1
|
Künstle N, Gorlanova O, Rüttimann C, Mostacci N, Röösli M, de Hoogh K, Flückiger B, Da Silva Sena CR, Steinberg R, Korten I, Yammine S, Schulzke S, Latzin P, Hilty M, Frey U. The association of increased pre- and postnatal NO 2 and PM 2.5 exposure with the infant nasal microbiome composition and respiratory symptoms. ENVIRONMENTAL RESEARCH 2025; 267:120694. [PMID: 39725140 DOI: 10.1016/j.envres.2024.120694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Little is known about the mediating role of nasal microbiome on the association between pre- and postnatal air pollution exposure and subsequent respiratory morbidity in infancy. We aimed to examine the impact of air pollution on microbiome and respiratory symptoms, and whether microbiome mediates the association between air pollution and symptoms. METHODS Nasal swabs from 270 infants in the prospective Basel-Bern Infant Lung Development cohort were analyzed by 16S ribosomal RNA gene sequencing. We investigated the association of pre- and postnatal nitrogen dioxide (NO2) and particulate matter ≤2.5 μm (PM2.5) with microbiome at 4-6 weeks and with respiratory symptoms during the first year of life. Hierarchical clustering and generalized structural equation modeling were used. RESULTS Mean prenatal air pollution levels were 21.54 μg/m3 (NO2) and 13.84 μg/m3 (PM2.5) (WHO guideline limits: NO2: 40 μg/m3 (2005), 10 μg/m3 (2021); PM2.5: 10 μg/m3 (2005), 5 μg/m3 (2021)). We identified two distinct microbiome clusters, characterized by high Corynebacterium/Dolosigranulum and high Staphylococcus abundance. Higher pre- and postnatal air pollution exposure was associated with Staphylococcus cluster (e.g., per 10 μg/m3 increase of prenatal NO2: odds ratio 1.58, 95% confidence interval 1.08; 2.29, padj = 0.034). Pre- and postnatal PM2.5 was associated with increased risk of severe respiratory symptoms. This association was not mediated by nasal microbiome. CONCLUSION Pre- and postnatal air pollution was associated with microbiome and respiratory symptoms in infancy. The microbiome did not mediate the association of air pollution with respiratory symptoms, which may indicate that other mechanisms are more relevant at this age.
Collapse
Affiliation(s)
- Noëmi Künstle
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Céline Rüttimann
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nadja Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Carla Rebeca Da Silva Sena
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Asthma & Breathing Research Program, Hunter Medical Research Institute, Newcastle, University of Newcastle, Newcastle, Australia
| | - Ruth Steinberg
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Schulzke
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Urs Frey
- University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Wang W, Yang K, Li J, Jiang H, Zhang S, Lin Y, Zhang X, Jin M, Wang J, Tang M, Chen K. Association between ambient temperature and risk of notifiable infectious diseases in China from 2011 to 2019. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:269-281. [PMID: 38713481 DOI: 10.1080/09603123.2024.2350609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Previous studies on temperature and infectious diseases primarily focused on individual disease types, yielding inconsistent conclusions. This study collected monthly data on notifiable infectious disease cases and meteorological variables across 7 provinces in China from 2011 to 2019. A distributed lag nonlinear model was used to evaluate the association between ambient temperature and infectious diseases within each province, and random meta-analysis was applied to evaluate the pooled effect. Extreme hot temperature (the 97.5th percentile) was positively associated with the risk of respiratory infectious diseases with the relative risk (RR) of 1.45 (95%CI: 1.01-2.08). Conversely, extreme cold temperature (the 2.5th percentile) was negatively associated with intestinal infectious diseases and zoonotic diseases and vector-borne diseases, reporting RRs of 0.43 (95%CI: 0.30-0.60) and 0.46 (95%CI: 0.38-0.57), respectively. This study described the nonlinear association between ambient temperature and infectious diseases with different transmission routes, informing comprehensive prevention and control strategies for temperature-related infectious diseases.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaixuan Yang
- Department of Public Health, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jiayi Li
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Jiang
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simei Zhang
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaoyao Lin
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhan Zhang
- Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingjuan Jin
- Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbing Wang
- Department of Public Health, National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengling Tang
- Department of Public Health, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Chen
- Department of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Silva Monte K, Costa AC, Morais HCC, Gomes Guedes N, da Beatriz CBC, Cruz Neto J, de Souza Maciel Ferreira JE, Cavalcante TF, Moreira RP. Decreased childhood asthma hospitalizations linked to hotter, drier climate with lower wind speed in drylands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 39825785 DOI: 10.1080/09603123.2025.2453042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Climate change poses a significant threat to human health. Long-term climate effects on childhood asthma hospitalizations depend on the population's geographic region. These effects in tropical drylands are not well understood. The objective of this study is to examine the long-term association between childhood asthma hospitalizations and the climate of a tropical dryland. The study covered 14 municipalities in the Brazilian semiarid. Monthly trends in hospitalizations and climatic variables were calculated. A generalized additive model analyzed the association between these trends, and the Mann-Kendall test determined if trends were increasing, decreasing, or not significant. Thirteen municipalities showed a significant link between hospitalizations and climate variables, especially wind speed, maximum temperature, and humidity. Overall, hospitalizations decreased, correlating with decreasing wind speed and humidity, and increasing temperature. However, no discernable pattern was found between hospitalizations and precipitation. The study emphasizes the need for climate-health analysis to manage childhood asthma amid climate change.
Collapse
Affiliation(s)
- Klézio Silva Monte
- Graduate Program in Energy and Environment, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Alexandre Cunha Costa
- Engineering and Sustainable Development Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Huana Carolina Cândido Morais
- Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | | | - Clara Beatriz Costa da Beatriz
- Graduate Nursing Program, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - João Cruz Neto
- Graduate Nursing Program, Federal University of Ceará, Fortaleza, Brazil
| | | | - Tahissa Frota Cavalcante
- Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Rafaella Pessoa Moreira
- Health Sciences Institute, University for International Integration of the Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| |
Collapse
|
4
|
Jiang D, Cai X, Fang H, Li Y, Zhang Z, Chen H, Zheng Z, Wang W, Sun Y. Coexposure to ambient air pollution and temperature and its associations with birth outcomes in women undergoing assisted reproductive technology in Fujian, China: A retrospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136539. [PMID: 39561545 DOI: 10.1016/j.jhazmat.2024.136539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The interactions between pollutants and temperature coexposure, the mixing effects and their potential mechanisms remain uncertain. METHODS This retrospective cohort study included 11,766 women with infertility who received treatment at Fujian Hospital between 2015 and 2024. The daily mean concentrations of the six pollutants and the relative humidity and temperature data were acquired from the Fujian region. Data on genes were obtained from the Comparative Toxicogenomics Database. RESULTS O3 (aOR=0.80, 95 % CI=0.725--0.891) and temperature (aOR=0.936, 95 % CI=0.916--0.957) were negatively correlated with live birth rates. Moreover, PM10 (aOR=1.135, 95 % CI=1.028--1.252) and PM2.5 (aOR=1.146, 95 % CI=1.03--1.274) were positively associated with preterm birth. Among the effects on live births, PM2.5, PM10, NO2, CO, and SO2 had significant synergistic effects with temperature; in addition, O3 had significant antagonistic effects with temperature. A notable trend toward declining live birth rates with elevated concentrations of mixed pollutants was observed. Different infertility patients have different sensitivities to coexposure. Gene enrichment and cell experiments are associated mainly with cellular life activities. CONCLUSIONS Individual effects, interactions, and mixed effects between temperature and air pollutants and birth outcomes persist when air pollutant levels are relatively low. AAP may trigger miscarriage through cytotoxic effects.
Collapse
Affiliation(s)
- Dongdong Jiang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuefen Cai
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Hua Fang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuehong Li
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Garcia FM, de Sousa VP, Silva-Dos-Santos PPE, Fernandes IS, Serpa FS, de Paula F, Mill JG, Bueno MRP, Errera FIV. Copy Number Variation in Asthma: An Integrative Review. Clin Rev Allergy Immunol 2025; 68:4. [PMID: 39755867 DOI: 10.1007/s12016-024-09015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 01/06/2025]
Abstract
Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma. In this context, an integrative review was conducted to identify the genes and pathways involved, the location, size, and classes of CNVs, as well as their contribution to asthma risk, severity, control, and response to treatment. As a result of the review, 16 articles were analyzed, from different types of observational studies, such as case-control, cohort studies and genotyped-proband or trios design, that have been carried out in populations from different countries, ethnicities, and ages. Chromosomes 12 and 17 were the most studied in three publications each. CNVs located on 12 chromosomes were associated with asthma, the majority being found on chromosome 6p and 17q, of the deletion type, encompassing 30 different coding-protein genes and one pseudogene region. Six genes with CNVs were identified as significant expression quantitative locus (eQTLs) with mean expression in asthma-related tissues, such as the lung and whole blood. The phenotypic variability of asthma may hinder the clinical application of these findings, but the research shows the importance of investigating these genetic variations as possible biomarkers in asthma patients.
Collapse
Affiliation(s)
- Fernanda Mariano Garcia
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil.
| | - Valdemir Pereira de Sousa
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Priscila Pinto E Silva-Dos-Santos
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Izadora Silveira Fernandes
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Faradiba Sarquis Serpa
- Department of Medicine, School of Sciences of Santa Casa de Misericórdia de Vitória (EMESCAM), Vitória, Espírito Santo, Brazil
- Hospital Santa Casa de Misericórdia de Vitória (HSCMV), Vitória, Espírito Santo, Brazil
| | - Flávia de Paula
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Maria Rita Passos Bueno
- Department of Genetics and Evolutionary Biology, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Flávia Imbroisi Valle Errera
- Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Postgraduate Program in Biotechnology, Northeast Network of Biotechnology (RENORBIO), Nucleator: Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Department of Biological Sciences, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| |
Collapse
|
6
|
Du S, Tang H, Chen H, Shen Y, Niu Z, Chen T, Wei J, Meng X, Su W, Wu Q, Tan Y, Cai J, Zhao Z. Association of multiple environmental exposures with rhinitis and asthma symptoms in preschool children: Identifying critical risk factor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117490. [PMID: 39667320 DOI: 10.1016/j.ecoenv.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The concept "one airway, one disease" for childhood rhinitis and asthma has been challenged in recent years. This study aimed to evaluate associations of environmental exposures with alone and co-morbid symptoms of rhinitis and asthma and identify critical risk factor. METHODS 5828 children aged 3-6 years in Shanghai were surveyed in 2019. Rhinitis and wheezing symptoms in the past 12 months were collected using questionnaire. 11 outdoor environment exposure factors were assessed by high-resolution spatial-temporal model based on residences. Logistic regression and random forest were applied to evaluate and rank the association of environmental exposure with rhinitis and wheezing symptoms. RESULTS The proportions of children with rhinitis alone, wheezing & rhinitis, and wheezing alone were 37.2 %, 4.6 %, and 2.6 %, respectively. Regression modeling of two exposure factors adjusted for each other showed that PM1, PM2.5 and nighttime light(NTL) remained the robust significant associations with rhinitis alone, whereas NO2 had the robust significant association with wheezing & rhinitis and wheezing alone. Random forest ranking analysis further corroborated the most significant environmental exposure for rhinitis alone was PM1, and for wheezing symptoms (both wheezing & rhinitis and wheezing alone) was NO2. Significant additive and multiplicative interactions were examined between indoor dampness and PM1 exposure on rhinitis alone. CONCLUSION Children's current rhinitis alone was more susceptible to ambient PM1 and PM2.5, while asthmatic wheezing symptom, either with or without rhinitis, was more susceptible to NO2. Co-exposure to indoor dampness and PM1 exposure had synergistic effects on rhinitis alone.
Collapse
Affiliation(s)
- Shuang Du
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hao Tang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yang Shen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Zhiping Niu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Tianyi Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xia Meng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Wen Su
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Wu
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Tan
- Department of Pediatrics, Chongming Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jing Cai
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health WMO/IGAC MAP-AQ Asian Office Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Wang Q, Chen C, Xu H, Liu Y, Zhong Y, Liu J, Wang M, Zhang M, Liu Y, Li J, Li T. The graded heat-health risk forecast and early warning with full-season coverage across China: a predicting model development and evaluation study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 54:101266. [PMID: 39877409 PMCID: PMC11772993 DOI: 10.1016/j.lanwpc.2024.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
Background Due to global climate change, high temperature and heatwaves have become critical issues that pose a threat to human health. An effective early warning system is essential to mitigate the health risks associated with high temperature and heatwaves. However, most of the current heatwave early warning systems are not adequately developed based on the heat-health risk model, and the health impact of hot weather has not been well managed in most countries. Methods This study proposed a "full-season coverage and population health-oriented graded early-warning" concept and developed a heat-health surveillance, forecast and early warning (HHSEW) model. The exposure-response (E-R) relationship between temperature and mortality was analyzed through a two-stage approach using time-series analysis data from 323 counties across China for the period 2013-2018. The premature mortality curve at each temperature percentile was plotted and four temperature-percentile points on the curve were determined as the thresholds of the pre-warning and warning levels 1-3 based on the variations in the rates of the segmental slopes on the curve. The HHSEW model was evaluated by comparing the frequency, the mortality risk of all-cause and cause-specific diseases, the predicted numbers of premature deaths, and the heat-related health economic burden at each warning level with those of the current high temperature early warning systems. Findings The HHSEW model determined five levels, including seasonal surveillance, pre-warning, and warning levels 1-3. There was a gradual increase in the mortality risks of all-cause and cause-specific diseases along with the increase of warning levels. The risk of all-cause mortality increased by 9.79% (95% CI: 8.59%-11.01%), 22.62% (95% CI: 19.49%-25.83%), 28.36% (95% CI: 24.72%-32.10%), and 33.87% (95% CI: 28.89%-39.06%) at the pre-warning level, warning level 1, warning level 2, and warning level 3, respectively. Through our HHSEW model, 94,008 heat-related all-cause deaths were predicted annually in the 337 major cities of China, which was much larger than the number (14,858) of the China Meteorological Administration (CMA) heatwave early-warning system currently used in China. It was estimated that the proper implementation of the HHSEW-based early warning system would save 220 billion CNY in heat-related health burden compared to the current heatwave early-warning system. Interpretation The HHSEW model has been proven to surpass the current heatwave early warning system. With its full-season coverage and graded warning levels for heat-related health risks, the HHSEW model and system can provide timely early warnings to the public, leading to significant health benefits. This methodology, labeled "full-season coverage and population health-oriented graded early-warning", should be implemented globally to mitigate the escalating health risks associated with high temperature. Funding National Natural Science Foundation of China (82425051, 42071433, 42305196, 82241051) and the Special Foundation of Basic Science and Technology Resources Survey of Ministry of Science and Technology of China (2017FY101204).
Collapse
Affiliation(s)
- Qing Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- China Meteorological Administration Key Laboratory of Meteorological Medicine and Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- China Meteorological Administration Key Laboratory of Meteorological Medicine and Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiyue Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Yuanyuan Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- China Meteorological Administration Key Laboratory of Meteorological Medicine and Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Zhong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Menghan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengxue Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiting Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tiantian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- China Meteorological Administration Key Laboratory of Meteorological Medicine and Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Zhou E, Zhou B, Zhang L, Chen H, Guo J, Zhang K, Luo B. The effect and burden of sand-dust storms on asthma hospitalization: Evidence from cities with arid climate in China. ENVIRONMENTAL RESEARCH 2025; 264:120345. [PMID: 39528038 DOI: 10.1016/j.envres.2024.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Evidence concerning the impact of sand-dust storms (SDS) on asthma is limited, and little is known about the associated public health burden, especially in regions with arid climate. Therefore, this study seeks to evaluate the effect of SDS on asthma hospitalization and quantify the associated hospital and economic burden in multiple cities with typical arid climate. We collected provincial asthma hospitalization, air pollutants and meteorological data of 14 cities in Gansu province. The space-time-stratified case-crossover design combined with a conditional quasi-Poisson regression was used to estimate the association between SDS and asthma hospitalization during 2018-2022. We further explored the interactive effect of SDS and low temperature, and explored potential effect modifications of gender, age, seasons and regions by stratified analyses. Finally, we calculated the hospital and economic burden of asthma attributed to SDS. A total of 54,134 hospitalization records for asthma and 791 SDS events were recorded during the study period. Northwestern area with arid climate displayed more frequent SDS events and asthma hospitalization compared with regions with subtropical or temperate monsoon climate. The relative risk (RR) of asthma hospitalization increased with SDS, with the greatest RR at lag1, which was 1.164 with a 95% confidence interval (CI) of 1.101-1.231. We further found that low temperature had an interactive effect with SDS to trigger asthma hospitalization. Stronger associations were observed in males, school-aged children, cold season and northwestern area. The total fraction of asthma hospitalization attributable to SDS was 1.64 % (95% CI: 1.06%-2.18%), and a conservative estimate of relative healthcare costs was 4.49 (95% CI: 2.92 to 5.99) million China Yuan. Our findings suggest the necessity of controlling SDS and implementing region-specific public health policies as well as personal protective measures against SDS.
Collapse
Affiliation(s)
- Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Baofeng Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China; Health Commission of Gansu Province, Lanzhou, Gansu, 730000, China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Huan Chen
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingzhe Guo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
9
|
Li X, Shi Y, Liu S, Feng Z, Xiao H, Li R, Li Z, Zhang X, Han Y, Wang J, Liang C, Bai J, Zhang J. Sulfur dioxide increases testosterone biosynthesis by activating ERK1/2 pathway and disrupting autophagy in Leydig cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137001. [PMID: 39742863 DOI: 10.1016/j.jhazmat.2024.137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Sulfur dioxide (SO2) is a ubiquitous environmental pollutant that has been shown to be toxic to the male reproductive system, but the underlying mechanism remains unclear. Therefore, the SO2-treated mice and primary Leydig cell models were established to investigate the effects of SO2 on the production of testosterone and its specific mechanism. The results demonstrated that SO2 activated the ERK1/2 signaling pathway, leading to increased key proteins expression of testosterone biosynthesis and elevated testosterone levels. The addition of ERK1/2 inhibitor U0126 attenuated SO2-induced increases in key testosterone biosynthetic gene mRNA levels of Star, Cyp17a1, Hsd3b1, and testosterone. Low doses of SO2 reduced the expression of BECLIN1 and LC3 proteins, increased P-4E-BP1 protein expression, and decreased autophagy in Leydig cells. Moreover, increasing doses of SO2 correlate with enhanced Leydig cell autophagy and testosterone levels initially. However, increasing the dose of SO2 resulted in a significant decrease in cell viability and ultimately decreased testosterone levels. These findings suggest that SO2 promotes testosterone production by activating ERK1/2 and disrupting autophagy. This study enriched the dose-effect relationship of SO2 on the male reproductive system and provided a theoretical reference for us to have a comprehensive and dynamic understanding of the SO2 toxic mechanism.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China; College of Life Science, Lv Liang University, Lishi, Shanxi 033001, China
| | - Yan Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Sha Liu
- Shanxi Animal Husbandry and Veterianary School, Taiyuan, Shanxi 030024, China
| | - Zhiyuan Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Haoran Xiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Rui Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Zirou Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Yongli Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China.
| | - Jian Bai
- College of Life Science, Lv Liang University, Lishi, Shanxi 033001, China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, China.
| |
Collapse
|
10
|
Wang J, Bryer B, Osborne N, Williams G, Darssan D. The risk of childhood asthma across diverse climates: growing up in Australia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-13. [PMID: 39645649 DOI: 10.1080/09603123.2024.2439451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the association between climate and childhood asthma in Australia. Data from the Longitudinal Study of Australian Children (LSAC) was used to analyse this association in children who were 6-15 years between 2004 and 2018. Asthma prevalence decreased from 16% at 6-7 years to 13% at 14-15 years. Associations between climate zones and childhood asthma were observed in Zone 4 (hot dry Summer, cold Winter; Odds Ratio [OR]: 1.31; 95% Confidence Interval [CI]: 1.07-1.62), Zone 5 (mild/warm Summer, cold Winter; OR: 1.23; 95% CI: 1.04-1.45), and Zone 6 (hot dry Summer, mild Winter; OR: 1.27; 95% CI: 1.02-1.58), although these associations were attenuated in the adjusted model. Key predictors of asthma included parental asthma history (Adjusted Odds Ratio [AOR]: 3.00; 95% CI: 2.48-3.64), breastfeeding for under six months (AOR: 1.35; 95% CI: 1.10-1.64), maternal depression during pregnancy (AOR: 1.31; 95% CI: 1.04-1.66) and male sex (AOR: 1.31; 95% CI: 1.08-1.58). The findings highlight the influence of climate, along with other risk factors including parental asthma history and maternal depression during pregnancy, on the onset and exacerbation of childhood asthma.
Collapse
Affiliation(s)
- Jialu Wang
- Ecosystem Change and Population Health (ECAPH) Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brittnee Bryer
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Osborne
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
- European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Truro, Cornwall, UK
| | - Gail Williams
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Darsy Darssan
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Ma W, Shen W, Gong L, Xiao Y, Hou S, Sun L, Li H, Huang F, Wu J. Independent and interactive effects of particulate matter and meteorological factors on hand, foot and mouth disease in Fuyang. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2677-2692. [PMID: 39417841 DOI: 10.1007/s00484-024-02777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 10/19/2024]
Abstract
Previous research has demonstrated the influence of environmental factor on the occurrence of infectious diseases. However, there is insufficient and conflicting evidence regarding the association between Hand, foot and mouth disease (HFMD) and environmental variables, particularly the interaction of environmental variables. This study aims to investigate the individual and interactive effects of particulate matter (PM) and meteorological factors on HFMD incidence in Fuyang. The generalized additive models were combined with distributed lag non-linear models to assess the individual effects between PM and meteorological factor on HFMD incidence in Fuyang. Subsequently, a product term was incorporated into the model to investigate the interaction between PM and meteorological factors. Temperature and PM2.5 were identified as the two primary risk factors for HFMD, with relative risks (RR) of 1.586(1.493,1.685) and 1.349(1.325,1.373), respectively. Furthermore, PM exhibited a synergistic effect with meteorological factors. For instance, the RR values for PM2.5 in relation to HFMD were 1.029 (95% CI: 1.024-1.035) and 1 0.117 (95% CI: 1 0.108 - 11 0.127) under different temperature group categories. Notably, HFMD predominantly affects children under the age of five years old and infants aged between zero to one year old demonstrate heightened susceptibility to environmental variables. The results showed that both PM and meteorological factors were risk factors for HFMD, with evidence of an interaction between these variables. These findings have important implications for local HFMD incidence prediction and the development of effective prevention strategies.
Collapse
Affiliation(s)
- Wanwan Ma
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Wenbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui, 230032, China
| | - Lei Gong
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Yongkang Xiao
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Sai Hou
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Liang Sun
- Department of Infectious Disease Control and Prevention, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Huaibiao Li
- Department of Infectious Disease Control and Prevention, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui, 230032, China.
| | - Jiabing Wu
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China.
| |
Collapse
|
12
|
Hu CY, Gutierrez-Avila I, He MZ, Lavigne É, Alcala CS, Yitshak-Sade M, Lamadrid-Figueroa H, Tamayo-Ortiz M, Mercado-Garcia A, Just AC, Gennings C, Téllez-Rojo MM, Wright RO, Wright RJ, Rosa MJ. Windows of susceptibility and joint effects of prenatal and postnatal ambient air pollution and temperature exposure on asthma and wheeze in Mexican children. ENVIRONMENT INTERNATIONAL 2024; 193:109122. [PMID: 39536662 PMCID: PMC11622388 DOI: 10.1016/j.envint.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Prenatal and early-life exposure to air pollution and extreme temperatures are associated with childhood asthma and wheeze. However, potential windows of susceptibility and their sex-specific and interactive effects have not been fully elucidated. We aimed to identify critical windows of susceptibility and evaluate sex-specific effects in these associations, and evaluate exposure interactions. METHODS We analyzed data from 468 mother-child pairs enrolled in the PROGRESS birth cohort in Mexico City. Daily residential levels of PM2.5, NO2, and temperature were generated from our validated spatiotemporally resolved models from conception to age 4 years. Childhood asthma and wheeze outcomes were collected at 4-6 and 7-8 years. Distributed lag nonlinear models (DLNMs) were used to identify susceptible windows for prenatal weekly-specific and postnatal monthly-specific associations of air pollution and temperature with respiratory outcomes adjusting for covariates. To evaluate sex-specific effects, DLNMs were stratified. Joint effects were assessed using relative excess risk due to interaction and attributable proportion. RESULTS Mid-gestation was a critical window for both PM2.5 (weeks 20-28, cumulative OR: 1.18 [95% CI: 1.01, 1.37]; weeks 19-26, cumulative OR: 1.18 [95% CI: 1.02, 1.36]) and NO2 (weeks 18-25, cumulative OR: 1.16 [95% CI: 1.02, 1.31]) exposure, associated with higher odds of wheeze. Postnatal exposure to PM2.5 and NO2 during the first year of life was also linked to higher odds of wheeze. The warmer and colder temperatures showed mixed effects on respiratory outcomes. We observed a synergistic interaction between high PM2.5 and high temperature exposure during the first year of life, associated with higher odds of current wheeze. The associations of prenatal air pollution and temperature exposure with respiratory outcomes were more pronounced in males. CONCLUSIONS Early-life air pollution exposure contributes to the development of childhood asthma and wheeze, while exposure to temperature showed mixed associations with respiratory outcomes.
Collapse
Affiliation(s)
- Cheng-Yang Hu
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ivan Gutierrez-Avila
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Mike Z He
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Éric Lavigne
- Population Studies Division, Health Canada, 269 Laurier Avenue West, Ottawa, ON K1A 0K9, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Cecilia S Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Allan C Just
- Department of Epidemiology, Brown University School of Public Health, 121 S Main St, Providence, RI 02903, USA
| | - Chris Gennings
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA.
| |
Collapse
|
13
|
Thongjan N, Prapamontol T, Liwsrisakun C, Chairuangsri S, Hongsibsong S, Norbäck D. Organophosphate insecticide exposure and respiratory symptoms among school children in Northern Thailand: Interaction by biomass burning, dampness and season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175122. [PMID: 39084390 DOI: 10.1016/j.scitotenv.2024.175122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The aim was to study associations between dialkylphosphates (DAPs), organophosphate (OP) metabolites in urine, biomarkers of OP insecticide exposure, and respiratory symptoms among children in upper northern Thailand. We recruited junior high school children in randomly selected schools in four cities (N = 337), with repeated data collection in wet and dry seasons. Urine was collected and analyzed for six OP metabolites, with creatinine adjustment. Total DAP was expressed as sum of DAPs. Data on respiratory symptoms was collected by a standardized questionnaire. Associations were analyzed by multiple logistic regression. Totally 11.3 % lived in farm families. Total DAPs concentration was higher in dry season (p = 0.002) but did not differ between farm and non-farm children. Total DAPs in wet season was associated with current wheeze (p = 0.019), current asthma attacks (p = 0.012) and attacks of breathlessness in last 12 months (p = 0.021). Total DAPs in dry season was associated with current wheeze (p = 0.042), and associations between DAPs and respiratory symptoms were stronger for dimethylphosphate metabolites (DMPs) than for diethylphosphate metabolites (DEPs). DMPs are produced by certain OP pesticides. Biomass burning inside or outside the home, and dampness or mold at home, enhanced the association between total DAPs and attacks of breathlessness. In conclusion, OP pesticide exposure, measured as urinary DAPs, was higher in dry season and similar in farm and non-farm children. OPs exposure, especially to DMP related pesticides, can increase asthmatic symptoms, especially in wet season. Combined exposure to OP and smoke from biomass burning, or dampness and mold, can further increase the prevalence of attacks of breathlessness. There is a need to reduce OP insecticide and biomass smoke exposure among Thai children. Since different pesticides can be used in different seasons, studies on respiratory health effects of OPs pesticide exposure should be done in different seasons.
Collapse
Affiliation(s)
- Nathaporn Thongjan
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tippawan Prapamontol
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; Environmental and Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chalerm Liwsrisakun
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiangmai University, Chiang Mai 50200, Thailand
| | | | - Surat Hongsibsong
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dan Norbäck
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Zhang W, Zhang C, Zhang Y, Zhou X, Dong B, Tan H, Su H, Sun X. Multifaceted roles of mitochondria in asthma. Cell Biol Toxicol 2024; 40:85. [PMID: 39382744 PMCID: PMC11464602 DOI: 10.1007/s10565-024-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are essential organelles within cells, playing various roles in numerous cellular processes, including differentiation, growth, apoptosis, energy conversion, metabolism, and cellular immunity. The phenotypic variation of mitochondria is specific to different tissues and cell types, resulting in significant differences in their function, morphology, and molecular characteristics. Asthma is a chronic, complex, and heterogeneous airway disease influenced by external factors such as environmental pollutants and allergen exposure, as well as internal factors at the tissue, cellular, and genetic levels, including lung and airway structural cells, immune cells, granulocytes, and mast cells. Therefore, a comprehensive understanding of the specific responses of mitochondria to various external environmental stimuli and internal changes are crucial for elucidating the pathogenesis of asthma. Previous research on mitochondrial-targeted therapy for asthma has primarily focused on antioxidants. Consequently, it is necessary to summarize the multifaceted roles of mitochondria in the pathogenesis of asthma to discover additional strategies targeting mitochondria in this context. In this review, our goal is to describe the changes in mitochondrial function in response to various exposure factors across different cell types and other relevant factors in the context of asthma, utilizing a new mitochondrial terminology framework that encompasses cell-dependent mitochondrial characteristics, molecular features, mitochondrial activity, function, and behavior.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chenyu Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Jumanalieva M. Prevalence and Regional Factors in the Development and Course of Allergic Diseases in Children in Southern Kyrgyzstan. INTERNATIONAL JOURNAL OF CHILD HEALTH AND NUTRITION 2024; 13:134-144. [DOI: 10.6000/1929-4247.2024.13.03.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background: The prevalence of allergic diseases in children worldwide has increased rapidly over the past 30 years. This study aimed to identify regional factors influencing the development and course of allergic diseases for further prevention, control, and reduction of the risk and frequency of complications.
Methods: To investigate the issue, 104 studies by different authors and countries, as well as topics related to allergy in children, air pollution, and regional factors of detection and prevalence of this disease in Kyrgyzstan, were selected. Of these, 52 studies were noted and analysed, which met the selection criteria and were of direct importance in this topic.
Results: This study of allergic diseases in children found that more than 35% of children worldwide suffer from allergic diseases. Of these, allergic rhinitis occurs in 12% of children, atopic dermatitis is less common, but its incidence is 10-20%, and bronchial asthma, according to statistics, covers more than 14% of children.
Conclusion: The results of the study helped to investigate the prevalence of allergic diseases relative to the region of residence, the impact of environmental pollution, geographical significance, and the effect of smoking on the development of allergies in children.
Collapse
|
16
|
Chen H, Meng X, Yu Y, Sun J, Niu Z, Wei J, Zhang L, Lu C, Yu W, Wang T, Zheng X, Norbäck D, Svartengren M, Zhang X, Zhao Z. Greenness and its composition and configuration in association with allergic rhinitis in preschool children. ENVIRONMENTAL RESEARCH 2024; 251:118627. [PMID: 38460662 DOI: 10.1016/j.envres.2024.118627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Few studies focus on the associations of green space composition and configuration with children's allergic rhinitis (AR). METHODS A multi-center population-based cross-sectional study was performed in 7 cities in mainland of China between 2019 and 2020, recruiting 36,867 preschool children. Information on the current AR symptoms and demographics were collected by questionnaire. Exposure to residential greenness was estimated by Normalized Difference Vegetation Index (NDVI, 1000 m buffer) around the residences. Greenness composition was estimated in 3 main categories: forest, grassland, shrubland. Configuration of each category and total greenness (a spatial resolution of 10 m × 10 m) was estimated by 6 landscape pattern metrics to quantify their area, shape complexity, aggregation, connectivity, and patch density. Exposure to daily ambient particulate matter (PM1, PM2.5 and PM10, a spatial resolution of 1 km × 1 km) was estimated. Multilevel logistic regression models were applied to analyze the associations of greenness and its composition and configuration with AR, and mediation effects by PMs were examined by mediation analysis models. RESULTS The prevalence of self-reported current AR in preschool children was 33.1%. Two indicators of forest, Aggregation Index of forest patches (AIforest) (odds ratio (OR):0.92, 95% Confidential Interval (CI): 0.88-0.97), and Patch Cohesion of forest (COHESIONforest) (OR: 0.93, 95% CI:0.89-0.98) showed significantly negative associations with AR symptoms. Mediation analyses found the associations were partially mediated by PMs. Age, exclusive breastfeed duration and season were the potential effect modifiers. The associations varied across seven cities. CONCLUSION Our findings suggest the inverse associations of the aggregation and connectivity of forest patches surrounding residence addresses with AR symptoms. Since the cross-sectional study only provides associations rather than causation, further studies are needed to confirm our results as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Han Chen
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Xia Meng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200438, China
| | - Yongfu Yu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Zhiping Niu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chan Lu
- Department of Occupational and Environmental Health, School of Public Health, Xiangya Medical College, Central South University, Changsha, 410078, China
| | - Wei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400030, China
| | - Tingting Wang
- School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xiaohong Zheng
- School of Energy & Environment, Southeast University, Nanjing, 210096, China
| | - Dan Norbäck
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Magnus Svartengren
- Department of Occupational and Environmental Medicine, Uppsala University Hospital, 751 85, Uppsala, Sweden
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment (Fudan University), Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
17
|
Hu Y, Yang G, Wang D, Gu W, Xie D, Huang T, Xue P, Tang J, Wei H, Li S, Tong S, Liu S. Associations of Insecticide Exposure with Childhood Asthma and Wheezing: A Population-Based Cross-Sectional Study in Sanya, China. TOXICS 2024; 12:392. [PMID: 38922071 PMCID: PMC11209441 DOI: 10.3390/toxics12060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Insecticide exposure may affect childhood asthma/wheezing, but evidence is scarce in low- and middle-income countries. We conducted a population-based cross-sectional study in Sanya, China. Generalized linear models were adopted to assess the associations of insecticide exposure with childhood asthma/wheezing, reported as odds ratios (ORs) and 95% confidence intervals (CIs). A subgroup analysis was performed to explore the possible effects of sociodemographic and environmental factors on these associations. The median age of the 9754 children was 6.7 years, and 5345 (54.8%) were boys. The prevalences of ever asthma (EA), ever wheezing (EW), and current wheezing (CW) were 7.4%, 5.3%, and 2.9%, respectively. We found a greater prevalence of childhood EA with insecticide exposure (OR = 1.18, 95% CI: 1.00, 1.38). Outdoor insecticide exposure was associated with elevated ORs for EA (1.24, 95% CI: 1.03, 1.50), EW (1.27, 95% CI: 1.03, 1.57), and CW (1.38, 95% CI: 1.04, 1.81). The p for the trend in insecticide exposure frequency was significant for EA (p = 0.001) and CW (p = 0.034). These adverse impacts were pronounced in girls who were exposed to low temperatures. Our findings suggest adverse effects of insecticide use, especially outdoors, on childhood asthma/wheezing. Further studies are warranted to verify this association and develop tailored prevention measures.
Collapse
Affiliation(s)
- Yabin Hu
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.X.); (J.T.)
| | - Guiyan Yang
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
| | - Dan Wang
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
| | - Wangyang Gu
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
| | - Dan Xie
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
| | - Tingyue Huang
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
| | - Peng Xue
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.X.); (J.T.)
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Jingyi Tang
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.X.); (J.T.)
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Hui Wei
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Shilu Tong
- National Institute of Environmental Health, Chinese Centers for Disease Control and Prevention, Beijing 102206, China;
- School of Public Health and Social Work, Queensland University of Technology, Brisbane 4001, Australia
| | - Shijian Liu
- Hainan Branch, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya 572022, China; (Y.H.); (W.G.); (T.H.); (H.W.)
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.X.); (J.T.)
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China;
| |
Collapse
|
18
|
Xiao H, Li Y, Liu X, Wen Q, Yao C, Zhang Y, Xie W, Wu W, Wu L, Ma X, Li Y, Ji A, Cai T. High ambient temperature may increase the risk of anemia in pregnancy: Identifying susceptible exposure windows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172059. [PMID: 38556012 DOI: 10.1016/j.scitotenv.2024.172059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Anemia in pregnancy (AIP) is associated with multiple severe maternal and perinatal adverse outcomes. However, there is a lack of evidence on the association between environmental factors and AIP. Aim to explore the association between ambient temperature and the risk of AIP, and identify susceptible exposure windows, we conducted a matched case-control study from 2013 to 2016 in Xi'an, China, which included 710 women with AIP and 1420 women without AIP. The conditional logistic regression model was used to evaluate the association between ambient temperature and AIP at different gestational weeks and gestational months. The association between extreme temperature and AIP was evaluated using the distributed lag nonlinear model (DLNM). We conducted stratified analyses of age, parity, and season of conception, and estimated the interaction between ambient temperature and air pollutants on AIP. Ambient temperature was significantly positively associated with the risk of AIP, and the susceptible exposure windows were 2-25 gestational weeks and 1-6 gestational months, respectively. The strongest effect was observed in the week 8 and month 2, for each 1 °C increase in weekly and monthly mean temperature, the odds ratio (OR) for AIP was 1.038 (95 % confidence interval (CI): 1.022, 1.055) and 1.040 (95 % CI: 1.020, 1.060), respectively. Extreme heat may increase the risk of AIP. Stratified analyses showed that there was no significant difference among different age, parity, and season of conception groups. No significant interaction effect of ambient temperature with air pollution on AIP was found. In summary, high ambient temperature may increase the risk of AIP, and the first and second trimesters may be susceptible exposure windows. Understanding the effect of temperature on pregnant women will be beneficial to reduce the occurrence of AIP.
Collapse
Affiliation(s)
- Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yunlong Li
- Department of Hematology, Chongqing Hospital of Jiangsu Province Hospital (Qijiang People Hospital), Chongqing 401420, China
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), 400037, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yao Zhang
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weijia Xie
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wenhui Wu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ailing Ji
- Department of Digital Health, Chongqing College of Architecture and Technology, Chongqing 401331, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
19
|
Pfirrman S, Devonshire A, Winslow A. Environmental Interventions for Preventing Atopic Diseases. Curr Allergy Asthma Rep 2024; 24:233-251. [PMID: 38492159 DOI: 10.1007/s11882-024-01141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE OF REVIEW In this review, we detail the exposome (consisting of environmental factors such as diet, microbial colonization, allergens, pollutants, and stressors), mechanistic and clinical research supporting its influence on atopic disease, and potentiation from climate change. We highlight contemporary environmental interventions and available evidence substantiating their roles in atopic disease prevention, from observational cohorts to randomized controlled trials, when available. RECENT FINDINGS Early introduction to allergenic foods is an effective primary prevention strategy to reduce food allergy. Diverse dietary intake also appears to be a promising strategy for allergic disease prevention, but additional study is necessary. Air pollution and tobacco smoke are highly associated with allergic disease, among other medical comorbidities, paving the way for campaigns and legislation to reduce these exposures. There is no clear evidence that oral vitamin D supplementation, prebiotic or probiotic supplementation, daily emollient application, and antiviral prophylaxis are effective in preventing atopic disease, but these interventions require further study. While some environmental interventions have a well-defined role in the prevention of atopic disease, additional study of many remaining interventions is necessary to enhance our understanding of their role in disease prevention. Alignment of research findings from randomized controlled trials with public policy is essential to develop meaningful public health outcomes and prevent allergic disease on the population level.
Collapse
Affiliation(s)
- Scott Pfirrman
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Devonshire
- Division of Allergy & Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew Winslow
- Division of Allergy & Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Tian F, Zhong X, Ye Y, Liu X, He G, Wu C, Chen Z, Zhu Q, Yu S, Fan J, Yao H, Ma W, Dong X, Liu T. Mutual Associations of Exposure to Ambient Air Pollutants in the First 1000 Days of Life With Asthma/Wheezing in Children: Prospective Cohort Study in Guangzhou, China. JMIR Public Health Surveill 2024; 10:e52456. [PMID: 38631029 PMCID: PMC11063886 DOI: 10.2196/52456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The first 1000 days of life, encompassing pregnancy and the first 2 years after birth, represent a critical period for human health development. Despite this significance, there has been limited research into the associations between mixed exposure to air pollutants during this period and the development of asthma/wheezing in children. Furthermore, the finer sensitivity window of exposure during this crucial developmental phase remains unclear. OBJECTIVE This study aims to assess the relationships between prenatal and postnatal exposures to various ambient air pollutants (particulate matter 2.5 [PM2.5], carbon monoxide [CO], sulfur dioxide [SO2], nitrogen dioxide [NO2], and ozone [O3]) and the incidence of childhood asthma/wheezing. In addition, we aimed to pinpoint the potential sensitivity window during which air pollution exerts its effects. METHODS We conducted a prospective birth cohort study wherein pregnant women were recruited during early pregnancy and followed up along with their children. Information regarding maternal and child characteristics was collected through questionnaires during each round of investigation. Diagnosis of asthma/wheezing was obtained from children's medical records. In addition, maternal and child exposures to air pollutants (PM2.5 CO, SO2, NO2, and O3) were evaluated using a spatiotemporal land use regression model. To estimate the mutual associations of exposure to mixed air pollutants with the risk of asthma/wheezing in children, we used the quantile g-computation model. RESULTS In our study cohort of 3725 children, 392 (10.52%) were diagnosed with asthma/wheezing. After the follow-up period, the mean age of the children was 3.2 (SD 0.8) years, and a total of 14,982 person-years were successfully followed up for all study participants. We found that each quartile increase in exposure to mixed air pollutants (PM2.5, CO, SO2, NO2, and O3) during the second trimester of pregnancy was associated with an adjusted hazard ratio (HR) of 1.24 (95% CI 1.04-1.47). Notably, CO made the largest positive contribution (64.28%) to the mutual effect. After categorizing the exposure according to the embryonic respiratory development stages, we observed that each additional quartile of mixed exposure to air pollutants during the pseudoglandular and canalicular stages was associated with HRs of 1.24 (95% CI 1.03-1.51) and 1.23 (95% CI 1.01-1.51), respectively. Moreover, for the first year and first 2 years after birth, each quartile increment of exposure to mixed air pollutants was associated with HRs of 1.65 (95% CI 1.30-2.10) and 2.53 (95% CI 2.16-2.97), respectively. Notably, SO2 made the largest positive contribution in both phases, accounting for 50.30% and 74.70% of the association, respectively. CONCLUSIONS Exposure to elevated levels of mixed air pollutants during the first 1000 days of life appears to elevate the risk of childhood asthma/wheezing. Specifically, the second trimester, especially during the pseudoglandular and canalicular stages, and the initial 2 years after birth emerge as crucial susceptibility windows. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-ROC-17013496; https://tinyurl.com/2ctufw8n.
Collapse
Affiliation(s)
- Fenglin Tian
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Xinqi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Ye
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Xiaohan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Cuiling Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Qijiong Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Siwen Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Jingjie Fan
- Department of Prevention and Health Care, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Huan Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Lee S, Sbihi H, MacIsaac JL, Balshaw R, Ambalavanan A, Subbarao P, Mandhane PJ, Moraes TJ, Turvey SE, Duan Q, Brauer M, Brook JR, Kobor MS, Jones MJ. Persistent DNA Methylation Changes across the First Year of Life and Prenatal NO2 Exposure in a Canadian Prospective Birth Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47004. [PMID: 38573328 DOI: 10.1289/ehp13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO 2 ) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO 2 exposure. METHODS Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO 2 (n = 128 ) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n = 124 ). Postnatal-specific DNAm differences (n = 125 ) were isolated, and their association with NO 2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO 2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS At birth (n = 128 ), 18 regions of DNAm were associated with NO 2 , with several annotated to HOX genes. Some of these regions were specifically identified in males (n = 73 ), but not females (n = 55 ). The effect of prenatal NO 2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION Regional cord blood DNAm differences associated with prenatal NO 2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.
Collapse
Affiliation(s)
- Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Hind Sbihi
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Robert Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Padmaja Subbarao
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Medicine, USCI University, Kuala Lumpur, Malaysia
| | - Theo J Moraes
- Department of Pediatrics & Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Stuart E Turvey
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
Zeng S, Liu H, Li B, Guo X, Chen S, Li X, Liang J, Liang H, Shen T, Long Y, Zhou H, Zhang D. Association of air temperature exposure during pregnancy with risk of preeclampsia in Guangzhou, China. ENVIRONMENT INTERNATIONAL 2024; 186:108646. [PMID: 38615543 DOI: 10.1016/j.envint.2024.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Environmental exposures during pregnancy have been associated with adverse obstetric outcomes. However, limited and inconsistent evidence exists regarding the association between air temperature exposure and the risk of preeclampsia (PE). This study aimed to evaluate the correlation between ambient temperature exposure during pregnancy and PE risk, as well as identify the specific time window of temperature exposure that increases PE risk. A population-based cohort study was conducted from January 2012 to April 2022 in Guangzhou, China. Pregnant women were recruited in early pregnancy and followed until delivery. A total of 3,314 PE patients and 114,201 normal pregnancies were included. Ambient temperature exposures at different gestational weeks were recorded for each participant. Logistic regression models were used to evaluate the correlation between ambient temperature exposure and PE risk. Stratified analyses were conducted based on maternal age and pre-pregnancy BMI. Distributed lag models were employed to identify the time window of temperature exposure related to PE. Exposure to extreme high temperature (aOR = 1.24, 95 % CI 1.12-1.38) and moderate high temperature (aOR = 1.22, 95 % CI 1.10-1.35) during early pregnancy was associated with an increased risk of PE. Furthermore, women with higher pre-pregnancy BMI had a higher risk of developing PE when exposed to high temperature during early pregnancy compared to normal-weight women. The time window of temperature exposure related to PE was identified as pregnancy weeks 1 to 8. This study provides evidence for the association of high temperature exposure during early pregnancy with the risk of PE, as well as identifies the specific time window of temperature exposure related to PE. These findings have implications for developing potential strategies to protect pregnant women, particularly those with higher pre-pregnancy BMI, from the adverse effects of extreme temperatures during early pregnancy.
Collapse
Affiliation(s)
- Shanshui Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China; Department of Laboratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China
| | - Haojing Liu
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Bingyu Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Xuanjie Guo
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Shulei Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Xuyu Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Jiarui Liang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Huaaishi Liang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Tingting Shen
- Medicine Laboratory, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yan Long
- Department of Laboratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, People's Republic of China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.
| | - Dongxin Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.
| |
Collapse
|
23
|
Ai S, Liu L, Xue Y, Cheng X, Li M, Deng Q. Prenatal Exposure to Air Pollutants Associated with Allergic Diseases in Children: Which Pollutant, When Exposure, and What Disease? A Systematic Review and Meta-analysis. Clin Rev Allergy Immunol 2024; 66:149-163. [PMID: 38639856 DOI: 10.1007/s12016-024-08987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/20/2024]
Abstract
This systematic review aims to identify the association between prenatal exposure to air pollutants and allergic diseases in children, focusing on specific pollutants, timing of exposure, and associated diseases. We searched PubMed, Scopus, and Web of Science for English articles until May 1, 2023, examining maternal exposure to outdoor air pollutants (PM1, PM2.5, PM10, NO, NO2, SO2, CO, and O3) during pregnancy and child allergic diseases (atopic dermatitis (AD), food allergy (FA), asthma (AT) and allergic rhinitis (AR)/hay fever (HF)). The final 38 eligible studies were included in the meta-analysis. Exposure to PM2.5 and NO2 during pregnancy was associated with the risk of childhood AD, with pooled ORs of 1.34 (95% confidence interval (CI), 1.10-1.63) and 1.10 (95%CI, 1.05-1.15) per 10 µg/m3 increase, respectively. Maternal exposure to PM1, PM2.5, and NO2 with a 10 µg/m3 increase posed a risk for AT, with pooled ORs of 1.34 (95%CI, 1.17-1.54), 1.11 (95%CI, 1.05-1.18), and 1.07 (95%CI, 1.02-1.12), respectively. An increased risk of HF was observed for PM2.5 and NO2 with a 10 µg/m3 increase, with ORs of 1.36 (95%CI, 1.17-1.58) and 1.26 (95%CI, 1.08-1.48), respectively. Traffic-related air pollutants (TRAP), particularly PM2.5 and NO2, throughout pregnancy, pose a pervasive risk for childhood allergies. Different pollutants may induce diverse allergic diseases in children across varying perinatal periods. AT is more likely to be induced by outdoor air pollutants as a health outcome. More research is needed to explore links between air pollution and airway-derived food allergies.
Collapse
Affiliation(s)
- Surui Ai
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Le Liu
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuan Xue
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoou Cheng
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Meng Li
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
24
|
Deng L, Chen X, Ma P, Wu Y, Okoye CO, Du D, Deng Q. The combined effect of oxidative stress and TRPV1 on temperature-induced asthma: Evidence in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123313. [PMID: 38185356 DOI: 10.1016/j.envpol.2024.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Temperature is one of the possible activators for asthma. As global warming continues, the health hazard of high temperatures is increasing. It is unclear, nevertheless, how high temperatures affect asthma. The research aims to examine how asthma is affected by high temperatures and underlying molecular mechanisms. The BALB/c mice were adopted in a model of asthma. The mice were exposed at 24 °C, 38 °C and 40 °C for 4h on weekdays from day 1 to day 30. After the experiment, the lung function was measured in vivo, and then serum protein, pulmonary inflammation and immunohistochemistry assay was assessed in vitro. As the temperature increased from 24 °C to 40 °C, there was a significant increase in serum protein, while there is no discernible difference in serum protein of OVA-sIgE and OVA-sIgG between the OVA (38 °C) group and OVA (24 °C) group. The immunohistochemistry assay showed a change in the pro-inflammatory cytokines. The histopathological analysis exhibited the change of airway structure after high-temperature exposure, especially for exposure at 40 °C. The results of signals protein showed a remarkable rise of TRPV1 for OVA+40 °C. Our results revealed that high temperatures may make asthmatic airway dysfunction severe, and the higher the temperature, the more serious asthma. The oxidative stress and TRPV1 receptor can be a potential drug target for asthma. It will provide a new tool for precision medicine in asthma.
Collapse
Affiliation(s)
- Linjing Deng
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China.
| | - Xunfeng Chen
- Biofuels Institute of Jiangsu university, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Ping Ma
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yang Wu
- Laboratory of Environment-Immunological and Neurological Diseases, Hubei University of Science and Technology, Xianning, 437100, China
| | - Charles Obinwanne Okoye
- School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, 410001, Nigeria
| | - Daolin Du
- School of Emergency Management, Jiangsu University, 212000, Zhenjiang, China; School of environment and safety engineering, Jiangsu University, 212000, Zhenjiang, China
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Shen Q, Yu H, Liu Y, Li G, An T. Combined exposure of MAHs and PAHs enhanced amino acid and lipid metabolism disruption in epithelium leading asthma risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123261. [PMID: 38159626 DOI: 10.1016/j.envpol.2023.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Monoaromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants from industry, with multiple adverse effects on respiratory system. However, the underlying mechanisms of their mixture to induce asthma is still unclear. Here, we examined mixture of 8 MAHs, mixture of 16 PAHs and a total mixture (MIX) on human bronchial epithelial (16-HBE) cells. Exposure to MIX resulted in increased expressions of asthma alarm cytokines (TSLP, IL-25 and IL-33), indicating potential asthma risk. Exposure to MIX led to significant upregulation of transcriptional level of oxidative stress and inflammation biomarkers through aryl hydrocarbon receptor activation, including SOD-2, NQO-1, IL-1β, IL-6 and IL-8 with 3.1, 19.9, 3.5, 23.4, 18.7, 28.1-fold change, indicated asthma related epithelial cell lesions. A total of 25, 49 and 59 differential metabolites were identified in cells response to MAH, PAH and MIX exposure, respectively, and enrichment analysis demonstrated MIX exposure disturbing alanine, aspartate and glutamate metabolism, glutathione metabolism, methionine metabolism and sphingolipid metabolism, involved in antioxidative defense and inflammation response. Combined exposure of MAHs and PAHs may result in increased toxic risks, and provide evidence to asthma onset and deterioration.
Collapse
Affiliation(s)
- Qianyong Shen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yalin Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Kloog I, Zhang X. Methods to Advance Climate Science in Respiratory Health: Satellite-Based Environmental Modeling for Temperature Exposure Assessment in Epidemiological Studies. Immunol Allergy Clin North Am 2024; 44:97-107. [PMID: 37973263 DOI: 10.1016/j.iac.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change is a major concern with significant impacts on human health including respiratory outcomes, particularly through changes in air temperature. The rise in global temperature has led to an increase in heat waves and extreme weather events, which pose serious risks to respiratory health. Accurately assessing the effects of air temperature on respiratory health requires a comprehensive approach that incorporates fine-scale exposure assessment to characterize the geospatial environment impacting population health. Recent advances in open-source earth observation data have allowed for improved exposure assessment through temperature modeling.
Collapse
Affiliation(s)
- Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Geography and Environmental Development, Ben-Gurion University, Beer Sheva, Israel; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, The Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Gao C, Yao X, Wang X, Li Z, Wang Y, Xu X, Li L, Zhang X, Fang X. Effects of air pollutants and temperature on the number of asthma outpatient visits in Hohhot, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:183-190. [PMID: 36288535 DOI: 10.1080/09603123.2022.2136364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Although numerous studies have linked asthma to air temperature and pollution, few studies have examined their interactive effects on asthma outpatient visits. This study investigated how air pollutants and their interactions with temperature affect asthma outpatient visits in a city in northern Chinaduring the time period 2018 - 2020 . . As the results, 24,163 asthma outpatients were recorded, a 10-μg/m3 increase in PM10, PM2.5, SO2, and NO2 concentrations was associated with significant increases in visits of 3.47% (95% CI: 2.35%-4.60%), 0.83% (95% CI: 0.36%-1.30%), 3.17% (95% CI: 1.47%-4.90%), and 8.90% (95% CI: 6.09%-11.79%), respectively. The effect was stronger in females than males, and stronger in the elderly (≥65 years) than among the young. The interaction between low temperatures and high air pollution levels significantly increased the number of asthma outpatient visits. This study emphasizesthe importance of reducing air pollution in order to lessen the effects of cold.
Collapse
Affiliation(s)
- Chenghua Gao
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xing Yao
- Outpatient Department of Medical Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Xue Wang
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zichao Li
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yaping Wang
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiaoqian Xu
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lehui Li
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xingguang Zhang
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xin Fang
- Public Health College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
28
|
Manzano-Covarrubias AL, Yan H, Luu MDA, Gadjdjoe PS, Dolga AM, Schmidt M. Unravelling the signaling power of pollutants. Trends Pharmacol Sci 2023; 44:917-933. [PMID: 37783643 DOI: 10.1016/j.tips.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Exposure to environmental pollutants contributes to diverse pathologies, including pulmonary disease, lower respiratory infections, cancer, and stroke. Pollutants' entry can occur through inhalation, traversing endothelial and epithelial barriers, and crossing the blood-brain barrier, leading to a wide distribution throughout the human body via systemic circulation. Pollutants cause cellular damage by multiple mechanisms encompassing oxidative stress, mitochondrial dysfunction, (neuro)inflammation, and protein instability/proteotoxicity. Sensing pollutants has added a new dimension to disease progression and drug failure. Understanding the molecular pathways and potential receptor binding/signaling that underpin 'sensing' could contribute to ways to combat the detrimental effects of pollutants. We highlight key points of pollutant signaling, crosstalk with receptors acting as drug targets for chronic diseases, and discuss the potential for future therapeutics.
Collapse
Affiliation(s)
- Ana L Manzano-Covarrubias
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hong Yan
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Minh D A Luu
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Phoeja S Gadjdjoe
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
29
|
Tong M, Wang M, Li P, Gong J, Zhu T, Xue T. The short-term effect of ozone on pregnancy loss modified by temperature: Findings from a nationwide epidemiological study in the contiguous United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166088. [PMID: 37549698 PMCID: PMC10592165 DOI: 10.1016/j.scitotenv.2023.166088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Pregnancy loss, a major health issue that affects human sustainability, has been linked to short-term exposure to ground-surface ozone (O3). However, the association is inconsistent, possibly because of the co-occurrence of O3 and heat episodes, as increased temperature is a risk factor for pregnancy loss. To explain this inconsistency, the effect of O3 on pregnancy loss needs to be examined jointly with that of high temperature. METHODS A total of 247,305 pregnancy losses during the warm season were extracted from fetal death certificates from the 386 counties in contiguous United States from 1989 to 2005. We assessed environmental exposure based on the daily maximum 8 h average of O3 from Air Quality System monitors and the 24 h average temperature from the North American Regional Reanalysis product. We conducted a bidirectional, time-stratified case-crossover study of the association between pregnancy loss and exposures to O3 and temperature and their multiplicative interaction. The main time window for the exposure assessment was the day of case occurrence and the preceding 3 days. To estimate the association, we used conditional logistic regression with adjustment for relative humidity, height of the planetary boundary layer, and holidays. Sensitivity analyses were performed on the lagged structure, nonlinearity, and between-subpopulation heterogeneity of the estimated joint effect. RESULTS The joint effect was first estimated by the regression against categorical exposure by tertile. Compared to the low-low exposure group (O3 ≤ 78 μg/m3 and temperature ≤ 18 °C), the odds of pregnancy loss was significantly higher by 6.0 % (95 % confidence interval [CI] 2.4-9.7 %), 9.8 % (6.1-13.8 %), and 7.5 % (4.7-10.3 %) in the high-low (>104 μg/m3 and ≤18 °C), low-high (≤78 μg/m3 and >23 °C), and high-high (>104 μg/m3 and >23 °C) groups. The model of linear exposure and the multiplicative interaction yielded similar results. Each increment of 10 μg/m3 in O3 and 1 °C in temperature was associated with a 3.0 % (2.0 %-4.0 %) and 3.9 % (3.5 %-4.3 %), respectively, increase in the odds of pregnancy loss. A decrease in odds of 0.2 % (0.1 %-0.2 %) was associated with the temperature × O3 interaction. The finding of an antagonistic interaction between temperature and O3 was confirmed by models parametrizing the joint exposure as alternative nonlinear terms (i.e., a two-dimensional spline term or a varying-coefficient term) and was robust to a variety of exposure lags and stratifications. Therefore, the marginal effect of O3 was estimated to vary by climate zone. A significant association between O3 and pregnancy loss was observed in the northern, but not southern, United States. CONCLUSION Joint exposure to O3 and high temperature can increase the risk for pregnancy loss. The adverse effect of O3 is potentially modified by ambient temperature. In high-latitude cities, controlling for O3 pollution could protect maternal health.
Collapse
Affiliation(s)
- Mingkun Tong
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, United States; Research and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, NY 14214, United States; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98115, United States
| | - Pengfei Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China; National Institute of Health Data Science, Peking University, Beijing, China
| | - Jicheng Gong
- College of Environmental Sciences and Engineering, Peking University, Beijing, China; State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management and Center for Environment and Health, Peking University, Beijing, China
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China; State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management and Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China; State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management and Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
30
|
Ding J, Han S, Wang X, Yao Q. Impact of air pollution changes and meteorology on asthma outpatient visits in a megacity in North China Plain. Heliyon 2023; 9:e21803. [PMID: 38027642 PMCID: PMC10651508 DOI: 10.1016/j.heliyon.2023.e21803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
The effects of air pollution and meteorology on asthma is less studied in North China Plain. In the last decade, air quality in this region is markedly mitigated. This study compared the short-term effects of air pollutants on daily asthma outpatient visits (AOV) within different sex and age groups from 2014 to 2016 and 2017-2019 in Tianjin, with the application of distributed lag nonlinear model. Moreover, relative humidity (RH) and temperature as well as the synergistic impact with air pollutants were assessed. Air pollutants-associated risk with linear (different reference values were used) and non-linear assumptions were compared. In 2014-2016, PM10 and PM2.5 exhibited a larger impact on AOV, with the corresponding cumulative excess risks (ER) for every 10 μg/m3 increase at 1.04 % (95%CI:0.67-1.40 %, similarly hereafter) and 0.79 % (0.35-1.23 %), as well as increased to 43 % (26-63 %) and 20 % (10-31 %) at severe pollution. In 2017-2019, NO2 and MDA8 O3 exhibited a larger impact on AOV, with a cumulative ER for every 10 μg/m3 increase at 1.0 (0.63-1.4 %) and 0.36 % (0.15-0.57 %), with corresponding values of 7.9 % (4.8-11 %) and 5.6 % (2.3-9.0 %), at severe pollution. SO2 associated risk was only significant from 2014 to 2016. Cold effect, including extremely low temperature exposure and sharp temperature drop could generate a pronounced increase in AOV at 9.6 % (3.8-16 %) and 24 % (9.1-41 %), respectively. Moderate low temperature combined with air pollutants can enhance AOV during winter. Higher temperature in spring and autumn could trigger asthma by increasing pollen levels. Low RH resulted in AOV increase by 4.6 % (2.4-6.9), while higher RH generated AOV increase by 3.4 % (1.6-5.3). Females, children, and older adults tended to have a higher risk for air pollution, non-optimum temperature, and RH. As air pollution-associated risks on AOV tends to be weaker due to air quality improvement in recent years, the impact of extreme meteorological condition amidst climate change on asthma visits warrants further attention.
Collapse
Affiliation(s)
- Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Suqin Han
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Xiaojia Wang
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| | - Qing Yao
- Tianjin Environmental Meteorological Center, Tianjin 300070, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300070, China
| |
Collapse
|
31
|
Chen Y, Zhao Y, Ran Z, Wang C, Wu Q, Li P, Jin T. Reply to "Comment on: Traffic-related organic and inorganic air pollution and risk of development of childhood asthma: A meta-analysis". ENVIRONMENTAL RESEARCH 2023; 236:116697. [PMID: 37487924 DOI: 10.1016/j.envres.2023.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Yunqian Chen
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yizhuo Zhao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Zheng Ran
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Chang Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Qiong Wu
- Institute of Social Science Survey, Peking University, Beijing, 100871, PR China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Taosheng Jin
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
32
|
Zhang M, Tang H, Chen Y, Chen Z, Xu Y, Fu X, Sun Y, Zhao Z. Impact of environmental characteristics on children's gut microbiota - A pilot study in assessing the role of indoor microbiome and metabolites. ENVIRONMENTAL RESEARCH 2023; 234:116114. [PMID: 37209986 DOI: 10.1016/j.envres.2023.116114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND A diverse and balanced human gut microbiota is crucial for maintaining normal human physiological functions. However, the impact of indoor microbiome and metabolites on gut microbiota is not well understood. METHODS A self-administered questionnaire was used to collect information on more than 40 personal and environmental characteristics and dietary habits from 56 children in Shanghai, China. Shotgun metagenomics and untargeted liquid chromatography-mass spectrometry (LC-MS) were used to characterize the indoor microbiome and metabolomic/chemical exposure in children's living rooms. PacBio full-length 16 S rRNA sequencing was used to characterize children's gut microbiota. Associations between environmental characteristics and gut microbiota diversity/composition were assessed using PERMANOVA and regression. RESULTS In total, 6247 and 318 indoor and gut microbial species and 1442 indoor metabolites were characterized. Age of children (R2 = 0.033, p = 0.008), age start kindergarten (R2 = 0.029, p = 0.03), living adjacent to heavy traffic (R2 = 0.031, p = 0.01) and drinking soft drinks (R2 = 0.028, p = 0.04) significantly impacted overall gut microbial composition, consistent with previous studies. Having pets/plants and frequent vegetable intake were positively associated with gut microbiota diversity and the Gut Microbiome Health Index (GMHI), while frequent juice and fries intake decreased gut microbiota diversity (p < 0.05). The abundance of indoor Clostridia and Bacilli was positively associated with gut microbial diversity and GMHI (p < 0.01). Total indoor indole derivatives and 6 indole metabolites (L-tryptophan, indole, 3-methylindole, indole-3-acetate, 5-hydroxy-L-tryptophan and indolelactic acid, p < 0.05) were positively associated with the abundance of total protective gut bacteria, suggesting a potential role in promoting gut health. Neural network analysis revealed that these indole derivatives were derived from indoor microorganisms. CONCLUSIONS The study is the first to report associations between indoor microbiome/metabolites and gut microbiota, highlighting the potential role of indoor microbiome in shaping human gut microbiota.
Collapse
Affiliation(s)
- Mei Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Hao Tang
- School of Public Health, Fudan University, Shanghai, 200032, PR China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhuoru Chen
- Children's Hospital of Fudan University, Shanghai, 201102, PR China
| | - Yanyi Xu
- School of Public Health, Fudan University, Shanghai, 200032, PR China
| | - Xi Fu
- School of Public Health, Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, PR China.
| |
Collapse
|
33
|
Tan Y, Yang Y, Zhang Y, Peng C, Zhang Y, He M, Peng A. Prenatal ambient air pollutants exposure and the risk of stillbirth in Wuhan, central of China. ENVIRONMENTAL RESEARCH 2023; 228:115841. [PMID: 37028538 DOI: 10.1016/j.envres.2023.115841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The existing studies on the relationships of prenatal ambient air pollutants exposure with stillbirth in the Chinese population are very limited and the results are inconsistent, and the susceptible windows and potential modifiers for air pollutants exposure on stillbirth remain unanswered. OBJECTIVE We aimed to determine the relationships between exposure to ambient air pollutants and stillbirth, and explored the susceptible windows and potential modifiers for air pollutants exposure on stillbirth. METHODS A population-based cohort was established through the Wuhan Maternal and Child Health Management Information System involving 509,057 mother-infant pairs in Wuhan from January 1, 2011 through September 30, 2017. Personal exposure concentrations of fine particles (PM2.5), inhalable particles (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) for mothers were estimated based on their residential address during pregnancy using the inverse distance weighted (IDW) method. We used the logistic regression models to determine the associations at different stages of pregnancy with adjustment for confounding factors. RESULTS There were 3218 stillbirths and 505,839 live births among the participants. For each 100 μg/m3 of CO and 10 μg/m3 of O3 increase in the first trimester (conception to 13+6 weeks), the risk of stillbirth increased by 1.0% (OR = 1.01, 95%CI: 1.00-1.03) and 7.0% (OR = 1.07, 95%CI: 1.05-1.09). In the second trimester (14 weeks-27+6 weeks), PM2.5, PM10, CO, and O3 exposure were closely related to the risk of stillbirth (P<0.05). In the third trimester (28 weeks to delivery), for each 10 μg/m3 increase in exposure concentrations of PM2.5, SO2, and O3, the risk of stillbirth increased by 3.4%, 5.9%, and 4.0%, respectively. O3 exposure was positively relevant to the risk of stillbirth (OR = 1.11, 95%CI: 1.08-1.14) in the whole pregnancy. Exposure to NO2 was not significantly associated with the risk of stillbirth. Stratified analyses also presented a stronger association among mothers with boy infant, living in rural areas, delivering between 2011 and 2013, and those without gestational hypertension and history of stillbirth. CONCLUSION This study provides evidence that maternal exposure to PM2.5, PM10, SO2, CO, and O3 were related to the increased risk of stillbirth. Both the second and third trimesters might be vital susceptible windows for stillbirth. Our findings expand the evidence base for the important impacts of air pollution on fetal growth.
Collapse
Affiliation(s)
- Yafei Tan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Yifan Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Yu Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Chang Peng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Meian He
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Anna Peng
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, No. 100 Hongkong Road, Jiangan District, Wuhan, 430016, Hubei, China.
| |
Collapse
|
34
|
Lu C, Wang F, Liu Q, Deng M, Yang X, Ma P. Effect of NO 2 exposure on airway inflammation and oxidative stress in asthmatic mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131787. [PMID: 37295329 DOI: 10.1016/j.jhazmat.2023.131787] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nitrogen dioxide (NO2) is a widespread air pollutant. Epidemiological evidence indicates that NO2 is associated with an increase of incidence rate and mortality of asthma, but its mechanism is still unclear. In this study, we exposed mice to NO2 (5 ppm, 4 h per day for 30 days) intermittently to investigate the development and potential toxicological mechanisms of allergic asthma. We randomly assigned 60 male Balb/c mice to four groups: saline control, ovalbumin (OVA) sensitization, NO2 alone, and OVA+NO2 groups. The involved mechanisms were found from the perspective of airway inflammation and oxidative stress. The results showed that NO2 exposure could aggravate lung inflammation in asthmatic mice, and airway remodeling was characterized by significant thickening of the airway wall and infiltration of inflammatory cells. Moreover, NO2 would aggravate the airway hyperresponsiveness (AHR), which is characterized by significantly elevated inspiratory resistance (Ri) and expiratory resistance (Re), as well as decreased dynamic lung compliance (Cldyn). In addition, NO2 exposure promoted pro-inflammatory cytokines (IL-6 and TNF-α) and serum immunoglobulin (IgE) production. The imbalance of Th1/Th2 cell differentiation (IL-4 increased, IFN-γ reduced, IL-4/IFN-γ significantly increased) played a key role in the inflammatory response of asthma under NO2 exposure. In a nutshell, NO2 exposure could promote allergic airway inflammation and increase asthma susceptibility. The levels of ROS and MDA among asthmatic mice exposed to NO2 increased significantly, while GSH levels sharply decreased. These findings may provide better toxicological evidence for the mechanisms of allergic asthma risk due to NO2 exposure.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven 3001, Belgium
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Miaomiao Deng
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
35
|
Simoneau T, Gaffin JM. Socioeconomic determinants of asthma health. Curr Opin Pediatr 2023; 35:337-343. [PMID: 36861771 PMCID: PMC10160003 DOI: 10.1097/mop.0000000000001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW The current review provides an assessment of the recent pediatric literature evaluating socioeconomic drivers of asthma incidence and morbidity. The review addresses the specific social determinants of health related to housing, indoor and outdoor environmental exposures, healthcare access and quality, and the impact of systematic racism. RECENT FINDINGS Many social risk factors are associated with adverse asthma outcomes. Children living in low-income, urban neighborhoods have greater exposure to both indoor and outdoor hazards, including molds, mice, second-hand smoke, chemicals, and air pollutants, all of which are associated with adverse asthma outcomes. Providing asthma education in the community - via telehealth, school-based health centers, or peer mentors - are all effective methods for improving medication adherence and asthma outcomes. The racially segregated neighborhoods created by the racist 'redlining' policies implemented decades ago, persist today as hotspots of poverty, poor housing conditions, and adverse asthma outcomes. SUMMARY Routine screening for social determinants of health in clinical settings is important to identify the social risk factors of pediatric patients with asthma. Interventions targeting social risk factors can improve pediatric asthma outcomes, but more studies are needed related to social risk interventions.
Collapse
Affiliation(s)
- Tregony Simoneau
- Division of Pulmonary Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
36
|
Yadav A, Pacheco SE. Prebirth effects of climate change on children's respiratory health. Curr Opin Pediatr 2023; 35:344-349. [PMID: 36974440 DOI: 10.1097/mop.0000000000001241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
PURPOSE OF REVIEW To date, there is no evidence that humanity will implement appropriate mitigation measures to avoid the catastrophic impact of climate change on the planet and human health. Vulnerable populations such as pregnant women and children will be the most affected. This review highlights epidemiologic data on climate change-related prenatal environmental exposures affecting the fetus and children's respiratory health. RECENT FINDINGS Research on outcomes of prenatal exposure to climate change-related environmental changes and pediatric pulmonary health is limited. In addition to adverse pregnancy outcomes known to affect lung development, changes in lung function, increased prevalence of wheezing, atopy, and respiratory infections have been associated with prenatal exposure to increased temperatures, air pollution, and maternal stress. The mechanisms behind these changes are ill-defined, although oxidative stress, impaired placental functioning, and epigenetic modifications have been observed. However, the long-term impact of these changes remains unknown. SUMMARY The detrimental impact of the climate crisis on pediatric respiratory health begins before birth, highlighting the inherent vulnerability of pregnant women and children. Research and advocacy, along with mitigation and adaptation measures, must be implemented to protect pregnant women and children, the most affected but the least responsible for the climate crisis.
Collapse
Affiliation(s)
- Aravind Yadav
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| | | |
Collapse
|
37
|
Bai S, Cui L, Du S, Zhao X, Lin S, Yang X, Zhang J, Liang Y, Wang Z. A life course approach to asthma and wheezing among young children caused by ozone: A prospective birth cohort in northern China. ENVIRONMENTAL RESEARCH 2023; 226:115687. [PMID: 36925033 DOI: 10.1016/j.envres.2023.115687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Given differences in vulnerability of children in early life, a life course approach to asthma and wheezing (AW) in young children caused by ozone (O3) is not fully understood. METHODS We conducted a birth cohort in Jinan, China from 2018 to 2021 to elucidate the onset model of childhood AW due to O3 exposure. An inverse distance weighted model was used for individual exposure assessment. The time-dependent Cox proportional-hazard model and logistic model were used to investigate the effects of O3 exposure on AW. Principal component analysis, interaction analysis, and distributed lag model were used to analyze the life course approach. RESULTS The cumulative incidence rate for AW among 6501 children aged 2 was 1.4%. A high level of O3 was related to AW (HR: 2.10, 95% CI: 1.31, 3.37). Only O3 exposure after birth was associated with AW, with an OR of 1.82 (1.08, 3.12), after adjusting for the effect before birth. Furthermore, adjusting for other air pollutants, the HR for the individual effect of high O3 exposure on AW was 2.44 (1.53, 3.89). Interestingly, P values for interactions for O3 and the principal components of other pollutants, as well as the characteristic variable of open windows were less than 0.1. Moreover, an increase in the IQR of O3 exposure at the 31st to 37th weeks before birth and the 1st to 105th weeks after birth was associated with an increase in the HRs for AW. CONCLUSIONS High-level of O3 exposure after birth could lead to AW among young children. Importantly, the AW onset model may include the risk factors accumulation and the sensitive period model. Specifically, there are two sensitive windows in early life, and the correlated insults between the high level of O3 and other pollutants as well as open windows in the asthma-inducing effect.
Collapse
Affiliation(s)
- Shuoxin Bai
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Shuang Du
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Xiaodong Zhao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Shaoqian Lin
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, PR China
| | - Xiwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Jiatao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Yuxiu Liang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
38
|
Biagioni B, Cecchi L, D'Amato G, Annesi-Maesano I. Environmental influences on childhood asthma: Climate change. Pediatr Allergy Immunol 2023; 34:e13961. [PMID: 37232282 DOI: 10.1111/pai.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Climate change is a key environmental factor for allergic respiratory diseases, especially in childhood. This review describes the influences of climate change on childhood asthma considering the factors acting directly, indirectly and with their amplifying interactions. Recent findings on the direct effects of temperature and weather changes, as well as the influences of climate change on air pollution, allergens, biocontaminants and their interplays, are discussed herein. The review also focusses on the impact of climate change on biodiversity loss and on migration status as a model to study environmental effects on childhood asthma onset and progression. Adaptation and mitigation strategies are urgently needed to prevent further respiratory diseases and human health damage in general, especially in younger and future generations.
Collapse
Affiliation(s)
- Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence, Italy
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
- SOS Allergy and Clinical Immunology, USL Toscana Centro, Prato, Italy
| | - Gennaro D'Amato
- Division of Respiratory Diseases and Allergy AORN Cardarelli and University of Naples, Federico II, Naples, Italy
| | - Isabella Annesi-Maesano
- Department of Allergic and Respiratory Diseases, Montpellier University Hospital, Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| |
Collapse
|
39
|
Zhang J, Bai S, Lin S, Cui L, Zhao X, Du S, Wang Z. Maternal apparent temperature during pregnancy on the risk of offspring asthma and wheezing: effect, critical window, and modifiers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62924-62937. [PMID: 36952159 PMCID: PMC10034250 DOI: 10.1007/s11356-023-26234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/27/2023] [Indexed: 05/10/2023]
Abstract
The objective of this study was to explore the impact of maternal AT during pregnancy on childhood asthma and wheezing, as well as the potential effect modifiers in this association. A cross-sectional study was implemented from December 2018 to March 2019 in Jinan to investigate the prevalence of childhood asthma and wheezing among aged 18 months to 3 years. Then, we conducted a case-control study based on population to explore the association between prenatal different AT exposure levels and childhood asthma and wheezing. The association was assessed by generalized additive models and logistic regression models, and stratified analyses were performed to explore potential effect modifiers. A total of 12,384 vaccinated children participated in screening for asthma and wheezing, 236 cases were screened, as well as 1445 controls were randomized. After adjusting for the covariates, childhood asthma and wheezing were significantly associated with cold exposure in the first trimester, with OR 1.731 (95% CI: 1.117-2.628), and cold exposure and heat exposure in the third trimester, with ORs 1.610 (95% CI: 1.030-2.473) and 2.039 (95% CI: 1.343-3.048). In the third trimester, enhanced impacts were found among girls, children whose distance of residence was close to the nearest main traffic road, and children whose parents have asthma. The study indicates that exposure to extreme AT during the first and third trimesters could increase the risk of childhood asthma and wheezing.
Collapse
Affiliation(s)
- Jiatao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shuoxin Bai
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shaoqian Lin
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Xiaodong Zhao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Shuang Du
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
40
|
Wang S, Wu G, Du Z, Wu W, Ju X, Yimaer W, Chen S, Zhang Y, Li J, Zhang W, Hao Y. The causal links between long-term exposure to major PM 2.5 components and the burden of tuberculosis in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161745. [PMID: 36690108 DOI: 10.1016/j.scitotenv.2023.161745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND We aimed to estimate the causal impacts of long-term exposure to major PM2.5 components - including black carbon, organic matter, sulfate, nitrate, and ammonium - on the incidence and mortality of tuberculosis in China. METHODS We collected annual and provincial-level tuberculosis incidence and mortality, concentrations of PM2.5 components, and socioeconomic indicators from between 2004 and 2018 in mainland China. We used the difference-in-differences (DID) causal inference approach with a generalized weighted quantile sum (gWQS) regression model to estimate the long-term effects and relative contributions of PM2.5 components' exposure on tuberculosis incidence and mortality. RESULTS We found that long-term multi-components exposure was significantly associated with tuberculosis incidence (WQS index IR%:8.34 %, 95 % CI:4.54 %-12.27 %) and mortality (WQS index IR%:19.49 %, 95 % CI: 9.72 %-30.13 %). Primary pollutants, black carbon and organic matter, contributed most of the overall mixture effect (over 85 %). Nitrate showed a critical role in tuberculosis burden in not-aging provinces and in regions at the Q3 stratum (i.e., the 3rd quartile) of GDP per capita and urbanization rate. Meanwhile the contribution of sulfate to tuberculosis burden in regions at the Q1 stratum of GDP per capita and urbanization rate was the largest among the effect of secondary pollutants (i.e., sulfate, nitrate, and ammonium). CONCLUSION The mitigation of black carbon and organic matter pollution may significantly reduce the tuberculosis burden in China. Controlling nitrate emissions and increasing clean energy (i.e., energy sources with limited pollution emissions, such as natural gas and clean coal) may also be effective in certain regions.
Collapse
Affiliation(s)
- Shenghao Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Gonghua Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xu Ju
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Wumitijiang Yimaer
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jinghua Li
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, China.
| |
Collapse
|
41
|
Lu C, Liu Q, Deng M, Liao H, Yang X, Ma P. Interaction of high temperature and NO 2 exposure on asthma risk: In vivo experimental evidence of inflammation and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161760. [PMID: 36702287 DOI: 10.1016/j.scitotenv.2023.161760] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Allergic asthma is a complicated respiratory disease with many concerns. Mounting epidemiological evidence linked temperature (T) and NO2 with allergic asthma, yet toxicological studies remain scarce. We conducted an in vivo study to explore toxicological evidence in T-NO2 interaction on allergic asthma, to investigate underlying toxicological mechanisms. 90 male Balb/c mice were randomly and equally divided into 6 groups including saline control, ovalbumin (OVA)-sensitized, OVA + 35 °C, OVA + NO2, OVA + 35 °C + NO2, and OVA + 35 °C + NO2 + capsazepine (CZP), adopting treatment for 38 days. We measured pulmonary functions of inspiratory resistance (Ri), expiratory resistance (Re) and airway compliance (Cldyn), serum protein biomarkers, indexes of pulmonary inflammation, histopathological changes and protective effects of CZP. Airway hyperresponsiveness (AHR) was aggravated by high T (35 °C) and NO2 (5 ppm) co-exposure with a series of aggravating asthmatic symptoms including airway wall thickening, lumen stenosis, goblet cell proliferation, mucus hypersecretion, and subepithelial fibrotic hyperplasia, providing evidence in the toxicological impact of high T-NO2 interaction. The biomarkers of serum immune functions (Total-IgE, OVA-sIgE and IL-4), pro-inflammation (IL-6 and TNF-α), oxidative stress cytokines (8-OHdG, ROS and MDA), airway resistance (Ri and Re), and TRPV1 expression significantly increased, while IFN-γ, GSH and airway compliance (Cldyn) significantly decreased with co-exposure to high T and NO2. We observed that CZP addition significantly ameliorated these toxicological effects and biomarker levels induced by heat-NO2 interaction. Our results suggest a toxicity of heat-NO2 interaction on asthma with clear mechanisms, which can be ameliorated by CZP, indicating that both oxidative stress and TRPV1 expression may be primarily responsible for asthma of heat-NO2-induced toxicity.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Miaomiao Deng
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xu Yang
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
42
|
Zong J, Wang L, Lu C, Du Y, Wang Q. Mapping health vulnerability to short-term summer heat exposure based on a directional interaction network: Hotspots and coping strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163401. [PMID: 37044341 DOI: 10.1016/j.scitotenv.2023.163401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Health risk resulting from non-optimal temperature exposure, referred to as "systematic risk", has been a sustainable-development challenge in the context of global warming. Previous studies have recognized interactions between and among system components while assessing the vulnerability to climate change, but have left open the question of indicator directional interactions. The question is important, not least because indicator directional association analysis provides guidance to address climate risks by revealing the key nodes and pathways. The purpose of this work was to assess health vulnerability to short-term summer heat exposure based on a directional interaction network. Bayesian network model and network analysis were used to conduct a directional interaction network. Using indicator directional associations as weights, a weighted technique for the order of preference by similarity to ideal solution method was then proposed to assess heat-related health vulnerability. Finally, hotspots and coping strategies were explored based on the directional interaction network and health vulnerability assessments. The results showed that (1) indicator directional interactions were revealed in the health vulnerability framework, and the interactions differed between northern and southern China; (2) there was a dramatic spatial imbalance of health vulnerability in China, with the Beijing-Tianjin-Hebei Region and the Yangtze River Basin identified as hotspots; (3) particulate matter and ozone were recognized as priority indicators in the most vulnerable cities of northern China, while summer heat exposure level and variation were priority indicators in southern China; and (4) adaptive capacity could alter the extent of risk; thus, mitigation and adaptation should be implemented in an integrated way. Our study has important implications for strengthening the theoretical basis for the vulnerability assessment framework by providing indicator directional associations and for guiding policy design in dealing with heat-related health vulnerability in China.
Collapse
Affiliation(s)
- Jingru Zong
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Lingli Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Chunyu Lu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Yajie Du
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China
| | - Qing Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Institute of Health Data Science of China, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
43
|
Lee JX, Phipatanakul W, Gaffin JM. Environment and the development of severe asthma in inner city population. Curr Opin Allergy Clin Immunol 2023; 23:179-184. [PMID: 36728241 PMCID: PMC9974609 DOI: 10.1097/aci.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Higher asthma prevalence and morbidity are seen in inner-city areas, disproportionately affecting low-income families living in substandard housing. Children within these families experience more frequent asthma exacerbations, acute care and emergency department visits, and hospitalizations, thus characterizing severe asthma. In this review, we assess recent published literature focused on indoor and outdoor exposures that contribute to the development and morbidity of asthma. RECENT FINDINGS Many urban environmental exposures contribute to asthma burden, including tobacco/e-cigarette smoke, pest allergens, molds, and possibly synthetic chemicals such as phthalates and bisphenol A, radon, and volatile organic compounds. Individuals living in inner-city areas also experience higher levels of air pollutants and ambient heat, further perpetuating asthma incidence and severity. SUMMARY This article summarizes the latest advances and provides direction for future research on risk factors, interventions, and public policy to help alleviate the burden of asthma due to urban environment exposures.
Collapse
Affiliation(s)
- Julia X Lee
- Division of Pulmonary Medicine, Boston Children's Hospital
| | - Wanda Phipatanakul
- Division of allergy and immunology, Boston Children's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Boston Children's Hospital
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Asthma is the most common chronic disease of childhood. Environmental exposures, such as allergens and pollutants, are ubiquitous factors associated with asthma development and asthma morbidity. In this review, we highlight the most recent studies relevant to childhood asthma risk, onset, and exacerbation related to air pollution exposure. RECENT FINDINGS In this article, we review current research that has been published between 2021 and 2022, demonstrating the effects of early-life exposure to key air pollutants (e.g., particulate matter (PM), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ) and ground-level ozone (O 3 ), environmental tobacco smoke, radon, and volatile organic compounds (VOC) on respiratory health. SUMMARY Air pollution continues to be a global burden with serious consequences related to respiratory health. Interventions aimed at reducing air pollution in the environment must be achieved in an effort to improve asthma outcomes and pediatric health.
Collapse
Affiliation(s)
- Lana Mukharesh
- Division of Pulmonary Medicine, Boston Children's Hospital
- Harvard Medical School
| | - Wanda Phipatanakul
- Harvard Medical School
- Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Boston Children's Hospital
- Harvard Medical School
| |
Collapse
|
45
|
Yang W, Johnson MB, Liao H, Liu Z, Zheng X, Lu C. Combined effect of preconceptional and prenatal exposure to air pollution and temperature on childhood pneumonia: A case-control study. ENVIRONMENTAL RESEARCH 2023; 216:114806. [PMID: 36375503 DOI: 10.1016/j.envres.2022.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Mounting evidence have linked ambient air pollution and temperature with childhood pneumonia, but it is unclear whether there is an interaction between air pollution and temperature on childhood pneumonia. We aim to assess the combined effect of ambient air pollution and temperature exposure during preconception and pregnancy on pneumonia by a case-control study of 1510 children aged 0-14 years in Changsha, China. We obtained the data of childhood pneumonia from XiangYa Hospital electrical records. We estimated personal exposure to outdoor air pollution (PM10, SO2 and NO2) by inverse distance weighted (IDW) method and temperature indicators. Multiple logistic regression models were used to evaluate associations of childhood pneumonia with air pollution, temperature (T), and diurnal temperature variation (DTV). We found that exposure to industry-related air pollution (PM10 and SO2) during preconception and pregnancy were associated with childhood pneumonia, with ORs (95% CI) of 1.72 (1.48-1.98) and 2.96 (2.50-3.51) during 1 year before pregnancy and 1.83 (1.59-2.11) and 3.43 (2.83-4.17) in pregnancy. Childhood pneumonia was negatively associated with T exposure during 1 year before pregnancy and pregnancy, with ORs (95% CI) of 0.57 (0.41-0.80) and 0.85 (0.74-0.98). DTV exposure during pregnancy especially during the 1st and 2nd trimesters significantly increased pneumonia risk, with ORS (95% CI) of 1.77 (1.19-2.64), 1.47 (1.18-1.83), and 1.37 (1.07-1.76) respectively. We further observed interactions of PM10 and SO2 exposure with low T and high DTV during conception and pregnancy in relation to childhood pneumonia. This study suggests that there were interactions air pollution with temperature and DTV on pneumonia development.
Collapse
Affiliation(s)
- Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | | | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xiangrong Zheng
- Department of Pediatrics, XiangYa Hospital, Central South University, Changsha, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
46
|
Han A, Deng S, Yu J, Zhang Y, Jalaludin B, Huang C. Asthma triggered by extreme temperatures: From epidemiological evidence to biological plausibility. ENVIRONMENTAL RESEARCH 2023; 216:114489. [PMID: 36208788 DOI: 10.1016/j.envres.2022.114489] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There is rapidly growing evidence indicating that extreme temperature is a crucial trigger and potential activator of asthma; however, the effects of extreme temperature on asthma are inconsistently reported and the its potential mechanisms remain undefined. OBJECTIVES This review aims to estimate the impacts of extreme heat, extreme cold, and temperature variations on asthma by systematically summarizing the existing studies from epidemiological evidence to biological plausibility. METHODS We conducted a systematic search in PubMed, Embase, and Web of Science from inception to June 30, 2022, and we retrieved articles of epidemiology and biological studies which assessed associations between extreme temperatures and asthma. This protocol was registered with PROSPERO (CRD42021273613). RESULTS From 12,435 identified records, 111 eligible studies were included in the qualitative synthesis, and 37 articles were included in the meta-analysis (20 for extreme heat, 16 for extreme cold, and 15 for temperature variations). For epidemiological evidence, we found that the synergistic effects of extreme temperatures, indoor/outdoor environments, and individual vulnerabilities are important triggers for asthma attacks, especially when there is extreme heat or cold. Meta-analysis further confirmed the associations, and the pooled relative risks for asthma attacks in extreme heat and extreme cold were 1.07 (95%CI: 1.03-1.12) and 1.20 (95%CI: 1.12-1.29), respectively. Additionally, this review discussed the potential inflammatory mechanisms behind the associations between extreme temperatures and asthma exacerbation, and highlighted the regulatory role of immunological pathways and transient receptor potential ion channels in asthma triggered by extreme temperatures. CONCLUSIONS We concluded that both extreme heat and cold could significantly increase the risk of asthma. Additionally, we proposed a potential mechanistic framework, which is important for understanding the disease pathogenesis that uncovers the complex mechanisms of asthma triggered by extreme temperatures and protects the sensitive individuals from impacts of extreme weather events and climate change.
Collapse
Affiliation(s)
- Azhu Han
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shizhou Deng
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiarui Yu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China, School of Arts and Sciences, Columbia University, New York City, NY, USA
| | - Yali Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Sydney, Australia
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
47
|
Lu C, Liu Z, Yang W, Liao H, Liu Q, Li Q, Deng Q. Early life exposure to outdoor air pollution and indoor environmental factors on the development of childhood allergy from early symptoms to diseases. ENVIRONMENTAL RESEARCH 2023; 216:114538. [PMID: 36252839 DOI: 10.1016/j.envres.2022.114538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The prevalence of childhood allergies has increased during past decades leading to serious hospitalization and heavy burden worldwide, yet the key factors responsible for the onset of early symptoms and development of diagnosed diseases are unclear. OBJECTIVE To explore the role of early life exposure to ambient air pollution and indoor environmental factors on early allergic symptoms and doctor diagnosed allergic diseases. METHODS A retrospective cohort study of 2598 preschool children was conducted at 36 kindergartens in Changsha, China from September of 2011 to February of 2012. A questionnaire was developed to survey each child's early onset of allergic symptoms (wheeze and rhinitis-like symptoms) and doctor diagnosis of allergic diseases (asthma and rhinitis) as well as home environments. Each mother's and child's exposures to ambient air pollutants (PM10, SO2, and NO2) and temperature were estimated for in utero and postnatal periods. The associations of early symptoms and diagnosed diseases with outdoor air pollution and indoor environmental variables were examined by logistic regression models. RESULTS Childhood early allergic symptoms (33.9%) including wheeze (14.7%) and rhinitis-like symptoms (25.4%) before 2 years old were not associated with outdoor air pollution exposure but was significantly associated with maternal exposure of window condensation at home in pregnancy with ORs (95% CI) of 1.33 (1.11-1.59), 1.30 (1.01-1.67) and 1.27 (1.04-1.55) respectively, and was associated with new furniture during first year after birth with OR (95% CI) of 1.43 (1.02-2.02) for early wheeze. Childhood diagnosed allergic diseases (28.4%) containing asthma (6.7%) and allergic rhinitis (AR) (7.2%) were significantly associated with both outdoor air pollutants (mainly for SO2 and NO2) during first 3 years and indoor new furniture, redecoration, and window condensation. We found that sex, age, parental atopy, maternal productive age, environmental tobacco smoke (ETS), antibiotics use, economic stress, early and late introduction of complementary foods, and outdoor air pollution modified the effects of home environmental exposure in early life on early allergic symptoms and diagnosed allergic diseases. CONCLUSION Our study indicates that early life exposure to indoor environmental factors plays a key role in early onset of allergic symptoms in children, and further exposure to ambient air pollution and indoor environmental factors contribute to the later development of asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qin Li
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
48
|
Zhao J, Zhang Y, Ni Y, He J, Wang J, Li X, Guo Y, Li C, Zhang W, Cui Z. Effect of ambient temperature and other environmental factors on stroke emergency department visits in Beijing: A distributed lag non-linear model. Front Public Health 2022; 10:1034534. [PMID: 36466462 PMCID: PMC9709270 DOI: 10.3389/fpubh.2022.1034534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Most studies have focused on the relationship between ambient temperature and stroke mortality, but studies on the relationship between ambient temperature and stroke occurrence are still limited and inconsistent. Objective This study aimed to analyze the effect of ambient temperature and other environmental factors on emergency stroke visits in Beijing. Methods Our study utilized stroke visit data from the Beijing Red Cross Emergency Medical Center during 2017-2018, and applied a generalized additive model (GAM) as well as a distributed lag non-linear model (DLNM), respectively, regarding the direct, lagged, and cumulative effects of ambient temperature alone and with correction for other environmental factors on stroke occurrence. Results With a total of 26,984 emergency stroke patients in 2017-2018, both cold and hot effects were observed and weakened after correction for other environmental factors. Compared to the reference temperature, in the multi-factor model, extreme cold (-10°C) reached a maximum relative risk (RR) of 1.20 [95% Confidence Interval (CI): 1.09, 1.32] at lag 14 days, and extreme hot (30°C) had a maximum RR of 1.07 (95% CI: 1.04, 1.11) at lag 6 days. The cumulative effect of extreme cold reached a maximum of 2.02 (95% CI: 1.11, 3.67) at lag 0-14 days, whereas the cumulative effect of extreme hot temperature is greatest at lag 0-10 days, but no statistically significant effect was found. In addition, ischemic stroke patients, the elderly, and males were more susceptible to the effects of cold temperature. Conclusions There is a non-linear relationship between ambient temperature and stroke occurrence, with cold temperature having a greater and longer-lasting impact than hot temperature.
Collapse
Affiliation(s)
- Jinhua Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Ying Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, China,Ocean Academy, Zhejiang University, Zhoushan, China
| | - Jianping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Changping Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China,Wenyi Zhang
| | - Zhuang Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China,*Correspondence: Zhuang Cui
| |
Collapse
|
49
|
Wu C, Zhang Y, Wei J, Zhao Z, Norbäck D, Zhang X, Lu C, Yu W, Wang T, Zheng X, Zhang L. Associations of Early-Life Exposure to Submicron Particulate Matter With Childhood Asthma and Wheeze in China. JAMA Netw Open 2022; 5:e2236003. [PMID: 36219442 PMCID: PMC9554703 DOI: 10.1001/jamanetworkopen.2022.36003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Exposure to particulate matter (PM) has been associated with childhood asthma and wheeze. However, the specific associations between asthma and PM with an aerodynamic equivalent diameter of 1 μm or less (ie, PM1), which is a contributor to PM2.5 and potentially more toxic than PM2.5, remain unclear. OBJECTIVE To investigate the association of early-life (prenatal and first year) exposure to size-segregated PM, including PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10, with childhood asthma and wheeze. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study was based on a questionnaire administered between June 2019 and June 2020 to caregivers of children aged 3 to 6 years in 7 Chinese cities (Wuhan, Changsha, Taiyuan, Nanjing, Shanghai, Chongqing, and Urumqi) as the second phase of the China, Children, Homes, Health study. EXPOSURES Exposure to PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10 during the prenatal period and first year of life. MAIN OUTCOMES AND MEASURES The main outcomes were caregiver-reported childhood asthma and wheeze. A machine learning-based space-time model was applied to estimate early-life PM1, PM2.5, and PM10 exposure at 1 × 1-km resolution. Concentrations of PM1-2.5 and PM2.5-10 were calculated by subtracting PM1 from PM2.5 and PM2.5 from PM10, respectively. Multilevel (city and child) logistic regression models were applied to assess associations. RESULTS Of 29 418 children whose caregivers completed the survey (15 320 boys [52.1%]; mean [SD] age, 4.9 [0.9] years), 2524 (8.6%) ever had wheeze and 1161 (3.9%) were diagnosed with asthma. Among all children, 18 514 (62.9%) were breastfed for more than 6 months and 787 (2.7%) had parental history of atopy. A total of 22 250 children (75.6%) had a mother with an educational level of university or above. Of the 25 422 children for whom information about cigarette smoking exposure was collected, 576 (2.3%) had a mother who was a current or former smoker during pregnancy and 7525 (29.7%) had passive household cigarette smoke exposure in early life. Early-life PM1, PM2.5, and PM10 exposure were significantly associated with increased risk of childhood asthma, with higher estimates per 10-μg/m3 increase in PM1 (OR, 1.55; 95% CI, 1.27-1.89) than in PM2.5 (OR, 1.14; 95% CI, 1.03-1.26) and PM10 (OR, 1.11; 95% CI, 1.02-1.20). No association was observed between asthma and PM1-2.5 exposure, suggesting that PM1 rather than PM1-2.5 contributed to the association between PM2.5 and childhood asthma. There were significant associations between childhood wheeze and early-life PM1 exposure (OR, 1.23; 95% CI, 1.07-1.41) and PM2.5 exposure (OR, 1.08; 95% CI, 1.01-1.16) per 10-μg/m3 increase in PM1 and PM2.5, respectively. CONCLUSIONS AND RELEVANCE In this cross-sectional study, higher estimates were observed for the association between PM with smaller particles, such as PM1, vs PM with larger particles and childhood asthma. The results suggest that the association between PM2.5 and childhood asthma was mainly attributable to PM1.
Collapse
Affiliation(s)
- Chuansha Wu
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Yunquan Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, The University of Iowa, Iowa City
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Dan Norbäck
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Xin Zhang
- Research Centre for Environmental Science and Engineering, Shanxi University, Taiyuan, China
| | - Chan Lu
- Department of Occupational and Environmental Health, School of Public Health, Xiangya Medical College, Central South University, Changsha, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing, China
| | - Tingting Wang
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Lu C, Liu Z, Liao H, Yang W, Li Q, Liu Q. Effects of early life exposure to home environmental factors on childhood allergic rhinitis: Modifications by outdoor air pollution and temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114076. [PMID: 36113271 DOI: 10.1016/j.ecoenv.2022.114076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND There is growing evidence that allergic rhinitis (AR) is associated with indoor environmental factors, but their role in childhood AR during early life remains unclear. OBJECTIVE To investigate the association of preconceptional, prenatal, early postnatal, and current exposure to home environmental factors with childhood AR, and to further explore whether this association can be interacted by outdoor air pollution and temperature. METHODS A retrospective cohort study of 8689 preschool children was conducted during 2019-2020 in Changsha, China. A standard questionnaire was used to collect data on each family's health outcomes and home environments. We considered home environmental exposures during one year before conception, pregnancy, first year of life, and past year. Associations of indoor air pollution and allergens with AR were assessed by multiple logistic regression models. RESULTS Pre-birth exposure to indoor air pollution emitted by new furniture or redecoration and dampness related allergen derived from mold/damp stains and mold/damp clothes or bedding during 1 year before conception and pregnancy was significantly associated with increased AR, with adjusted ORs (95% CI) ranging from 1.35 (1.05-1.75) to 1.87 (1.55-2.27). Childhood AR was also significantly related with post-birth exposure to dampness related indoor allergen including mold/damp stains and mold/damp clothes or bedding in first year and past year and pollen allergen including total and nonflowing plants in past year, with a range of ORs (95% CI) from 1.20 (1.01-1.42) to 1.79 (1.42-2.27). We identified that pre-birth, particularly in utero exposure to both indoor air pollution from renovation and dampness related allergens, played a key role in AR development compared to post-birth exposures, and accumulative effect was observed with the highest risk of AR. High exposure to traffic-related air pollution (TRAP) including outdoor PM2.5, NO2, CO, and O3, as well as living near traffic road not only significantly increased adverse effect of home environmental factors but also decreased protective effect of household dogs on childhood AR. Early life exposure to low temperature in pregnancy and high temperature in first year significantly increased AR risk of home environmental exposure. Sensitivity analysis indicated that some sub-groups were more susceptible to AR risk of home environmental exposure. CONCLUSION Our study suggests that pre-birth exposure to home environmental factors played an important role in AR development and this effect can be interacted by TRAP and temperature, which supports a hypothesis of "(pre)fetal origin of childhood AR".
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China.
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha, China.
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha, China.
| | - Qin Li
- XiangYa School of Public Health, Central South University, Changsha, China.
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha, China.
| |
Collapse
|