1
|
Davies E, Stamm C, Fuhrimann S, Chow R. Mixed pesticide sources identified by using wastewater tracers in rivers of South African agricultural catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177206. [PMID: 39471938 DOI: 10.1016/j.scitotenv.2024.177206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The agriculturally dominated region of the Western Cape, South Africa is vulnerable to pesticide pollution. A 2017-2019 pesticide monitoring campaign in the agricultural catchments of Grabouw, Piketberg and Hex River Valley identified year-round detections despite few agricultural applications, making pesticide pollution sources unclear. To better trace pesticide sources in these catchments, our study measured 19 pharmaceutical compounds and one industrial chemical as an indicator for wastewater treatment plant (WWTP) effluent - in addition to 44 pesticides. Passive samplers were deployed monthly in rivers from February 2022 to March 2023 in Grabouw, Hex River Valley, and Piketberg, and one control sample in Jonkershoek Nature Reserve (May 2022). Some pesticides without year-round agricultural applications had high detection frequencies and Groundwater Ubiquity Scores, suggesting leaching of pesticides into groundwater connected to rivers. Cumulative pharmaceutical concentrations correlated strongly with cumulative pesticide concentrations only in the Piketberg catchment, suggesting WWTPs as a possible pesticide source. Herbicide detections in Jonkershoek Nature Reserve (e.g., atrazine) suggest contamination from atmospheric transport, invasive plant control or trail maintenance. The Environmental Quality Standard (EQS) for imidacloprid, chlorpyrifos, terbuthylazine and spiroxamine was exceeded at least once during the 1-year monitoring period, mostly related to expected agricultural applications, indicating high persistence and continuous exposure risk to aquatic organisms. Our study is the first to describe the relevance of WWTPs as a pesticide source in South African agricultural catchments. Drivers of pesticide contamination were area dependent, emphasizing the need for catchment-specific understanding. Future research requires sampling of groundwater and wastewater influent and effluent to improve our understanding of pesticide transport pathways and sources.
Collapse
Affiliation(s)
- E Davies
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - C Stamm
- Swiss Federal Institute of Aquatic Science and Technology (eawag), 8600 Dübendorf, Switzerland
| | - S Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
| | - R Chow
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa; Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Elser H, Kruse CFG, Schwartz BS, Casey JA. The Environment and Headache: a Narrative Review. Curr Environ Health Rep 2024; 11:184-203. [PMID: 38642284 DOI: 10.1007/s40572-024-00449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In this narrative review, we summarize the peer-reviewed literature published between 2017 and 2022 that evaluated ambient environmental risk factors for primary headache disorders, which affect more than half of the population globally. Primary headache disorders include migraine, tension-type headache (TTH), and trigeminal and autonomic cephalalgias (TAC). RECENT FINDINGS We identified 17 articles that met the inclusion criteria via PubMed or Google Scholar. Seven studies (41%) relied on data from US populations. The remaining studies were conducted in China, Taiwan, Germany, Ghana, Japan, the Netherlands, South Korea, and Turkey. Air pollution was the most frequently assessed environmental risk factor. Most studies were cross-sectional and focused on all-cause or migraine headaches; one study included TTH, and none included TAC. Short-term exposure to fine particulate matter (PM2.5) was not consistently associated with headache endpoints, but long-term exposure to PM2.5 was associated with migraine headache prevalence and severity across multiple studies. Elevated ambient temperature, changes in weather, oil and gas well exposure, and less natural greenspace, but not noise pollution, were also associated with headache. No studies considered water pollution, metal exposure, ultrafine particulate matter, or wildfire smoke exposure. There is a need for ongoing research focused on headache and the environment. Study designs with the greatest explanatory power may include longitudinal studies that capture the episodic nature of headache and case-crossover analysis, which control for time-invariant individual-level confounders by design. There is also a clear need for research that considers comorbid psychiatric illness and socioeconomic position as powerful modifiers of the effect of the environment on headache.
Collapse
Affiliation(s)
- Holly Elser
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Caroline F G Kruse
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joan A Casey
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| |
Collapse
|
3
|
Ssekkadde P, Tomberge VMJ, Brugger C, Atuhaire A, Dalvie MA, Rother HA, Röösli M, Inauen J, Fuhrimann S. Evaluating and Enhancing an Educational Intervention to Reduce Smallholder Farmers' Exposure to Pesticides in Uganda Through a Digital, Systematic Approach to Behavior Change: Protocol for a Cluster-Randomized Controlled Trial. JMIR Res Protoc 2024; 13:e55238. [PMID: 38718387 PMCID: PMC11112482 DOI: 10.2196/55238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Smallholder farmers receive educational interventions on safe pesticide handling by governmental agencies, industries, or nongovernmental organizations to reduce exposure risks. However, existing educational interventions have limited effects on changing behaviors. Targeting psychosocial determinants of behavior change in educational interventions through theory- and evidence-based approaches may enhance their effectiveness. OBJECTIVE We aim at describing the intervention development and study design of a 3-arm cluster-randomized controlled trial to assess the effects in improving safe pesticide handling and reducing pesticide exposure of (1) an existing educational intervention and (2) a newly developed SMS text messaging intervention based on the Risks, Attitudes, Norms, Abilities, and Self-regulation (RANAS) behavior change approach. METHODS We enrolled 539 Ugandan smallholder farmers in 12 clusters (subcounties). The clusters, each with 45 farmers, were randomly allocated to one of the three arms: (1) educational intervention, (2) educational intervention+RANAS-based SMS text messages, or (3) control group. The educational intervention comprised a 2-day workshop that targeted multiple aspects of safe pesticide handling, whereas the SMS text messages targeted the use of personal protective equipment (PPE) and were based on the RANAS approach. For intervention development in this study, this approach includes identifying psychosocial determinants of PPE use at baseline and selecting behavior change techniques to target them in SMS text messages. The primary outcomes of the study are (1) pesticide knowledge, attitude, and practice scores indicating performance throughout the educational intervention; and (2) frequency of PPE use. Secondary outcomes are the RANAS-based behavioral determinants of PPE use, the frequency of glove use, algorithm-based pesticide exposure intensity scores, and signs and symptoms of pesticide poisoning. The outcomes were assessed in structured interviews before the intervention (baseline) and at the 12-month follow-up. The effect of the interventions among the arms will be analyzed using the intervention arms and baseline measures as predictors and the follow-up measures as outcomes in linear multivariable mixed models including the clusters as random effects. The mediating psychosocial determinants of the interventions will be assessed in multiple mediation models. RESULTS The study was conducted from 2020 to 2021-baseline interviews were conducted in October 2020, and the educational intervention was delivered in November 2020. The RANAS-based SMS text messages were developed based on the baseline data for relevant behavioral determinants of PPE use and sent between February 2021 and September 2021. Follow-up interviews were conducted in October 2021. Overall, 539 farmers were enrolled in the study at baseline; 8.3% (45/539) were lost to follow-up by the end of the study. CONCLUSIONS This study will contribute to a better understanding of the effectiveness and behavior change mechanisms of educational interventions by using an experimental, cluster-randomized study design to improve pesticide handling among smallholder farmers. TRIAL REGISTRATION International Standard Randomised Controlled Trial Number (ISRCTN) 18237656; https://doi.org/10.1186/ISRCTN18237656. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/55238.
Collapse
Affiliation(s)
- Peter Ssekkadde
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Vica Marie Jelena Tomberge
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Curdin Brugger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health, Kampala, Uganda
| | - Mohamed Aqiel Dalvie
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Hanna-Andrea Rother
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Inauen
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Vakilian A, Khalili P, Jamali Z, -Ahmadi AM, Jalali N, Mohamadi M, Pakzadmoghadam SH, Ayoobi F. The relationship between pesticide exposures and primary headaches in adults: A cross-sectional study based on Rafsanjan cohort study. Prev Med Rep 2024; 38:102621. [PMID: 38375182 PMCID: PMC10874839 DOI: 10.1016/j.pmedr.2024.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024] Open
Abstract
Objectives Toxic substances can trigger headaches. The prevalence of pesticide use and headaches was high among the population of Rafsanjan. Methods A cross-sectional study was used to collect data from 9991 adults who participated via sampling people aged 35-70 years old of both genders from the Rafsanjan Cohort Study (RCS) in Iran. Demographic characteristics, habits, chronic primary headache (CPH), and episodic primary headache (EPH) were measured. Results The prevalence of CPH and EPH were 7.4 % and 29.9 % respectively. The multivariable model showed the odds of EPH increased significantly by the pesticide exposure on farm OR: 1.16 (1.02-1.34), in yard OR: 1.18 (1.01-1.39), duration of pesticide exposure in yard > median OR: 1.35 (1.06-1.73), at home OR: 1.31 (1.17-1.46), duration of pesticide exposure at home ≤ median OR: 1.24 (1.10-1.40) and > median OR: 1.38 (1.22-1.57). Also, pesticide preparation OR: 1.20 (1.03-1.39), duration of exposure in pesticide preparation ≤ median OR: 1.31 (1.09-1.57), and duration of exposure in managed spraying pesticide > median OR: 1.28 (1.04-1.57) increased odds of EPH. These results showed that the odds of CPH increased in participants using pesticides at home OR: 1.22 (1.02-1.48), duration of pesticide exposure at home > median OR: 1.37 (1.11-1.70), and duration of pesticide exposure in pesticide preparation > median OR: 0.47 (0.27-0.82). The odds of EPH increased with more pesticide exposures (18 %) and duration of pesticide exposure (25 %). Conclusions As evidenced by the obtained results, there is a relationship between pesticide exposure and headaches.
Collapse
Affiliation(s)
- Alireza Vakilian
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Neurology Department, School of Medicine, Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parvin Khalili
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Jamali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Moghadam -Ahmadi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Neuro-Immunology Research Scholar, Neurological Research Laboratory, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nazanin Jalali
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Neurology Department, School of Medicine, Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Movahedeh Mohamadi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Hamid Pakzadmoghadam
- Department of Anaesthesiology, School of Medicine, Ali Ibn Abitaleb Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan
| | - Fatemeh Ayoobi
- Occupational Safety and Health Research Center, NICICO, World Safety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Siriwat S, Ong-Artborirak P, Ponrachom C, Siriwong W, Nganchamung T. Non-carcinogenic health risk from carbamate pesticide exposure of toddlers living in agricultural areas of Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1738-1748. [PMID: 36103631 DOI: 10.1080/09603123.2022.2123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toddlers in agricultural areas may be athave risk from pesticide exposure . A cross-sectional study was conducted with 130 toddlers and their caregivers. Face-to-face interviews were done to gather information about exposure factors. A wipe sampling technique was used to collect carbamate residues on each toddler's hands and feet. Results showed that there were carbamate residues on all wipe samples (100%), with a median concentration of 30.47 micrograms per sample (hands and feet). Carbamate residues detected on toddlers' hands and feetwere significantly associated (p < 0.05) with many factors, including the toddlers' relationships with caregivers, the education level of caregivers, the household incomes, the gender of toddlers, the frequency of following caregivers to farms, the frequency of foot washing, daytime activities, and playing durations. The health risk from dermal carbamate exposurewas above the acceptable range (HI = 3.244). Preventive measures should be considered to reduce toddlers' pesticide exposure in agricultural areas.
Collapse
Affiliation(s)
- Satinee Siriwat
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakhon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | | | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thitirat Nganchamung
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
6
|
Wright CY, Kapwata T, Cook C, Howard SJ, Makaula H, Merkley R, Mshudulu M, Tshetu N, Naidoo N, Scerif G, Draper CE. Inadequate Access to Potable Water Impacts Early Childhood Development in Low-Income Areas in Cape Town, South Africa. Ann Glob Health 2023; 89:82. [PMID: 38025924 PMCID: PMC10668882 DOI: 10.5334/aogh.4281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Water and sanitation are vital to human health and well-being. While these factors have been studied in relation to health, very little has been done to consider such environmental risk factors with child development. Here, we investigated possible relations between household water access/storage and early childhood development in four low-income settlements in the City of Cape Town, Western Cape province of South Africa. Our objectives were 1) to determine water access/storage practices in dwellings of children; 2) to assess early childhood development; and 3) and to understand the relationship between water access/storage practices in relation to early childhood development. Methods We used a questionnaire to assess household water risk factors and the International Development and Early Learning Assessment (IDELA) tool to assess child early learning / cognitive, socio-emotional and motor development. Results Mean age of the children (N = 192) was 4 years and 55% were female. The mean IDELA score was 48% (range: 36-54%) where the higher the score, the better the child's development. Around 70% of households had a tap inside their dwelling and half said that they stored water with the largest percentage of storage containers (21%) being plastic/no lid. Child IDELA scores were lower for children living in households that did not have an indoor tap and for households who stored water. Conclusions Given the risks associated with climate change and the already poor conditions many children face regarding water and sanitation, research is needed to further investigate these relations to provide evidence to support appropriate interventions and ensure healthy child development.
Collapse
Affiliation(s)
- Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, ZA
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, ZA
| | - Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, ZA
- Faculty of Health Sciences, Department of Environmental Health, University of Johannesburg, Johannesburg, ZA
| | - Caylee Cook
- SAMRC-Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, ZA
| | - Steven J. Howard
- Early Start and School of Education, University of Wollongong, Wollongong, NSW, AU
| | - Hleliwe Makaula
- SAMRC-Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, ZA
| | - Rebecca Merkley
- Department of Cognitive Science, Carleton University, Ottawa, CA
| | - Mbulelo Mshudulu
- SAMRC-Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, ZA
| | - Nosibusiso Tshetu
- SAMRC-Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, ZA
| | - Natasha Naidoo
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, ZA
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catherine E. Draper
- SAMRC-Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, ZA
| |
Collapse
|
7
|
Khademi N, Rajabi S, Fararouei M, Rafiee A, Azhdarpoor A, Hoseini M. Environmental exposure to organophosphate pesticides and effects on cognitive functions in elementary school children in a Middle Eastern area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111076-111091. [PMID: 37798522 DOI: 10.1007/s11356-023-30080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Although the fundamental reasons for cognitive function disorders have been well documented, little is known about the impact of environmental exposures, such as pesticides, on children's cognitive function development. This study investigated the effect of exposure to organophosphate pesticides on children's cognitive function. In order to determine various factors of exposure, hair samples were collected from 114 elementary school children who lived in Boyer-Ahmad County in the province of Kohgiluyeh and Boyer-Ahmad, Iran. A detailed questionnaire was utilized to gather demographic information and exposure profile. Pesticides were detected in hair samples using a gas chromatography-mass spectrometer (GC-MS); also, cognitive function was assessed using the trail-making test (TMT), which was divided into two parts: TMT-part A and TMT-part B. Participants in the study were 10.12 ± 1.440 years old on average. Children in rural areas had higher mean total pesticide concentrations (13.612 ± 22.01 ng/g) than those who lived in the urban areas (1.801 ± 1.32). The results revealed that boys (46.44 s and 92.37 s) completed the TMT-part A and part B tests in less time than girls (54.95 s and 109.82 s), respectively, and showed better performance (2.14) on the cognitive function exam than girls (2.07). Diazinon and TMT-part B were positively correlated (p < 0.05). With the increase in pesticides, there was no discernible difference in cognitive function. Pesticide use throughout a child's development may affect certain cognitive function indicators. In order to assess causal relationships, group studies and case studies are required because the current research was cross-sectional in nature.
Collapse
Affiliation(s)
- Nahid Khademi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Rajabi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Department of Epidemiology, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Abooalfazl Azhdarpoor
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Boonupara T, Udomkun P, Khan E, Kajitvichyanukul P. Airborne Pesticides from Agricultural Practices: A Critical Review of Pathways, Influencing Factors, and Human Health Implications. TOXICS 2023; 11:858. [PMID: 37888709 PMCID: PMC10611335 DOI: 10.3390/toxics11100858] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
This critical review examines the release of pesticides from agricultural practices into the air, with a focus on volatilization, and the factors influencing their dispersion. The review delves into the effects of airborne pesticides on human health and their contribution to anthropogenic air pollution. It highlights the necessity of interdisciplinary research encompassing science, technology, public policy, and agricultural practices to effectively mitigate the risks associated with pesticide volatilization and spray dispersion. The text acknowledges the need for more research to understand the fate and transport of airborne pesticides, develop innovative application technologies, improve predictive modeling and risk assessment, and adopt sustainable pest management strategies. Robust policies and regulations, supported by education, training, research, and development, are crucial to ensuring the safe and sustainable use of pesticides for human health and the environment. By providing valuable insights, this review aids researchers and practitioners in devising effective and sustainable solutions for safeguarding human health and the environment from the hazards of airborne pesticides.
Collapse
Affiliation(s)
- Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand (P.U.)
| |
Collapse
|
9
|
Hyeseon C, Sooin P, Insoo K, Myungsun K. Differences in the Effects of Work Environment on Health Problems and Satisfaction of Working Condition by Gender: The 6th Korean Working Conditions Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6824. [PMID: 37835094 PMCID: PMC10572899 DOI: 10.3390/ijerph20196824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
This study investigated gender differences in exposure to hazardous factors, health problems, and work environment satisfaction and identified the effects of such differences on farmworkers in Korea. Through the 6th Korean Working Conditions Survey (KWCS) conducted by the Occupational Safety and Health Research Institute (OSHRI), the raw data on 2347 farmworkers were analyzed to present descriptive statistics for demographic characteristics, exposure to hazardous factors, health problems, and work environment satisfaction. We compared genders using chi-squared tests and investigated the effects of gender-specific working conditions on work-related health problems and work environment satisfaction using multivariate logistic analysis. The results were presented as an odds ratio (OR) with 95% confidence interval. Job position predicted work-related health problems in male farmworkers and work environment satisfaction in female farmworkers. Furthermore, female farmworkers perceived themselves to have more health problems than male farmworkers. Nevertheless, female farmworkers received less health and safety information and had lower work environment satisfaction compared to male farmworkers. The findings may improve the occupational welfare of farmworkers through continuous enhancement of the agricultural labor environment.
Collapse
Affiliation(s)
- Chae Hyeseon
- Rural Development Administration, Jeonju-si 54875, Republic of Korea
| | - Park Sooin
- Rural Development Administration, Jeonju-si 54875, Republic of Korea
| | - Kim Insoo
- Rural Development Administration, Jeonju-si 54875, Republic of Korea
| | - Ko Myungsun
- Rural Development Administration, Jeonju-si 54875, Republic of Korea
| |
Collapse
|
10
|
Msibi SS, Su LJ, Chen CY, Chang CP, Chen CJ, Wu KY, Chiang SY. Impacts of Agricultural Pesticide Contamination: An Integrated Risk Assessment of Rural Communities of Eswatini. TOXICS 2023; 11:770. [PMID: 37755780 PMCID: PMC10534646 DOI: 10.3390/toxics11090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Marked reductions in mean annual rainfall associated with climate change in Eswatini in Southern Africa have encouraged the recycling of irrigation water and the increased use of pesticides in agricultural production, raising concerns about potential ecological and health risks due to long-term exposure to pesticide residues in soil and irrigation water. This probabilistic integrated risk assessment used liquid chromatography with tandem mass spectrometry to analyze the concentrations of four commonly used agricultural pesticides (ametryn, atrazine, pendimethalin, and 2,4-dichlorophenoxyacetic acid (2,4-D)) in irrigation water and topsoil samples from farmlands in Eswatini to assess potential ecological and health risks due to exposure. The concentrations of these pesticides ranged from undetectable to 0.104 µg/L in irrigation water and from undetectable to 2.70 µg/g in soil. The probabilistic multi-pathway and multi-route risk assessments conducted revealed hazard indices exceeding 1.0 for all age groups for ametryn and atrazine, suggesting that the daily consumption of recycled irrigation water and produce from the fields in this area may pose considerable health risks. The indices pertaining to ecological risks had values less than 0.1. Adaptation measures are recommended to efficiently manage pesticide use in agriculture, and further research will ensure that agriculture can adapt to climate change and that the general public and ecosystem are protected.
Collapse
Affiliation(s)
- Sithembiso Sifiso Msibi
- O’Donnell School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (S.S.M.); (L.J.S.)
| | - Lihchyun Joseph Su
- O’Donnell School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (S.S.M.); (L.J.S.)
| | - Chung-Yu Chen
- Department of Occupational Safety and Health, College of Health Sciences, Chang Jung Christian University, No. 1, Changda Rd., Guiren District, Tainan 71101, Taiwan; (C.-Y.C.); (C.-P.C.); (C.-J.C.)
| | - Cheng-Ping Chang
- Department of Occupational Safety and Health, College of Health Sciences, Chang Jung Christian University, No. 1, Changda Rd., Guiren District, Tainan 71101, Taiwan; (C.-Y.C.); (C.-P.C.); (C.-J.C.)
| | - Chiou-Jong Chen
- Department of Occupational Safety and Health, College of Health Sciences, Chang Jung Christian University, No. 1, Changda Rd., Guiren District, Tainan 71101, Taiwan; (C.-Y.C.); (C.-P.C.); (C.-J.C.)
| | - Kuen-Yuh Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 10055, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 10055, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 10055, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
| |
Collapse
|
11
|
Fabre C, Doppler T, Chow R, Fenicia F, Scheidegger R, Dietzel A, Stamm C. Challenges of spatially extrapolating aquatic pesticide pollution for policy evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162639. [PMID: 36889390 DOI: 10.1016/j.scitotenv.2023.162639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Aquatic pesticide pollution is an important issue worldwide. Countries rely on monitoring programs to observe water bodies quality and on models to evaluate pesticide risks for entire stream networks. Measurements are typically sparse and discontinuous which lead to issues in quantifying pesticide transport at the catchment scale. Therefore, it is essential to assess the performance of extrapolation approaches and provide guidance on how to extend monitoring programs to improve predictions. Here we present a feasibility study to predict pesticide levels in a spatially explicit manner in the Swiss stream network based on the national monitoring program quantifying organic micropollutants at 33 sites and spatially distributed explanatory variables. Firstly, we focused on a limited set of herbicides used on corn crops. We observed a significant relationship between herbicide concentrations and the areal fraction of hydrologically connected cornfields. Neglecting connectivity revealed no influence of areal corn coverage on the herbicide levels. Considering chemical properties of the compounds slightly improved the correlation. Secondly, we analysed a set of 18 pesticides widely used on different crops and monitored across the country. In this case, the areal fractions of arable or crop lands showed significant correlations with average pesticide concentrations. Similar results were found with average annual discharge or precipitation if two outlier sites were neglected. The correlations found in this paper explained only about 30 % of the observed variance leaving most of the variability unexplained. Accordingly, extrapolating the results from the existing monitoring sites to the Swiss river network comes with substantial uncertainty. Our study highlights possible reasons for weak matches, such as missing pesticide application data, limited set of compounds in the monitoring program, or a limited understanding of factors differentiating the loss rates from different catchments. Improving the data on pesticide applications will be essential to progress in this regard.
Collapse
Affiliation(s)
- C Fabre
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Univ Lyon, UMR 5600 EVS, ENS Lyon, 69342 Lyon Cedex 07, France
| | - T Doppler
- Plattform Wasserqualität, VSA, Dübendorf, Switzerland
| | - R Chow
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - F Fenicia
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - R Scheidegger
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Dietzel
- Plattform Wasserqualität, VSA, Dübendorf, Switzerland
| | - C Stamm
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
12
|
Marcu D, Keyser S, Petrik L, Fuhrimann S, Maree L. Contaminants of Emerging Concern (CECs) and Male Reproductive Health: Challenging the Future with a Double-Edged Sword. TOXICS 2023; 11:330. [PMID: 37112557 PMCID: PMC10141735 DOI: 10.3390/toxics11040330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Approximately 9% of couples are infertile, with half of these cases relating to male factors. While many cases of male infertility are associated with genetic and lifestyle factors, approximately 30% of cases are still idiopathic. Contaminants of emerging concern (CECs) denote substances identified in the environment for the first time or detected at low concentrations during water quality analysis. Since CEC production and use have increased in recent decades, CECs are now ubiquitous in surface and groundwater. CECs are increasingly observed in human tissues, and parallel reports indicate that semen quality is continuously declining, supporting the notion that CECs may play a role in infertility. This narrative review focuses on several CECs (including pesticides and pharmaceuticals) detected in the nearshore marine environment of False Bay, Cape Town, South Africa, and deliberates their potential effects on male fertility and the offspring of exposed parents, as well as the use of spermatozoa in toxicological studies. Collective findings report that chronic in vivo exposure to pesticides, including atrazine, simazine, and chlorpyrifos, is likely to be detrimental to the reproduction of many organisms, as well as to sperm performance in vitro. Similarly, exposure to pharmaceuticals such as diclofenac and naproxen impairs sperm motility both in vivo and in vitro. These contaminants are also likely to play a key role in health and disease in offspring sired by parents exposed to CECs. On the other side of the double-edged sword, we propose that due to its sensitivity to environmental conditions, spermatozoa could be used as a bioindicator in eco- and repro-toxicology studies.
Collapse
Affiliation(s)
- Daniel Marcu
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
13
|
Chow R, Curchod L, Davies E, Veludo AF, Oltramare C, Dalvie MA, Stamm C, Röösli M, Fuhrimann S. Seasonal drivers and risks of aquatic pesticide pollution in drought and post-drought conditions in three Mediterranean watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159784. [PMID: 36328263 DOI: 10.1016/j.scitotenv.2022.159784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The Western Cape in South Africa has a Mediterranean climate, which has in part led to an abundance of agriculturally productive land supporting the wheat, deciduous fruit, wine, and citrus industries. South Africa is the leading pesticide user in Sub-Saharan Africa. There is limited data on the pesticide pollution of surface water over different seasons in low- and middle-income countries. We evaluated the seasonal drivers of aquatic pesticide pollution in three river catchments (Berg, Krom, and Hex Rivers) from July 2017 to June 2018 and April to July 2019, using 48 passive samplers. Our sampling followed the most severe drought (2015-2018) since recordings in 1960. Thus, our analyses focus on how drought and post-drought conditions may affect in-stream pesticide concentrations and loads. Samples were analyzed for 101 pesticide compounds using liquid chromatography - high-resolution mass spectrometry. Environmental Quality Standards (EQS) were used to assess the risks. We detected 60 pesticide compounds across the sampling periods. Our results indicate that all samples across all three catchments contained at least three pesticides and that the majority (83%) contained five or more pesticides. Approximately half the number of pesticides were detected after the drought in 2018. High concentration sums of pesticides (>1 μg/L) were detected over long time periods in the Hex River Valley (22 weeks) and in Piketberg (four weeks). Terbuthylazine, imidacloprid, and metsulfuron-methyl were detected in the highest concentrations, making up most of the detected mass, and were frequently above EQS. The occurrence of some pesticides in water generally correlated with their application and rainfall events. However, those of imidacloprid and terbuthylazine did not, suggesting that non-rainfall-driven transport processes are important drivers of aquatic pesticide pollution. The implementation of specific, scientifically sound, mitigation measures against aquatic pesticide pollution would require comprehensive pesticide application data as well as a targeted study identifying sources and transport processes for environmentally persistent pesticides.
Collapse
Affiliation(s)
- R Chow
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa; Swiss Federal Institute of Aquatic Science and Technology (eawag), 8600 Dübendorf, Switzerland.
| | - L Curchod
- Swiss Federal Institute of Aquatic Science and Technology (eawag), 8600 Dübendorf, Switzerland; Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; University of Basel, 4002 Basel, Switzerland
| | - E Davies
- Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - A F Veludo
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; University of Basel, 4002 Basel, Switzerland
| | - C Oltramare
- Swiss Federal Institute of Aquatic Science and Technology (eawag), 8600 Dübendorf, Switzerland
| | - M A Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - C Stamm
- Swiss Federal Institute of Aquatic Science and Technology (eawag), 8600 Dübendorf, Switzerland
| | - M Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; University of Basel, 4002 Basel, Switzerland
| | - S Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; University of Basel, 4002 Basel, Switzerland.
| |
Collapse
|
14
|
Degrendele C, Prokeš R, Šenk P, Jílková SR, Kohoutek J, Melymuk L, Přibylová P, Dalvie MA, Röösli M, Klánová J, Fuhrimann S. Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. TOXICS 2022; 10:629. [PMID: 36287909 PMCID: PMC9610731 DOI: 10.3390/toxics10100629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
Over the last decades, concern has arisen worldwide about the negative impacts of pesticides on the environment and human health. Exposure via dust ingestion is important for many chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion, which was compared to inhalation and soil ingestion. Indoor dust samples were collected from thirty-eight households and two schools located in two agricultural regions in South Africa and were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations in the dust levels of individual pesticides were found. Significant spatial variations were observed for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim, chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important (>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in future human exposure assessment to pesticides.
Collapse
Affiliation(s)
- Céline Degrendele
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Aix-Marseille University, CNRS, LCE, 13003 Marseille, France
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Martin Röösli
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Samuel Fuhrimann
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, The Netherlands
| |
Collapse
|
15
|
Zaller JG, Kruse-Plaß M, Schlechtriemen U, Gruber E, Peer M, Nadeem I, Formayer H, Hutter HP, Landler L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156012. [PMID: 35597361 PMCID: PMC7614392 DOI: 10.1016/j.scitotenv.2022.156012] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
Little is known about (i) how numbers and concentrations of airborne pesticide residues are influenced by land use, interactions with meteorological parameters, or by substance-specific chemo-physical properties, and (ii) what potential toxicological hazards this could pose to non-target organisms including humans. We installed passive air samplers (polyurethane PUF and polyester PEF filter matrices) in 15 regions with different land uses in eastern Austria for up to 8 months. Samples were analyzed for 566 substances by gas-chromatography/mass-spectrometry. We analyzed relationships between frequency and concentrations of pesticides, land use, meteorological parameters, substance properties, and season. We found totally 67 pesticide active ingredients (24 herbicides, 30 fungicides, 13 insecticides) with 10-53 pesticides per site. Herbicides metolachlor, pendimethalin, prosulfocarb, terbuthylazine, and the fungicide HCB were found in all PUF samplers, and glyphosate in all PEF samplers; chlorpyrifos-ethyl was the most abundant insecticide found in 93% of the samplers. Highest concentrations showed the herbicide prosulfocarb (725 ± 1218 ng sample-1), the fungicide folpet (412 ± 465 ng sample-1), and the insecticide chlorpyrifos-ethyl (110 ± 98 ng sample-1). Pesticide numbers and concentrations increased with increasing proportions of arable land in the surroundings. However, pesticides were also found in two National Parks (10 and 33 pesticides) or a city center (17 pesticides). Pesticide numbers and concentrations changed between seasons and correlated with land use, temperature, radiation, and wind, but were unaffected by substance volatility. Potential ecotoxicological exposure of mammals, birds, earthworms, fish, and honeybees increased with increasing pesticide numbers and concentrations. Human toxicity potential of detected pesticides was high, with averaged 54% being acutely toxic, 39% reproduction toxic, 24% cancerogenic, and 10% endocrine disrupting. This widespread pesticide air pollution indicates that current environmental risk assessments, field application techniques, protective measures, and regulations are inadequate to protect the environment and humans from potentially harmful exposure.
Collapse
Affiliation(s)
- Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria.
| | - Maren Kruse-Plaß
- TIEM Integrated Environmental Monitoring, 95615 Marktredwitz, Germany
| | - Ulrich Schlechtriemen
- TIEM Integrated Environmental Monitoring, Hohenzollernstr. 20, 44135 Dortmund, Germany
| | - Edith Gruber
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Maria Peer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Imran Nadeem
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Herbert Formayer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Hans-Peter Hutter
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Lukas Landler
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| |
Collapse
|
16
|
Röösli M, Fuhrimann S, Atuhaire A, Rother HA, Dabrowski J, Eskenazi B, Jørs E, Jepson PC, London L, Naidoo S, Rohlman DS, Saunyama I, van Wendel de Joode B, Adeleye AO, Alagbo OO, Aliaj D, Azanaw J, Beerappa R, Brugger C, Chaiklieng S, Chetty-Mhlanga S, Chitra GA, Dhananjayan V, Ejomah A, Enyoh CE, Galani YJH, Hogarh JN, Ihedioha JN, Ingabire JP, Isgren E, Loko YLE, Maree L, Metou’ou Ernest N, Moda HM, Mubiru E, Mwema MF, Ndagire I, Olutona GO, Otieno P, Paguirigan JM, Quansah R, Ssemugabo C, Solomon S, Sosan MB, Sulaiman MB, Teklu BM, Tongo I, Uyi O, Cueva-Vásquez H, Veludo A, Viglietti P, Dalvie MA. Interventions to Reduce Pesticide Exposure from the Agricultural Sector in Africa: A Workshop Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158973. [PMID: 35897345 PMCID: PMC9330002 DOI: 10.3390/ijerph19158973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022]
Abstract
Despite the fact that several cases of unsafe pesticide use among farmers in different parts of Africa have been documented, there is limited evidence regarding which specific interventions are effective in reducing pesticide exposure and associated risks to human health and ecology. The overall goal of the African Pesticide Intervention Project (APsent) study is to better understand ongoing research and public health activities related to interventions in Africa through the implementation of suitable target-specific situations or use contexts. A systematic review of the scientific literature on pesticide intervention studies with a focus on Africa was conducted. This was followed by a qualitative survey among stakeholders involved in pesticide research or management in the African region to learn about barriers to and promoters of successful interventions. The project was concluded with an international workshop in November 2021, where a broad range of topics relevant to occupational and environmental health risks were discussed such as acute poisoning, street pesticides, switching to alternatives, or disposal of empty pesticide containers. Key areas of improvement identified were training on pesticide usage techniques, research on the effectiveness of interventions targeted at exposure reduction and/or behavioral changes, awareness raising, implementation of adequate policies, and enforcement of regulations and processes.
Collapse
Affiliation(s)
- Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
- Correspondence: (M.R.); (S.F.); (M.A.D.)
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
- Correspondence: (M.R.); (S.F.); (M.A.D.)
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health (UNACOH), YMCA Building, Plot 37/41, Buganda Road, Kampala P.O. BOX 12590, Uganda;
| | - Hanna-Andrea Rother
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa; (H.-A.R.); (L.L.)
| | - James Dabrowski
- Sustainability Research Unit, Nelson Mandela University, P.O. Box 6531, George 6530, South Africa;
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA 94720, USA;
| | - Erik Jørs
- Odense University Hospital, University of Southern Denmark, 5230 Odense, Denmark;
| | - Paul C. Jepson
- Oregon IPM Center, Oregon State University, Corvallis, OR 97331, USA;
| | - Leslie London
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa; (H.-A.R.); (L.L.)
| | - Saloshni Naidoo
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Diane S. Rohlman
- College of Public Health, University of Iowa, Iowa City, IA 52242, USA;
| | - Ivy Saunyama
- Food and Agriculture Organization of the United Nations, Subregional Office for Southern Africa, Block 1 Tendeseka Office Park, Eastlea, Harare, Zimbabwe 00153 Rome, Italy;
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Program (ISA), Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional de Costa Rica, Heredia 40101, Costa Rica;
| | - Adeoluwa O. Adeleye
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (A.O.A.); (O.O.A.); (M.B.S.)
| | - Oyebanji O. Alagbo
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (A.O.A.); (O.O.A.); (M.B.S.)
| | - Dem Aliaj
- Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland;
| | - Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia;
| | - Ravichandran Beerappa
- ICMR-Regional Occupational Health Centre (Southern), Bangalore 562110, India; (R.B.); (V.D.)
| | - Curdin Brugger
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
| | - Sunisa Chaiklieng
- Department of Environmental Health, Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Shala Chetty-Mhlanga
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
| | - Grace A. Chitra
- Global Institute of Public Health, Ananthapuri Hospitals and Research Institute, Trivandrum 695024, Kerala, India;
| | - Venugopal Dhananjayan
- ICMR-Regional Occupational Health Centre (Southern), Bangalore 562110, India; (R.B.); (V.D.)
| | - Afure Ejomah
- Department of Animal and Environmental Biology, University of Benin, P.M.B. 1154, Benin City 300212, Nigeria; (A.E.); (O.U.)
| | - Christian Ebere Enyoh
- Green and Sustainable Chemical Technologies, Graduate School of Science and Engineering, Saitama University, Saitama 3388570, Japan;
| | - Yamdeu Joseph Hubert Galani
- Section of Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK;
| | - Jonathan N. Hogarh
- Department of Environmental Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana;
| | - Janefrances N. Ihedioha
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (J.N.I.); (M.B.S.)
| | - Jeanne Priscille Ingabire
- Horticulture Program, Rwanda Agriculture and Animal Resources Development Board, Kigali 5016, Rwanda;
| | - Ellinor Isgren
- Lund University Centre for Sustainability Studies (LUCSUS), P.O. Box 170, SE-221 00 Lund, Sweden;
| | - Yêyinou Laura Estelle Loko
- Ecole Nationale Supérieure des Biosciences et Biotechnologies Appliquées (ENSBBA), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM), BP 2282 Abomey, Benin;
| | - Liana Maree
- Department of Medical Bioscience, University of the Western Cape, Bellville 7493, South Africa;
| | - Nkoum Metou’ou Ernest
- Ministry of Agriculture and Rural Development, Cameroon, Direction of Regulation and Quality Control of Agricultural Inputs and Product, Messa, Yaoundé P.O. Box 2082, Cameroon;
| | - Haruna Musa Moda
- Department of Health Professions, Manchester Metropolitan University, Manchester M15 6BG, UK;
| | - Edward Mubiru
- Chemistry Department, School of Physical Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda;
| | - Mwema Felix Mwema
- School of Materials, Energy, Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania;
| | - Immaculate Ndagire
- Southern and Eastern Africa Trade Information and Negotiation Institute (SEATINI) Uganda, Kampala P.O. Box 3138, Uganda;
| | - Godwin O. Olutona
- Industrial Chemistry Programme, College of Agriculture Engineering and Science, Bowen University, Iwo 232101, Nigeria;
| | - Peter Otieno
- Pest Control Products Board, Loresho, Nairobi P.O. Box 13794-00800, Kenya;
| | - Jordan M. Paguirigan
- Common Services Laboratory, Food and Drug Administration (FDA) Philippines, Alabang, Muntinlupa 1781, Philippines;
| | - Reginald Quansah
- School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana;
| | - Charles Ssemugabo
- Department of Disease Control and Environmental Health, School of Public Health, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Seruwo Solomon
- CropLife Uganda, Chicken House, Plot1, Old Kampala Road, Second Floor Room 17, Kampala P.O. Box 36592, Uganda;
| | - Mosudi B. Sosan
- Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife 220282, Nigeria; (A.O.A.); (O.O.A.); (M.B.S.)
| | - Mohammad Bashir Sulaiman
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (J.N.I.); (M.B.S.)
| | - Berhan M. Teklu
- Ethiopian Agriculture Authority, Addis Ababa P.O. Box 313003, Ethiopia;
- Faculty of Naval and Ocean Engineering, Istanbul Technical University, Maslak P.O. Box 34469, Turkey
| | - Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, University of Benin, P.M.B. 1154, Benin City 300212, Nigeria;
| | - Osariyekemwen Uyi
- Department of Animal and Environmental Biology, University of Benin, P.M.B. 1154, Benin City 300212, Nigeria; (A.E.); (O.U.)
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Henry Cueva-Vásquez
- Facultad de Ciencias de la Salud, Carrera de Medicina Humana Lima, Universidad Científica del Sur, Lima 15067, Peru;
| | - Adriana Veludo
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland; (C.B.); (S.C.-M.); (A.V.)
| | - Paola Viglietti
- Centre for Environmental and Occupational Health (CEOHR), School of Public Health and Family Medicine, University of Cape Town, Cape Town 7700, South Africa;
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health (CEOHR), School of Public Health and Family Medicine, University of Cape Town, Cape Town 7700, South Africa;
- Correspondence: (M.R.); (S.F.); (M.A.D.)
| |
Collapse
|
17
|
Medithi S, Kasa YD, Kankipati VR, Kodali V, Jee B, Jonnalagadda PR. Impact of Micronutrient Supplementation on Pesticide Residual, Acetylcholinesterase Activity, and Oxidative Stress Among Farm Children Exposed to Pesticides. Front Public Health 2022; 10:872125. [PMID: 35774575 PMCID: PMC9237326 DOI: 10.3389/fpubh.2022.872125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
The present interventional study aimed to assess the impact of micronutrient supplementation on pesticide-residues concentrations, vitamins, minerals, acetylcholinesterase activity and oxidative stress among 129 farm children (9–12 years, n = 66 and 13–15 years, n = 63) involved in farming activities in Ranga Reddy district, Telangana, India. Our data showed the presence of five organophosphorus pesticide residues (chlorpyrifos, diazinon, malathion, monocrotophos, and phosalone) among children before-supplementation (both age-groups); while post-supplementation, only two pesticide residues (chlorpyrifos and diazinon) were detected indicating improved metabolic rate. Vitamin E, copper, magnesium and zinc levels were also improved in both the age-groups and manganese levels were significantly increased only among children of 13–15 years age group. Further, post-supplementation also showed an improvement in acetylcholinesterase activity and a decrease in lipid peroxidation among both the age groups of children. However, further research for ascertaining the ameliorating effect of micronutrients in preventing adverse effects of organophosphorus pesticides must be conducted.
Collapse
Affiliation(s)
- Srujana Medithi
- Symbiosis Institute of Health Sciences, Symbiosis International (Deemed) University, Pune, India
| | - Yogeswar Dayal Kasa
- Food Safety Division, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
| | - Vijay Radhakrishna Kankipati
- National Institute of Nutrition-TATA Centre for Excellence in Public Health Nutrition, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
| | - Venkaiah Kodali
- Biostatics Division, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Padmaja R. Jonnalagadda
- Food Safety Division, Indian Council of Medical Research – National Institute of Nutrition, Hyderabad, India
- *Correspondence: Padmaja R. Jonnalagadda ;
| |
Collapse
|
18
|
Kumar V, Kim KH. Use of molecular imprinted polymers as sensitive/selective luminescent sensing probes for pesticides/herbicides in water and food samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118824. [PMID: 35016982 DOI: 10.1016/j.envpol.2022.118824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
As non-biological molecules, molecular imprinted polymers (MIPs) can be made as antibody mimics for the development of luminescence sensors for various targets. The combination of MIPs with nanomaterials is further recognized as a useful option to improve the sensitivity of luminescence sensors. In this work, the recent progresses made in the fabrication of fluorescence, phosphorescence, chemiluminescence, and electrochemiluminescence sensors based on such combination have been reviewed with emphasis on the detection of pesticides/herbicides. Accordingly, the materials that are most feasible for the detection of such targets are recommended based on the MIP technologies.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
19
|
Degrendele C, Klánová J, Prokeš R, Příbylová P, Šenk P, Šudoma M, Röösli M, Dalvie MA, Fuhrimann S. Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150455. [PMID: 34634720 DOI: 10.1016/j.scitotenv.2021.150455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 05/27/2023]
Abstract
Concerns about the possible negative impacts of current use pesticides (CUPs) for both the environment and human health have increased worldwide. However, the knowledge on the occurrence of CUPs in soil and air and the related human exposure in Africa is limited. This study investigated the presence of 30 CUPs in soil and air at two distinct agricultural sites in South Africa and estimated the human exposure and related risks to rural residents via soil ingestion and inhalation (using hazard quotients, hazard index and relative potency factors). We collected 12 soil and 14 air samples over seven days during the main pesticide application season in 2018. All samples were extracted, purified and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry. In soils, nine CUPs were found, with chlorpyrifos, carbaryl and tebuconazole having the highest concentrations (up to 63.6, 1.10 and 0.212 ng g-1, respectively). In air, 16 CUPs were found, with carbaryl, tebuconazole and terbuthylazine having the highest levels (up to 25.0, 22.2 and 1.94 pg m-3, respectively). Spatial differences were observed between the two sites for seven CUPs in air and two in soils. A large dominance towards the particulate phase was found for almost all CUPs, which could be related to mass transport kinetics limitations (non-equilibrium) following pesticide application. The estimated daily intake via soil ingestion and inhalation of individual pesticides ranged from 0.126 fg kg-1 day-1 (isoproturon) to 14.7 ng kg-1 day-1 (chlorpyrifos). Except for chlorpyrifos, soil ingestion generally represented a minor exposure pathway compared to inhalation (i.e. <5%). The pesticide environmental exposure largely differed between the residents of the two distinct agricultural sites in terms of levels and composition. The estimated human health risks due to soil ingestion and inhalation of pesticides were negligible although future studies should explore other relevant pathways.
Collapse
Affiliation(s)
| | - Jana Klánová
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Petra Příbylová
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Petr Šenk
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Marek Šudoma
- Masaryk University, RECETOX Centre, 625 00 Brno, Czech Republic
| | - Martin Röösli
- University of Basel, 4002 Basel, Switzerland; Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925 Cape Town, South Africa
| | - Samuel Fuhrimann
- University of Basel, 4002 Basel, Switzerland; Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland; Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, the Netherlands
| |
Collapse
|
20
|
Veludo AF, Martins Figueiredo D, Degrendele C, Masinyana L, Curchod L, Kohoutek J, Kukučka P, Martiník J, Přibylová P, Klánová J, Dalvie MA, Röösli M, Fuhrimann S. Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa. CHEMOSPHERE 2022; 289:133162. [PMID: 34875296 DOI: 10.1016/j.chemosphere.2021.133162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
For decades pesticides have been used in agriculture, however, the occurrence of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) is poorly understood in Africa. This study investigates air concentrations of OCPs and CUPs in three South African agricultural areas, their spatial/seasonal variations and mixture profiles. Between 2017 and 2018, 54 polyurethane foam-disks passive air-samplers (PUF-PAS) were positioned in three agricultural areas of the Western Cape, producing mainly apples, table grapes and wheat. Within areas, 25 CUPs were measured at two sites (farm and village), and 27 OCPs at one site (farm). Kruskal-Wallis tests investigated area differences in OCPs concentrations, and linear mixed-effect models studied differences in CUPs concentrations between areas, sites and sampling rounds. In total, 20 OCPs and 16 CUPs were detected. A median of 16 OCPs and 10 CUPs were detected per sample, making a total of 11 OCPs and 24 CUPs combinations. Eight OCPs (trans-chlordane, o,p'-/p,p'-dichlorodiphenyldichloroethylene (DDE)/dichlorodiphenyltrichloroethane (DDT), endosulfan sulfate, γ-hexachlorocyclohexane and mirex) and two CUPs (carbaryl and chlorpyrifos) were quantified in all samples. p,p'-DDE (median 0.14 ng/m3) and chlorpyrifos (median 0.70 ng/m3) showed the highest concentrations throughout the study. Several OCPs and CUPs showed different concentrations between areas and seasons, although CUPs concentrations did not differ between sites. OCPs ratios suggest ongoing chlordane use in the region, while DDT and endosulfan contamination result from past-use. Our study revealed spatial and seasonal variations of different OCPs and CUPs combinations detected in air. Further studies are needed to investigate the potential cumulative or synergistic risks of the detected pesticides.
Collapse
Affiliation(s)
- Adriana Fernandes Veludo
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584, Utrecht, the Netherlands
| | | | - Céline Degrendele
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Aix-Marseille University, CNRS, LCE, 13003, Marseille, France
| | - Lindile Masinyana
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925, Cape Town, South Africa
| | - Lou Curchod
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland
| | - Jiří Kohoutek
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petr Kukučka
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jakub Martiník
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Přibylová
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klánová
- Recetox, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, 7925, Cape Town, South Africa
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; University of Basel, 4002, Basel, Switzerland
| | - Samuel Fuhrimann
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584, Utrecht, the Netherlands; Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; University of Basel, 4002, Basel, Switzerland.
| |
Collapse
|
21
|
Huffling K, McLaughlin J. Pediatric Chemical Exposure: Opportunities for Prevention. J Pediatr Health Care 2022; 36:27-33. [PMID: 34922675 DOI: 10.1016/j.pedhc.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022]
Abstract
Over the past 50 years, the use of artificial chemicals in products has increased exponentially. Most of these chemicals were not tested for safety before widespread use, and the impacts of exposures are just now being realized. Children are especially vulnerable to the health impacts of chemical exposures, and these exposures are now known to be an important component of rising rates of diseases such as asthma, some cancers, and neurodevelopmental disorders in children. This article reviews the impacts of chemical exposures on children's health, common chemicals children may be exposed to and their health impacts, and how advanced practice registered nurses can assess for exposures, provide anticipatory guidance, and engage in advocacy in support of a healthier environment.
Collapse
|
22
|
Curtis L. Low- to moderate-level chemical exposures can trigger migraines and are associated with multiple chemical sensitivity. J Occup Health 2022; 64:e12348. [PMID: 35857621 PMCID: PMC9298987 DOI: 10.1002/1348-9585.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/14/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Luke Curtis
- East Carolina University Brody School of MedicineSchool of Public HealthHazelwoodMissouriUSA
| |
Collapse
|
23
|
Fuhrimann S, Wan C, Blouzard E, Veludo A, Holtman Z, Chetty-Mhlanga S, Dalvie MA, Atuhaire A, Kromhout H, Röösli M, Rother HA. Pesticide Research on Environmental and Human Exposure and Risks in Sub-Saharan Africa: A Systematic Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:259. [PMID: 35010520 PMCID: PMC8750985 DOI: 10.3390/ijerph19010259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
On the African continent, ongoing agriculture intensification is accompanied by the increasing use of pesticides, associated with environmental and public health concerns. Using a systematic literature review, we aimed to map current geographical research hotspots and gaps around environmental and public health risks research of agriculture pesticides in Sub-Saharan Africa (SSA). Studies were included that collected primary data on past and current-used agricultural pesticides and assessed their environmental occurrence, related knowledge, attitude and practice, human exposure, and environmental or public health risks between 2006 and 2021. We identified 391 articles covering 469 study sites in 37 countries in SSA. Five geographical research hotspots were identified: two in South Africa, two in East Africa, and one in West Africa. Despite its ban for agricultural use, organochlorine was the most studied pesticide group (60%; 86% of studies included DDT). Current-used pesticides in agriculture were studied in 54% of the study sites (including insecticides (92%), herbicides (44%), and fungicides (35%)). Environmental samples were collected in 67% of the studies (e.g., water, aquatic species, sediment, agricultural produce, and air). In 38% of the studies, human subjects were investigated. Only few studies had a longitudinal design or assessed pesticide's environmental risks; human biomarkers; dose-response in human subjects, including children and women; and interventions to reduce pesticide exposure. We established a research database that can help stakeholders to address research gaps, foster research collaboration between environmental and health dimensions, and work towards sustainable and safe agriculture systems in SSA.
Collapse
Affiliation(s)
- Samuel Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland; (A.V.); (S.C.-M.); (M.R.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands; (E.B.); (H.K.)
| | - Chenjie Wan
- Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | - Elodie Blouzard
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands; (E.B.); (H.K.)
| | - Adriana Veludo
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland; (A.V.); (S.C.-M.); (M.R.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Zelda Holtman
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa; (Z.H.); (M.A.D.); (H.-A.R.)
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa
| | - Shala Chetty-Mhlanga
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland; (A.V.); (S.C.-M.); (M.R.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa; (Z.H.); (M.A.D.); (H.-A.R.)
| | - Aggrey Atuhaire
- Uganda National Association of Community and Occupational Health (UNACOH), Kampala 12590, Uganda;
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands; (E.B.); (H.K.)
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland; (A.V.); (S.C.-M.); (M.R.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Hanna-Andrea Rother
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa; (Z.H.); (M.A.D.); (H.-A.R.)
- Division of Environmental Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7729, South Africa
| |
Collapse
|
24
|
Maternal drinking behaviour and co-exposure from smoking during and after pregnancy in relation to the neurocognitive function of school-children in the rural Western Cape. Neurotoxicology 2021; 88:36-43. [PMID: 34718059 DOI: 10.1016/j.neuro.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maternal substance use and its long-term effect on the neurocognitive functions of children is a global public health issue. Despite an increase in substance use in rural areas of low to middle-income countries, research is limited in these populations. OBJECTIVE We have therefore explored the effect of maternal drinking and smoking behaviors on the neurocognitive functioning of rural school children. METHOD A cross-sectional analysis on the determinants of current, past and gestational maternal alcohol use and gestational smoking on child neurocognitive functions was conducted on school-children (N = 482), embedded within the child health agricultural cohort (CapSA) study across seven schools in rural Western Cape, South Africa. Standardised neurocognitive assessment tools included the Cambridge Automated Neuropsychological Battery (CANTAB) and the KIDSCREEN-10 to measure health-related quality of life via a child questionnaire. Maternal smoking and drinking behaviour were captured using a parent/guardian questionnaire. RESULTS Of the 482 parents/guardians who completed the survey, 29 % reported current drinking 27 % reported past drinking and 10 % reported maternal gestational drinking, while 31 % reported gestational smoking. Significant associations were observed between past and current maternal drinking and child's reduced rapid visual processing accuracy in attention [β:-0.03; 95 % confidence interval (CI): -0.05;-0.004] and between maternal drinking during pregnancy and reduced child's spatial working memory (β: -0.59; CI: -1.02; -0.15). Heavy (>5 cigarettes per day) gestational smoking was associated with lowered child's learning in memory (β:-1.69; 95 % CI: -3.05; -0.33) and lower health-related quality of life (β: -3.41; CI: -6.64; -0.17). The odds of a child repeating a grade were 1.69 (CI: 2.81-1.02) for those exposed to maternal gestational smoking and 1.68 (CI: 3.31-0.85) for those exposed to maternal gestational drinking compared to those who were not exposed. CONCLUSION The consistent negative associations across all four maternal substance use proxies, six neurocognitive health outcomes and one health symptom is suggestive of adverse health effects, warranting longitudinal follow-up. Health policies to eliminate gestational substance use are recommended.
Collapse
|
25
|
Mehmood Y, Arshad M, Mahmood N, Kächele H, Kong R. Occupational hazards, health costs, and pesticide handling practices among vegetable growers in Pakistan. ENVIRONMENTAL RESEARCH 2021; 200:111340. [PMID: 34043972 DOI: 10.1016/j.envres.2021.111340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Disregarding protective measures when handling pesticides in agricultural production imposes increased health risks and health costs on farmers as well as degrades the natural ecosystem. In Pakistan, where agriculture is the prime occupation in rural communities, there is overwhelming evidence of indiscriminate use of hazardous pesticides by farmers without taking adequate precautions. Using cross-sectional data, we examined personal protection and health costs to vegetable growers due to pesticide exposure and determinants of farmers' pesticide handling practices. The theory of averting behavior was used, and the possible factors affecting farmers' adoption of safety equipment and of disposal methods for pesticide containers were estimated using a logit model. Health effects (P < 0.05) and farmers' protection and health costs (P < 0.01) are found as important determinants of farmers' adoption of safety equipment and of disposal methods for pesticide containers. The mean protection and health cost of pesticide exposure per farmer per vegetable season in 2019 was US $3.60. Analytical outcomes indicate that safe and recommended pesticide handling practices are needed to be introduced through adequate integrated pest management (IPM) training programs and by improving farmers' formal education. Thus, creating awareness through IPM training programs among vegetable growers and enhancing formal education to encourage the adoption of precautionary measures and safe disposal methods for pesticide containers may reduce health risks and health costs. Findings imply that adoption of adequate pesticide handling practices would further help reduce occupational hazards and promote sustainable agriculture in Pakistan.
Collapse
Affiliation(s)
- Yasir Mehmood
- Department of Social and Behavioral Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Muhammad Arshad
- Department of Economics, School of Social Sciences and Humanities (S3H), National University of Science and Technology (NUST), Islamabad, Pakistan; Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany
| | - Nasir Mahmood
- Department of Economics & Agricultural Economics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Harald Kächele
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany; Eberswalde University for Sustainable Development, Schicklerstraße 5, 16225, Eberswalde, Germany
| | - Rong Kong
- College of Economics and Management, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Molomo RN, Basera W, Chetty-Mhlanga S, Fuhrimann S, Mugari M, Wiesner L, Röösli M, Dalvie MA. Relation between organophosphate pesticide metabolite concentrations with pesticide exposures, socio-economic factors and lifestyles: A cross-sectional study among school boys in the rural Western Cape, South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116660. [PMID: 33582632 DOI: 10.1016/j.envpol.2021.116660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
Evidence on the relationship between lifestyle, socio-economic factors and pesticide exposure and urinary concentrations of organophosphate (OP) pesticide metabolites among children is generally incomplete. This study investigated the relationship between socio-economic factors and reported pesticide exposures and the sum of three urinary concentrations of dialkyl phosphate metabolites (DAP) among boys living in the rural areas of the Western Cape, South Africa. Data was collected during a cross-sectional study of 183 boys from three agricultural intense areas. Measurements included a questionnaire on socio-economic and pesticide exposures and urinary DAP concentrations. Most boys (70%) lived on farms with a median age of 12 years (range: 5.0-19.5 years). Children aged >14 years had lower DAP urine concentrations (median = 39.9 ng/ml; β = -68.1 ng/ml; 95% CI: -136.8, 0.6) than children aged 9 years and younger (median = 107.0 ng/ml). DAP concentrations also varied significantly with area, with concentrations in the grape farming area, Hex River Valley (median = 61.8 ng/ml; β = -52.1; 95% CI: -97.9, -6.3 ng/ml) and the wheat farming area, Piketberg (median = 72.4 ng/ml; β = -54.2; 95% CI: 98.8, -9.7 ng/ml) lower than those in the pome farming area, Grabouw (median = 79.9 ng/ml). Other weaker and non-significant associations with increased DAP levels were found with increased household income, member of household working with pesticides, living on a farm, drinking water from an open water source and eating crops from the vineyard and or garden. The study found younger age and living in and around apple and grape farms to be associated with increased urinary DAP concentrations. Additionally, there were other pesticide exposures and socio-economic and lifestyle factors that were weakly associated with elevated urinary DAP levels requiring further study. The study provided more evidence on factors associated to urinary DAP concentrations especially in developing country settings.
Collapse
Affiliation(s)
- Regina Ntsubise Molomo
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa.
| | - Wisdom Basera
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa.
| | - Shala Chetty-Mhlanga
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland.
| | - Samuel Fuhrimann
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, The Netherlands.
| | - Mufaro Mugari
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa; Hair and Skin Research Laboratory, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa.
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002, Basel, Switzerland; University of Basel, 4002 Basel, Switzerland.
| | - Mohamed Aqiel Dalvie
- Centre for Environment and Occupational Health Research, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7729, Cape Town, South Africa.
| |
Collapse
|