1
|
Liu Y, Zeng H, Ding S, Hu Z, Tie B, Luo S. A new insight into the straw decomposition associated with minerals: Promoting straw humification and Cd immobilization. J Environ Sci (China) 2025; 148:553-566. [PMID: 39095188 DOI: 10.1016/j.jes.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 08/04/2024]
Abstract
Organic matter (OM) derived from the decomposition of crop residues plays a key role as a sorbent for cadmium (Cd) immobilization. Few studies have explored the straw decomposition processes with the presence of minerals, and the effect of newly generated organo-mineral complexes on heavy metal adsorption. In this study, we investigated the variations in structure and composition during the rice straw decomposition with or without minerals (goethite and kaolinite), as well as the adsorption behavior and mechanisms by which straw decomposition affects Cd immobilization. The degree of humification of extracted straw organic matter was assessed using excitation-emission matrix (EEM) fluorescence and Ultraviolet-visible spectroscopy (UV-vis), while employing FTIR spectroscopy and XPS to characterize the adsorption mechanisms. The spectra analysis revealed the enrichment of highly aromatic and hydrophobic components, indicating that the degree of straw decomposition and humification were further intensified during incubation. Additionally, the existence of goethite (SG) accelerated the humification of OM. Sorption experiments revealed that the straw humification increased Cd adsorption capacity. Notably, SG exhibited significantly higher adsorption performance compared to the organic matter without minerals (RS) and the existence of kaolinite (SK). Further analysis using FT-IR spectroscopy and XPS verified that the primary mechanisms involved in Cd immobilization were complexion with -OH and -COOH, as well as the formation of Cd-π binds with aromatic C=C on the surface of solid OMs. These findings will facilitate understanding the interactions of the rice straw decomposing with soil minerals and its remediation effect on Cd-contaminated farmland.
Collapse
Affiliation(s)
- Yuling Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Haowei Zeng
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Siduo Ding
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Baiqing Tie
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Li Y, Zhang S, Fu H, Sun Y, Tang S, Xu J, Li J, Gong X, Shi L. Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178302. [PMID: 39740622 DOI: 10.1016/j.scitotenv.2024.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system. In this review, we summarized (1) the bidirectional effect between Fe (oxyhydr)oxides and NOM, including preservation, decomposition, electron transfer, adsorption, reactive oxygen species production, and crystal transformation; (2) the potential roles of coupled transformation between Fe and NOM in the environmental behavior of HMs from kinetic and thermodynamic processes; (3) the primary factors affecting the remediation of sediments HMs; (4) the challenges and future development of sediment HM control based on the coupled effect between Fe and NOM from theoretical and practical perspectives. Overall, this review focused on the biogeochemical coupling cycle of Fe, NOM, and HMs, with the goal of providing guidance for HMs contamination and risk control in lake sediment.
Collapse
Affiliation(s)
- Yuanhang Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Shaokang Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Hang Fu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuheng Sun
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shoujuan Tang
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jinwen Xu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Jun Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lei Shi
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Hu N, Chen G, Chen Y, Lin M, Tang P, Zhang W, Ye Z. Cement and zeolite stabilization/solidification of heavy metal-contaminated sediments: 841-Day leaching characteristics, mechanisms, and microstructure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:306-317. [PMID: 39378637 DOI: 10.1016/j.wasman.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/13/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
The long-term effectiveness of stabilized/solidified sediments (S/S sediments) is increasingly attracting attention. This study investigated the long-term leaching characteristics and mechanisms of S/S sediment through an 841-day tank leaching test, considering the influence of cement content, curing time, and zeolite. The results indicate significant correlations among pH, heavy metals, TN, NH3-N, and COD. The specimens with 6 % cement cured for 30 days (C6(30)) demonstrated considerable heavy metal stabilization, with stabilization rates for Cr, Ni, Cu, Zn, As, and Pb reaching 99.81 %, 99.06 %, 98.93 %, 99.61 %, 97.58 %, and 99.97 %, respectively. Compared to C6(30), partial replacement of cement with 10 % zeolite (C5 + Z0.5(30)) not only more effectively stabilized heavy metals except As, but also reduced the release of COD and NH3-N by 4.23 % and 10.04 %, respectively. However, there was a risk of TN, NH3-N, and COD exceeding permissible limits during long-term leaching. Microscopic analysis results suggested that hydration products and low porosity contributed to stabilization of heavy metals. Leaching mechanisms was revealed that surface wash-off controls the leaching of Cr and Pb, while diffusion controls the leaching of Ni, Cu, Zn, As, COD, TN, and NH3-N. Considering stabilization performance, cost and carbon emissions, C5 + Z0.5(30) is an effective strategy for reducing long-term environmental risks of S/S sediments.
Collapse
Affiliation(s)
- Nan Hu
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| | - Geng Chen
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China.
| | - Yonghui Chen
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| | - Minguo Lin
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| | - Panpan Tang
- Department of Engineering, University of Exeter, Exeter EX4 4QF, UK
| | - Wanlu Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Zi Ye
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Suzhou Institute of Hohai University, SuZhou 215100, China; Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
| |
Collapse
|
4
|
Jiang W, Wang Z, Xiao H, Abou-Elwafa SF, Alshehri MA, Wu Y, Yu H, Tan W. Response of soil heavy metal forms and bioavailability to the application of microplastics across five years in different soil types. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136068. [PMID: 39378596 DOI: 10.1016/j.jhazmat.2024.136068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) potentially alter physicochemical and transformation of heavy metals (HMs) in soils, which may depend on the specific characteristics of soil types. However, the dynamical and long-term mechanisms remain to be elucidated. A five-year incubation experiment was conducted to evaluate the influence of MPs on the chemical speciation of Pb, Ni, Cu, Cr, Cd, and As in the meadow, tidal, cinnamon, saline-alkali, and brown soils. From the first year to the fifth year, the clay value of the meadow, tidal, cinnamon, and saline-alkali soils was increased by 31.35 %, 9.63 %, 30.12 %, and 33.12 %, respectively; the pH values of the cinnamon and saline-alkali soils were increased by 15.02 % and 15.86 %, respectively. Besides, speciation distribution results suggested that the application of MPs reduced the liable available (LB) form (F2-dissolved and F3-ion exchangeable) of HMs and increased the potentially available (PB) form (F5-minerals and F6-organic-bound fraction) of HMs in all soils. Compared with other forms, F2 HMs fraction was the most responsive to MPs. Furthermore, the average bioconcentration factor (BCF) of Cr and Pb decreased by 73.75 % and 70.41 % in soils, respectively. Interestingly, soil type showed more impact on the form of HMs, which was associated with the different physicochemical parameters of soils, while application time displayed more impact on the bioavailability of HMs. Moreover, our results suggested that soils with higher clay content and pH values (such as cinnamon and saline-alkali soils) may mitigate the bioavailability of HMs more effectively in the presence of MPs, while soils with lower clay content may be more vulnerable to HMs contamination over time. This work highlights the importance of long-term monitoring of the impact of MPs on HMs dynamics for effective mitigation of soil contamination risks. Our study provides valuable guidance for soil remediation strategies and environmental quality management across different soil types.
Collapse
Affiliation(s)
- Wei Jiang
- Xianghu Laboratory, Hangzhou 311231, China; College of Agricultural, Nanjing Agricultural University, Nanjing 210095, China.
| | - ZhenYu Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Haoyan Xiao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | | | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yusen Wu
- School of Nursing and Midwifery, Western Sydney University, Penrith, NSW 2751, Australia
| | - Hanxia Yu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Zhang T, Xing Y, Zhang J, Li X. The competition of humic acid aggregation and adsorption on clay particles and its role in retarding heavy metal ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176459. [PMID: 39322085 DOI: 10.1016/j.scitotenv.2024.176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Humic acid (HA) is of great importance in controlling the fate of heavy metals (HMs), however, the pivotal influence of HA aggregation within the HA-clay-HM ternary system on retarding HM mobility remains obscure. This study performed molecular dynamics simulations to delve into the consequences of HA aggregation on the environmental behavior of Cd2+ and Pb2+ (0.1-0.6 M) in the co-existence of illite particles. HA can readily aggregate into clusters, adhering to the illite surface or freely dispersing in the solution. These HA clusters significantly modulate HM mobility, contingent upon their location, arrangement, and interaction with illite. Consequently, HA exhibited a pronounced retardation effect on HM migration, stemming from the competition between HA aggregation and its adsorption on illite. Additionally, the retardation effect of HA aggregation was more obvious for Cd2+ (as compared to Pb2+), owing to its stronger interaction with the functional groups of HA. These findings contribute to the development of potential HA-based strategies for remediation of heavy metal-contaminated sites.
Collapse
Affiliation(s)
- Taoying Zhang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China
| | - Yuhang Xing
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China
| | - Jianguo Zhang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China
| | - Xiong Li
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China.
| |
Collapse
|
6
|
Li Y, Wang K, Dötterl S, Xu J, Garland G, Liu X. The critical role of organic matter for cadmium-lead interactions in soil: Mechanisms and risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135123. [PMID: 38981228 DOI: 10.1016/j.jhazmat.2024.135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Understanding the interaction mechanisms between complex heavy metals and soil components is a prerequisite for effectively forecasting the mobility and availability of contaminants in soils. Soil organic matter (SOM), with its diverse functional groups, has long been a focal point of research interest. In this study, four soils with manipulated levels of SOM, cadmium (Cd) and lead (Pb) were subjected to a 90-day incubation experiment. The competitive interactions between Cd and Pb in soils were investigated using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray adsorption near-edge structure (XANES) analysis. Our results indicate that Pb competed with Cd for adsorption sites on the surface of SOM, particularly on carboxyl and hydroxyl functional groups. Approximately 22.6 % of Cd adsorption sites on humus were occupied by Pb. The use of sequentially extracted exchangeable heavy metals as indicators for environment risk assessments, considering variations in soil physico-chemical properties and synergistic or antagonistic effects between contaminants, provides a better estimation of metal bioavailability and its potential impacts. Integrating comprehensive contamination characterization of heavy metal interactions with the soil organic phase is an important advancement to assess the environmental risks of heavy metal dynamics in soil compared to individual contamination assessments.
Collapse
Affiliation(s)
- Yiren Li
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Kai Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Sebastian Dötterl
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Gina Garland
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland.
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Zhang X, Fu Q, Hu H, Zhu J, Fang L. Iron minerals enhance Fe(II)-mediated abiotic As(III) oxidation. CHEMOSPHERE 2024; 363:142913. [PMID: 39053775 DOI: 10.1016/j.chemosphere.2024.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The abiotic oxidation of As(III) is simultaneously mediated by the oxidation of Fe(II) in microaerobic environment, but the role of Fe minerals in the Fe(II)-mediated As(III) oxidation have been neglected. This work mimicked the microaerobic environment and examined the mechanisms of Fe(II) mediated the As(III) oxidation in the presence of Fe minerals using a variety of iron minerals (lepidocrocite, goethite, etc.). The results indicated the Fe(II) and As(III) oxidation rate were improved with Fe minerals, while As(III) oxidation efficiency increased by 1.3-1.8 times in comparison to that without minerals. Fe(II) mediated the As(III) oxidation happened on Fe minerals surface in the presence of Fe minerals. The As(III) oxidation efficiency increased with increasing Fe mineral concentrations (from 0.5 to 2 g L-1) but decreased with increasing pH values. Reactive oxygen species (ROS) that play a crucial role in As(III) oxidation were Fe(IV) and ·O2-, accounting for 42.7%-47.9% and 24.1%-29.8%, respectively. The Fe minerals facilitated the oxidation of As(III) by ROS and stimulated the release of ROS through the adsorbed-Fe(II) oxidation, both of which favored As(III) oxidation. This work highlighted the potential mechanisms of Fe minerals in promoting Fe(II) mediated the As(III) oxidation in microaerobic environment, especially in terms of As(III) oxidation efficiency, shedding a valuable insight on optimization of arsenic contaminated wastewater treatment processes.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| |
Collapse
|
8
|
An Q, Zheng N, Pan J, Ji Y, Wang S, Li X, Chen C, Peng L, Wang B. Association between plant microbiota and cadmium uptake under the influence of microplastics with different particle sizes. ENVIRONMENT INTERNATIONAL 2024; 190:108938. [PMID: 39111171 DOI: 10.1016/j.envint.2024.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
Plant microbiota are an important factor impacting plant cadmium (Cd) uptake. However, little is known about how plant microbiota affects the Cd uptake by plants under the influence of microplastics (MPs) with different particle sizes. In this study, bacterial structure and assembly in the rhizosphere and endosphere in pakchoi were analyzed by amplicon sequencing of 16S rRNA genes under the influence of different particle sizes of polystyrene microplastics (PS-MPs) combined with Cd treatments. Results showed that there were no significant differences observed in the shoot endophytes among different treatments. However, compared to Cd treatment, larger-sized PS-MPs (2 and 20 μm) significantly increased community diversity and altered the structural composition of rhizosphere bacteria and root endophytes, while smaller-sized PS-MPs (0.2 μm) did not. Under the treatment of larger-sized PS-MPs, the niche breadth of rhizosphere bacteria and root endophytes were significantly increased. And larger-sized PS-MPs also maintained stability and complexity of bacterial co-occurrence networks, while smaller-sized PS-MPs reduced them. Furthermore, compared to Cd treatment, the addition of larger particle size PS-MPs decreased the proportion of homogeneous section, while increased the proportion of drift in root endophytic bacterial community assembly. The role of larger-sized MPs in the community assembly of rhizosphere bacteria was opposite. Using random forest and structural equation models, the study found that larger-sized PS-MPs can promote the colonization of specific bacterial taxa, such as Brevundimonas, AKAU4049, SWB02, Ellin6055, Porphyrobacter, Sphingorhabdus, Rhodobacter, Erythrobacter, Devosia and some other bacteria belonging to Alphaproteobacteria, in the rhizosphere and root endosphere. The colonization of these taxa can may induce the formation of biofilms in the roots, immobilize heavy metals through oxidation processes, and promote plant growth, thereby reducing Cd uptake by pakchoi. The findings of this study provide important insights into the microbial mechanisms underlying the influence of MPs with different particle sizes on plant Cd uptake.
Collapse
Affiliation(s)
- Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Jiamin Pan
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Bo Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| |
Collapse
|
9
|
Zheng Y, Pan Y, Wang Z, Jiang F, Wang Y, Yi X, Dang Z. Temporal and spatial evolution of different heavy metal fractions and correlation with environmental factors after prolonged acid mine drainage irrigation: A column experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173136. [PMID: 38734110 DOI: 10.1016/j.scitotenv.2024.173136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Acid mine drainage (AMD) has global significance due to its low pH and elevated heavy metal content, which have received widespread attention. After AMD irrigation in mining areas, heavy metals are distributed among soil layers, but the influencing factors and mechanisms remain unclear. AMD contamination of surrounding soil is primarily attributed to surface runoff and irrigation and causes significant environmental degradation. A laboratory soil column experiment was conducted to investigate the temporal and spatial distribution of the heavy metals Cd and Cu, as well as the impact of key environmental factors on the migration and transformation of these heavy metals following long-term soil pollution by AMD. After AMD addition, the soil exhibited a significant increase in acidity, accompanied by notable alterations in various environmental parameters, including soil pH, Eh, Fe(II) content, and iron oxide content. Over time, Cd and Cu in the soil mainly existed in the exchangeable and carbonate-bound fractions. In spatial terms, exchangeable Cu increased with increasing depth. Pearson correlation analysis indicated significant negative correlations between pH and Cu, Cd, and Eh in pore water, as well as negative correlations between pH and the exchangeable fraction of Cd (F1), carbonate-bound fraction of Cd (F2), and exchangeable fraction of Cu (F1) in the solid phase. Additionally, a positive correlation was observed between pH and the residual fraction of Cu (F5). Furthermore, the soil total Cd content exhibited a positive correlation with pyrophosphate-Fe (Fep) and dithionite-Fe (Fed), while CdF1, CdF2, total Cu, and CuF1 displayed positive correlations with Fep. Our findings indicate that the presence of AMD in soil leads to alterations in the chemical fractions of Cd and Cu, resulting in enhanced bioavailability. These results offer valuable insights for developing effective remediation strategies for soils near mining sites.
Collapse
Affiliation(s)
- Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Pan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, China
| | - Zufei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yaozhong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Yang Y, Peng H, Deng K, Shi Y, Wei W, Liu S, Li C, Zhu J, Dai Y, Song M, Ji X. Rice rhizospheric effects and mechanism on soil cadmium bioavailability during silicon application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172702. [PMID: 38657810 DOI: 10.1016/j.scitotenv.2024.172702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Exogenous Si mitigates the mobility and bioavailability of Cd in the soil, thereby alleviating its phytotoxicity. This study focused on specific Si-induced immobilisation effects within the rhizosphere (S1), near-rhizosphere (S2), and far-rhizosphere (S3) zones. Based on the rhizobox experiment, we found that applying Si significantly elevated soil pH, and the variation amplitudes in the S3 soil exceeded those in the S1 and S2 soils. Si-induced changes in the rhizosphere also included enhanced dissolved organic carbon and diminished soil Eh, particularly in the Si400 treatment. Meanwhile, the introduction of Si greatly enhanced the Fe2+ and Mn2+ concentrations in the S1 soil, but reduced them in the S2 soil. The rhizosphere effect of Si which enriched Fe2+ and Mn2+ subsequently promoted the formation of Fe and Mn oxides/hydro-oxides near the rice roots. Consequently, the addition of Si significantly reduced the available Cd concentrations in S1, surpassing the reductions in S2 and S3. Moreover, Si-treated rice exhibited increased Fe plaque generation and fixation on soil Cd, resulting in decreased Cd concentrations in rice tissues, accompanied by reduced Cd translocation from roots to shoots and shoots to grains. Structural equation modelling further highlighted that Si is essential in Cd availability in S1 and Fe plaque development, ultimately mitigating Cd accumulation in rice. Si-treated rice also exhibited higher biomass and grain yield than those of control groups. These findings provide valuable insights into Si-based strategies for addressing the Cd contamination of agricultural soils.
Collapse
Affiliation(s)
- Yi Yang
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
| | - Kai Deng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
| | - Yu Shi
- Xiangxi Station of Soil and Fertilizer, Jishou 416000, China
| | - Wei Wei
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Saihua Liu
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Changjun Li
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Jian Zhu
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Yanjiao Dai
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Min Song
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Ministry of Agriculture Key Laboratory of Agriculture Environment in Middle Reach Plain of Yangtze River, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| |
Collapse
|
11
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
12
|
Yaashikaa PR, Palanivelu J, Hemavathy RV. Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques. CHEMOSPHERE 2024; 357:141933. [PMID: 38615953 DOI: 10.1016/j.chemosphere.2024.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105.
| | - Jeyanthi Palanivelu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, India 602105
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
13
|
Zhang X, Du H, Wang C, Liu J, Zhang Q, Zhang Z, Tan C, Li H, Hu Y. Simultaneous removal of phenanthrene and Pb using novel PPG-CNTs-nZVI beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30620-30632. [PMID: 38613749 DOI: 10.1007/s11356-024-32986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PPG-CNTs-nZVI bead was synthesized by polyvinyl alcohol, pumice, carbon nanotube, and guar gum-nanoscale zero-valent iron to be applied on simultaneously removal of polycyclic aromatic hydrocarbons (PAHs; phenanthrene) and heavy metals (Pb2+) via adsorption. The individual and simultaneous removal efficiency of phenanthrene and Pb2+ using the PPG-CNTs-nZVI beads was evaluated with a range of initial concentrations of these two pollutants. The kinetics and isotherms of phenanthrene and Pb2+ adsorption by the PPG-CNTs-nZVI beads were also determined. The PPG-CNTs-nZVI beads show reasonably high phenanthrene adsorption capacities (up to 0.16 mg/g), and they absorbed 85% of the phenanthrene (initial concentration 0.5 mg/L) in 30 min. High Pb2+ adsorption capabilities were also demonstrated by the PPG-CNTs-nZVI beads (up to 11.6 mg/g). The adsorption fits the Langmuir model better than the Freundlich model. The adsorption still remained stable with various ionic strength circumstances and a wide pH range (2-5). Additionally, the co-adsorption of phenanthrene and Pb2+ by the PPG-CNTs-nZVI beads resulted in synergistic effects. Particularly, phenanthrene-Pb2+ complex formation via π-cation interactions demonstrated a greater affinity than phenanthrene or Pb2+ alone. The present findings suggest that PPG-CNTs-nZVI beads may be effective sorbents for the simultaneous removal of PAHs and heavy metals from contaminated waters.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Haoyu Du
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Chunxia Wang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Beijing Building Technology Development Co, Ltd, Beijing, 100039, China
| | - Junfeng Liu
- Department of Water Conservancy and Civil Engineering, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Qiao Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chaohong Tan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China.
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yuansheng Hu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| |
Collapse
|
14
|
Yang J, Nie J, Bian L, Zhang J, Song M, Wang F, Lv G, Zeng L, Gu X, Xie X, Zhang P, Song Q. Clay minerals/sodium alginate/polyethylene hydrogel adsorbents control the selective adsorption and reduction of uranium: Experimental optimization and Monte Carlo simulation study. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133725. [PMID: 38401209 DOI: 10.1016/j.jhazmat.2024.133725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Clay minerals formations are potential geological barrier (host rocks) for the long-rerm storage of uranium tailing in deep geological repositories. However, there are still obstacles to the efficient retardation of uranium because of the competition between negatively charged regions at the clay minerals end face, surface and between layers, as well as low mineralization capacity. Herein, employing a simple method, we used sodium alginate (SA), an inexpensive natural polymer material, polyethylene (PE), and the natural clay minerals montmorillonite (Mt), nontronite (Nt), and beidellite (Bd) to prepare three hydrogel adsorbents, (denoted as Mt/PE-@SA, Nt/PE-@SA, and Bd/PE-@SA), respectively. The application of obtained hydrogel adsorbents further extends to uranium(VI) removal from aqueous. Due to the synergistic action of SA group and PE group, hydrogel adsorbents showed select adsorption and mineralization effect on uranium(VI), among which the maximum uranium(VI) adsorption capacity of Nt/PE-@SA was 133.3 mg·g-1 and Mt/PE-@SA exhibited strong selectivity for uranium(VI) in the presence of coexisting metal ions. Cyclic voltammetry studies indicated the mitigation and immobilization of uranium species onto adsorbents by both reduction and mineralization. Besides, the synergistic adsorption of SA and PE on clay minerals was hypothesized, and the idea was supported by structure optimizations results from Monte Carlo dynamics simulation (MCD). Three obtained hydrogel adsorbents structural model was constructed based on its physicochemical characterization, the low energy adsorption sites and adsorption energies are investigated using MCD simulation. The simulation results show that obtained hydrogel adsorbents have a strong interaction with uranium(VI), which ensures the high adsorption capacity of those materials. Most importantly, this work demonstrates a new strategy for preparing mineral-based hydrogel adsorbents with enough stability and provides a new perspective for uranium(VI) removal in complex environment.
Collapse
Affiliation(s)
- Jingjie Yang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jianan Nie
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Liang Bian
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, Sichuan, China.
| | - Jingmei Zhang
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Mianxin Song
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Fei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300000, China
| | - Guocheng Lv
- School of Materials Science and Engineering, China University of Geosciences, Beijing 100000, China
| | - Li Zeng
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiaobin Gu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 51000, China
| | - Xin Xie
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Qing Song
- Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|
15
|
Bai Z, Li T, Zhang S, Wang G, Xu X, Zhou W, Pan X, Pu Y, Jia Y, Yang Z, Long L. Effects of climate and geochemical properties on the chemical forms of soil Cd, Pb and Cr along a more than 4000 km transect. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133746. [PMID: 38341885 DOI: 10.1016/j.jhazmat.2024.133746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Soil heavy metal speciation has received much attention for their different ecological and environmental effects. However, the effects of climate and soil geochemical properties on them in uncontaminated soils at macroscale were still unclear. Therefore, a transect more than 4000 km was chosen to study the effects of these factors on soil Cd, Pb and Cr forms. The results revealed that mean annual temperature and precipitation showed significant positive relations with the exchangeable and Fe-Mn oxide bound states of Cd, Pb and Cr, and residual Cr. And humidity and drought indexes were significantly positively correlated with their organic and carbonate bound forms, respectively. As for soil geochemical properties, pH displayed significant negative relationships with exchangeable, Fe-Mn oxide and organic bound Pb and Cr, and exchangeable Cd. Fe2O3 was significantly positively with the exchangeable and Fe-Mn oxide bound Cd, Pb and Cr, and residual Cr. And soil organic matter showed positive relations with organic bound Pb and Cr, and residual Cd and Cr, displayed negative relationships with carbonated bound Pb and Cr. Overall, climate and soil geochemical properties together affect the transformation and transport of heavy metals between different forms in uncontaminated soils.
Collapse
Affiliation(s)
- Zhiqiang Bai
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Xiaomei Pan
- Chengdu Agricultural College, Wenjiang 611130, PR China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| |
Collapse
|
16
|
Das S, Sengupta S, Patra PK, Dey P. Limestone and yellow gypsum can reduce cadmium accumulation in groundnut (Arachis hypogaea): A study from a three-decade old landfill site. CHEMOSPHERE 2024; 353:141645. [PMID: 38452977 DOI: 10.1016/j.chemosphere.2024.141645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
Cadmium (Cd) toxicity has cropped up as an important menace in the soil-plant system. The use of industrial by-products to immobilise Cd in situ in polluted soils is an interesting remediation strategy. In the current investigation, two immobilizing amendments of Cd viz., Limestone (traditionally used) and Yellow gypsum (industrial by-product) have been used through a green-house pot culture experiment. Soil samples were collected from four locations based on four graded levels of DTPA extractable Cd as Site 1 (0.43 mg kg-1), Site 2 (0.92 mg kg-1), Site 3 (1.77 mg kg-1) and Site 4 (4.48 mg kg-1). The experiment was laid out in a thrice replicated Factorial Complete Randomized Design, with one factor as limestone (0, 250, 500 mg kg-1) and the other being yellow gypsum (0, 250, 500 mg kg-1) on the collected soils and groundnut was grown as a test crop. Results revealed that the DTPA-extractable Cd content in soil and Cd concentration in plants decreased significantly with the increasing doses of amendments irrespective of initial soil available Cd and types of amendment used. The effect of amendment was soil specific and in case of Site 1 (low initial Cd) the effect was more prominent. The reduction in DTPA-extractable Cd in combined application of limestone and yellow gypsum @500 mg kg-1 over the absolute control in soil under groundnut for the sites was by far the highest with the values of 83.72%, 77.17%, 48.59% and 40.63% respectively. With the combined application, Target Cancer Risk (TCR) of Cd was also reduced. Hence, combined application of limestone and yellow gypsum can be beneficial in the long run for mitigating Cd pollution.
Collapse
Affiliation(s)
- Shreya Das
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India; ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India
| | - Sudip Sengupta
- School of Agriculture, Swami Vivekananda University, Barrackpore, 700121, West Bengal, India
| | - Prasanta Kumar Patra
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India
| | - Pradip Dey
- ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India.
| |
Collapse
|
17
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
18
|
Feng M, Zhang X, Fu Q, Hu H, Miao F, Huang C, Zhu J. Renewable and efficient removal of arsenic from contaminated water by modified biochars derived from As-enriched plant. BIORESOURCE TECHNOLOGY 2023; 387:129680. [PMID: 37586434 DOI: 10.1016/j.biortech.2023.129680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
There were limited researches on the scientific disposal of As-enriched plants, and how to reduce the available As content in the processed products and improve the utilization value were the key. In this study, the effect and mechanism of biochar produced by the As-enriched Pteris vittate before and after modification on the removal of As(III) in water were studied. The results indicated that the available As contents of Fe-BC300 and Fe-BC500 were reduced by 78.7 % and 91.9 % compared to original biochars, respectively. Modified biochars not only had a large adsorption capacity for As(III) (50.3 and 39.7 mg/g), but also can efficiently oxidize As(III) to As(V). The removal rate of As(III) by modified biochar was still higher than 50% after 3 cycles. The increase of the point of zero charge and the introduction of Fe were the main reasons for its efficient adsorption and oxidation of As(III).
Collapse
Affiliation(s)
- Mengxi Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Miao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaojun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Yang Q, Shen X, Jiang H, Luan T, Yang Q, Yang L. Key factors influencing pollution of heavy metals and phenolic compounds in mangrove sediments, South China. MARINE POLLUTION BULLETIN 2023; 194:115283. [PMID: 37451044 DOI: 10.1016/j.marpolbul.2023.115283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Concentrations of heavy metals (HMs) and phenolic compounds with factors which potentially affected their spatial distribution were investigated in mangrove sediments, South China. Compared to Qi'ao, Futian sediments exhibited higher levels of Pb and nonylphenol (NP), but lower levels of Co and Ni. Seasonal variation showed higher concentrations of Pb, Cr, Co, NP and bisphenol A (BPA), while lower concentration of methylparaben (MP) in wet than dry season. Contaminant levels in sediments collected at different tidal heights showed insignificant variations, except for Zn and NP. MP was found negatively correlated with nearly all HMs and BPA, whereas the latter exhibited positive correlations with each other. Sedimentary total carbon, total nitrogen, C/N and N/P ratios were screened as the most influential factors affecting the distribution of these contaminants. Additionally, both salinity and total phosphate exhibited positive, while both pH and sedimentary particle size registered negative correlation, with one or more contaminants.
Collapse
Affiliation(s)
- Qian Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Shen
- School of Mathematics & Statistics, Zhongnan University of Economics and Law, China
| | - Hejing Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yang
- Neilingding-Futian National Nature Reserve of Guangdong Province, Shenzhen, China
| | - Lihua Yang
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Hu L, Mao J, Zhong R, Zhao H. Assessment of heavy metals mobilization in road-deposited sediments induced by COVID-19 disinfection. WATER RESEARCH 2023; 243:120393. [PMID: 37487359 DOI: 10.1016/j.watres.2023.120393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Road-deposited sediments (RDS) on urban impervious surfaces are important carriers of heavy metals (HMs), and can contribute to urban runoff pollution. With the outbreak of COVID-19, chlorinated disinfectants (CDs) have been extensively sprayed on these surfaces. This practice may have a superposed or priming effect on HMs contaminants in RDS, yet this remains unknown. This study examined the effects of seven CDs concentration gradients (0, 250, 500, 1000, 2000, 5000, 60,000 mg/L) on the leaching and chemical forms of HMs (Cd, Cr, Ni, Pb, and Zn) in seven particle size fractions (<44, 44-63, 63-105, 105-149, 149-250, 250-450, 450-1000 μm). The results showed that CDs can promote the leaching of HMs in RDS, at the recommended CDs dose (2000 mg/L), except for Pb, the leaching amounts increased by 21.8%-237.2% compared with the untreated RDS. The alteration in the leaching were primarily attributed to the redistribution of chemical forms of HMs in RDS, specifically, the acid-extractable fractions percentage increased by 0.23%-24.39%, and the reducible fractions percentages decreased by 3.21%-38.35%. The lower oxidation-reduction potential (ORP) and alkalinity of CDs as strong oxidants were responsible for the redistribution of forms. The leaching and chemical forms of HMs vary among different particle sizes, but in any case, finer particle sizes (< 105 μm) still dominate their contribution. The current control measure of street sweeping is ineffective in removing these particles. These findings will facilitate the development of strategies for controlling urban diffuse pollution from RDS during the pandemic. Finally, this study suggests potential directions for future research.
Collapse
Affiliation(s)
- Lian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Jintao Mao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Ronghua Zhong
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Hongtao Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Sun P, Qu C, Xiong Z, Han Y, Ma F, Cai P, Chen W, Huang Q. Organic fertilization integrated with water management to remediate As and Cd contamination in a paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163992. [PMID: 37164102 DOI: 10.1016/j.scitotenv.2023.163992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Soil heavy metal pollution is the main risk for sustainable agriculture, especially the combination of As and Cd pollution in paddy fields which may lead to the superimposed accumulation in rice. There is an urgent need for environmental-friendly and cost-effective strategies to remediate the contamination of As and Cd in soils. In this work, a pot culture experiment was conducted in a As and Cd polluted paddy soil to explore the effects of organic fertilization (OF) and two water managements (continuous flooding, CF; intermittent irrigation, II) on the fractionation of As and Cd in soil, and the uptake of As and Cd by rice. The results showed that OF integrated with intermittent irrigation performed best in reducing the contents of As and Cd in rice grains by 58.9 % and 69.3 %, respectively, under compound pollution. The significant conversion of available As and Cd to stable species (specifically adsorbed and Fe-Mn/Al oxide bound) under OF + II were supported by the changes in an array of soil attributes such as pH, Eh, soluble Fe and dissolved organic carbon (DOC). Intermittent irrigation was more conducive to the accumulation of As outside the roots, and Fe-plaque prevented As uptake by roots and the translocation to shoots. While more accumulation of Fe-plaque along with Cd on root surface induced by continuous flooding is helpful for depressed assimilation of Cd by rice. Considering the combined contamination of As and Cd polluted in paddy soils, a management approach was proposed based on intermittent irrigation and application of organic fertilizer at the rate of 0.1 % (∼ 2.3 t/ha) in two phases (two weeks before planting or drainage). Organic fertilization will hold great promise in restoring polluted soils and maintaining soil health via suppressing the lability of heavy metals and providing nutrients.
Collapse
Affiliation(s)
- Pan Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Zhenqian Xiong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafeng Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuhai Ma
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
22
|
He Y, Luo Y, Wei C, Long L, Wang C, Wu Y. Effects of dissolved organic matter derived from cow manure on heavy metal(loid)s and bacterial community dynamics in mercury-thallium mining waste slag. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5857-5877. [PMID: 37178440 DOI: 10.1007/s10653-023-01607-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Organic amendments in aided phytostabilization of waste slag containing high levels of heavy metal (loid)s (HMs) are an important way to control the release of HMs in situ. However, the effects of dissolved organic matter (DOM) derived from organic amendments on HMs and microbial community dynamics in waste slag are still unclear. Here, the effect of DOM derived from organic amendments (cow manure) on the geochemical behaviour of HMs and the bacterial community dynamics in mercury (Hg)-thallium (Tl) mining waste slag were investigated. The results showed that the Hg-Tl mining waste slag without the addition of DOM continuously decreased the pH and increased the EC, Eh, SO42-, Hg, and Tl levels in the leachate with increasing incubation time. The addition of DOM significantly increased the pH, EC, SO42-, and arsenic (As) levels but decreased the Eh, Hg, and Tl levels. The addition of DOM significantly increased the diversity and richness of the bacterial community. The dominant bacterial phyla (Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, and Bacteroidota) and genera (Bacillus, Acinetobacter, Delftia, Sphingomonas, and Enterobacter) were changed in association with increases in DOM content and incubation time. The DOM components in the leachate were humic-like substances (C1 and C2), and the DOC content and maximum fluorescence intensity (FMax) values of C1 and C2 in the leachate decreased and first increased and then decreased with increasing incubation time. The correlations between HMs and DOM and the bacterial community showed that the geochemical behaviours of HMs in Hg-Tl mining waste slag were directly influenced by DOM-mediated properties and indirectly influenced by DOM regulation of bacterial community changes. Overall, these results indicated that DOM properties associated with bacterial community changes increased As mobilization but decreased Hg and Tl mobilization from Hg-Tl mining waste slag.
Collapse
Affiliation(s)
- Yu He
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Chaoxiao Wei
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Licui Long
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Chi Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
23
|
Srivastava AN, Chakma S. Assessment of in situ stabilization and heavy metal toxicity reduction of sugar mill pressmud through pilot scale composting. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:951. [PMID: 37450081 DOI: 10.1007/s10661-023-11564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Owing to a huge amount of industrial organic waste generation in the recent past, concerned industries are facing immense challenges for in situ treatment and disposal of such wastes. Therefore, in this study, the efficacy assessment of in situ windrow composting of pressmud (PM) produced by sugar industry has been investigated. Samples were grabbed and mixed from windrows having composting days of 15 (PM15), 30 (PM30), and 45 (PM45) and were collected along with a compost sample from the 60th day (PMC) windrow. An investigation of physico-chemical parameters including pH, electrical conductivity, moisture content, volatile solids (VS), ash content, biochemical oxygen demand, chemical oxygen demand, total nitrogen, and C/N ratio was performed for raw PM and other aforementioned samples. Moreover, speciation of heavy metals (Cu, Cr, Ni, Pb, Cd, and Zn), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analyses were performed for PM and PMC to evaluate the heavy metal toxicity and mineralogical and chemical changes. The analysis showed 20.33% reduction in VS content and 53.65% increase in TN content after 60 days of in situ windrow composting. The pH and EC values of PMC were found to be lesser than that of upper values recommended for agricultural purposes. Furthermore, the speciation analysis showed significant reduction in bioavailability of heavy metals. The XRD and FTIR results were confirmatory for transformation of heavy metals into relatively stable forms. The study recommends the windrow composting practice as effective bioconversion technique that stabilizes organic content, enhances humification, and diminishes heavy metal bioavailability for PM and similar other sludges.
Collapse
Affiliation(s)
- Abhishek N Srivastava
- Water Resources Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Block V 312, New Delhi, 110016, India.
| | - Sumedha Chakma
- Water Resources Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Block V 312, New Delhi, 110016, India
| |
Collapse
|
24
|
Wang T, Cao W, Wang Y, Qu C, Xu Y, Li H. Surface modification of quartz sand: A review of its progress and its effect on heavy metal adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115179. [PMID: 37356400 DOI: 10.1016/j.ecoenv.2023.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yingqi Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Chao Qu
- Handan Environmental Monitoring Center Station, Handan 056000, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China.
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
25
|
Xu Z, Nie N, Liu K, Li Q, Cui H, Du H. Analog soil organo-ferrihydrite composites as suitable amendments for cadmium and arsenic stabilization in co-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162929. [PMID: 36934932 DOI: 10.1016/j.scitotenv.2023.162929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Remediation of CdAs co-contaminated soils has long been considered a difficult problem to solve, as Cd and As have distinctly different metallic characters. Amending contaminated soils with traditional single passivation materials may not always work well in the stabilization of both Cd and As. Here, we reported that analog soil organo-ferrihydrite composites made with either living or non-living organics (bacterial cells or humic acid) could achieve stabilization of both Cd and As in contaminated soils. BCR and Wenzel sequential extractions showed that organo-ferrihydrite, particularly at 1 wt% loading, shifted liable Cd and As to more stable phases. Organo-ferrihydrite amendments significantly (p < 0.05) increased soil urease, alkaline phosphatase and catalase enzyme activities. With organo-ferrihydrite amendments, the bioavailable fraction of Cd decreased to 35.3 % compared with the control (65.1 %), while the bioavailable As declined from 29.4 % to 12.4%. Soil pH, microbial community abundance and diversity were almost unaffected by organo-ferrihydrite. Ferrihydrite and organo fractions both contributed to direct Cd-binding, while the organo fraction probably maintained the Fe-bound As via lowering ferrihydrite phase transformation. Compared to pure ferrihydrite, organo-ferrihydrite composites performed better not only in reducing liable Cd and As, but also in maintaining soil quality and ecosystem functions. This study demonstrates the applications of organo-ferrihydrite composites in eco-friendly remediation of CdAs contaminated soils, and provides a new direction in selecting appropriate soil amendments.
Collapse
Affiliation(s)
- Zelin Xu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China; College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Ning Nie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Kaiyan Liu
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haojie Cui
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
26
|
Tan J, Wang X, Zhang M, Meng D, Hu Y, Li Y, Song S, Wu L, Sánchez RMT, Farías ME, Xia L. Chlorella sorokiniana FK-montmorillonite interaction enhanced remediation of heavy metals in tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:163208. [PMID: 37011695 DOI: 10.1016/j.scitotenv.2023.163208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Non-ferrous metal mining activities are known to cause ecological irreversible damage in the tailings and surrounding areas as well as heavy metal (HM) contamination. The enhancement of Chlorella-montmorillonite interaction on the remediation of HM contaminated tailings was verified from the lab to the tailings in Daye City, Hubei Province, China. The results showed a positive correlation between the quantity of montmorillonite and the transformation of Pb and Cu into residual and carbonate-binding states, which resulted in a considerable decrease in the leaching ratio. The buildup of tailings fertility throughout this process benefited from montmorillonite's ability to buffer environmental changes and store water. This further offers a required environmental foundation for the rebuilding of microbial community and the growth of herbaceous plants. The structural equation model demonstrated that the interaction between Chlorella and montmorillonite directly affected the stability of HM, and that this interaction also had an impact on the accumulation of organic carbon, total nitrogen, and available phosphorus, which improved the immobilization of Pb, Cu, Cd, and Zn. This work made the first attempt to apply Chlorella-montmorillonite composite to in-situ tailings remediation, and proposed that the combination of inorganic clay minerals and organic microorganisms was an eco-friendly, long-lasting, and efficient method for immobilizing multiple-HMs in mining areas.
Collapse
Affiliation(s)
- Jiaqi Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Xizhuo Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yaxi Hu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Yinta Li
- Department of Food Engineering, Weihai Ocean Vocational College, Haiwan South Road 1000, Weihai, Shandong 264300, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | | | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), PROIMI Planta Piloto de Procesos Industriales Microbiológicos, Av. Belgrano y Pasaje Caseros, 4000 CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, 4000 Tucumán, Argentina
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China.
| |
Collapse
|
27
|
Gao J, Han H, Gao C, Wang Y, Dong B, Xu Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. CHEMOSPHERE 2023:139088. [PMID: 37268229 DOI: 10.1016/j.chemosphere.2023.139088] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
There is a growing need for soil remediation due to the increase in heavy metals (HMs) migrating into the soil environment, especially those from man-made sources dominated by industry and agriculture. In situ immobilization technology, because of its lower life cycle environmental footprint, can achieve "green and sustainable remediation" of soil heavy-metal pollution. Among the various in situ immobilization remediation agents, organic amendments (OAs) stand out as they can act as soil conditioners while acting as HMs immobilization agents, and therefore have excellent application prospects. In this paper, the types and remediation effects of OAs for HMs in situ immobilization in soil are summarized. OAs have an important effect on the soil environment and other active substances in soil while interacting with HMs in soil. Based on these factors, the principle and mechanism of HMs in situ immobilization in soil using OAs are summarized. Given the complex differential characteristics of soil itself, it is impossible to determine whether it can remain stable after heavy-metal remediation; therefore, there is still a gap in knowledge regarding the compatibility and long-term effectiveness of OAs with soil. In the future, it is necessary to develop a reasonable HMs contamination remediation program for in situ immobilization and long-term monitoring through interdisciplinary integration techniques. These findings are expected to provide a reference for the development of advanced OAs and their applications in engineering.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Haoxuan Han
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
28
|
Lian W, Shi W, Tian S, Gong X, Yu Q, Lu H, Liu Z, Zheng J, Wang Y, Bian R, Li L, Pan G. Preparation and application of biochar from co-pyrolysis of different feedstocks for immobilization of heavy metals in contaminated soil. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:12-21. [PMID: 36989826 DOI: 10.1016/j.wasman.2023.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Co-pyrolysis is a potentially effective method for both biomass waste management and multi-functional biochar-based product design. It involves the thermochemical decomposition of biomass waste under anoxic conditions, which can reduce the cost of disposal and produce biochar with beneficial properties. Herein, this study aimed to investigate the properties and environmental applications of biochar from single- and mixed- feedstocks of wheat straw, rice husk, pig manure, and oyster shell at 450 ℃, respectively. A pot experiment with Chinese cabbage was carried out to compare the effects of biochars with limestone on soil Cd and Pb immobilization at two harvest periods. The results indicated that co-pyrolysis of various biomasses exhibited synthetic effects on promoting the calorific value of syngas and enhancing the quality of produced biochar. The pot experiment revealed a significant promotion on soil pH, soil organic matter, cation exchange capacity, and soluble Ca, which consequently reduced Cd and Pb availability. In contrast with limestone treatment, soil amendment with single biomass-derived and co-pyrolysis-derived (COPB) biochars had a significant positive impact on soil fertility and microbial biomass. Application of COPB at a 0.5% dosage consistently and most effectively enhanced the shoot biomass, increased leaf Vitamin C content but reduced leaf content of nitrate and heavy metals in both harvests. Using COPB for soil remediation would be financially visible due to the enhancement of crop yield. Therefore, this study proposes a strategy for targeted enhancement of the functions of biochar derived from co-pyrolysis of selected biomass waste for soil remediation and agricultural production.
Collapse
Affiliation(s)
- Wanli Lian
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Wei Shi
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; School of Water Conservancy and Hydroeletric Power, Hebei University of Engineering, Handan 056038, China
| | - Shuai Tian
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xueliu Gong
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qiuyu Yu
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Haifei Lu
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhiwei Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jufeng Zheng
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
29
|
Hu X, Qu C, Han Y, Sun P, Cai P, Chen W, Huang Q. Elevated temperature induces contrasting transformation of exogenous copper to soil solution and solid phases in an arable soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114744. [PMID: 36931086 DOI: 10.1016/j.ecoenv.2023.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination of soils has been a global environmental issue over the past decades, threatening food security and human health. Understanding the migration and transformation of heavy metals in soils is critical for restoring an impaired environment and developing sustainable agriculture, particularly in the face of global warming. However, little effort has been devoted to investigating the impact of elevated temperatures on the migration and distribution of exogenous heavy metals in soils. This study experimented with a 180-day incubation at 15 °C, 30 °C, and 45 °C with an arable soil (Alfisol) of Huang-Huai-Hai River Basin, China, which was initially spiked with copper (Cu). A comparison of the results revealed that the percentage of soil water-soluble Cu doubled at 45 °C compared with 15 °C. The percentage of protein-like substances in dissolved organic matter (DOM) was the highest at 45 °C, suggesting that proteinaceous components play a more significant role in controlling the dissolution of Cu into DOM. Moreover, by sequential extraction and micro-X-ray fluorescence (μ-XRF), Cu was facilitatively transformed from exchangeable, and specifically adsorbed fractions, to iron (Fe)/manganese (Mn) oxides bound species by 7.75%23.63% with the elevation of temperature from 15 °C to 45 °C. The conversion of Cu speciation is attributed to the significant release of organic carbon from Fe/Mn oxides, especially the Mn oxide components, which are available for Cu binding. The findings of this work will provide an in-depth understanding of the fate of Cu in soils, which is fundamental for the risk assessment and remediation of Cu-polluted soils in the Huang-Huai-Hai River Basin under the context of global warming.
Collapse
Affiliation(s)
- Xiping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafeng Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
30
|
Liu J, Li Y, Wang Y, Wang Y, Xu J, Liu X. Competitive adsorption of lead and cadmium on soil aggregate at micro-interfaces: Multi-surface modeling and spectroscopic studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130915. [PMID: 36860034 DOI: 10.1016/j.jhazmat.2023.130915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Aggregates are the basic structural units of soils and play a crucial role in metal migration and transformation. Combined contamination of lead (Pb) and cadmium (Cd) is common in site soils, and the two metals may compete for the same adsorption sites and affect their environmental behavior. Herein, the adsorption behavior of Pb and Cd on aggregates of two soils and contributions of soil components in single and competitive systems were studied by combining cultivation experiments, batch adsorption, multi-surface models (MSMs), and spectroscopic techniques. The results demonstrated that < 2 µm size aggregate was the dominant sink for Pb and Cd competitive adsorption in both soils. Compared with Pb, the adsorption capacity and behavior of Cd were affected greatly under competition. MSMs prediction revealed that soil organic matter (SOM) contributed the most to Cd and Pb adsorption on aggregates (> 68.4%), but the dominant competitive effect occurred on different sites for Cd adsorption (primarily on SOM) and Pb adsorption (primarily on clay minerals). Further, 2 mM Pb coexistence caused 5.9 - 9.8% of soil Cd conversion to unstable species (Cd(OH)2). Thus, the competitive effect of Pb on Cd adsorption cannot be ignored in soils with high content of SOM and fine aggregates.
Collapse
Affiliation(s)
- Jian Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yiren Li
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yiheng Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yanni Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Zhang Y, Wang X, Yang Y, Huang Y, Li X, Hu S, Liu K, Pang Y, Liu T, Li F. Retention and transformation of exogenous Hg in acidic paddy soil under alternating anoxic and oxic conditions: Kinetic and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121335. [PMID: 36828356 DOI: 10.1016/j.envpol.2023.121335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
To estimate the risks and developing remediation strategies for the mercury (Hg)-contaminated soils, it is crucial to understand the mechanisms of Hg transformation and migration in the redox-changing paddy fields. In present study, a Hg-spiked acidic paddy soil (pH 4.52) was incubated under anoxic conditions for 40 d and then under oxic conditions for 20 d. During anoxic incubation, the water-soluble, exchangeable, specifically adsorbed, and fulvic acid-complexed Hg decreased sharply, whereas the humic acid-complexed Hg, organic, and sulfide-bound Hg gradually increased, which were mainly ascribed to the enhanced adsorption on the surface of soil minerals with an increase in soil pH, complexation by organic matters, precipitation as HgS, and absorption by soil colloids triggered by reductive dissolution of Fe(III) oxides. By contrast, after oxygen was introduced into the system, a gradual increase in available Hg occurred with decreasing soil pH, decomposition of organic matters and formation of Fe(III) oxides. A kinetic model was established based on the key elementary reactions to quantitatively estimate transformation processes of Hg fractions. The model matched well with the modified Tessier sequential extraction data, and suggested that large molecular organic matter and humic acid dominated Hg complexation and immobilization in acidic paddy soils. The content of methylmercury increased and reached its peak on anoxic 20 d. Sulfate-reducing bacteria Desulfovibrio and Desulfomicrobium were the major Hg methylating bacteria in the anoxic stage whereas demethylating microorganisms Clostridium_sensu_stricto_1 and Clostridium_sensu_stricto_12 began to grow after oxygen was introduced. These new dynamic results provided new insights into the exogenous Hg transformation processes and the model could be used to predict Hg availability in periodically flooded acidic paddy fields.
Collapse
Affiliation(s)
- Yufan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiangqin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Kexue Liu
- School of Resources and Planning, Guangzhou Xinhua University, Guangzhou, 510310, China
| | - Yan Pang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
32
|
Zhou Y, Tang Y, Liao C, Su M, Shih K. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130977. [PMID: 36860053 DOI: 10.1016/j.jhazmat.2023.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution has resulted in serious environmental damage and raised significant public health concerns. One potential solution in terminal waste treatment is to structurally incorporate and immobilize heavy metals in some robust frameworks. Yet extant research offers a limited perspective on how metal incorporation behavior and stabilization mechanisms can effectively manage heavy metal-laden waste. This review sets forth detailed research on the feasibility of treatment strategies to incorporate heavy metals into structural frameworks; this paper also compares common methods and advanced characterization techniques for identifying metal stabilization mechanisms. Furthermore, this review analyses the typical hosting structures for heavy metal contaminants and metal incorporation behavior, highlighting the importance of structural features on metal speciation and immobilization efficiency. Lastly, this paper systematically summarizes key factors (i.e., intrinsic properties and external conditions) affecting metal incorporation behavior. Drawing on these impactful findings, the paper discusses future directions in the design of waste forms that efficiently, effectively treat heavy metal contaminants. By examining tailored composition-structure-property relationships in metal immobilization strategies, this review reveals possible solutions for crucial challenges in waste treatment and enhances the development of structural incorporation strategies for heavy metal immobilization in environmental applications.
Collapse
Affiliation(s)
- Ying Zhou
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Changzhong Liao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
33
|
Xing Y, Liu S, Tan S, Jiang Y, Luo X, Hao X, Huang Q, Chen W. Core Species Derived from Multispecies Interactions Facilitate the Immobilization of Cadmium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4905-4914. [PMID: 36917516 DOI: 10.1021/acs.est.3c00486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial consortia have opened new avenues for heavy-metal remediation. However, the limited understanding of the overall effect of interspecific interactions on remediation efficacy hinders its application. Here, the effects of multispecies growth and biofilm formation on Cd immobilization were explored from direct and multiple interactions through random combinations of two or three rhizosphere bacteria. In monocultures, Cd stress resulted in an average decrease in planktonic biomass of 26%, but through cooperation, the decrease was attenuated in dual (21%) and triple cultures (13%), possibly involving an increase in surface polysaccharides. More than 65% of the co-cultures exhibited induction of biofilm formation under Cd stress, which further enhanced the role of biofilms in Cd immobilization. Notably, excellent biofilm-forming ability or extensive social induction makes Pseudomonas putida and Brevundimonas diminuta stand out in multispecies biofilm formation and Cd immobilization. These two core species significantly increase the colonization of soil microorganisms on rice roots compared to the control, resulting in a 40% decrease in Cd uptake by rice. Our study enhances the understanding of bacterial interactions under Cd stress and provides a novel strategy for adjusting beneficial soil consortia for heavy-metal remediation.
Collapse
Affiliation(s)
- Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shuxin Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yi Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
34
|
Luo X, Wu C, Lin Y, Li W, Deng M, Tan J, Xue S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J Environ Sci (China) 2023; 125:662-677. [PMID: 36375948 DOI: 10.1016/j.jes.2022.01.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/16/2023]
Abstract
Smelting activities pose serious environmental problems due to the local and regional heavy metal pollution in soils they cause. It is therefore important to understand the pollution situation and its source in the contaminated soils. In this paper, data on heavy metal pollution in soils resulting from Pb/Zn smelting (published in the last 10 years) in China was summarized. The heavy metal pollution was analyzed from a macroscopic point of view. The results indicated that Pb, Zn, As and Cd were common contaminants that were present in soils with extremely high concentrations. Because of the extreme carcinogenicity, genotoxicity and neurotoxicity that heavy metals pose, remediation of the soils contaminated by smelting is urgently required. The primary anthropogenic activities contributing to soil pollution in smelting areas and the progressive development of accurate source identification were performed. Due to the advantages of biominerals, the potential of biomineralization for heavy metal contaminated soils was introduced. Furthermore, the prospects of geochemical fraction analysis, combined source identification methods as well as several optimization methods for biomineralization are presented, to provide a reference for pollution investigation and remediation in smelting contaminated soils in the future.
Collapse
Affiliation(s)
- Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Yongcheng Lin
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong 999077, China
| | - Min Deng
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Jingqiang Tan
- School of Geosciences and Info-physics, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
35
|
Tang F, Li Q, Yue J, Ge F, Li F, Liu Y, Zhang D, Tian J. Penicillium oxalicum augments soil lead immobilization by affecting indigenous microbial community structure and inorganic phosphate solubilization potential during microbial-induced phosphate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120953. [PMID: 36584858 DOI: 10.1016/j.envpol.2022.120953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Phosphate-solubilizing microorganisms (PSMs) are critically important for increasing soil phosphate (P) and decreasing lead (Pb) bioavailability during microbial-induced phosphate precipitation (MIPP). However, their relative contributions to the indigenous soil microbial communities and P-cycling genes during the MIPP process remain unclear. In this study, inoculation of the PSM P. oxalicum in hydroxyapatite-cultured and Pb-contaminated soil increased soil phosphatase activities, available P (AP) concentrations and reduced available Pb levels. Metagenomics revealed a 3.9-44.0% increase in the abundance of P-cycling genes by P. oxalicum inoculation. No P-cycling genes were assigned to Penicillium. While P. oxalicum increased the complexity of microbial community co-occurrence networks, and improved the directly interrelationships between Penicillium and genera containing P-cycling gene. These results suggesting that P. oxalicum obviously positively affected the regulation of indigenous P-cycling functional communities during the MIPP process. Inorganic P solubilization genes (gcd, ppa, and ppx) have been shown to affect soil AP, suggesting that inorganic P solubilization is the major driver of Pb immobilization improvement following P. oxalicum inoculation. These results enhance our understanding of the significant ecological role of PSMs in governing soil P-cycling and alleviating Pb2+ biotoxicity during the MIPP process.
Collapse
Affiliation(s)
- Fei Tang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Qiqiang Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiaru Yue
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
36
|
Cao Y, Ma X, Chen N, Chen T, Zhao M, Li H, Song Y, Zhou J, Yang J. Polypropylene microplastics affect the distribution and bioavailability of cadmium by changing soil components during soil aging. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130079. [PMID: 36242955 DOI: 10.1016/j.jhazmat.2022.130079] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Compared with the widespread and serious heavy metal contamination in soils, microplastic pollution has gained attention only recently. Little is known about how microplastics affect the distribution of heavy metals in soils, especially across soil components level. In this study, a 180-day soil aging experiment and soil density fractionation were performed to investigate the effect of polypropylene (PP) microplastics on the binding behavior of cadmium (Cd) to solid components, i.e. particulate organic matter, organo-mineral complexes (OMC), and mineral. Results showed addition of 2-10% microplastics in soils induced the decomposition of OMC fraction by 10.88-23.10%. Compared to the control, the content of dissolved organic carbon increased, and pH, humic substances, and soil organic matter decreased with microplastics. After 180d of aging, the content of Cd in OMC fraction increased by 17.92%, while microplastics made Cd contents decline by 10.01-19.75%. The impacts strongly depended on the dose and surface characteristic of microplastics. Overall, PP microplastics increased the concentration of bioavailable Cd in soils via decreasing soil retention of Cd by the OMC fraction. These findings based on the solid components level will provide a new perspective for understanding microplastics effects on soil systems and pollutants.
Collapse
Affiliation(s)
- Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| | - Xianying Ma
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Nuo Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Tiantian Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Yongwei Song
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
| | - Jun Yang
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China; Institute of Environmental Management and Policy, Zhongnan University of Economics and Law, Wuhan 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|
37
|
Fu T, Zhang B, Gao X, Cui S, Guan CY, Zhang Y, Zhang B, Peng Y. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158810. [PMID: 36162572 DOI: 10.1016/j.scitotenv.2022.158810] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China; Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
38
|
Wang T, Ru X, Deng B, Zhang C, Wang X, Yang B, Zhang L. Evidence that offshore wind farms might affect marine sediment quality and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158782. [PMID: 36116636 DOI: 10.1016/j.scitotenv.2022.158782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Offshore wind power is a typical example of clean energy production and plays a critical role in achieving carbon neutrality. Offshore wind farms can have an impact on the marine environment, especially sedimentary environments, but their influence on sediments remain largely unknown. This study, which uses the control-impact principle to define different areas, investigated the characteristics of marine sediments under the Putidao offshore wind farm in Bohai Bay, China. We used chemical and microbiological observations to evaluate sediment quality and microbial community structure. According to both the geo-accumulation index (Igeo) and contamination factor (CF) indexes, copper, chromium and zinc were the major contaminants in the offshore wind farm sediments. The pollution load index (PLI) index showed that the various sites on the wind farm were only lightly polluted compared with baseline values. Closer to the wind farm's center, the metal concentrations started to rise. The physicochemical features of the sediments could better explain changes in the microorganisms present, and screening the microbiomes showed a correlation with heavy metal levels, linking the relative abundance of microorganisms to the sediment quality index. This comprehensive study fills a knowledge gap in China and adds to our understanding of how to assess the sedimentary environments of offshore wind farms.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoshang Ru
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Beini Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
39
|
Li Q, Hu W, Li L, Li Y. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification, associations, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158710. [PMID: 36099954 DOI: 10.1016/j.scitotenv.2022.158710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) oxides are widely recognized to prevent the degradation of organic matter (OM) in environments, thereby promoting the persistence of organic carbon (OC) in soils. Thus, discerning the association mechanisms of Fe oxides and OC interactions is key to effectively influencing the dynamics and extent of organic C cycling in soils. Previous studies have focused on i) quantifying Fe oxide-bound organic carbon (Fe-OC) in individual environments, ii) investigating the distribution and adsorption capacity of Fe-OC, and iii) assessing the redox cycling and transformation of Fe-OC. Furthermore, the widespread application of high-tech instrumentation and methods has greatly contributed to a better understanding of the mechanism of organic mineral assemblages in the past few decades. However, few literature reviews have comprehensively summarized Fe-OC distributions, associations, and characteristics in soil-plant systems. Here, studies investigating the Fe-OC contents among different environments are reviewed. In addition, the mechanisms and processes related to OM transformation dynamics occurring at mineral-organic interfaces are also described. Recent studies have highlighted that diverse interactions occur between Fe oxides and OC, with organic compounds adhering to Fe oxides due to their huge specific surfaces area and active reaction sites. Moreover, we also review methods for understanding Fe-OC interactions at micro-interfaces. Lastly, developmental prospects for understanding coupled Fe-OC geochemical processes in soil environments at molecular- and nano-scales are outlined. The summary suggests that combined advanced techniques and methods should be used in future research to explore micro-interfaces and in situ descriptions of organic mineral assemblages. This review also suggests that future studies need to consider the functional and spatial complexity that is typical of soil/sediment environments where Fe-OC interactions occur.
Collapse
Affiliation(s)
- Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yichun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China.
| |
Collapse
|
40
|
Li Y, Liu J, Wang Y, Tang X, Xu J, Liu X. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129883. [PMID: 36108495 DOI: 10.1016/j.jhazmat.2022.129883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) are two of the most common elements found in contaminated sites. The behavior of specific metals in the soil may be affected by other metals because of the competition for adsorption sites. In this study, adsorption experiments after chemical extraction, multi-surface models, and advanced spectroscopy technology were jointly used to explain the adsorption mechanism of Cd and Pb and to determine the contribution of each component in the competitive system. The results show that pH is the key factor in determining the contribution of soil components to metal adsorption. Soil organic matter (SOM) is the dominant adsorbent for both Cd and Pb. Clay minerals play an adsorption role at low pH, whereas Fe/Al oxides adsorb metals primarily in the high pH range. Further, the competitive effect of Pb on Cd occurred primarily on SOM rather than on clay minerals. When the Pb concentration increased from 0 to 500 mg/L, the adsorption of Cd on SOM decreased by 132.0 mg/kg, whereas it decreased only by 1.9 mg/kg on clay minerals. Therefore, the competitive effect of Pb on Cd cannot be ignored in soils with high organic matter content.
Collapse
Affiliation(s)
- Yiren Li
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jian Liu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yiheng Wang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xianjin Tang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
41
|
Ma Y, Wu X, Wang T, Zhou S, Cui B, Sha H, Lv B. Elucidation of aniline adsorption-desorption mechanism on various organo-mineral complexes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39871-39882. [PMID: 36600159 DOI: 10.1007/s11356-022-25096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Complexes formed by organic matter and clay minerals, which are active components of soil systems, play an important role in the migration and transformation of pollutants in nature. In this study, humic-acid-montmorillonite (HA-MT) and humic-acid-kaolin (HA-KL) complexes were prepared, and their structures before and after the adsorption of aniline were analyzed. The aniline adsorption-desorption characteristics of complexes with different clay minerals and varying HA contents were explored using the static adsorption-desorption equilibrium method. Compared with the pristine clay minerals, the flaky and porous structure of the complexes and the aromaticity were enhanced. The adsorption of aniline on the different clay mineral complexes was nonlinear, and the adsorption capacity increased with increasing HA content. Additionally, the adsorption capacity of HA-MT was higher than that of HA-KL. After adsorption, the specific surface area of the complexes decreased, the surfaces became more complicated, and the aromaticity decreased because aniline is primarily adsorption onto the complexes via aromatic rings. Aniline was adsorbed onto the complexes via spontaneous exothermic physical adsorption. The amount of aniline desorbed from the complexes increased with increasing HA content, and a lag in desorption was observed, with a greater lag for HA-KL than for HA-MT.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Xinyi Wu
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Tong Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Shengkun Zhou
- Beijing Solid Waste Treatment Co., Ltd, Beijing, 100101, People's Republic of China
| | - Biying Cui
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Haoqun Sha
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Bowen Lv
- Policy Research Center for Environment and Economy, Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China.
| |
Collapse
|
42
|
Jin L, Xia X, He C, Darma AI, Hu Y, Shakouri M, Yang J. Molecular mechanisms of Chromium(III) sorption by organo-ferrihydrite coprecipitates induced by crop straws. CHEMOSPHERE 2022; 308:136398. [PMID: 36096304 DOI: 10.1016/j.chemosphere.2022.136398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Agricultural organo-ferrihydrite (Fh) coprecipitates (OFCs), resulting from the coprecipitation of Fe(III) and dissolved organic carbon (DOC) from returned straws, significantly affect the bioavailability of heavy metals in farmland. However, the molecular sorption mechanisms of Cr(III) by the OFCs remain unclear. Here, we explored the sorption behaviors of Cr(III) by the OFCs formed with wheat or maize straws derived-DOC (wheat-DOC or maize-DOC) under various environmental conditions, and further underlying molecular sorption mechanisms using Cr K-edge X-ray absorption near edge structure (XANES) spectroscopy. Results showed that high C loadings reduced the specific surface areas (SSAs) and Cr(III) sorption capacities of the OFCs, implying the blockage of binding sites by C loading. Additionally, although the wheat-DOC induced OFC had a smaller SSA than the maize-DOC induced OFC, their Cr(III) sorption were comparable, which was likely to be compensated by the more carboxyl in the wheat-DOC. Moreover, at a higher ionic strength, the increased or slightly decreased Cr(III) sorption indicated that the inner-sphere sorption was dominant regardless of high or low C loadings, which was also supported by the extremely low Cr(III) extraction percentage. The Cr K-edge XANES spectroscopy suggested that Cr(III) could be immobilized by both the Fh and organic fractions, with the Fh fractions playing a significant role. These findings contribute to a molecular-level mechanistic understanding of Cr(III) sorption by the OFC, which will aid in the prevention and control of Cr-contaminated agricultural soils.
Collapse
Affiliation(s)
- Lin Jin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aminu Inuwa Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongfeng Hu
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2V3, Canada
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2V3, Canada
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
43
|
Wang K, He J, Gao Y, Han K, Liu J, Wang Y. Exogenous melatonin improved the growth and development of naked oat seedlings under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88109-88118. [PMID: 35821327 DOI: 10.1007/s11356-022-21798-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution has become a global problem, which affect more and more crop yields. Melatonin (MT) is widely used in plant stress resistance to alleviate the toxicity caused by heavy metals and other stresses. In this paper, the effects of exogenous 50 μM and 100 μM MT on the growth and development of naked oat seedlings under cadmium stress (25 mg L-1) were studied. The results showed that different concentrations of MT could promote the growth of naked oat seedlings under 25-mg L-1 cadmium stress. The application of exogenous melatonin could significantly increase the plant height, fresh weight, dry weight, chlorophyll, and proline contents of naked oats. MT could also reduce the contents of hydrogen peroxide, superoxide anion, and malondialdehyde in the cells of naked oat seedlings, and increase the activities of SOD, POD, and CAT. In addition, exogenous melatonin could affect the gene expression of LOX, POX, and Asmap1 in MAPK family and NAC and WRKY1 in TFS family in naked oat seedlings, thus promoting the growth and development of naked oat seedlings. In conclusion, this study is the first to demonstrate that MT is able to alleviate the negative effects to treat naked oat seedlings with cadmium stress. Therefore, melatonin has the potential to be applied in crops threatened by heavy metals.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jinjin He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yu Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Kai Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Jiaqi Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China
| | - Yingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
44
|
Yang W, Huang C, Wan X, Zhao Y, Bao Z, Xiang W. Enhanced Adsorption of Cd on Iron-Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15650. [PMID: 36497725 PMCID: PMC9737542 DOI: 10.3390/ijerph192315650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The objectives of this study were to evaluate the cadmium adsorption capacity of iron-organic associations (Fe-OM) formed by laccase-mediated modification and assess the effect of Fe-OM on the immobilization of cadmium in paddy soil. Leaf organic matter (OM) was extracted from Changshan grapefruit leaves, and then dissolved organic matter (Lac-OM) and precipitated organic matter (Lac-P) were obtained by laccase catalytic modification. Different Fe-OM associations were obtained by co-precipitation of Fe with OM, Lac-OM, and Lac-P, respectively, and the adsorption kinetics, adsorption edge, and isothermal adsorption experiments of Cd on Fe-OM were carried out. Based on the in situ generation of Fe-OM, passivation experiments on Cd-contaminated soils with a high geological background were carried out. All types of Fe-OM have a better Cd adsorption capacity than ferrihydrite (FH). The theoretical maximum adsorption capacity of the OM-FH, Lac-OM-FH, and Lac-P-FH were 2.2, 2.53, and 2.98 times higher than that of FH, respectively. The adsorption of Cd on Fe-OM is mainly chemisorption, and the -OH moieties on the Fe-OM surface form an inner-sphere complex with the Cd ions. Lac-OM-FH showed a higher Cd adsorption capacity than OM-FH, which is related to the formation of more oxygen-containing groups in the organic matter modified by laccase. The immobilization effect of Lac-OM-FH on active Cd in soil was also higher than that of OM-FH. The Lac-OM-FH formed by laccase-mediated modification has better Cd adsorption performance, which can effectively inactivate the activity of Cd in paddy soil.
Collapse
Affiliation(s)
- Weilin Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunlei Huang
- Zhejiang Institute of Geological Survey, Hangzhou 312000, China
| | - Xiang Wan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Geological Survey, Wuhan 430034, China
| | - Yunyun Zhao
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wu Xiang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
45
|
Qi S, Li X, Luo J, Han R, Chen Q, Shen D, Shentu J. Soil heterogeneity influence on the distribution of heavy metals in soil during acid rain infiltration: Experimental and numerical modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116144. [PMID: 36067661 DOI: 10.1016/j.jenvman.2022.116144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Acid rain is a global environmental problem that mobilizes heavy metals in soils, while the distribution and geochemical fraction of heavy metals during acid rain infiltration in heterogeneous soils are still unclear. In this study, we performed column experiments to investigate the distribution and geochemical fraction of Cu, Pb, Ni and Cd in heterogeneously layered soils during continuous acid rain infiltration. Chloride ion used as a conservative tracer was found to be uniformly distributed during acid rain infiltration, showing insignificant preferential flow effects in the column. In contrast, however, the distribution of heavy metals was highly non-uniform, especially in the silty soil at the lower part of the column, indicating a heterogeneous distribution of adsorption capacity. In addition, in the control experiments with neutral rain infiltration, uniform distribution of heavy metals was observed, indicating that the heterogeneous distribution of adsorption coefficient during acid rain infiltration was mainly caused by different pH buffering capacities. A numerical model considering water flow and solute transport was developed, where the average water-solid distribution coefficient (Kd) in Layer 2 was only 1.5-12.5% of that in Layer 1 during acid rain infiltration. The model could predict the variation of heavy metal concentrations in soil with the majority of error less than 35%, confirming that different Kd induced the heterogeneous distribution of heavy metals. In addition, the geochemical fraction of heavy metals in the upper coarse sand layer remained stable, while the acid-extractable fractions in the lower loam and silt loam layer gradually increased. Our findings suggest that soil heterogeneity, especially chemical heterogeneity affected by rainfall acidity, has an important influence on the infiltration, migration and geochemical fraction of heavy metals in soils. This study could help guide the risk assessment of heavy metal-contaminated sites that were polluted by acid rain or landfill leachate.
Collapse
Affiliation(s)
- Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiaoxiao Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0355, United States
| | - Ruifang Han
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Qianqian Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
46
|
Hadiuzzaman M, Salehi M, Fujiwara T. Plastic litter fate and contaminant transport within the urban environment, photodegradation, fragmentation, and heavy metal uptake from storm runoff. ENVIRONMENTAL RESEARCH 2022; 212:113183. [PMID: 35390300 DOI: 10.1016/j.envres.2022.113183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
A significant portion of urban litter is plastic which contaminates the environment and threatens ecological safety. The conversion of plastic litter into small fragments called microplastics (MPs) intensifies their critical risks by facilitating their transport and altering their physicochemical features. This study focuses on low density polyethylene (LDPE) and polyethylene terephthalate (PET) as the main components of urban litter. The photodegradation of LDPE and PET MPs due to the accelerated weathering experiments is investigated through surface chemistry and morphology analysis. The influence of MPs' photodegradation on their fragmentation behavior is evaluated through the innovative accelerated mechanical weathering experiments that simulated the abrasion of MPs with the road deposits. Furthermore, the role of MPs as the vehicles to transport the heavy metals from the urban environment to the water resources is evaluated by studying the kinetics of lead (Pb) uptake by new and weathered MPs in synthetic stormwater. The surface morphology investigation revealed the formation of crazes and the crack networks onto the MPs due to the weathering experiments. The surface chemistry analysis revealed the generation of several oxidized carbon surface functional groups onto the photodegraded MPs and their increased susceptibility to fragmentation due to the abrasion with the road deposits. The photodegradation increased the Pb accumulation onto the LDPE and PET MPs from 467 μg/m2 and 21 μg/m2 to 2290 μg/m2 and 725 μg/m2, after five days of metal exposure. The fundamental knowledge developed in this research provides a better conceptual understanding of the mechanisms controlling MPs persistence and contaminant transport within the urban environment, which is crucial to estimate their negative impacts on the ecosystem.
Collapse
Affiliation(s)
- Md Hadiuzzaman
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Maryam Salehi
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA.
| | - Tomoko Fujiwara
- Department of Chemistry, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
47
|
Shen X, Zhu H, Wang P, Zheng L, Hu S, Liu C. Mechanistic and modeling insights into the immobilization of Cd and organic carbon during abiotic transformation of ferrihydrite induced by Fe(II). JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129216. [PMID: 35739738 DOI: 10.1016/j.jhazmat.2022.129216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) oxides and fulvic acid (FA) are the key components affecting the fate of cadmium (Cd) in soil. The presence of FA influences Fe mineral transformation, and FA may complicate phase transformation and dynamic behavior of Cd. How varying Fe minerals and FA affect Cd immobilization during the ferrihydrite transformation induced by various Fe(II) concentrations, however, is still lack of quantitative understanding. In this study, we built a model for Cd species quantification during phase transformation based on mechanistic insights obtained from batch experiments. Spectroscopic analysis showed that Fe(II) concentrations affected secondary Fe minerals formation under the condition of co-existence of Cd and FA, and ultimately changed the distribution of Cd and FA. Microscopic analysis revealed that besides surface adsorption, part of Cd was sequestrated by magnetite, whereas FA was able to diffuse into lepidocrocite defects. The model revealed that adsorbed Cd was mainly controlled by FA and ferrihydrite, and direct complexation of Cd by FA had a strong impact on the continuous change in Cd at lower Fe(II) concentration. The results contribute to an in-depth understanding of the mobility of Cd in the environment and provide a method for quantifying the dynamic behavior of heavy metals in multi-reactant systems.
Collapse
Affiliation(s)
- Xinyue Shen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huiyan Zhu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Pei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
48
|
Huang M, Zhou M, Li Z, Ding X, Wen J, Jin C, Wang L, Xiao L, Chen J. How do drying-wetting cycles influence availability of heavy metals in sediment? A perspective from DOM molecular composition. WATER RESEARCH 2022; 220:118671. [PMID: 35640502 DOI: 10.1016/j.watres.2022.118671] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Investigating the influence mechanism of drying-wetting cycles on the availability and mobility of heavy metals in sediment from the perspective of the molecular composition of dissolved organic matter (DOM) may gain a new understanding, but little current information exists. Here, we used spectral technologies, high-resolution mass spectrometry, and elemental stoichiometry method to trace the change rules of the molecular composition of DOM in the riparian sediment of the river. Results showed that the drying-wetting cycles could benefit the degradation of labile fractions (e.g., proteins, aliphatics, and lipids) of DOM and retain the fractions with high aromaticity and molecular size (e.g., lignin). The decrease in the availability of Cd after drying-wetting alternation processes was highly related to these changes in DOM composition. However, the availability of Zn and Cu remained almost unchanged, which probably resulted from the release and depletion of N and S in sediment-derived DOM under drying-wetting alternation conditions. As for Cr, its exchangeable fraction was unchanged during the drying-wetting alternation process, likely due to its high stability in the sediment. These results have implications on the environmental geochemical cycling of heavy metals in the riparian sediment with frequent drying-wetting alternation.
Collapse
Affiliation(s)
- Mei Huang
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mi Zhou
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Changsheng Jin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Lei Wang
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Linhui Xiao
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Jia Chen
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| |
Collapse
|
49
|
Zheng W, Yang Z, Huang L, Chen Y. Roles of organic matter transformation in the bioavailability of Cu and Zn during sepiolite-amended pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115046. [PMID: 35468432 DOI: 10.1016/j.jenvman.2022.115046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 05/16/2023]
Abstract
The application of clay minerals facilitates the bioavailability of heavy metals and the humification in livestock manure composting. However, whether the humification plays a critical role in the bioavailability of heavy metals is still unclear. Here, with the addition of sepiolite (SEP), the fractions of Cu and Zn, and the spectral characteristics of humic acids (HAs) during aerobic pig manure composting were investigated. The SEP-amended composting had a decreased peak temperature and an increased electrical conductivity, regardless of the SEP dosage. The seed germination index increased by 15.9 ± 0.5% (p < 0.05) with the appropriate dosage of SEP (6%), indicating a higher maturity and a lower phytotoxicity of the SEP-amended compost. The addition of SEP reduced the water-extractable organic matter (WEOM) content and increased the percentage of HAs by 2.8-10.7%. More interestingly, during SEP-amended composting, the reducible fraction of heavy metals was transformed into the oxidizable fraction, and the bioavailability of Cu and Zn decreased by 11.0-15.9% and 15.4-26.5%, respectively. Ultraviolet-visible (UV-vis) spectra and fluorescence spectra analyses showed that the SUVA254 and complex fluorescent components of HAs in the SEP-amended composting increased by 4.4-15.8% and 1.2-9.0%, respectively. Nuclear magnetic resonance (NMR) further confirmed that the addition of SEP increased the aromatic index and percentage of carbonyl-carboxyl C of HAs by 3.4-8.3% and 4.6-5.7%, respectively. The redundancy analyses (RDA) described the SUVA254, aromatic index and carbonyl-carboxyl C of HAs had a strong positive correlation with the oxidizable fraction of heavy metals, which was further confirmed by variance partitioning analysis (VPA). Overall, this work suggested that the HAs structure play an important role in the bioavailability of Cu and Zn during SEP-amended composting, potentially providing safe organic fertilizer.
Collapse
Affiliation(s)
- Wei Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Zhimin Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China.
| |
Collapse
|
50
|
Li Q, Wang Y, Li Y, Li L, Tang M, Hu W, Chen L, Ai S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153862. [PMID: 35176361 DOI: 10.1016/j.scitotenv.2022.153862] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal (HM) pollution of soils is a globally important ecological and environmental problem. Previous studies have focused on i) tracking pollution sources in HM-contaminated soils, ii) exploring the adsorption capacity and distribution of HMs, and iii) assessing phyto-uptake of HMs and their ecotoxicity. However, few reviews have systematically summarized HM pollution in soil-plant systems over the past decade. Understanding the mechanisms of interaction between HMs and solid soil components is consequently key to effectively controlling and remediating HM pollution. However, the compositions of solid soil phases are diverse, their structures are complex, and their spatial arrangements are heterogeneous, all leading to the formation of soil micro-domains that exhibit different particle sizes and surface properties. The various soil components and their interactions ultimately control the speciation, transformation, and bioavailability of HMs in soils. Over the past few decades, the extensive application of advanced instrumental techniques and methods has greatly expanded our understanding of the behavior of HMs in organic mineral assemblages. In this review, studies investigating the immobilization of HMs by minerals, organic compounds, microorganisms, and their associated complexes are summarized, with a particular emphasis on the interfacial adsorption and immobilization of HMs. In addition, methods for analyzing the speciation and distribution of HMs in aggregates of natural soils with different particle sizes are also discussed. Moreover, we also review the methods for speciating HMs at mineral-organic micro-scale interfaces. Lastly, developmental prospects for HM research at inorganic-organic interfaces are outlined. In future research, the most advanced methods should be used to characterize the interfaces and in situ characteristics of metals and metal complexes. In particular, the roles and contributions of microorganisms in the immobilization of HMs at complex mineral-organic interfaces require significant further investigation.
Collapse
Affiliation(s)
- Qi Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yanhong Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Yichun Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Linfeng Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Mingdeng Tang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shaoying Ai
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China.
| |
Collapse
|