1
|
Grünfeld J, Møller P, Vogel U, Jensen SP, Kofoed-Sørensen V, Andersen MHG. Assessment of Polycyclic Aromatic Hydrocarbon Exposure in Trainee Firefighters Using PAH CALUX Bioassay. TOXICS 2024; 12:825. [PMID: 39591003 PMCID: PMC11598809 DOI: 10.3390/toxics12110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
This work investigated the application of a reporter gene bioassay in assessing polycyclic aromatic hydrocarbon (PAH) exposure in trainee firefighters. In the PAH CALUX bioassay, the PAH-induced activation of the aryl hydrocarbon receptor in a reporter cell line is recorded by increased luminescence. A repeated measurement study was performed, collecting urine and skin wipe samples at two baseline sessions (spring and autumn) and after three firefighting sessions: one with wood fuel, one with gas fuel, and one without fire. The bioassay response was expressed as benzo[a]pyrene equivalents, which was compared to levels of 16 EPA criteria PAHs in skin wipe samples and 8 hydroxylated PAHs (OH-PAHs) in urine samples quantified by chromatography-tandem mass spectrometry techniques. Benzo[a]pyrene equivalents and PAH levels in skin wipes indicated larger exposure to PAHs during the wood session compared to the other sessions. The urine bioassay showed non-significant effect sizes after all sessions, whereas the chemical analysis showed increased OH-PAH levels after the gas session. The non-significant changes observed for the session without fire suggest a negligible exposure from contaminated gear. In conclusion, the bioassay response for skin wipes shows that trainee firefighters were exposed to higher levels of potentially toxic PAHs during the wood fire training session.
Collapse
Affiliation(s)
- Johanna Grünfeld
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014 Copenhagen, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Simon Pelle Jensen
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | - Vivi Kofoed-Sørensen
- The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
| | | |
Collapse
|
2
|
Barros B, Paiva AM, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Slezakova K, Costa S, Teixeira JP, Morais S. Baseline data and associations between urinary biomarkers of polycyclic aromatic hydrocarbons, blood pressure, hemogram, and lifestyle among wildland firefighters. Front Public Health 2024; 12:1338435. [PMID: 38510349 PMCID: PMC10950961 DOI: 10.3389/fpubh.2024.1338435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Available literature has found an association between firefighting and pathologic pathways leading to cardiorespiratory diseases, which have been linked with exposure to polycyclic aromatic hydrocarbons (PAHs). PAHs are highlighted as priority pollutants by the European Human Biomonitoring Initiative in occupational and non-occupational contexts. Methods This cross-sectional study is the first to simultaneously characterize six creatinine-adjusted PAHs metabolites (OHPAHs) in urine, blood pressure, cardiac frequency, and hemogram parameters among wildland firefighters without occupational exposure to fire emissions (> 7 days), while exploring several variables retrieved via questionnaires. Results Overall, baseline levels for total OHPAHs levels were 2 to 23-times superior to the general population, whereas individual metabolites remained below the general population median range (except for 1-hydroxynaphthalene+1-hydroxyacenaphtene). Exposure to gaseous pollutants and/or particulate matter during work-shift was associated with a 3.5-fold increase in total OHPAHs levels. Firefighters who smoke presented 3-times higher total concentration of OHPAHs than non-smokers (p < 0.001); non-smoker females presented 2-fold lower total OHPAHs (p = 0.049) than males. 1-hydroxypyrene was below the recommended occupational biological exposure value (2.5 μg/L), and the metabolite of carcinogenic PAH (benzo(a)pyrene) was not detected. Blood pressure was above 120/80 mmHg in 71% of subjects. Firefighters from the permanent intervention team presented significantly increased systolic pressure than those who performed other functions (p = 0.034). Tobacco consumption was significantly associated with higher basophils (p = 0.01-0.02) and hematocrit (p = 0.03). No association between OHPAHs and blood pressure was found. OHPAHs concentrations were positively correlated with monocyte, basophils, large immune cells, atypical lymphocytes, and mean corpuscular volume, which were stronger among smokers. Nevertheless, inverse associations were observed between fluorene and pyrene metabolites with neutrophils and eosinophils, respectively, in non-smokers. Hemogram was negatively affected by overworking and lower physical activity. Conclusion This study suggests possible associations between urinary PAHs metabolites and health parameters in firefighters, that should be further assessed in larger groups.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Margarida Paiva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Filipa Esteves
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Instituto Politécnico de Bragança Campus de Santa Apolónia, Bragança, Portugal
| | - Josiana Vaz
- CIMO, Instituto Politécnico de Bragança, Bragança, Centro de Investigação de Montanha Campus Santa Apolónia, Bragança, Portugal
- SusTEC, Instituto Politécnico de Bragança, Bragança, Sustec – Associate Laboratory for Sustainability and Technology in Inland Regions – Campus Santa Apolónia, Bragança, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
3
|
Laguerre A, Gall ET. Polycyclic Aromatic Hydrocarbons (PAHs) in Wildfire Smoke Accumulate on Indoor Materials and Create Postsmoke Event Exposure Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:639-648. [PMID: 38111142 DOI: 10.1021/acs.est.3c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Wildfire smoke contains PAHs that, after infiltrating indoors, accumulate on indoor materials through particle deposition and partitioning from air. We report the magnitude and persistence of select surface associated PAHs on three common indoor materials: glass, cotton, and mechanical air filter media. Materials were loaded with PAHs through both spiking with standards and exposure to a wildfire smoke proxy. Loaded materials were aged indoors over ∼4 months to determine PAH persistence. For materials spiked with standards, total PAH decay rates were 0.010 ± 0.002, 0.025 ± 0.005, and 0.051 ± 0.009 day-1, for mechanical air filter media, glass, and cotton, respectively. PAH decay on smoke-exposed samples is consistent with that predicated by decay constants from spiked materials. Decay curves of smoke loaded samples show that PAH surface concentrations are elevated above background for ∼40 days after the smoke clears. Cleaning processes efficiently remove PAHs, with reductions of 71% and 62% after cleaning smoke-exposed glass with ethanol and a commercial cleaner, respectively. Laundering smoke-exposed cotton in a washing machine and heated drying removed 48% of PAHs. An exposure assessment indicates that both inhalation and dermal PAH exposure pathways may be relevant following wildfire smoke events.
Collapse
Affiliation(s)
- Aurélie Laguerre
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| | - Elliott T Gall
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
4
|
Furlong MA, Liu T, Snider JM, Tfaily MM, Itson C, Beitel S, Parsawar K, Keck K, Galligan J, Walker DI, Gulotta JJ, Burgess JL. Evaluating changes in firefighter urinary metabolomes after structural fires: an untargeted, high resolution approach. Sci Rep 2023; 13:20872. [PMID: 38012297 PMCID: PMC10682406 DOI: 10.1038/s41598-023-47799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which may be attributable to environmental occupational exposures. Untargeted metabolomics was applied to characterize this suite of environmental exposures and biological changes in response to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be important regulators of firefighter's increased risk for urinary tract cancers.
Collapse
Affiliation(s)
- Melissa A Furlong
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA.
| | - Tuo Liu
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- University of Arizona Cancer Center, Tucson, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Christian Itson
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Shawn Beitel
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | - Kristen Keck
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | | | - Douglas I Walker
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | | - Jefferey L Burgess
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| |
Collapse
|
5
|
Laguerre A, Gall ET. Measurement of Polycyclic Aromatic Hydrocarbons (PAHs) on Indoor Materials: Method Development. ACS OMEGA 2023; 8:20634-20641. [PMID: 37332781 PMCID: PMC10268631 DOI: 10.1021/acsomega.3c01184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023]
Abstract
Wildfire smoke penetrates indoors, and polycyclic aromatic hydrocarbons (PAHs) in smoke may accumulate on indoor materials. We developed two approaches for measuring PAHs on common indoor materials: (1) solvent-soaked wiping of solid materials (glass and drywall) and (2) direct extraction of porous/fleecy materials (mechanical air filter media and cotton sheets). Samples are extracted by sonication in dichloromethane and analyzed with gas chromatography-mass spectrometry. Extraction recoveries range from 50-83% for surrogate standards and for PAHs recovered from direct application to isopropanol-soaked wipes, in line with prior studies. We evaluate our methods with a total recovery metric, defined as the sampling and extraction recovery of PAHs from a test material spiked with known PAH mass. Total recovery is higher for "heavy" PAHs (HPAHs, 4 or more aromatic rings) than for "light" PAHs (LPAHs, 2-3 aromatic rings). For glass, the total recovery range is 44-77% for HPAHs and 0-30% for LPAHs. Total recoveries from painted drywall are <20% for all PAHs tested. For filter media and cotton, total recoveries of HPAHs are 37-67 and 19-57%, respectively. These data show acceptable HPAH total recovery on glass, cotton, and filter media; total recovery of LPAHs may be unacceptably low for indoor materials using methods developed here. Our data also indicate that extraction recovery of surrogate standards may overestimate the total recovery of PAHs from glass using solvent wipe sampling. The developed method enables future studies of accumulation of PAHs indoors, including potential longer-term exposure derived from contaminated indoor surfaces.
Collapse
|
6
|
Barros B, Oliveira M, Morais S. Biomonitoring of firefighting forces: a review on biomarkers of exposure to health-relevant pollutants released from fires. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:127-171. [PMID: 36748115 DOI: 10.1080/10937404.2023.2172119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Occupational exposure as a firefighter has recently been classified as a carcinogen to humans by International Agency for Research on Cancer (IARC). Biomonitoring has been increasingly used to characterize exposure of firefighting forces to contaminants. However, available data are dispersed and information on the most relevant and promising biomarkers in this context of firefighting is missing. This review presents a comprehensive summary and critical appraisal of existing biomarkers of exposure including volatile organic compounds such as polycyclic aromatic hydrocarbons, several other persistent other organic pollutants as well as heavy metals and metalloids detected in biological fluids of firefighters attending different fire scenarios. Urine was the most characterized matrix, followed by blood. Firefighters exhaled breath and saliva were poorly evaluated. Overall, biological levels of compounds were predominantly increased in firefighters after participation in firefighting activities. Biomonitoring studies combining different biomarkers of exposure and of effect are currently limited but exploratory findings are of high interest. However, biomonitoring still has some unresolved major limitations since reference or recommended values are not yet established for most biomarkers. In addition, half-lives values for most of the biomarkers have thus far not been defined, which significantly hampers the design of studies. These limitations need to be tackled urgently to improve risk assessment and support implementation of better more effective preventive strategies.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV,Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
7
|
Jung AM, Beitel SC, Gutenkunst SL, Billheimer D, Jahnke SA, Littau SR, White M, Hoppe-Jones C, Cherrington NJ, Burgess JL. Excretion of polybrominated diphenyl ethers and AhR activation in breastmilk among firefighters. Toxicol Sci 2023; 192:kfad017. [PMID: 36856729 PMCID: PMC10109531 DOI: 10.1093/toxsci/kfad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Excretion of toxicants accumulated from firefighter exposures through breastmilk represents a potential hazard. We investigated if firefighting exposures could increase the concentration of polybrominated diphenyl ethers (PBDEs) and aryl hydrocarbon receptor (AhR) activation in excreted breastmilk. Firefighters and non-firefighters collected breastmilk samples prior to any firefighting responses (baseline) and at 2, 8, 24, 48, and 72 hours after a structural fire (firefighters only). Five PBDE analytes (BDEs 15, 28, 47, 99, and 153) detected in at least 90% of samples were summed for analyses. The AhR in vitro DR CALUX® bioassay assessed the mixture of dioxin-like compounds and toxicity from breastmilk extracts. Baseline PBDEs and AhR response were compared between firefighters and non-firefighters. Separate linear mixed models assessed changes in sum of PBDEs and AhR response among firefighters over time and effect modification by interior or exterior response was assessed. Baseline PBDE concentrations and AhR responses did not differ between the 21 firefighters and 10 non-firefighters. There were no significant changes in sum of PBDEs or AhR response among firefighters over time post-fire, and no variation by interior or exterior response. Plots of sum of PBDEs and AhR response over time demonstrated individual variation but no consistent pattern. Currently, our novel study results do not support forgoing breastfeeding after a fire exposure. However, given study limitations and the potential hazard of accumulated toxicants from firefighter exposures excreted via breastfeeding, future studies should consider additional contaminants and measures of toxicity by which firefighting may impact maternal and child health.
Collapse
Affiliation(s)
- Alesia M Jung
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA
| | - Shawn C Beitel
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA
| | - Shannon L Gutenkunst
- Statistics Consulting Lab, BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
- Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721, USA
| | - Dean Billheimer
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA
- Statistics Consulting Lab, BIO5 Institute, University of Arizona, Tucson, Arizona 85721, USA
- Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721, USA
| | - Sara A Jahnke
- Center for Fire, Rescue, & EMS Health Research, NDRI-USA, Leawood, Kansas 66224, USA
| | - Sally R Littau
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA
| | - Mandie White
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA
| | | | - Nathan J Cherrington
- Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721, USA
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | - Jefferey L Burgess
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724, USA
- Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
8
|
Chen C, Zhang D, Yuan A, Shen J, Wang L, Wang SL. A novel approach to predict the comprehensive EROD potency: Mechanism-based curve fitting of CYP1A1 activity by PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157052. [PMID: 35787903 DOI: 10.1016/j.scitotenv.2022.157052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 1A1 (CYP1A1) plays critical roles in polycyclic aromatic hydrocarbon (PAH) toxicity, including DNA adduction and ROS generation. Therefore, CYP1A1 activity quantified by the 7-ethoxyresorufin-O-deethylase (EROD) assay (named EROD potency) has been considered a typical biomarker of PAH exposure and toxicity. The EROD dose-response curve always presents a biphasic style, increasing at low concentrations and decreasing at high concentrations of PAHs, but relative effect potency (REP) commonly used in PAH risk assessment is only involved in the increasing phase. In this study, a full bell-shaped EROD curve fitting formula Eq. (1) was obtained by considering both CYP1A1 mRNA induction and enzyme inhibition to completely assess the EROD potency of PAHs. Correspondingly, in silico models of QSAR and docking methods successfully predicted the full EROD curves of PAHs, and the structure-activity relationship indicated that PAHs with heavy molecular weight and large diameter showed stronger EROD potency. Further EROD potency with predicted curve parameters (EC50,ind and area index) was confirmed by the reported REP (R2 = 0.697-0.977) and experimental data from human and mouse cells (R2 = 0.700-0.804). This study provides a novel curve fitting for the EROD dose-response relationship and a prediction model for PAH EROD potency.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Di Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Anjie Yuan
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiemiao Shen
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Li Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shou-Lin Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
9
|
Sousa G, Teixeira J, Delerue-Matos C, Sarmento B, Morais S, Wang X, Rodrigues F, Oliveira M. Exposure to PAHs during Firefighting Activities: A Review on Skin Levels, In Vitro/In Vivo Bioavailability, and Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12677. [PMID: 36231977 PMCID: PMC9565977 DOI: 10.3390/ijerph191912677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Occupational exposure as a firefighter is a complex activity that continuously exposes subjects to several health hazards including fire emissions during firefighting. Firefighters are exposed to polycyclic aromatic hydrocarbons (PAHs), known as toxic, mutagenic, and carcinogenic compounds, by inhalation, dermal contact, and ingestion. In this work, a literature overview of firefighters' dermal exposure to PAHs after firefighting and data retrieved from skin in vitro/in vivo studies related to their dermal absorption, bioavailability, and associated toxicological and carcinogenic effects are reviewed. The evidence demonstrates the contamination of firefighters' skin with PAHs, mainly on the neck (2.23-62.50 ng/cm2), wrists (0.37-8.30 ng/cm2), face (2.50-4.82 ng/cm2), and hands (1.59-4.69 ng/cm2). Concentrations of possible/probable carcinogens (0.82-33.69 ng/cm2), including benzopyrene isomers, were found on firefighters' skin. PAHs penetrate the skin tissues, even at low concentrations, by absorption and/or diffusion, and are locally metabolized and distributed by the blood route to other tissues/organs. Lighter PAHs presented increased dermal permeabilities and absorption rates than heavier compounds. Topical PAHs activate the aryl hydrocarbon receptor and promote the enzymatic generation of reactive intermediates that may cause protein and/or DNA adducts. Future research should include in vitro/in vivo assays to perform a more realistic health risk assessment and to explore the contribution of dermal exposure to PAHs total internal dose.
Collapse
Affiliation(s)
- Gabriel Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Bruno Sarmento
- CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Xianyu Wang
- QAEHS-Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
10
|
Goodrich JM, Jung AM, Furlong MA, Beitel S, Littau S, Gulotta J, Wallentine D, Burgess JL. Repeat measures of DNA methylation in an inception cohort of firefighters. Occup Environ Med 2022; 79:656-663. [PMID: 35332072 PMCID: PMC9484361 DOI: 10.1136/oemed-2021-108153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Firefighters face exposures associated with adverse health outcomes including risk for multiple cancers. DNA methylation, one type of epigenetic regulation, provides a potential mechanism linking occupational hazards to adverse health outcomes. We hypothesised that DNA methylation profiles would change in firefighters after starting their service and that these patterns would be associated with occupational exposures (cumulative fire-hours and fire-runs). METHODS We profiled DNA methylation with the Infinium MethylationEPIC in blood leucocytes at two time points in non-smoking new recruits: prior to live fire training and 20-37 months later. Linear mixed effects models adjusted for potential confounders were used to identify differentially methylated CpG sites over time using data from 50 individuals passing all quality control. RESULTS We report 680 CpG sites with altered methylation (q value <0.05) including 60 with at least a 5% methylation difference at follow-up. Genes with differentially methylated CpG sites were enriched in biological pathways related to cancers, neurological function, cell signalling and transcription regulation. Next, linear mixed effects models were used to determine associations between occupational exposures with methylation at the 680 loci. Of these, more CpG sites were associated with fire-runs (108 for all and 78 for structure-fires only, q<0.05) than with fire-hours (27 for all fires and 1 for structure fires). These associations were independent of time since most recent fire, suggesting an impact of cumulative exposures. CONCLUSIONS Overall, this study provides evidence that DNA methylation may be altered by fireground exposures, and the impact of this change on disease development should be evaluated.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alesia M Jung
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Melissa A Furlong
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Shawn Beitel
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Sally Littau
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | | | | | - Jefferey L Burgess
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
11
|
Hwang J, Xu C, Grunsted P, Agnew RJ, Malone TR, Clifton S, Thompson K, Xu X. Urinary Metabolites of Polycyclic Aromatic Hydrocarbons in Firefighters: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8475. [PMID: 35886320 PMCID: PMC9318785 DOI: 10.3390/ijerph19148475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
Firefighters are intermittently exposed to complex, mixed pollutants in random settings. Of those pollutants, PAHs (polycyclic aromatic hydrocarbons) are the most commonly studied and best understood. PAH exposure can occur via multiple routes; therefore, the levels of hydroxylated metabolites of PAHs in urine have been used as a biomonitoring tool for risk assessment. We performed a systematic review and meta-analysis of the literature to estimate the levels of urinary hydroxylated PAH (OHPAH) among firefighters, determine risk attributions, and, finally, evaluate the scope of preventive efforts and their utility as diagnostic tools. The meta-regression confirmed increases in OHPAH concentrations after fire activities by up to 1.71-times (p-values: <0.0001). Samples collected at a time point of 2−4 h after a fire suppression showed a consistent, statistically significant pattern as compared with baseline samples. The National Fire Protection Association (NFPA) standard 1582 Standard on Comprehensive Occupational Medical Program for Fire Departments lists various health examinations, including a urinalysis for occupational chemical exposure if indicated and medical screening for cancers and cardiovascular diseases. Biomonitoring is a valuable screening tool for assessing occupational exposure and the results of this meta-analysis support their inclusion in regular health screenings for firefighters.
Collapse
Affiliation(s)
- Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (C.X.); (P.G.)
| | - Paul Grunsted
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (C.X.); (P.G.)
| | - Robert J. Agnew
- Fire Protection & Safety Engineering Technology Program, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Tara R. Malone
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.R.M.); (S.C.)
| | - Shari Clifton
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (T.R.M.); (S.C.)
| | - Krista Thompson
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390, USA;
| | - Xin Xu
- Shanghai Anti-Doping Laboratory, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
12
|
Ishihara Y, Kado SY, Bein KJ, He Y, Pouraryan AA, Urban A, Haarmann-Stemmann T, Sweeney C, Vogel CFA. Aryl Hydrocarbon Receptor Signaling Synergizes with TLR/NF-κB-Signaling for Induction of IL-22 Through Canonical and Non-Canonical AhR Pathways. FRONTIERS IN TOXICOLOGY 2022; 3:787360. [PMID: 35295139 PMCID: PMC8915841 DOI: 10.3389/ftox.2021.787360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 22 (IL-22) is critically involved in gut immunity and host defense and primarily produced by activated T cells. In different circumstances IL-22 may contribute to pathological conditions or act as a cancer promoting cytokine secreted by infiltrating immune cells. Here we show that bone marrow-derived macrophages (BMM) express and produce IL-22 after activation of the aryl hydrocarbon receptor (AhR) when cells are activated through the Toll-like receptor (TLR) family. The additional activation of AhR triggered a significant induction of IL-22 in TLR-activated BMM. Deletion and mutation constructs of the IL-22 promoter revealed that a consensus DRE and RelBAhRE binding element are necessary to mediate the synergistic effects of AhR and TLR ligands. Inhibitor studies and analysis of BMM derived from knockout mice confirmed that the synergistic induction of IL-22 by AhR and TLR ligands depend on the expression of AhR and Nuclear Factor-kappa B (NF-κB) member RelB. The exposure to particulate matter (PM) collected from traffic related air pollution (TRAP) and wildfires activated AhR as well as NF-κB signaling and significantly induced the expression of IL-22. In summary this study shows that simultaneous activation of the AhR and NF-κB signaling pathways leads to synergistic and prolonged induction of IL-22 by integrating signals of the canonical and non-canonical AhR pathway.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Keith J. Bein
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Arshia A. Pouraryan
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Angelika Urban
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States,Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States,*Correspondence: Christoph F. A. Vogel,
| |
Collapse
|
13
|
Abstract
Firefighters are the professional force at high risk of suffering potential health consequences due to their chronic exposure to numerous hazardous pollutants during firefighting activities. Unfortunately, determination of fire emission exposure is very challenging. As such, the identification and development of appropriate biomarkers is critical in meeting this need. This chapter presents a critical review of current information related with the use of different urinary biomarkers of effect and exposure in occupationally exposed firefighters over the last 25 years. Evidence suggests that urinary isoprostanes and mutagenicity testing are promising biomarkers of early oxidative stress. Data indicate that firefighters participating in firefighting activities present with increased urinary biomarkers of exposure. These include polycyclic aromatic hydrocarbons, heavy metals and metalloids, organo-chlorine and -phosphorus compounds, environmental phenols, phthalates, benzene and toluene. More studies are urgently needed to better evaluate firefighter occupational safety and health and to support the implementation of preventive measures and mitigation strategies to promote the protection of this chronically exposed group of workers.
Collapse
|
14
|
Trung NT, Anh HQ, Tue NM, Suzuki G, Takahashi S, Tanabe S, Khai NM, Hong TT, Dau PT, Thuy PC, Tuyen LH. Polycyclic aromatic hydrocarbons in airborne particulate matter samples from Hanoi, Vietnam: Particle size distribution, aryl hydrocarbon ligand receptor activity, and implication for cancer risk assessment. CHEMOSPHERE 2021; 280:130720. [PMID: 33964743 DOI: 10.1016/j.chemosphere.2021.130720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Concentrations and profiles of unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) were analyzed in airborne particulate matter (PM) samples collected from high-traffic roads in Hanoi urban area. Levels of PAHs and Me-PAHs ranged from 210 to 660 (average 420) ng/m3 in total PM, and these pollutants were mainly associated with fine particles (PM2.5) rather than coarser ones (PM > 10 and PM10). Proportions of high-molecular-weight compounds (i.e., 5- and 6-ring) increased with decreasing particle size. Benzo[b+k]fluoranthene, indeno[1,2,3-cd]pyrene, and benzo[ghi]perylene were the most predominant compounds in the PM2.5 samples. In all the samples, Me-PAHs were less abundant than unsubstituted PAHs. The PAH-CALUX assays were applied to evaluate aryl hydrocarbon receptor (AhR) ligand activities in crude extracts and different fractions from the PM samples. Benzo[a]pyrene equivalents (BaP-EQs) derived by the PAH-CALUX assays for low polar fractions (mainly PAHs and Me-PAHs) ranged from 300 to 840 ng/m3, which were more consistent with theoretical values derived by using PAH-CALUX relative potencies (270-710 ng/m3) rather than conventional toxic equivalency factor-based values (22-69 ng/m3). Concentrations of PAHs and Me-PAHs highly correlated with bioassay-derived BaP-EQs. AhR-mediated activities of more polar compounds and interaction effects between PAH-related compounds were observed. By using PAH-CALUX BaP-EQs, the ILCR values ranged from 1.0 × 10-4 to 2.8 × 10-4 for adults and from 6.4 × 10-5 to 1.8 × 10-4 for children. Underestimation of cancer risk can be eliminated by using effect-directed method (e.g., PAH-CALUX) rather than chemical-specific approach.
Collapse
Affiliation(s)
- Nguyen Thanh Trung
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan; Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), Tsukuba, 305-8506, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Nguyen Manh Khai
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Tran Thi Hong
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Pham Thi Dau
- Faculty of Biology, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Pham Chau Thuy
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, 12400, Viet Nam
| | - Le Huu Tuyen
- Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 11400, Viet Nam.
| |
Collapse
|
15
|
Hoang AQ, Suzuki G, Michinaka C, Tue NM, Tuyen LH, Tu MB, Takahashi S. Characterization of unsubstituted and methylated polycyclic aromatic hydrocarbons in settled dust: Combination of instrumental analysis and in vitro reporter gene assays and implications for cancer risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147821. [PMID: 34029822 DOI: 10.1016/j.scitotenv.2021.147821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Concentrations of 34 unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) and AhR-mediated activities in settled dust samples were determined by a combination of gas chromatography-mass spectrometry and an in vitro reporter gene assay (PAH-CALUX). The levels of Σ34PAHs and bioassay-derived benzo[a]pyrene equivalents (CALUX BaP-EQs) were significantly higher in workplace dust from informal end-of-life vehicle dismantling workshops than in common house dust and road dust. In all the samples, the theoretical BaP-EQs of PAHs (calculated using PAH-CALUX relative potencies) accounted for 28 ± 19% of the CALUX BaP-EQs, suggesting significant contribution of aryl hydrocarbon receptor (AhR) agonists and/or mixture effects. Interestingly, the bioassay-derived BaP-EQs in these samples were significantly correlated with not only unsubstituted PAHs with known carcinogenic potencies but also many Me-PAHs, which should be included in future monitoring and toxicity tests. The bioassay responses of many sample extracts were substantially reduced but not suppressed with sulfuric acid treatment, indicating contribution of persistent AhR agonists. Cancer risk assessment based on the CALUX BaP-EQs has revealed unacceptable level of risk in many cases. The application of bioassay-derived BaP-EQs may reduce underestimation in environmental management and risk evaluation regarding PAHs and their derivatives (notably Me-PAHs), suggesting a consideration of using in vitro toxic activity instead of conventional chemical-specific approach in such assessment practices.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Chieko Michinaka
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Le Huu Tuyen
- Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Minh Binh Tu
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
16
|
Hoppe-Jones C, Griffin SC, Gulotta JJ, Wallentine DD, Moore PK, Beitel SC, Flahr LM, Zhai J, Zhou JJ, Littau SR, Dearmon-Moore D, Jung AM, Garavito F, Snyder SA, Burgess JL. Evaluation of fireground exposures using urinary PAH metabolites. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:913-922. [PMID: 33654270 PMCID: PMC8445814 DOI: 10.1038/s41370-021-00311-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Firefighters have increased cancer incidence and mortality rates compared to the general population, and are exposed to multiple products of combustion including known and suspected carcinogens. OBJECTIVE The study objective was to quantify fire response exposures by role and self-reported exposure risks. METHODS Urinary hydroxylated metabolites of polycyclic aromatic hydrocarbons (PAH-OHs) were measured at baseline and 2-4 h after structural fires and post-fire surveys were collected. RESULTS Baseline urine samples were collected from 242 firefighters. Of these, 141 responded to at least one of 15 structural fires and provided a post-fire urine. Compared with baseline measurements, the mean fold change of post-fire urinary PAH-OHs increased similarly across roles, including captains (2.05 (95% CI 1.59-2.65)), engineers (2.10 (95% CI 1.47-3.05)), firefighters (2.83 (95% CI 2.14-3.71)), and paramedics (1.84 (95% CI 1.33-2.60)). Interior responses, smoke odor on skin, and lack of recent laundering or changing of hoods were significantly associated with increased post-fire urinary PAH-OHs. SIGNIFICANCE Ambient smoke from the fire represents an exposure hazard for all individuals on the fireground; engineers and paramedics in particular may not be aware of the extent of their exposure. Post-fire surveys identified specific risks associated with increased exposure.
Collapse
Affiliation(s)
- Christiane Hoppe-Jones
- Department of Chemical and Environmental Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Stephanie C Griffin
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Shawn C Beitel
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Leanne M Flahr
- Department of Chemical and Environmental Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Jing Zhai
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jin J Zhou
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Sally R Littau
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Devi Dearmon-Moore
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Alesia M Jung
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Fernanda Garavito
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Jefferey L Burgess
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
17
|
Silva J, Marques-da-Silva D, Lagoa R. Reassessment of the experimental skin permeability coefficients of polycyclic aromatic hydrocarbons and organophosphorus pesticides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103671. [PMID: 33979686 DOI: 10.1016/j.etap.2021.103671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides (OPPs) by dermal route is a continuing concern in environmental and occupational toxicology. Diverse authors have measured in vitro the absorption flux and permeability coefficient (kP) of those compounds delivered on skin surface using volatile solvents. However, there isn't a harmonized method to obtain kP when the test substance is deposited on the skin as a solid. Consequently, varied experimental kPs have been reported for PAHs and OPPs, most in clear disagreement with the values predicted by well-established mathematical models. In this work, we collected the permeation fluxes reported for these toxicants through human skin and calculated the (aqueous) kPs using a method based on the maximum flux and water solubility. The reanalyzed fluxes and recalculated kPs show improved consistency between the different experimental works and mathematical models. Notably, the recalculated kP of benzo[a]pyrene, among others, was approximately 100 times higher than it had been previously considered. Suggestions are given to generalize the method in studies with other solvent-deposited toxicants and drugs.
Collapse
Affiliation(s)
- João Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901, Leiria, Portugal
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901, Leiria, Portugal.
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901, Leiria, Portugal.
| |
Collapse
|
18
|
Hwang J, Xu C, Agnew RJ, Clifton S, Malone TR. Health Risks of Structural Firefighters from Exposure to Polycyclic Aromatic Hydrocarbons: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4209. [PMID: 33921138 PMCID: PMC8071552 DOI: 10.3390/ijerph18084209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Firefighters have an elevated risk of cancer, which is suspected to be caused by occupational and environmental exposure to fire smoke. Among many substances from fire smoke contaminants, one potential source of toxic exposure is polycyclic aromatic hydrocarbons (PAH). The goal of this paper is to identify the association between PAH exposure levels and contributing risk factors to derive best estimates of the effects of exposure on structural firefighters' working environment in fire. We surveyed four databases (Embase, Medline, Scopus, and Web of Science) for this systematic literature review. Generic inverse variance method for random effects meta-analysis was applied for two exposure routes-dermal and inhalation. In dermal, the neck showed the highest dermal exposure increased after the fire activity. In inhalation, the meta-regression confirmed statistically significant increases in PAH concentrations for longer durations. We also summarized the scientific knowledge on occupational exposures to PAH in fire suppression activities. More research into uncontrolled emergency fires is needed with regard to newer chemical classes of fire smoke retardant and occupational exposure pathways. Evidence-based PAH exposure assessments are critical for determining exposure-dose relationships in large epidemiological studies of occupational risk factors.
Collapse
Affiliation(s)
- Jooyeon Hwang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Robert J. Agnew
- Fire Protection & Safety Engineering Technology Program, College of Engineering, Architecture and Technology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Shari Clifton
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.C.); (T.R.M.)
| | - Tara R. Malone
- Department of Health Sciences Library and Information Management, Graduate College, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.C.); (T.R.M.)
| |
Collapse
|
19
|
Cherry N, Galarneau JM, Kinniburgh D, Quemerais B, Tiu S, Zhang X. Exposure and Absorption of PAHs in Wildland Firefighters: A Field Study with Pilot Interventions. Ann Work Expo Health 2021; 65:148-161. [PMID: 32572446 PMCID: PMC7938344 DOI: 10.1093/annweh/wxaa064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Objectives There is limited knowledge of exposure to polycyclic aromatic hydrocarbons
(PAHs) in wildland firefighters, or of the effectiveness of interventions to
reduce this. This study of wildland firefighters assessed whether PAHs were
present and considered respiratory protection and enhanced skin hygiene as
possible interventions. Methods 1-Hydroxypyrene (1-HP) was measured in urine samples collected pre-shift,
post-shift, and next morning from wildland firefighters in Alberta and
British Columbia. Skin wipes, collected pre- and post-shift, were analysed
for eight PAHs. Breathing zone air samples were analysed for 11 PAHs. As
pilot interventions, participants were randomized to either normal or
enhanced skin hygiene. A sample of volunteers was assigned to a disposable
N95 mask or a half facepiece mask with P100 organic vapour cartridge.
Participants completed a brief questionnaire on activities post-shift and
respiratory symptoms. Results Non-smoking firefighters (66 male and 20 female) were recruited from 11 fire
crews. Air sampling pumps were carried for the full shift by 28
firefighters, 25 firefighters wore masks (14 N95 and 11 P100); 42 were
assigned to the enhanced skin hygiene intervention. Sixty had hot spotting
as their main task. Air monitoring identified PAHs
(benzo(b,j,k)fluoranthene
in particulates, phenanthrene in the gaseous phase) for 6 of the 11 crews.
PAHs (largely naphthalene) were found post-shift on 40/84 skin wipes from
the hand and 38/84 from jaw/throat. The mean increase in 1-HP in urine
samples collected after the shift (compared with samples collected before
the shift) was 66 ng g−1 creatinine (P
< 0.001) with an increase over the shift found for 76% of
participants. 1-HP in next morning urine samples was significantly lower
than at the end of shift (a reduction of 39.3 ng g−1:
P < 0.001). The amount of naphthalene on skin
wipes was greater at the end of the shift (post) than at the start (pre).
The mean post–pre weight difference of naphthalene on skin wipes
taken from the hand was 0.96 ng wipe−1 (P
= 0.01) and from the jaw/throat 1.28 ng wipe−1
(P = 0.002). The enhanced skin hygiene intervention
lead to a larger reduction in 1-HP between end of shift and next morning
urine samples but only for those with naphthalene on skin wipes at the end
of shift. The difference in 1-HP concentration in urine samples collected
before and after the shift was reduced for those wearing a mask (linear tend
P = 0.063, one-sided). In multivariable models, 1-HP at
end of shift was related to gaseous phase phenanthrene, estimated from air
sampling [β = 318.2, 95% confidence interval (CI)
67.1–569.2]. Naphthalene on hand skin wipes reflected work in hot
spotting during the shift (β = 0.53, 95% CI
0.22–0.86). Conclusions This study provided evidence of PAHs in the air and on the skin of many, but
not all, fire crew. Absorbed PAHs, reflected in 1-HP in urine, increased
over the shift. Results from the pilot interventions suggest that enhanced
skin hygiene would reduce absorption post fire where PAHs had been
accumulated on the skin, and that masks could be effective in reducing PAH
inhalation exposure. Interventions to reduce PAH absorption are supported by
the pilot work reported here and warrant further evaluation across a full
fire season.
Collapse
Affiliation(s)
- Nicola Cherry
- Division of Preventive Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - David Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Bernadette Quemerais
- Division of Preventive Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvia Tiu
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Xu Zhang
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Calkins MM, Burgess JL. Differential DNA Methylation by Hispanic Ethnicity Among Firefighters in the United States. Epigenet Insights 2021; 14:25168657211006159. [PMID: 35036834 PMCID: PMC8756104 DOI: 10.1177/25168657211006159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Firefighters are exposed to a variety of environmental hazards and are at increased risk for multiple cancers. There is evidence that risks differ by ethnicity, yet the biological or environmental differences underlying these differences are not known. DNA methylation is one type of epigenetic regulation that is altered in cancers. In this pilot study, we profiled DNA methylation with the Infinium MethylationEPIC in blood leukocytes from 31 Hispanic white and 163 non-Hispanic white firefighters. We compared DNA methylation (1) at 12 xenobiotic metabolizing genes and (2) at all loci on the array (>740 000), adjusting for confounders. Five of the xenobiotic metabolizing genes were differentially methylated at a raw P-value <.05 when comparing the 2 ethnic groups, yet were not statistically significant at a 5% false discovery rate (q-value <.05). In the epigenome-wide analysis, 76 loci exhibited DNA methylation differences at q < .05. Among these, 3 CpG sites in the promoter region of the biotransformation gene SULT1C2 had lower methylation in Hispanic compared to non-Hispanic firefighters. Other differentially methylated loci included genes that have been implicated in carcinogenesis in published studies (FOXK2, GYLTL1B, ZBTB16, ARHGEF10, and more). In this pilot study, we report differential DNA methylation between Hispanic and non-Hispanic firefighters in xenobiotic metabolism genes and other genes with functions related to cancer. Epigenetic susceptibility by ethnicity merits further study as this may alter risk for cancers linked to toxic exposures.
Collapse
Affiliation(s)
- Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA,Jaclyn M Goodrich, Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Melissa A Furlong
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alesia M Jung
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Timothy Jenkins
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Shawn Beitel
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Sally Littau
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | | | | | - Jeff Hughes
- Orange County Fire Authority, Irvine, CA, USA
| | | | - Miriam M Calkins
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, USA
| | - Jefferey L Burgess
- Department of Community, Environment and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| |
Collapse
|
21
|
Young TM, Black GP, Wong L, Bloszies CS, Fiehn O, He G, Denison MS, Vogel CFA, Durbin-Johnson B. Identifying Toxicologically Significant Compounds in Urban Wildfire Ash Using In Vitro Bioassays and High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3657-3667. [PMID: 33647203 PMCID: PMC8351470 DOI: 10.1021/acs.est.0c06712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Urban wildfires may generate numerous unidentified chemicals of toxicity concern. Ash samples were collected from burned residences and from an undeveloped upwind reference site, following the Tubbs fire in Sonoma County, California. The solvent extracts of ash samples were analyzed using GC- and LC-high-resolution mass spectrometry (HRMS) and using a suite of in vitro bioassays for their bioactivity toward nuclear receptors [aryl hydrocarbon receptor (AhR), estrogen receptor (ER), and androgen receptor (AR)], their influence on the expression of genetic markers of stress and inflammation [interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2)], and xenobiotic metabolism [cytochrome P4501A1 (CYP1A1)]. Genetic markers (CYP1A1, IL-8, and COX-2) and AhR activity were significantly higher with wildfire samples than in solvent controls, whereas AR and ER activities generally were unaffected or reduced. The bioassay responses of samples from residential areas were not significantly different from the samples from the reference site despite differing chemical compositions. Suspect and nontarget screening was conducted to identify the chemicals responsible for elevated bioactivity using the multiple streams of HRMS data and open-source data analysis workflows. For the bioassay endpoint with the largest available database of pure compound results (AhR), nontarget features statistically related to whole sample bioassay response using Spearman's rank-order correlation coefficients or elastic net regression were significantly more likely (by 10 and 15 times, respectively) to be known AhR agonists than the overall population of compounds tentatively identified by nontarget analysis. The findings suggest that a combination of nontarget analysis, in vitro bioassays, and statistical analysis can identify bioactive compounds in complex mixtures.
Collapse
Affiliation(s)
- Thomas M Young
- Department of Civil & Environmental Engineering, University of California, Davis, Davis, California 95616, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Gabrielle P Black
- Department of Civil & Environmental Engineering, University of California, Davis, Davis, California 95616, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Luann Wong
- Department of Civil & Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | - Clayton S Bloszies
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United States
| | - Oliver Fiehn
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, Davis, California 95616, United States
- West Coast Metabolomics Center, University of California, Davis, Davis, California 95616, United States
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
- Center for Health and the Environment, University of California, Davis, Davis, California 95616, United States
| | - Blythe Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|