1
|
Riederer AM, Sherris AR, Szpiro AA, Melough MM, Simpson CD, Loftus CT, Day DB, Wallace ER, Trasande L, Barrett ES, Nguyen RH, Kannan K, Robinson M, Swan SH, Mason WA, Bush NR, Sathyanarayana S, LeWinn KZ, Karr CJ. Environmental and dietary factors associated with urinary OH-PAHs in mid-pregnancy in a large multi-site study. ENVIRONMENTAL RESEARCH 2025; 266:120516. [PMID: 39631646 DOI: 10.1016/j.envres.2024.120516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND PAH exposure is associated with adverse health outcomes, but exposure sources in pregnancy are not well-understood. OBJECTIVES We examined associations between urinary OH-PAHs during pregnancy and environmental tobacco smoke (ETS) and short-term ambient air pollution exposure. Participants included 1603 pregnant non-smokers in three cohorts from 7 sites across the USA. We also examined associations with intake of foods typically high in PAHs in one cohort with dietary assessment data (n = 801). METHODS Urinary OH-PAHs were measured using LC-MS/MS; urinary cotinine was measured using SPE/UPLC-MS/MS. To accommodate different detection limits by cohort, ETS exposure was represented by modified cotinine quartiles; these combined concentrations below the highest detection limit in the first category (0-0.017 ng/mL), with the rest divided evenly into three categories (0.0171-0.2 ng/mL, 0.21-1.191 ng/mL, 1.192-1465 ng/mL). Air pollution exposure was represented by quartiles of same-day ambient PM2.5 in residential census tracts estimated from EPA's Downscaler Model. We fitted separate Tobit regression models for log-OH-PAH concentrations in association with cotinine or ambient PM2.5 quartile adjusted for specific gravity, site, batch, household income, education, employment status, neighborhood deprivation index, season, and year. For the food model, PAH dietary intakes were estimated using food frequency questionnaire data and standard portion weights from a national database. RESULTS In adjusted models, the highest modified cotinine quartile vs. the lowest was associated with 48% (95% CI: 13%, 94%) higher urinary 1-hydroxynaphthalene, 36% (15%, 61%) higher 2-hydroxynaphthalene, 41% (23%, 63%) higher 3-hydroxyphenanthrene, and 70% (28%, 127%) higher 1-hydroxypyrene. Second and third quartile cotinine concentrations were associated with higher OH-PAHs, although not consistently. Same-day ambient PM2.5 was not associated with any OH-PAH, nor was self-reported dietary intake. CONCLUSIONS ETS is a major source of PAH exposure for pregnant people in the USA while ambient PM2.5 and diet measured via usual intakes appear less influential. Our findings underscore the importance of policies/actions to reduce environmental tobacco smoke exposure among pregnant people.
Collapse
Affiliation(s)
- Anne M Riederer
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Allison R Sherris
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Melissa M Melough
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE, USA
| | - Christopher D Simpson
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine T Loftus
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Erin R Wallace
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Leonardo Trasande
- Department of Pediatrics, Grossman School of Medicine, New York University, New York, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Ruby Hn Nguyen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Alex Mason
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| | - Sheela Sathyanarayana
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| | - Catherine J Karr
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Latifi AM, Abdi F, Miri M, Ashtari S, Ghalandarpoor-Attar SN, Mohamadzadeh M, Imani Fooladi AA, Uddin S, Vahedian-Azimi A. Association between maternal exposure to polycyclic aromatic hydrocarbons and birth anthropometric outcomes: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117290. [PMID: 39536563 DOI: 10.1016/j.ecoenv.2024.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Previous research has proposed that exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy could potentially lead to a higher risk of adverse birth anthropometric outcomes. However, the current evidence on this connection remains inconclusive, as various studies have presented conflicting results. OBJECTIVE This systematic review and meta-analysis seeks to synthesize the available research on the potential link between maternal PAHs exposure and birth anthropometric outcomes. METHODS A comprehensive search of Scopus, PubMed/MEDLINE, Web of Science, and the Cochrane Library up to July 1, 2024, was conducted to identify studies investigating the impact of maternal PAHs exposure during pregnancy on birth anthropometric measures, including small gestational age (SGA), low birth weight (LBW), birth weight (BW), birth length (BL), birth head circumference (BHC), and birth chest circumference (BCC). Quality assessment was performed using the Newcastle-Ottawa Scale (NOS) and the GRADE framework, and a random-effects meta-analysis was conducted to consolidate association estimates. RESULTS Out of 5499 articles initially screened, 27 studies were included in the review. The meta-analysis revealed no significant association between maternal PAHs exposure and LBW (OR: 1.02, 95 % CI: 0.96-1.08), with moderate heterogeneity (I²: 25.8 %, P=0.37). Notably, PAHs exposure was significantly associated with BW (β: -9.79 g, 95 % CI: -16.71 to -2.87), along with high heterogeneity (I²: 99.9 %, P<0.001), and shorter BL (β: -0.04 cm, 95 % CI: -0.07 to -0.01), also with high heterogeneity (I²: 84.3 %, P<0.001). Additionally, a borderline significant decrease in BHC was observed (β: -0.01 cm, 95 % CI: -0.02 to -0.00) with no significant heterogeneity among studies. The results SGA were inconsistent across the studies. CONCLUSION Maternal exposure to PAHs was associated with adverse birth anthropometric outcomes, particularly lower BW and BL. The borderline significant reduction in BHC suggests a potential impact worth further investigation, although this finding remains inconclusive and not yet actionable. Results for SGA varied significantly among studies, underscoring the complexity of these associations. Collectively, these findings highlight the necessity for additional research to elucidate the effects of specific PAH metabolites on birth anthropometric outcomes and to explore potential interventions aimed at mitigating the identified risks.
Collapse
Affiliation(s)
- Ali Mohammad Latifi
- Medical Biotechnology, Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Abdi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Miri
- Environmental Health Engineering, Department of Environmental Health, School Of Health, Non-communicable Diseases Research Center, Sabzevar University oF Medical Sciences, Sabzevar, Iran.
| | - Sara Ashtari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Milad Mohamadzadeh
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Doha 3050, Qatar, Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar.
| | - Amir Vahedian-Azimi
- Nursing care research center, Clinical sciences institute, Nursing faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Cao S, Wan Y, Li Y, Xu S, Xia W. Urinary polycyclic aromatic hydrocarbon metabolites in Chinese pregnant women: Concentrations, variability, predictors, and association with oxidative stress biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175121. [PMID: 39084365 DOI: 10.1016/j.scitotenv.2024.175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive contaminants having adverse health effects. Urinary monohydroxylated PAHs (OH-PAHs) are commonly employed as biomarkers to estimate PAH exposure levels in humans. However, little is understood about the variability in OH-PAHs among pregnant women across trimesters and their relationship with oxidative stress biomarkers (OSBs). Based on a prospective birth cohort study conducted in Wuhan, China, we selected 644 women who donated (spot) urine samples across different trimesters and measured the urinary concentrations of eight OH-PAHs and three selected OSBs (8-OHG, 8-OHdG, and HNEMA) to explore the relationship between the OH-PAHs and OSBs. Pregnant women were found to be ubiquitously exposed to the PAHs, with detection rates of the OH-PAHs ranging from 86.3% to 100%. 2-Hydroxynaphthalene (2-OH-Nap) had the highest urinary concentrations among the OH-PAHs during the three trimesters (specific gravity-adjusted median values for the first, second, and third trimesters: 1.86, 2.39, and 2.20 ng/mL, respectively). However, low reproducibility of the OH-PAHs was observed across the three trimesters with intraclass correlation coefficients ranged between 0.02 and 0.22. Most urinary OH-PAHs had the highest concentrations at the first trimester and the lowest at the third trimester. Some OH-PAH concentrations were higher in pregnant women with lower educational level [2-hydroxyphenanthrene (2-OH-Phen) and 3-hydroxyphenanthrene (3-OH-Phen)], those who were overweight [2-OH-Nap, 2/3-hydroxyfluorene (2/3-OH-Fluo), 2-OH-Phen, and 4-hydroxyphenanthrene (4-OH-Phen)], those who were unemployed during pregnancy [1-hydroxynaphthalene, 1/9-hydroxyphenanthrene, and 4-OH-Phen], and the samples donated in summer (most OH-PAHs, except for 2-OH-Nap). In multivariable linear mixed-effects model analyses, every OH-PAH was found to be significantly associated with increased levels of the three OSBs. For example, each interquartile range-fold increase in 2/3-OH-Fluo concentration was associated with the largest increase in 8-OHdG (65.4%) and 8-OHG (49.1%), while each interquartile range-fold increase in 3-OH-Phen concentration was associated with the largest increase in HNEMA (76.3%). Weighted quantile sum regression models, which were used to examine the joint effect of OH-PAH mixture on the OSBs, revealed positive associations between the OH-PAH mixture exposure and the OSBs. Specifically, 2/3-OH-Fluo and 2-OH-Nap were the major contributors in the association with oxidative damage of nucleic acids (8-OHdG and 8-OHG), while hydroxyphenanthrenes and 1-hydroxypyrene were the major contributors in the association with oxidative damage of lipid (HNEMA). Further work is required to examine the potential mediating role of oxidative stress in the relationship of adverse health outcomes with elevated PAH exposure among pregnant women.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
4
|
Sturla Irizarry SM, Cathey AL, Zimmerman E, Rosario Pabón ZY, Huerta Montañez G, Vélez Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD, Watkins DJ. Prenatal polycyclic aromatic hydrocarbon exposure and neurodevelopment among children in Puerto Rico. CHEMOSPHERE 2024; 366:143468. [PMID: 39369740 DOI: 10.1016/j.chemosphere.2024.143468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants produced through the combustion of organic matter, with sources ranging from traffic pollution to diet. Although PAH exposure has been associated with adverse health effects, few studies have examined its impact on neurodevelopmental delay (NDD). Thus, our study aims to investigate the effect of prenatal PAH exposure on the odds of NDD. We measured 7 hydroxylated PAH metabolites in spot urine samples collected up to three times during pregnancy in the PROTECT birth cohort. NDD was identified using score cutoffs from the Ages and Stages Questionnaire, 3rd edition offered in Spanish, across five domains at 12, 24, 36, and 48 months. We utilized logistic regression and mixed effects logistic regression models to assess associations between prenatal PAH concentrations and NDD. Our results showed mostly lower odds of NDD with higher PAH exposure (p < 0.05). However, male children showed higher odds of NDD in relation to PAH exposure, particularly in the Fine Motor domain. For example, 1-hydroxypyrene was associated with 1.11 (1.01, 1.23) times odds of delay in fine motor function in male children versus 0.91 (0.82, 1.00) times odds in female children. Our preliminary sex-specific results suggest that PAH exposure may impact neurodevelopment in male children and prompt further investigation into the potential sex-specific mechanisms of PAHs on motor function.
Collapse
Affiliation(s)
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA.
| | - Zaira Y Rosario Pabón
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Gredia Huerta Montañez
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - Carmen M Vélez Vega
- Department of Social Sciences, Doctoral Program in Social Determinants of Health, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Hu Z, Wu N, An S, Deng M, Tao L, Liao D, Yu R, Yang J, Xiao Y, Zheng X, Zeng R, Liu Y, Xiong S, Xie Y, Liu X, Shen X, Shang X, Li Q, Zhou Y. Effect of combined exposure to phthalates and polycyclic aromatic hydrocarbons during early pregnancy on gestational age and neonatal size: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116868. [PMID: 39146592 DOI: 10.1016/j.ecoenv.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Many studies have indicated that individual exposure to phthalates (PAEs) or polycyclic aromatic hydrocarbons (PAHs) affects pregnancy outcomes. However, combined exposure to PAEs and PAHs presents a more realistic situation, and research on the combined effects of PAEs and PAHs on gestational age and newborn size is still limited. This study aimed to assess the effects of combined exposure to PAEs and PAHs on neonatal gestational age and birth size. Levels of 9 PAE and 10 PAH metabolites were measured from the urine samples of 1030 women during early pregnancy from the Zunyi Birth Cohort in China. Various statistical models, including linear regression, restricted cubic spline, Bayesian kernel machine regression, and quantile g-computation, were used to study the individual effects, dose-response relationships, and combined effects, respectively. The results of this prospective study revealed that each ten-fold increase in the concentration of monoethyl phthalate (MEP), 2-hydroxynaphthalene (2-OHNap), 2-hydroxyphenanthrene (2-OHPhe), and 1-hydroxypyrene (1-OHPyr) decreased gestational age by 1.033 days (95 % CI: -1.748, -0.319), 0.647 days (95 % CI: -1.076, -0.219), 0.845 days (95 % CI: -1.430, -0.260), and 0.888 days (95 % CI: -1.398, -0.378), respectively. Moreover, when the concentrations of MEP, 2-OHNap, 2-OHPhe, and 1-OHPyr exceeded 0.528, 0.039, 0.012, and 0.002 µg/g Cr, respectively, gestational age decreased in a dose-response manner. Upon analyzing the selected PAE and PAH metabolites as a mixture, we found that they were significantly negatively associated with gestational age, birth weight, and the ponderal index, with 1-OHPyr being the most important contributor. These findings highlight the adverse effects of single and combined exposure to PAEs and PAHs on gestational age. Therefore, future longitudinal cohort studies with larger sample sizes should be conducted across different geographic regions and ethnic groups to confirm the impact of combined exposure to PAEs and PAHs on birth outcomes.
Collapse
Affiliation(s)
- Zhongmei Hu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mingyu Deng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Rui Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jing Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yanling Xiao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xingting Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China.
| |
Collapse
|
6
|
Fang Y, Yin W, He C, Shen Q, Xu Y, Liu C, Zhou Y, Liu G, Zhao Y, Zhang H, Zhao K. Adverse impact of phthalate and polycyclic aromatic hydrocarbon mixtures on birth outcomes: A metabolome Exposome-Wide association study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124460. [PMID: 38945193 DOI: 10.1016/j.envpol.2024.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
It has been well-investigating that individual phthalates (PAEs) or polycyclic aromatic hydrocarbons (PAHs) affect public health. However, there is still a gap that the mixture of PAEs and PAHs impacts birth outcomes. Through innovative methods for mixtures in epidemiology, we used a metabolome Exposome-Wide Association Study (mExWAS) to evaluate and explain the association between exposure to PAEs and PAHs mixtures and birth outcomes. Exposure to a higher level of PAEs and PAHs mixture was associated with lower birth weight (maximum cumulative effect: 143.5 g) rather than gestational age. Mono(2-ethlyhexyl) phthalate (MEHP) (posterior inclusion probability, PIP = 0.51), 9-hydroxyphenanthrene (9-OHPHE) (PIP = 0.53), and 1-hydroxypyrene (1-OHPYR) (PIP = 0.28) were identified as the most important compounds in the mixture. In mExWAS, we successfully annotated four overlapping metabolites associated with both MEHP/9-OHPHE/1-OHPYR and birth weight, including arginine, stearamide, Arg-Gln, and valine. Moreover, several lipid-related metabolism pathways, including fatty acid biosynthesis and degradation, alpha-linolenic acid, and linoleic acid metabolism, were disturbed. In summary, these findings may provide new insights into the underlying mechanisms by which PAE and PAHs affect fetal growth.
Collapse
Affiliation(s)
- Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian district, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, China
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Guotao Liu
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Meng Q, Mitra S, Del Rosario I, Jerrett M, Janzen C, Devaskar SU, Ritz B. Urinary polycyclic aromatic hydrocarbon metabolites and their association with oxidative stress among pregnant women in Los Angeles. Environ Health 2024; 23:68. [PMID: 39138494 PMCID: PMC11321171 DOI: 10.1186/s12940-024-01107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes that have been reported to be induced by oxidative stress, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy and identified critical periods for these outcomes and PAH exposures in pregnancy. METHODS A cohort of pregnant women was recruited early in pregnancy from antenatal clinics at the University of California Los Angeles during 2016-2019. We collected urine samples up to three times during pregnancy in a total of 159 women enrolled in the cohort. A total of 7 PAH metabolites and 2 oxidative stress biomarkers [malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were measured in all available urine samples. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Furthermore, we used linear mixed models with a random intercept for participant to estimate the associations between PAH metabolite and oxidative stress biomarker concentrations across multiple time points in pregnancy. RESULTS Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. A doubling of each urinary PAH metabolite concentration increased MDA concentrations by 5.8-41.1% and 8-OHdG concentrations by 13.8-49.7%. Linear mixed model results were consistent with those from linear regression models for each gestational sampling period. CONCLUSION Urinary PAH metabolites are associated with increases in oxidative stress biomarkers during pregnancy, especially in early and late pregnancy.
Collapse
Affiliation(s)
- Qi Meng
- Department of Epidemiology, University of California, Los Angeles, CA, 90095, USA
| | - Sanjali Mitra
- Department of Epidemiology, University of California, Los Angeles, CA, 90095, USA
| | - Irish Del Rosario
- Department of Epidemiology, University of California, Los Angeles, CA, 90095, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, University of California, Los Angeles, CA, 90095, USA
| | - Carla Janzen
- Department of Obstetrics & Gynecology, University of California, Los Angeles, CA, 90095, USA
| | - Sherin U Devaskar
- Department of Pediatrics, University of California, Los Angeles, CA, 90095, USA
| | - Beate Ritz
- Department of Epidemiology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Cathey AL, Eaton JL, Watkins DJ, Rosario Pabón ZY, Vélez Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations between urinary hydroxylated polycyclic aromatic hydrocarbon biomarker concentrations and measures of timing of delivery and infant size at birth. ENVIRONMENT INTERNATIONAL 2024; 190:108848. [PMID: 38936064 DOI: 10.1016/j.envint.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Preterm birth is a leading cause of neonatal mortality and presents significant public health concerns. Environmental chemical exposures during pregnancy may be partially to blame for disrupted delivery timing. Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion, exposure to which occurs via inhalation of cigarette smoke and automobile exhaust, and ingestion of charred meats. Exposure to PAHs in the US population is widespread, and pregnant women represent a susceptible population to adverse effects of PAHs. We aimed to investigate associations between gestational exposure to PAHs and birth outcomes, including timing of delivery and infant birth size. We utilized data from the PROTECT birth cohort where pregnant women provided spot urine samples at up to three study visits (median 16, 20, and 24 weeks gestation). Urine samples were assayed for eight hydroxylated PAH concentrations. Associations between PAHs and birth outcomes were calculated using linear/logistic regression models, with adjustment for maternal age, education, pre-pregnancy BMI, and daily exposure to environmental tobacco smoke. Models accounted for urine dilution using specific gravity. We also explored effect modification by infant sex. Interquartile range (IQR) increases in all averaged PAH exposures during the second trimester were associated with reduced gestational age at delivery and increased odds of overall PTB, although these associations were not statistically significant (p > 0.05). Most PAHs at the second study visit were most strongly associated with earlier delivery and increased odds of overall and spontaneous PTB, with visit 2 2-hydroxynapthalene (2-NAP) being significantly associated with increased odds of overall PTB (OR:1.55; 95 %CI: 1.05,2.29). Some PAHs resulted in earlier timing of delivery among only female fetuses, specifically 2-NAP on overall PTB (female OR:1.52 95 %CI: 1.02,2.27; male OR:0.78, 95 %CI: 0.53,1.15). Future work should more deeply investigate differential physiological impacts of PAH exposure between pregnancies with male and female fetuses, and on varying developmental processes occurring at different points through pregnancy.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jarrod L Eaton
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Zaira Y Rosario Pabón
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Carmen M Vélez Vega
- Department of Social Sciences, Doctoral Program in Social Determinants of Health, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Yang R, Shi C, Li X, Gan P, Pan X, Peng R, Tan L. Human biomonitoring of serum polycyclic aromatic hydrocarbons and oxygenated derivatives by gas chromatography coupled with tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4817-4826. [PMID: 38966930 DOI: 10.1039/d4ay00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
While polycyclic aromatic hydrocarbons (PAHs) are well-known for their potential carcinogenic and mutagenic effects, the health implications of exposure to oxygenated PAHs (OPAHs), which are significant substitutes with increased persistence and bioaccumulation, are less understood. In this work, we compared the background levels of liquid-liquid, solid-phase, and supported-liquid extraction for the determination of serum PAHs and OPAHs. Liquid-liquid extraction demonstrated minimal background interference and was validated and used for human biomonitoring of PAHs and OPAHs in 240 participants using gas chromatography coupled with tandem mass spectrometry. We observed significant positive correlations between these compounds using Spearman correlation analysis. Furthermore, we investigated the concentration levels and compositions of PAHs and OPAHs among different demographic characteristics, including gender, age, and body mass index. Linear regression analysis demonstrated a weak but significant correlation between total concentrations of PAHs and OPAHs and age and body mass index. A multivariate linear regression analysis was then conducted to examine the association of exposure to individual PAHs and OPAHs with the body mass index. Naphthalene exposure and body mass index showed a statistically significant positive correlation, suggesting that higher levels of naphthalene exposure are associated with higher body mass index values. This study establishes a robust method for biomonitoring PAHs and OPAHs in serum, evaluating the exposure levels of these compounds in healthy adults and highlighting their associations with demographic characteristics.
Collapse
Affiliation(s)
- Rong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Chenwen Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| | - Xiaojing Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Pingsheng Gan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Zhang X, Li Z. Profiling population-wide exposure to environmental chemicals: A case study of naphthalene. CHEMOSPHERE 2024; 358:142217. [PMID: 38704043 DOI: 10.1016/j.chemosphere.2024.142217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Long-term exposure to environmental chemicals can detrimentally impact human health, and understanding the relationship between age distribution and levels of external and internal exposure is crucial. Nonetheless, existing methods for assessing population-wide exposure across age groups are limited. To bridge this research gap, we introduced a modeling approach designed to assess both chronic external and internal exposure to chemicals at the population level. The external and internal exposure assessments were quantified in terms of the average daily dose (ADD) and steady-state blood concentration of the environmental chemical, respectively, which were categorized by age and gender groups. The modeling process was presented within a spreadsheet framework, affording users the capability to execute population-wide exposure analyses across a spectrum of chemicals. Our simulation outcomes underscored a salient trend: younger age groups, particularly infants and children, exhibited markedly higher ADD values and blood concentrations of environmental chemicals compared to their older counterparts. This observation is due to the elevated basal metabolic rate per unit of body weight characteristic of younger individuals, coupled with their diminished biotransformation kinetics of xenobiotics within their livers. These factors collectively contribute to increased intake rates of environmental chemicals per unit of body weight through air and food consumption, along with heightened bioaccumulation of these chemicals within their bodies (e.g., blood). Furthermore, we augmented the precision of the external and internal exposure assessment by incorporating the age distribution across the population. The simulation outcomes unveiled that, to estimate the central tendency of the population's exposure levels, employing the baseline value group (age group 21-30) or the surrogate age of 25 serves as a simple yet dependable approach. However, for comprehensive population protection, our recommendation aligns with conducting exposure assessments for the younger age groups (age group 0-11). Future studies should integrate individual-level exposure assessment, analyze vulnerable population groups, and refine population structures within our developed model.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
11
|
Picciotto S, Huang S, Lurmann F, Pavlovic N, Ying Chang S, Mukherjee A, Goin DE, Sklar R, Noth E, Morello-Frosch R, Padula AM. Pregnancy exposure to PM 2.5 from wildland fire smoke and preterm birth in California. ENVIRONMENT INTERNATIONAL 2024; 186:108583. [PMID: 38521046 PMCID: PMC11410054 DOI: 10.1016/j.envint.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Wildfires in the Western United States are a growing and significant source of air pollution that is eroding decades of progress in air pollution reduction. The effects on preterm birth during critical periods of pregnancy are unknown. METHODS We assessed associations between prenatal exposure to wildland fire smoke and risk of preterm birth (gestational age < 37 weeks). We assigned smoke exposure to geocoded residence at birth for all live singleton births in California conceived 2007-2018, using weekly average concentrations of particulate matter ≤ 2.5 µm (PM2.5) attributable to wildland fires from United States Environmental Protection Agency's Community Multiscale Air Quality Model. Logistic regression yielded odds ratio (OR) for preterm birth in relation to increases in average exposure across the whole pregnancy, each trimester, and each week of pregnancy. Models adjusted for season, age, education, race/ethnicity, medical insurance, and smoking of the birthing parent. RESULTS For the 5,155,026 births, higher wildland fire PM2.5 exposure averaged across pregnancy, or any trimester, was associated with higher odds of preterm birth. The OR for an increase of 1 µg/m3 of average wildland fire PM2.5 during pregnancy was 1.013 (95 % CI:1.008,1.017). Wildland fire PM2.5 during most weeks of pregnancy was associated with higher odds. Strongest estimates were observed in weeks in the second and third trimesters. A 10 µg/m3 increase in average wildland fire PM2·5 in gestational week 23 was associated with OR = 1.034; 95 % CI: 1.019, 1.049 for preterm birth. CONCLUSIONS Preterm birth is sensitive to wildland fire PM2.5; therefore, we must reduce exposure during pregnancy.
Collapse
Affiliation(s)
- Sally Picciotto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | | | - Dana E Goin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Sklar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Meng Q, Mitra S, Del Rosario I, Jerrett M, Janzen C, Devaskar SU, Ritz B. Urinary polycyclic aromatic hydrocarbon metabolites and their association with oxidative stress among pregnant women in Los Angeles. RESEARCH SQUARE 2024:rs.3.rs-4119505. [PMID: 38562764 PMCID: PMC10984082 DOI: 10.21203/rs.3.rs-4119505/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy. Methods We measured a total of 7 PAH metabolites and 2 oxidative stress biomarkers (malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)) in urine samples collected up to three times during pregnancy in 159 women enrolled at antenatal clinics at the University of California Los Angeles during 2016-2019. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Results Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. Women pregnant with male fetuses exhibited slightly larger increases in both MDA and 8-OHdG in association with PAH exposures in early and late pregnancy. Conclusion Urinary OH-PAH biomarkers are associated with increases in oxidative stress during pregnancy, especially in early and late pregnancy. Sex differences in associations between PAH exposures and oxidative stress need to be further explored in the future.
Collapse
Affiliation(s)
- Qi Meng
- University of California, Los Angeles
| | | | | | | | | | | | | |
Collapse
|
13
|
Venkatraman G, Giribabu N, Mohan PS, Muttiah B, Govindarajan VK, Alagiri M, Abdul Rahman PS, Karsani SA. Environmental impact and human health effects of polycyclic aromatic hydrocarbons and remedial strategies: A detailed review. CHEMOSPHERE 2024; 351:141227. [PMID: 38253087 DOI: 10.1016/j.chemosphere.2024.141227] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) profoundly impact public and environmental health. Gaining a comprehensive understanding of their intricate functions, exposure pathways, and potential health implications is imperative to implement remedial strategies and legislation effectively. This review seeks to explore PAH mobility, direct exposure pathways, and cutting-edge bioremediation technologies essential for combating the pervasive contamination of environments by PAHs, thereby expanding our foundational knowledge. PAHs, characterised by their toxicity and possession of two or more aromatic rings, exhibit diverse configurations. Their lipophilicity and remarkable persistence contribute to their widespread prevalence as hazardous environmental contaminants and byproducts. Primary sources of PAHs include contaminated food, water, and soil, which enter the human body through inhalation, ingestion, and dermal exposure. While short-term consequences encompass eye irritation, nausea, and vomiting, long-term exposure poses risks of kidney and liver damage, difficulty breathing, and asthma-like symptoms. Notably, cities with elevated PAH levels may witness exacerbation of bronchial asthma and chronic obstructive pulmonary disease (COPD). Bioremediation techniques utilising microorganisms emerge as a promising avenue to mitigate PAH-related health risks by facilitating the breakdown of these compounds in polluted environments. Furthermore, this review delves into the global concern of antimicrobial resistance associated with PAHs, highlighting its implications. The environmental effects and applications of genetically altered microbes in addressing this challenge warrant further exploration, emphasising the dynamic nature of ongoing research in this field.
Collapse
Affiliation(s)
- Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia; Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Priyadarshini Sakthi Mohan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Barathan Muttiah
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Venkat Kumar Govindarajan
- Department of Chemistry, SRM Institute of Science and Technology, Ramapuram Campus, Chennai, 600 089, Tamil Nadu, India
| | - Mani Alagiri
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu district, Tamil Nadu, India.
| | | | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
14
|
Sewor C, Eliason S, Jaakkola JJ, Amegah AK. Dietary Polycyclic Aromatic Hydrocarbon (PAH) Consumption and Risk of Adverse Birth Outcomes: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:16002. [PMID: 38241191 PMCID: PMC10798428 DOI: 10.1289/ehp12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND There is suggestive epidemiological evidence that maternal dietary polycyclic aromatic hydrocarbons (PAH) may increase the risk of adverse birth outcomes. We sought to summarize the available evidence on the effect of dietary PAH exposure on birth outcomes. METHODS PubMed and Scopus databases were systematically searched from inception up to November 2022. Studies were included if they were original articles, were conducted in a human population, assessed dietary PAH consumption, and investigated the relationship between dietary PAH consumption and any adverse birth outcomes. Risk of bias in the included studies was assessed qualitatively and quantitatively. A random effects model was used to compute summary effect estimates in the meta-analysis. RESULTS Six observational studies (five prospective cohort studies, and one prevalence case-control study) were included. The included studies assessed dietary PAH exposure using dietary questionnaires. Information on the outcomes of interest was obtained from medical records. Three of the included studies were rated as good quality with the remaining three studies rated as fair quality. One study was considered as having low risk of bias for selection, information and confounding bias. Dietary PAH consumption was associated with 5.65 g [95% confidence interval (CI): - 16.36 , 5.06] and 0.04 cm (95% CI: - 0.08 , 0.01) reductions in birth weight and birth length, respectively, and an increase in head circumference [effect size ( ES ) = 0.001 ; 95% CI: - 0.003 , 0.005]. The CI of all the summary effect estimates, however, included the null value. In the sensitivity analysis that included only studies that assessed dietary PAH exposure as the primary exposure of interest, dietary PAH consumption was associated with much higher reductions in birth weight (ES = - 14.61 ; 95% CI: - 21.07 , - 8.15 ) and birth length (ES = - 0.06 ; 95% CI: - 0.1 , - 0.03 ). High statistical heterogeneity was observed in the birth weight and birth length analysis and in the head circumference sensitivity analysis. DISCUSSION The body of epidemiological evidence suggests that maternal dietary PAH exposure is associated with reduced fetal growth, measured as birth weight and length. There was considerable heterogeneity in the measurement of PAH exposure among the included studies. Also, nonstandardized and validated dietary questionnaires were employed by a majority of the included studies with potential exposure misclassification. These issues are likely to impact the summary effect estimates computed and underscores the need for high-quality epidemiological studies with improved exposure assessment and adequate confounding control to strengthen the evidence base. https://doi.org/10.1289/EHP12922.
Collapse
Affiliation(s)
- Christian Sewor
- Public Health Research Group, Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sebastian Eliason
- Department of Community Medicine, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
| | - A. Kofi Amegah
- Public Health Research Group, Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
15
|
MoghaddamHosseini V, Ebrahimi Aval H, Lari Najafi M, Lotfi H, Heydari H, Miri M, Dadvand P. The association between exposure to polycyclic aromatic hydrocarbons and birth outcomes: A systematic review and meta-analysis of observational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166922. [PMID: 37699478 DOI: 10.1016/j.scitotenv.2023.166922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to adverse birth outcomes; however, to date, the available studies on such relations, with the exception of birth weight, has not been systematically synthesized. We conducted a systematic review and meta-analysis of the available observational studies on the association of maternal exposure to PAHs and their metabolites during pregnancy with indicators of fetal growth and gestational age at delivery. We searched Web of Science, PubMed and Scopus systematically for all relevant published papers in English until 13 January 2023. Random effects meta-analysis was applied to synthesize the association estimates. Publication bias was assessed using Egger's regression. A total of 31 articles were included in our review (n = 703,080 participants). Our quality assessment of reviewed papers showed that 19 research had excellent, nine had good, and three had fair quality. Most of the reviewed studies on exposure to PAHs and their metabolites with gestational age and preterm birth (seven studies) reported no statistically significant association. Eight studies were eligible for our meta-analysis. Results of the meta-analysis indicated that higher levels of maternal urinary 1-OHP was associated with lower birth weight, birth length and head circumference and a higher risk of low birth weight (LBW). However, these associations were not statistically significant. Similarly, the combined association between maternal urinary 1-OHP and newborn's Ponderal index (PI) and Cephalization index were not statistically significant. Overall, our systematic review and meta-analysis suggested a potential adverse impact of exposure to PAHs on LBW, HC, and CC; however, further studies are required to be able to draw concrete conclusions on such associations.
Collapse
Affiliation(s)
- Vahideh MoghaddamHosseini
- Health of the Elderly Research Center, Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hamideh Ebrahimi Aval
- Student Research Committee, Department of Health Education and Promotion, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Lotfi
- Leishmaniasis Research Center, Department of Microbiology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hafez Heydari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Miri
- Leishmaniasis Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
16
|
Rahman HH, Toohey W, Munson-McGee SH. Association of urinary arsenic, polycyclic aromatic hydrocarbons, and metals with cancers among the female population in the US. Toxicol Appl Pharmacol 2023; 480:116746. [PMID: 37931756 DOI: 10.1016/j.taap.2023.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Cancers that primarily affect women in the US include breast, uterine, and cervical cancers. There may be associations between these different types of cancer in women and environmental pollutant exposure. PURPOSE This study aimed to assess seven species of arsenic, six polycyclic aromatic hydrocarbon (PAH) compounds, and fourteen different metal concentrations in urine and their correlation with cancer among women. METHODS We conducted a cross-sectional analysis using 2011--2012 to 2015-2016 National Health and Nutrition Examination Survey data (n = 4,956) and logistic regression modeling of the complex weighted survey design. RESULTS Breast cancer was inversely correlated with arsenocholine (3rd quantile), monomethylarsonic acid (4th quantile), manganese (4th quantile), and antimony (3rd, 4th quantiles). Cervical cancer was inversely correlated with 3-hydroxyfluorene (3rd quantile), molybdenum (2nd, 4th quantiles), antimony (3rd quantile), tin (4th quantile), and thallium (4th quantile) exposure and positively associated with arsenic acid (3rd quantile), arsenobetaine (2nd, 4th quantiles). Uterine cancer was correlated with 1-hydroxynaphthalene (3rd, 4th quantiles), 2-hydroxynaphthalene (4th quantile), 1-hydroxyphenathrene (2nd, 4th quantiles), 1-hydroxypyrene (3rd quantile), cobalt (2nd, 3rd quantiles) and inversely with mercury (4th quantile). CONCLUSION This study determined breast cancer and arsenic and some metal species exposure, indicating an inverse association. Arsenic acid and arsenobetaine exposure showed a positive correlation with cervical cancer. For uterine cancer, the correlations for the PAH compounds and cobalt showed a positive correlation, and the arsenic species and mercury were inversely associated. Further research is required to establish or refute the findings.
Collapse
Affiliation(s)
| | - Walker Toohey
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM 88003, USA
| | - Stuart H Munson-McGee
- Data Forward Analytics, LLC, Principal, 4973 Black Quartz Road, Las Cruces, NM 88011, USA
| |
Collapse
|
17
|
Paquette AG, Lapehn S, Freije S, MacDonald J, Bammler T, Day DB, Loftus CT, Kannan K, Alex Mason W, Bush NR, LeWinn KZ, Enquobahrie DA, Marsit C, Sathyanarayana S. Placental transcriptomic signatures of prenatal exposure to Hydroxy-Polycyclic aromatic hydrocarbons. ENVIRONMENT INTERNATIONAL 2023; 172:107763. [PMID: 36689866 PMCID: PMC10211546 DOI: 10.1016/j.envint.2023.107763] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants originating from petrogenic and pyrogenic sources. PAH compounds can cross the placenta, and prenatal PAH exposure is linked to adverse infant and childhood health outcomes. OBJECTIVE In this first human transcriptomic assessment of PAHs in the placenta, we examined associations between prenatal PAH exposure and placental gene expression to gain insight into mechanisms by which PAHs may disrupt placental function. METHODS The ECHO PATHWAYS Consortium quantified prenatal PAH exposure and the placental transcriptome from 629 pregnant participants enrolled in the CANDLE study. Concentrations of 12 monohydroxy-PAH (OH-PAH) metabolites were measured in mid-pregnancy urine using high performance liquid chromatography tandem mass spectrometry. Placental transcriptomic data were obtained using paired-end RNA sequencing. Linear models were fitted to estimate covariate-adjusted associations between maternal urinary OH-PAHs and placental gene expression. We performed sex-stratified analyses to evaluate whether associations varied by fetal sex. Selected PAH/gene expression analyses were validated by treating HTR-8/SVneo cells with phenanthrene, and quantifying expression via qPCR. RESULTS Urinary concentrations of 6 OH-PAHs were associated with placental expression of 8 genes. Three biological pathways were associated with 4 OH-PAHs. Placental expression of SGF29 and TRIP13 as well as the vitamin digestion and absorption pathway were positively associated with multiple metabolites. HTR-8/SVneo cells treated with phenanthrene also exhibited 23 % increased TRIP13 expression compared to vehicle controls (p = 0.04). Fetal sex may modify the relationship between prenatal OH-PAHs and placental gene expression, as more associations were identified in females than males (45 vs 28 associations). DISCUSSION Our study highlights novel genes whose placental expression may be disrupted by OH-PAHs. Increased expression of DNA damage repair gene TRIP13 may represent a response to double-stranded DNA breaks. Increased expression of genes involved in vitamin digestion and metabolism may reflect dietary exposures or represent a compensatory mechanism to combat damage related to OH-PAH toxicity. Further work is needed to study the role of these genes in placental function and their links to perinatal outcomes and lifelong health.
Collapse
Affiliation(s)
- Alison G Paquette
- Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
| | | | | | | | | | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - W Alex Mason
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Nicole R Bush
- University of California San Francisco, San Francisco CA, USA
| | - Kaja Z LeWinn
- University of California San Francisco, San Francisco CA, USA
| | | | | | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
19
|
Liu XC, Strodl E, Huang LH, Lu Q, Liang Y, Chen WQ. First Trimester of Pregnancy as the Sensitive Period for the Association between Prenatal Mosquito Coil Smoke Exposure and Preterm Birth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11771. [PMID: 36142044 PMCID: PMC9517152 DOI: 10.3390/ijerph191811771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Mosquito coils are efficient mosquito repellents and mosquito coil smoke (MCS) contributes to indoor air pollution. However, no prior population-based study has investigated whether prenatal MCS exposure is a risk factor for preterm birth (PTB) and whether exposure to MCS in different trimesters of pregnancy is associated with different levels of risk. The sample involved 66,503 mother-child dyads. Logistic regression models were used to examine the relationships between prenatal MCS exposure during different trimesters of pregnancy and PTB. We found that prenatal MCS exposure was associated with a greater likelihood of PTB (OR = 1.12, 95%CI: 1.05-1.20). The prenatal MCS exposure during the first trimester was associated with 1.17 (95%CI: 1.09-1.25) times the odds of being PTB, which was higher than exposure during the second trimester (OR = 1.11, 95%CI: 1.03-1.19) and during the third trimester (OR = 1.08, 95%CI: 1.01-1.16). In the stratified analysis, prenatal MCS exposure significantly increased PTB risk among girls but not among boys. Our results indicated that maternal MCS exposure during pregnancy was associated with PTB and that the first trimester might be the sensitive period. In light of these findings, public health interventions are needed to reduce prenatal exposure to MCS, particularly during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Xin-Chen Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Li-Hua Huang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Lu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Qing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- School of Health, Xinhua College of Guangzhou, Guangzhou 510080, China
| |
Collapse
|
20
|
Gaylord A, Kannan K, Lakuleswaran M, Zhu H, Ghassabian A, Jacobson MH, Long S, Liu H, Afanasyeva Y, Kahn LG, Gu B, Liu M, Mehta-Lee SS, Brubaker SG, Trasande L. Variability and correlations of synthetic chemicals in urine from a New York City-based cohort of pregnant women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119774. [PMID: 35841991 PMCID: PMC9600950 DOI: 10.1016/j.envpol.2022.119774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 05/19/2023]
Abstract
Fetal exposure to environmental chemicals has been associated with adverse health outcomes in children and later into adulthood. While several studies have examined correlations and variability of non-persistent chemical exposures throughout pregnancy, many do not capture more recent exposures, particularly in New York City. Our goal was to characterize exposure to phthalates, bisphenols, polycyclic aromatic hydrocarbons, and organophosphate pesticides among pregnant women residing in New York City who enrolled in the New York University Children's Health and Environment Study (NYU CHES) between 2016 and 2018. We measured urinary chemical metabolite concentrations in 671 women at early, mid, and late pregnancy (median 10.8, 20.8, and 29.3 weeks, respectively). We calculated Spearman correlation coefficients among chemical concentrations at each measurement time point. We compared changes in population-level urinary metabolites at each stage using paired Wilcoxon signed-rank tests and calculated intraclass correlation coefficients (ICCs) to quantify intra-individual variability of metabolites across pregnancy. Geometric means and ICCs were compared to nine other pregnancy cohorts that recruited women in 2011 or later as well as nationally reported levels from women of child-bearing age. Compared with existing cohorts, women in NYU CHES had higher geometric means of organophosphate pesticides (Σdiethylphosphates = 28.7 nmol/g cr, Σdimethylphosphates = 57.3 nmol/g cr, Σdialkyl phosphates = 95.9 nmol/g cr), bisphenol S (0.56 μg/g cr), and 2-naphthalene (8.98 μg/g cr). Five PAH metabolites and two phthalate metabolites increased between early to mid and early to late pregnancy at the population level. Spearman correlation coefficients for chemical metabolites were generally below 0.50. Intra-individual exposures varied over time, as indicated by low ICCs (0.22-0.88, median = 0.38). However, these ICCs were often higher than those observed in other pregnancy cohorts. These results provide a general overview of the chemical metabolites measured in NYU CHES in comparison to other contemporary pregnancy cohorts and highlight directions for future studies.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Population Health, New York University School of Medicine, New York, NY, USA.
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Mathusa Lakuleswaran
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Hongkai Zhu
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Sara Long
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Hongxiu Liu
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Yelena Afanasyeva
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Linda G Kahn
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Bo Gu
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Mengling Liu
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Shilpi S Mehta-Lee
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Sara G Brubaker
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Leonardo Trasande
- Department of Population Health, New York University School of Medicine, New York, NY, USA; Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; New York University Wagner School of Public Service, New York, NY, USA; New York University College of Global Public Health, New York, NY, USA
| |
Collapse
|
21
|
Barrett ES, Workman T, Hazlehurst MF, Kauderer S, Loftus C, Kannan K, Robinson M, Smith AK, Smith R, Zhao Q, LeWinn KZ, Sathyanarayana S, Bush NR. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure in relation to placental corticotropin releasing hormone (pCRH) in the CANDLE pregnancy cohort. Front Endocrinol (Lausanne) 2022; 13:1011689. [PMID: 36440232 PMCID: PMC9691680 DOI: 10.3389/fendo.2022.1011689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous endocrine-disrupting combustion by-products that have been linked to preterm birth. One possible mechanism is through disruption of placental corticotropin releasing hormone (pCRH), a key hormone implicated in parturition. As an extension of recent research identifying pCRH as a potential target of endocrine disruption, we examined maternal PAH exposure in relation to pCRH in a large, diverse sample. Participants, drawn from the CANDLE cohort, part of the ECHO-PATHWAYS Consortium, completed study visits at 16-29 weeks (V1) and 22-39 weeks (V2) gestation (n=812). Seven urinary mono-hydroxylated PAH metabolites (OH-PAHs) were measured at V1 and serum pCRH at V1 and V2. Associations between individual log-transformed OH-PAHs (as well as two summed PAH measures) and log(pCRH) concentrations across visits were estimated using mixed effects models. Minimally-adjusted models included gestational age and urinary specific gravity, while fully-adjusted models also included sociodemographic characteristics. We additionally evaluated effect modification by pregnancy complications, fetal sex, and maternal childhood trauma history. We observed associations between 2-OH-Phenanthrene (2-OH-PHEN) and rate of pCRH change that persisted in fully adjusted models (β=0.0009, 0.00006, 0.0017), however, positive associations with other metabolites (most notably 3-OH-Phenanthrene and 1-Hydroxypyrene) were attenuated after adjustment for sociodemographic characteristics. Associations tended to be stronger at V1 compared to V2 and we observed no evidence of effect modification by pregnancy complications, fetal sex, or maternal childhood trauma history. In conclusion, we observed modest evidence of association between OH-PAHs, most notably 2-OH-PHEN, and pCRH in this sample. Additional research using serial measures of PAH exposure is warranted, as is investigation of alternative mechanisms that may link PAHs and timing of birth, such as inflammatory, epigenetic, or oxidative stress pathways.
Collapse
Affiliation(s)
- Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers University, Rutgers School of Public Health, Piscataway, NJ, United States
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Emily S. Barrett,
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Marnie F. Hazlehurst
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Sophie Kauderer
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Christine Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Morgan Robinson
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Roger Smith
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kaja Z. LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Sheela Sathyanarayana
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Nicole R. Bush
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, Division of Developmental Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|