CONCLUSIONS As a toxic trace element, barium was positively associated with miscarriage both by individual and multiple evaluations, while essential trace elements, particularly rubidium and copper, exhibited negative associations. Our findings provide significant evidence for exploring the effects of trace elements on miscarriage.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lu Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Shuangshuang Zhao
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Gong C, Wang J, Bai Z, Rich DQ, Zhang Y. Maternal exposure to ambient PM 2.5 and term birth weight: A systematic review and meta-analysis of effect estimates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150744. [PMID: 34619220 DOI: 10.1016/j.scitotenv.2021.150744] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Effect estimates of prenatal exposure to ambient PM2.5 on change in grams (β) of birth weight among term births (≥37 weeks of gestation; term birth weight, TBW) vary widely across studies. We present the first systematic review and meta-analysis of evidence regarding these associations. Sixty-two studies met the eligibility criteria for this review, and 31 studies were included in the meta-analysis. Random-effects meta-analysis was used to assess the quantitative relationships. Subgroup analyses were performed to gain insight into heterogeneity derived from exposure assessment methods (grouped by land use regression [LUR]-models, aerosol optical depth [AOD]-based models, interpolation/dispersion/Bayesian models, and data from monitoring stations), study regions, and concentrations of PM2.5 exposure. The overall pooled estimate involving 23,925,941 newborns showed that TBW was negatively associated with PM2.5 exposure (per 10 μg/m3 increment) during the entire pregnancy (β = -16.54 g), but with high heterogeneity (I2 = 95.6%). The effect estimate in the LUR-models subgroup (β = -16.77 g) was the closest to the overall estimate and with less heterogeneity (I2 = 18.3%) than in the other subgroups of AOD-based models (β = -41.58 g; I2 = 95.6%), interpolation/dispersion models (β = -10.78 g; I2 = 86.6%), and data from monitoring stations (β = -11.53 g; I2 = 97.3%). Even PM2.5 exposure levels of lower than 10 μg/m3 (the WHO air quality guideline value) had adverse effects on TBW. The LUR-models subgroup was the only subgroup that obtained similar significant of negative associations during the three trimesters as the overall trimester-specific analyses. In conclusion, TBW was negatively associated with maternal PM2.5 exposures during the entire pregnancy and each trimester. More studies based on relatively standardized exposure assessment methods need to be conducted to further understand the precise susceptible exposure time windows and potential mechanisms.
Collapse
Affiliation(s)
- Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
25
|
Khadka A, Canning D. Understanding the Pathways from Prenatal and Post-Birth PM 2.5 Exposure to Infant Death: An Observational Analysis Using US Vital Records (2011-2013). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:258. [PMID: 35010519 PMCID: PMC8751133 DOI: 10.3390/ijerph19010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We studied the relationship of prenatal and post-birth exposure to particulate matter < 2.5 μm in diameter (PM2.5) with infant mortality for all births between 2011 and 2013 in the conterminous United States. Prenatal exposure was defined separately for each trimester, post-birth exposure was defined in the 12 months following the prenatal period, and infant mortality was defined as death in the first year of life. For the analysis, we merged over 10 million cohort-linked live birth-infant death records with daily, county-level PM2.5 concentration data and then fit a Structural Equation Model controlling for several individual- and county-level confounders. We estimated direct paths from the two exposures to infant death as well as indirect paths from the prenatal exposure to the outcome through preterm birth and low birth weight. Prenatal PM2.5 exposure was positively associated with infant death across all trimesters, although the relationship was strongest in the third trimester. The direct pathway from the prenatal exposure to the outcome accounted for most of this association. Estimates for the post-birth PM2.5-infant death relationship were less precise. The results from our study add to a growing literature that provides evidence in favor of the potential harmful effects on human health of low levels of air pollution.
Collapse
Affiliation(s)
- Aayush Khadka
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| | - David Canning
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| |
Collapse
|
26
|
Sun S, Wang X, Ding L, Zhang Q, Li N, Sui X, Li C, Ju L, Zhao Q, Chen H, Ding R, Cao J. Association between preconceptional air pollution exposure and medical purposes for selective termination of pregnancy. ENVIRONMENTAL RESEARCH 2021; 202:111743. [PMID: 34331927 DOI: 10.1016/j.envres.2021.111743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to air pollutants is associated with adverse pregnancy outcomes. But evidence on the effects of preconceptional air pollution exposure on the risk of termination of pregnancy (TOP) caused by pregnancy losses and congenital malformations is lacking. METHODS The distributed lag nonlinear model (DLNM) was used to evaluate the impact of short-term air pollutants exposure on the risk of TOP. Stratified analyses by age (<35 years old, ≥ 35 years old) and season (warm season, cold season) were further conducted. Relative risk (RR) and 95 % confidential interval (95 % CI) were calculated for per interquartile range (IQR) increment in air pollutants during the study period. RESULTS PM2.5, PM10, and O3 exposure were significantly associated with elevated risk of TOP. The risk of TOP was associated with PM2.5 exposure from lag11 to lag15 in the single-pollutant model, and the strongest association was observed at lag13 (RR = 1.021, 95%CI:1.002-1.040). PM10 exposure from lag10 to lag15 was associated with increased TOP risk, with the corresponding peak association being at lag13 (RR = 1.020, 95%CI: 1.004-1.037). For O3, the single-day lag association appeared to be statistically significant from lag26 to lag27, with the highest RR of TOP cases being at lag27 (RR = 1.044, 95%CI: 1.005-1.084). Similar results were observed for pregnancy losses (PL). However, no significantly association between air pollution exposure and the risk of congenital malformations (CM) was found in this study. Stratified analyses showed that pregnant women with more advanced ages were more susceptible to PM2.5, PM10, and O3 exposure. The effect of PM2.5 exposure was statistically significant in cold season subgroups. CONCLUSION The findings suggest that exposure to PM2.5, PM10, and O3 before pregnancy are associated with the risk of TOP in Lu'an, China, reflecting the significance of preconceptional environmental exposure in the development of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xiaoyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Obstetrics and Gynecology, Lu'an Hospital Affiliated to Anhui Medical University, 21 West Wanxi Road, Lu'an, China
| | - Liu Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xinmiao Sui
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, 15 Yimin Road, Hefei, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
27
|
Liu J, Zhao M, Zhang H, Zhao J, Kong H, Zhou M, Guan Y, Li TC, Wang X, Chan DYL. Associations between ambient air pollution and IVF outcomes in a heavily polluted city in China. Reprod Biomed Online 2021; 44:49-62. [PMID: 34836814 DOI: 10.1016/j.rbmo.2021.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION Is air pollution related to IVF outcomes in a heavily polluted city in China? DESIGN A retrospective cohort study of 8628 fresh, autologous IVF cycles was conducted for the first time at the Reproductive Medicine Center of The Third Affiliated Hospital of Zhengzhou University between May 2014 and December 2018 (oocyte retrieval date). The exposure was divided into four periods (gonadotrophin injection to oocyte retrieval [P1], oocyte retrieval to embryo transfer [P2], 1 day after embryo transfer to embryo transfer +14 days [P3] and gonadotrophin injection to embryo transfer +14 days [P4]) and four levels (Q1-Q4 according to their 25th, 50th and 75th percentiles). RESULTS An interquartile range increase (Q2 versus Q1) in particulate matter ≤10 µm (PM10) during P3 and P4 and sulphur dioxide (SO2) during P3 significantly decreased the clinical pregnancy rate (adjusted odds ratio [aOR] 0.81, 95% confidence interval [CI] 0.71-0.92 for PM10 of P3; aOR 0.87, 95% CI 0.76-1.00 for PM10 of P4; aOR 0.82, 95% CI 0.73-0.93 for SO2 of P3). In addition, PM10 was associated with an increased biochemical pregnancy rate (Q3 versus Q1: aOR 1.55, 95% CI 1.09-2.19 for PM10 of P1) and decreased live birth rate (Q2 versus Q1: aOR 0.88, 95% CI 0.77-0.99 for PM10 of P3). The multivariate regression results were consistent with that of multiple treatments propensity score method (PSM) for SO2 pollutants in P3 and PM10 pollutants in P4. CONCLUSION From the early follicular stage to the pregnancy test period, high concentrations of PM10 and SO2 may have a negative impact on IVF treatment outcomes in the study area.
Collapse
Affiliation(s)
- Jing Liu
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Junliang Zhao
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjiao Kong
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Zhou
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yichun Guan
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingling Wang
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Wang H, Li J, Liu H, Guo F, Xue T, Guan T, Li J. Association of maternal exposure to ambient particulate pollution with incident spontaneous pregnancy loss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112653. [PMID: 34411818 DOI: 10.1016/j.ecoenv.2021.112653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal exposure to ambient fine particulate matter (PM2.5) is a potential risk factor for pregnancy loss, but the extant findings are inconsistent. One reason for the inconsistency is the difficulty of distinguishing spontaneous from induced pregnancy losses, particularly in countries with planning policies. OBJECTIVE To examine the association between maternal PM2.5 exposure and spontaneous incident pregnancy loss in China. METHODS A total of 18,513 women of reproductive age was recruited from Jiangsu Province, China, in 2007. Among them, 2451 women reported 2613 valid records of incident pregnancies from 2007 to 2010. We used Cox regression to link the outcomes (live birth, spontaneous pregnancy loss, or induced abortion) of those incident pregnancies with maternal PM2.5 exposures, assessed using well-developed estimates of historical concentrations at the county level. RESULTS Among the 2613 incident pregnancies, 69 spontaneous pregnancy losses, 596 induced abortions, and 1948 live births occurred. According to the adjusted model, each 10-μg/m3 increment in the average PM2.5 concentration during pregnancy was associated with a 43.3% (95% confidence interval, 6.6-92.5%) increased probability of spontaneous pregnancy loss. Advanced maternal age, a potential competing risk factor, weakened the association between PM2.5 and spontaneous pregnancy loss. The association was nonsignificant for unintended pregnancies. CONCLUSION Maternal PM2.5 exposure was associated significantly with incident spontaneous pregnancy loss. Our findings provide insight into the harmful effect of air pollution on human reproduction.
Collapse
Affiliation(s)
- Huiyu Wang
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jiajianghui Li
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Fuyu Guo
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Tao Xue
- Institute of Reproductive and Child Health / Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Tianjia Guan
- Department of Health Policy, School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiwei Li
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China; Shannon.AI, Beijing 100080, China
| |
Collapse
|
29
|
Geng N, Song X, Cao R, Luo Y, A M, Cai Z, Yu K, Gao Y, Ni Y, Zhang H, Chen J. The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115922. [PMID: 33139092 DOI: 10.1016/j.envpol.2020.115922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 pollution was associated with numerous adverse health effects. However, PM2.5 induced toxic effects and the relationships with toxic components remain largely unknown. To evaluate the metabolic toxicity of PM2.5 at environmentally relevant doses, investigate the seasonal variation of PM2.5 induced toxicity and the relationship with toxic components, a combination of general pathophysiological tests and metabolomics analysis was conducted in this study to explore the response of SD rats to PM2.5 exposure. The result of general toxicology analysis revealed unconspicuous toxicity of PM2.5 under environmental dose, but winter PM2.5 at high dose caused severe histopathological damage to lung. Metabolomic analysis highlighted significant metabolic disorder induced by PM2.5 even at environmentally relevant doses. Lipid metabolism and GSH metabolism were primarily influenced by PM2.5 exposure due to the high levels of heavy metals. In addition, high levels of organic compounds such as PAHs, PCBs and PCDD/Fs in winter PM2.5 bring multiple overlaps on the toxic pathways, resulting in larger pulmonary toxicity and metabolic toxicity in rats than summer.
Collapse
Affiliation(s)
- Ningbo Geng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaoyao Song
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Rong Cao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Yun Luo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mila A
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, Liaoning, 116028, China
| | - Zhengang Cai
- The First Affiliated Hospital of Dalian Medical University, 116011, Liaoning, China
| | - Kejie Yu
- The First Affiliated Hospital of Dalian Medical University, 116011, Liaoning, China
| | - Yuan Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Yuwen Ni
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Haijun Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.
| |
Collapse
|
30
|
Zhang Y, Wang J, Gong X, Chen L, Zhang B, Wang Q, Han B, Zhang N, Xue F, Vedal S, Bai Z. Ambient PM 2.5 exposures and systemic biomarkers of lipid peroxidation and total antioxidant capacity in early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115301. [PMID: 32827983 DOI: 10.1016/j.envpol.2020.115301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Evidence for effects of PM2.5 on systemic oxidative stress in pregnant women is limited, especially in early pregnancy. To estimate the associations between ambient PM2.5 exposures and biomarkers of lipid peroxidation and total antioxidant capacity (T-AOC) in women with normal early pregnancy (NEP) and women with clinically recognized early pregnancy loss (CREPL), 206 early pregnant women who had measurements of serum malondialdehyde (MDA) and T-AOC were recruited from a larger case-control study in Tianjin, China from December 2017 to July 2018. Ambient PM2.5 concentrations of eight single-day lags exposure time windows before blood collection at the women's residential addresses were estimated using temporally-adjusted land use regression models. Effects of PM2.5 exposures on percentage change in the biomarkers were estimated using multivariable linear regression models adjusted for month, temperature, relative humidity, gestational age and other covariates. Unconstrained distributed lag models were used to estimate net cumulative effects. Increased serum MDA and T-AOC were significantly associated with increases in PM2.5 at several lag exposure time windows in both groups. The net effects of each interquartile range increase in PM2.5 over the preceding 8 days on MDA were significantly higher (p < 0.001) in CREPL [52% (95% CI: 41%, 62%)] than NEP [22% (95% CI: 9%, 36%)] women. Net effects of each interquartile range increase in PM2.5 over the preceding 5 days on T-AOC were significantly lower (p = 0.010) in CREPL [14% (95% CI: 9%, 19%)] than NEP [24% (95% CI: 18%, 29%)] women. Exposure to ambient PM2.5 may induce systemic lipid peroxidation and antioxidant response in early pregnant women. More severe lipid peroxidation and insufficient antioxidant capacity associated with PM2.5 was found in CREPL women than NEP women. Future studies should focus on mechanisms of individual susceptibility and interventions to reduce PM2.5-related oxidative stress in the first trimester.
Collapse
Affiliation(s)
- Yujuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xian Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Bumei Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qina Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Sverre Vedal
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
31
|
Jung EM, Kim KN, Park H, Shin HH, Kim HS, Cho SJ, Kim ST, Ha EH. Association between prenatal exposure to PM 2.5 and the increased risk of specified infant mortality in South Korea. ENVIRONMENT INTERNATIONAL 2020; 144:105997. [PMID: 32768726 DOI: 10.1016/j.envint.2020.105997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Findings from previous studies on the association between exposure to fine particulate matter (PM2.5) and the risk of infant mortality were inconsistent. Thus, two main objectives of our study were to examine the association between exposure to PM2.5 and specified infant mortality and to identify critical trimesters. METHODS We retrospectively created a birth cohort of singleton full-term infants born in South Korea between 2010 and 2015 using national birth and infant mortality data. The specified causes of infant mortality were circulatory and respiratory diseases, perinatal conditions, congenital anomalies, and sudden infant death syndrome. We performed 1:10 propensity score matching for various exposure windows: each trimester, prenatal, and postnatal (up to age 1). Conditional logistic regression was applied to estimate odds ratios (ORs) and 95% confidence intervals (CIs), while accounting for gestational age, birth weight, maternal education level, season of birth, and regions (metropolitan areas/provinces). We also conducted sex-stratified analyses and used different matching ratios for sensitivity analyses. RESULTS A total of 2,501,836 births and 761 deaths (0.03%) were identified in the birth cohort. We found an increased risk of infant mortality per 10 µg/m3 increase in PM2.5 exposure during the prenatal period (OR: 1.29, 95% CI: 1.07-1.55). Exposure in the 1st and 2nd trimesters was linked to an elevated risk (OR: 1.19, 95% CI: 1.02-1.37; OR: 1.21, 95% CI: 1.04-1.40). However, no association was shown in the third trimester. PM2.5 exposure in the 1st and 2nd trimesters was associated with elevated male infant mortality, but did not reach statistical significance in female infants. The use of different matching ratios did not significantly affect the results. CONCLUSION The study findings suggest that exposure to PM2.5 could affect infant mortality differently by the timing of exposure and sex, which suggests a relation to fetal development. However, further investigations are warranted.
Collapse
Affiliation(s)
- Eun Mi Jung
- Department of Occupational and Environmental Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Global Health Institute for Girls, Ewha Womans University, Seoul, Republic of Korea
| | - Kyoung-Nam Kim
- Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hwashin H Shin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Womans University, Seoul, Republic of Korea
| | - Su Jin Cho
- Department of Pediatrics, Ewha Womans University, Seoul, Republic of Korea
| | - Soon Tae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Eun Hee Ha
- Department of Occupational and Environmental Medicine, Ewha Womans University, Seoul, Republic of Korea; Ewha Global Health Institute for Girls, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Li L, Zhou L, Feng T, Hao G, Yang S, Wang N, Yan L, Pang Y, Niu Y, Zhang R. Ambient air pollution exposed during preantral-antral follicle transition stage was sensitive to associate with clinical pregnancy for women receiving IVF. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114973. [PMID: 32806448 DOI: 10.1016/j.envpol.2020.114973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Maternal exposure to air pollution is associated with poor reproductive outcomes in in vitro fertilization (IVF). However, the susceptible time windows are still not been known clearly. In the present study, we linked the air pollution data with the information of 9001 women receiving 10,467 transfer cycles from August 2014 to August 2019 in The Second Hospital of Hebei Medical University, Shijiazhuang City, China. Maternal exposure was presented as individual average daily concentrations of PM2.5, PM10, NO2, SO2, CO, and O3, which were predicted by spatiotemporal kriging model based on residential addresses. Exposure windows were divided to five periods according to the process of follicular and embryonic development in IVF. Generalized estimating equation model was used to evaluate adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for association between clinical pregnancy and interquartile range increased average daily concentrations of pollutants during each exposure period. The increased PM2.5 (adjusted OR = 0.95, 95% CI: 0.90, 0.99), PM10 (adjusted OR = 0.93, 95% CI: 0.89, 0.98), NO2 (adjusted OR = 0.89, 95% CI: 0.85, 0.94), SO2 (OR = 0.94, 95% CI: 0.90, 0.98), CO (adjusted OR = 0.93, 95% CI: 0.89, 0.97) whereas decreased O3 (OR = 1.08, 95% CI: 1.02, 1.14) during the duration from preantral follicles to antral follicles were the strongest association with decreased probability of clinical pregnancy among the five periods. Especially, women aged 20-29 years old were more susceptible in preantral-antral follicle transition stage. Women aged 36-47 years old were more vulnerable during post-oocyte retrieve period. Our results suggested air pollution exposure during preantral-antral follicle transition stage was a note-worthy challenge to conceive among females receiving IVF.
Collapse
Affiliation(s)
- Lipeng Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Tengfei Feng
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Sujuan Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Ning Wang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lina Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yujie Niu
- Department Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|
33
|
Hu C, Sheng X, Li Y, Xia W, Zhang B, Chen X, Xing Y, Li X, Liu H, Sun X, Xu S. Effects of prenatal exposure to particulate air pollution on newborn mitochondrial DNA copy number. CHEMOSPHERE 2020; 253:126592. [PMID: 32289600 DOI: 10.1016/j.chemosphere.2020.126592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/05/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Prenatal exposure to particulate matter (PM) in ambient air has been linked to changes in newborn mitochondrial DNA copy number (mtDNAcn), but the effects of exposure are inconsistent. We aimed to investigate the effect of weekly PM exposure during pregnancy on newborn mtDNAcn. The present study included 762 mother-infant pairs who were recruited in a birth cohort established between November 2013 and March 2015 in Wuhan, China. Mother's prenatal daily exposure to PM2.5 and PM10 was calculated using a spatial-temporal land use regression model. Relative mtDNAcn in cord blood leukocytes was determined by quantitative real-time polymerase chain reaction. Distributive lag regression models (DLMs) were applied to estimate the association between PM exposure and newborn mtDNAcn. In the adjusted models, prenatal PM2.5 exposure during 25-32 weeks and PM10 exposure during 25-31weeks were significantly associated with decreased cord blood mtDNAcn. PM2.5 exposure during the third trimester was related to decreased mtDNAcn (cumulative percent change: -8.55%, 95% CI: -13.32%, -3.51%). We also identified other exposure windows (17-22 and 11-22 weeks) in which PM exposure was positively associated with mtDNAcn. Overall, exposure to particulate air pollution during mid-to-late gestation is significantly associated with alterations in newborn mtDNAcn, potentially suggesting an enhanced sensitivity to PM exposure during this period.
Collapse
Affiliation(s)
- Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Xiaomei Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuling Xing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinping Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
34
|
Bi S, Tang J, Zhang L, Huang L, Chen J, Wang Z, Chen D, Du L. Fine particulate matter reduces the pluripotency and proliferation of human embryonic stem cells through ROS induced AKT and ERK signaling pathway. Reprod Toxicol 2020; 96:231-240. [PMID: 32745510 DOI: 10.1016/j.reprotox.2020.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Epidemiological investigations have found that air fine particulate matter (PM) exposure not only causes respiratory and cardiovascular diseases in adults and children, but also affects embryonic development during pregnancy, leading to poor pregnancy outcomes. However, its exact molecular mechanism is still unclear. In this study, human embryonic stem cells (hESCs) were treated with PM at different concentrations then the morphology and proliferation capacity were measured. The mRNA and protein expression of NANOG and OCT4 were detected using quantitative PCR, immunofluorescence, western blotting, and flow cytometry. Reactive oxygen species (ROS) generation and AKT/ERK activation were also measured. Meanwhile, changes in ROS, the expression of NANOG, OCT4, and the AKT/ERK pathways were measured in the hESCs with or without pretreatment of ROS scavenger N-acetylcysteine (NAC) prior to PM exposure. After PM exposure, the proliferation capacity and expression of OCT4 and NANOG at the mRNA and protein levels were downregulated. The ROS level in the hESCs increased after PM exposure, but this increase in ROS was attenuated by pretreatment with NAC. Further analysis showed that the levels of phosphorylated AKT and ERK increased after PM exposure. After pretreatment with NAC, the phosphorylation levels of AKT and ERK, which are crucial for regulating the proliferation, pluripotency, and differentiation of hESC, were significantly attenuated compared with the non-NAC pretreated exposure group. These results suggest that PM exposure may reduce the proliferation and pluripotency of hESC through ROS-mediated AKT/ERK pathways, thereby affecting the long-term development of embryos.
Collapse
Affiliation(s)
- Shilei Bi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingman Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| | - Lili Du
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| |
Collapse
|
35
|
Carey G. From the frontlines: Public health and a suffocating city. Health Promot J Austr 2020; 31:5-6. [PMID: 31994283 DOI: 10.1002/hpja.318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gemma Carey
- Centre for Social Impact, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
36
|
Li Z, Ma J, Shen J, Chan MTV, Wu WKK, Wu Z. Differentially expressed circular RNAs in air pollution-exposed rat embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34421-34429. [PMID: 31637615 DOI: 10.1007/s11356-019-06489-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Circular RNAs (circRNAs) are an important class of non-coding RNAs partly by acting as microRNA sponges. Growing evidence indicates that air pollution exposure during pregnancy could lead to congenital defects in the offspring. In this study, using circRNAs sequencing, we profiled differentially expressed circRNAs in rat embryos exposed to a high concentration (> 200 μg/m3) of fine particulate matter (PM2.5) in utero. Compared with the control embryos whose mothers were reared in clean air, 25 and 55 circRNAs were found to be downregulated and upregulated, respectively, in the air pollution-exposed group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of circRNA-coexpressed genes indicated that segmentation, brain development, and system development together with lysine degradation, Rap1 signaling pathway, and adrenergic signaling were deregulated by in utero air pollution exposure. We also identified the central role of three circRNAs, namely circ_015003, circ_030724, and circ_127215 in the circRNA-microRNA interaction network. These data suggested that circRNA deregulation might play a crucial role in the development of air pollution-associated congenital malformations.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqing Ma
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai, Hebei, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhanyong Wu
- Department of Orthopedic Surgery, The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai, Hebei, China.
| |
Collapse
|
37
|
Zhang JJ, Adcock IM, Bai Z, Chung KF, Duan X, Fang Z, Gong J, Li F, Miller RK, Qiu X, Rich DQ, Wang B, Wei Y, Xu D, Xue T, Zhang Y, Zheng M, Zhu T. Health effects of air pollution: what we need to know and to do in the next decade. J Thorac Dis 2019; 11:1727-1730. [PMID: 31179119 DOI: 10.21037/jtd.2019.03.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junfeng Jim Zhang
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC, USA.,Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China.,State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China
| | - Ian M Adcock
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, UK
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Kian Fan Chung
- Airway Disease Section, National Heart & Lung Institute, NIHR Respiratory Biomedical Research Unit at the Royal Brompton NHS Foundation Trust and Imperial College London, London, UK
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100000, China
| | - Zhangfu Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jicheng Gong
- Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China.,State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospitale, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200000, China.,Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Richard K Miller
- Departments of Obstetrics and Gynecology, of Environmental Medicine and of Pathology, University of Rochester Medical Center, Rochester, NY, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100000, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences, Beijing 100000, China
| | - Dongqun Xu
- Institute of Environmental Health Science, Chinese Center for Disease Control and Prevention, Beijing 100000, China
| | - Tao Xue
- Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China.,State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100000, China.,Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100000, China
| | - Mei Zheng
- Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China.,State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China
| | - Tong Zhu
- Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China.,State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100000, China
| |
Collapse
|