1
|
Tan Q, Zhou M, You X, Ma J, Ye Z, Shi W, Cui X, Mu G, Yu L, Chen W. Association of ambient ozone exposure with early cardiovascular damage among general urban adults: A repeated-measures cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177380. [PMID: 39505024 DOI: 10.1016/j.scitotenv.2024.177380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Longitudinal evidence of long-term ozone exposure on heart rate variability (HRV, an early indicator of cardiovascular damage) is lacking and the potential mechanism remains largely unclear. Our objectives were to evaluate the cross-sectional and longitudinal associations of ozone exposure with HRV alteration, and the potential roles of protein carbonyl (PC, biomarker of oxidative protein damage) and transforming growth factor (TGF)-β1 in this association. This repeated-measures prospective study included 4138 participants with 6617 observations from the Wuhan-Zhuhai cohort. Ozone concentrations were estimated using a high temporospatial resolution model for each participant. HRV indices, PC, and TGF-β1 were also repeatedly measured. Cross-sectional and longitudinal relationships of ozone exposure with HRV alteration were evaluated by linear mixed model. Cross-sectionally, the strongest lag effect of each 10 ppb increment in short-term ozone exposure showed a 12.40 %, 8.47 %, 4.31 %, 8.03 %, 3.69 %, and 2.41 % decrement on very low frequency (VLF, lag 3 weeks), LF (lag 2 weeks), high frequency (HF, lag 0-7 days), total power (TP, lag 2 weeks), standard deviation of all normal-to-normal intervals (SDNN, lag 3 weeks), and square root of the mean squared difference between adjacent normal-to-normal intervals (lag 2 weeks), respectively. Longitudinally, each 10 ppb increment of annual average ozone was related with an annual change rate of -0.024 ms2/year in VLF, -0.009 ms2/year in LF, -0.013 ms2/year in HF, -0.014 ms2/year in TP, and -0.004 ms/year in SDNN. Mediation analyses indicated that PC mediated 20.77 % and 12.18 % of ozone-associated VLF and TP decline, respectively; TGF-β1 mediated 16.87 % and 27.78 % of ozone-associated VLF and SDNN reduction, respectively. Our study demonstrated that ozone exposure was cross-sectionally and longitudinally related with HRV decline in general Chinese urban adults, and oxidative protein damage and increased TGF-β1 partly mediated ozone exposure-related HRV reduction.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Institute of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wendi Shi
- Lucy Cavendish College, University of Cambridge, Cambridge CB3 0BU, UK
| | - Xiuqing Cui
- Institute of Health Surveillance Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Data Center, Medical Affairs Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
England-Mason G, Reardon AJF, Reynolds JE, Grohs MN, MacDonald AM, Kinniburgh DW, Martin JW, Lebel C, Dewey D. Maternal concentrations of perfluoroalkyl sulfonates and alterations in white matter microstructure in the developing brains of young children. ENVIRONMENTAL RESEARCH 2024; 267:120638. [PMID: 39681179 DOI: 10.1016/j.envres.2024.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Maternal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to child neurodevelopmental difficulties. Neuroimaging research has linked these neurodevelopmental difficulties to white matter microstructure alterations, but the effects of PFAS on children's white matter microstructure remains unclear. We investigated associations between maternal blood concentrations of six common perfluoroalkyl sulfonates and white matter alterations in young children using longitudinal neuroimaging data. METHODS This study included 84 maternal-child pairs from a Canadian pregnancy cohort. Maternal second trimester blood concentrations of perfluorohexanesulfonate (PFHxS) and five perfluorooctane sulfonate (PFOS) isomers were quantified. Children underwent magnetic resonance imaging scans between ages two and six (279 scans total). Adjusted linear mixed models investigated associations between each exposure and white matter fractional anisotropy (FA) and mean diffusivity (MD). RESULTS Higher maternal concentrations of perfluoroalkyl sulfonates were associated with higher MD and lower FA in the body and splenium of the corpus callosum of young children. Multiple sex-specific associations were found. In males, PFHxS was negatively associated with FA in the superior longitudinal fasciculus, while PFOS isomers were positively associated with MD in the inferior longitudinal fasciculus (ILF). In females, PFOS isomers were positively associated with FA in the pyramidal fibers and MD in the fornix, but negatively associated with MD in the ILF. CONCLUSION Maternal exposure to perfluoroalkyl sulfonates may alter sex-specific white matter development in young children, potentially contributing to neurodevelopmental difficulties. Larger studies are needed to replicate these findings and examine the neurotoxicity of these chemicals.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Melody N Grohs
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Baker AE, Galván A, Fuligni AJ. The connecting brain in context: How adolescent plasticity supports learning and development. Dev Cogn Neurosci 2024; 71:101486. [PMID: 39631105 DOI: 10.1016/j.dcn.2024.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Puberty initiates significant neurobiological changes that amplify adolescents' responsiveness to their environment, facilitating neural adaptation through processes like synaptic pruning, myelination, and neuronal reorganization. This heightened neuroplasticity, combined with their burgeoning social curiosity and appetite for risk, propels adolescents to explore diverse new environments and forge social bonds. Such exploration can accelerate experiential learning and the formation of social networks as adolescents prepare for adult independence. This review examines the complex interplay between adolescent neuroplasticity, environmental influences, and learning processes, synthesizing findings from recent studies that illustrate how factors such as social interactions, school environments, and neighborhood contexts influence both the transient activation and enduring organization of the developing brain. We advocate for incorporating social interaction into adolescent-tailored interventions, leveraging their social plasticity to optimize learning and development during this critical phase. Going forward, we discuss the importance of longitudinal studies that employ multimodal approaches to characterize the dynamic interactions between development and environment, highlighting recent advancements in quantifying environmental impacts in studies of developmental neuroscience. Ultimately, this paper provides an updated synopsis of adolescent neuroplasticity and the environment, underscoring the potential for environmental enrichment programs to support healthy brain development and resilience at this critical development stage.
Collapse
|
4
|
Harnett NG, Merrill LC, Fani N. Racial and ethnic socioenvironmental inequity and neuroimaging in psychiatry: a brief review of the past and recommendations for the future. Neuropsychopharmacology 2024; 50:3-15. [PMID: 38902354 PMCID: PMC11526029 DOI: 10.1038/s41386-024-01901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging is a major tool that holds immense translational potential for understanding psychiatric disorder phenomenology and treatment. However, although epidemiological and social research highlights the many ways inequity and representativeness influences mental health, there is a lack of consideration of how such issues may impact neuroimaging features in psychiatric research. More specifically, the potential extent to which racialized inequities may affect underlying neurobiology and impact the generalizability of neural models of disorders is unclear. The present review synthesizes research focused on understanding the potential consequences of racial/ethnic inequities relevant to neuroimaging in psychiatry. We first discuss historical and contemporary drivers of inequities that persist today. We then discuss the neurobiological consequences of these inequities as revealed through current research, and note emergent research demonstrating the impact such inequities have on our ability to use neuroimaging to understand psychiatric disease. We end with a set of recommendations and practices to move the field towards more equitable approaches that will advance our abilities to develop truly generalizable neurobiological models of psychiatric disorders.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Livia C Merrill
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Morrel J, Overholtzer LN, Sukumaran K, Cotter DL, Cardenas-Iniguez C, Tyszka JM, Schwartz J, Hackman DA, Chen JC, Herting MM. Outdoor Air Pollution Relates to Amygdala Subregion Volume and Apportionment in Early Adolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617429. [PMID: 39463957 PMCID: PMC11507665 DOI: 10.1101/2024.10.14.617429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Outdoor air pollution is associated with an increased risk for psychopathology. Although the neural mechanisms remain unclear, air pollutants may impact mental health by altering limbic brain regions, such as the amygdala. Here, we examine the association between ambient air pollution exposure and amygdala subregion volumes in 9-10-year-olds. Methods Cross-sectional Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data from 4,473 participants (55.4% male) were leveraged. Air pollution was estimated for each participant's primary residential address. Using the probabilistic CIT168 atlas, we quantified total amygdala and 9 distinct subregion volumes from T1- and T2-weighted images. First, we examined how criteria pollutants (i.e., fine particulate matter [PM2.5], nitrogen dioxide, ground-level ozone) and 15 PM2.5 components related with total amygdala volumes using linear mixed-effect (LME) regression. Next, partial least squares correlation (PLSC) analyses were implemented to identify relationships between co-exposure to criteria pollutants as well as PM2.5 components and amygdala subregion volumes. We also conducted complementary analyses to assess subregion apportionment using amygdala relative volume fractions (RVFs). Results No significant associations were detected between pollutants and total amygdala volumes. Using PLSC, one latent dimension (LD) (52% variance explained) captured a positive association between calcium and several basolateral subregions. LDs were also identified for amygdala RVFs (ranging from 30% to 82% variance explained), with PM2.5 and component co-exposure associated with increases in lateral, but decreases in medial and central, RVFs. Conclusions Fine particulate and its components are linked with distinct amygdala differences, potentially playing a role in risk for adolescent mental health problems.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Parenteau AM, Hang S, Swartz JR, Wexler AS, Hostinar CE. Clearing the air: A systematic review of studies on air pollution and childhood brain outcomes to mobilize policy change. Dev Cogn Neurosci 2024; 69:101436. [PMID: 39244820 PMCID: PMC11407021 DOI: 10.1016/j.dcn.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Climate change, wildfires, and environmental justice concerns have drawn increased attention to the impact of air pollution on children's health and development. Children are especially vulnerable to air pollution exposure, as their brains and bodies are still developing. The objective of this systematic review was to synthesize available empirical evidence on the associations between air pollution exposure and brain outcomes in developmental samples (ages 0-18 years old). Studies were identified by searching the PubMed and Web of Science Core Collection databases and underwent a two-phase screening process before inclusion. 40 studies were included in the review, which included measures of air pollution and brain outcomes at various points in development. Results linked air pollution to varied brain outcomes, including structural volumetric and cortical thickness differences, alterations in white matter microstructure, functional network changes, metabolic and molecular effects, as well as tumor incidence. Few studies included longitudinal changes in brain outcomes. This review also suggests methodologies for incorporating air pollution measures in developmental cognitive neuroscience studies and provides specific policy recommendations to reduce air pollution exposure and promote healthy brain development by improving access to clean air.
Collapse
Affiliation(s)
| | - Sally Hang
- Psychology Department, University of California, Davis, USA
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis, USA
| | - Anthony S Wexler
- Air Quality Research Center, Mechanical and Aerospace Engineering, University of California, Davis, USA
| | | |
Collapse
|
7
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A Systematic Review of Air Pollution Exposure and Brain Structure and Function during Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313629. [PMID: 39314970 PMCID: PMC11419233 DOI: 10.1101/2024.09.13.24313629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). Methods Using PubMed and Web of Science, we conducted an updated literature search and systematic review of articles published through March 2024, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews informing the World Health Organization Global Air Quality Guidelines. Results We identified 222 relevant papers, and 14 new studies met our inclusion criteria. Including six studies from our 2019 review, the 20 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. Conclusion Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review, publications doubled-an increase that testifies to the importance of this public health issue. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Cory-Slechta DA, Marvin E, Welle K, Goeke C, Chalupa D, Oberdörster G, Sobolewski M. Male-biased vulnerability of mouse brain tryptophan/kynurenine and glutamate systems to adolescent exposures to concentrated ambient ultrafine particle air pollution. Neurotoxicology 2024; 104:20-35. [PMID: 39002649 PMCID: PMC11377152 DOI: 10.1016/j.neuro.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) exposures have been associated with numerous neurodevelopmental and psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia, all male-biased disorders with onsets from early life to late adolescence/early adulthood. While prior experimental studies have focused on effects of AP exposures during early brain development, brain development actually extends well into early adulthood. The current study in mice sought to extend the understanding of developmental brain vulnerability during adolescence, a later but significant period of brain development and maturation to the ultrafine particulate (UFPs) component of AP, considered its most reactive component. Additionally, it examined adolescent response to UFPs when preceded by earlier developmental exposures, to ascertain the trajectory of effects and potential enhancement or mitigation of adverse consequences. Outcomes focused on shared features associated with multiple neurodevelopmental disorders. For this purpose, C57Bl/6 J mice of both sexes were exposed to ambient concentrated UFPs or filtered air from PND (postnatal day) 4-7 and PND10-13, and again at PND39-42 and 45-49, resulting in 3 exposure postnatal/adolescent treatment groups per sex: Air/Air, Air/UFP, and UFP/UFP. Features common to neurodevelopmental disorders were examined at PND50. Mass exposure concentration from postnatal exposure averaged 44.34 μg/m3 and the adolescent exposure averaged 49.18 μg/m3. Male brain showed particular vulnerability to UFP exposures in adolescence, with alterations in frontal cortical and striatal glutamatergic and tryptophan/serotonergic neurotransmitters and concurrent reductions in levels of astrocytes in corpus callosum and in serum cytokine levels, with combined exposures resulting in significant reductions in corpus callosum myelination and serum corticosterone. Reductions in serum corticosterone in males correlated with reductions in neurotransmitter levels, and reductions in striatal glutamatergic function specifically correlated with reductions in corpus callosum astrocytes. UFP-induced changes in neurotransmitter levels in males were mitigated by prior postnatal exposure, suggesting potential adaptation, whereas reductions in corticosterone and in corpus callosum neuropathological effects were further strengthened by combined postnatal and adolescent exposures. UFP-induced changes in females occurred primarily in striatal dopamine systems and as reductions in serum cytokines only in response to combined postnatal and adolescent exposures. Findings in males underscore the importance of more integrated physiological assessments of mechanisms of neurotoxicity. Further, these findings provide biological plausibility for an accumulating epidemiologic literature linking air pollution to neurodevelopmental and psychiatric disorders. As such, they support a need for consideration of the regulation of the UFP component of air pollution.
Collapse
Affiliation(s)
- D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - K Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - C Goeke
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - D Chalupa
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| |
Collapse
|
9
|
Herting MM, Bottenhorn KL, Cotter DL. Outdoor air pollution and brain development in childhood and adolescence. Trends Neurosci 2024; 47:593-607. [PMID: 39054161 PMCID: PMC11324378 DOI: 10.1016/j.tins.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Exposure to outdoor air pollution has been linked to adverse health effects, including potential widespread impacts on the CNS. Ongoing brain development may render children and adolescents especially vulnerable to neurotoxic effects of air pollution. While mechanisms remain unclear, promising advances in human neuroimaging can help elucidate both sensitive periods and neurobiological consequences of exposure to air pollution. Herein we review the potential influences of air pollution exposure on neurodevelopment, drawing from animal toxicology and human neuroimaging studies. Due to ongoing cellular and system-level changes during childhood and adolescence, the developing brain may be more sensitive to pollutants' neurotoxic effects, as a function of both timing and duration, with relevance to cognition and mental health. Building on these foundations, the emerging field of environmental neuroscience is poised to further decipher which air toxicants are most harmful and to whom.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Katherine L Bottenhorn
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Devyn L Cotter
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Cotter DL, Ahmadi H, Cardenas-Iniguez C, Bottenhorn KL, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman DA, Chen JC, Herting MM. Exposure to multiple ambient air pollutants changes white matter microstructure during early adolescence with sex-specific differences. COMMUNICATIONS MEDICINE 2024; 4:155. [PMID: 39090375 PMCID: PMC11294340 DOI: 10.1038/s43856-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Air pollution is ubiquitous, yet questions remain regarding its impact on the developing brain. Large changes occur in white matter microstructure across adolescence, with notable differences by sex. METHODS We investigate sex-stratified effects of annual exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) at ages 9-10 years on longitudinal patterns of white matter microstructure over a 2-year period. Diffusion-weighted imaging was collected on 3T MRI scanners for 8182 participants (1-2 scans per subject; 45% with two scans) from the Adolescent Brain Cognitive Development (ABCD) Study®. Restriction spectrum imaging was performed to quantify intracellular isotropic (RNI) and directional (RND) diffusion. Ensemble-based air pollution concentrations were assigned to each child's primary residential address. Multi-pollutant, sex-stratified linear mixed-effect models assessed associations between pollutants and RNI/RND with age over time, adjusting for sociodemographic factors. RESULTS Here we show higher PM2.5 exposure is associated with higher RND at age 9 in both sexes, with no significant effects of PM2.5 on RNI/RND change over time. Higher NO2 exposure is associated with higher RNI at age 9 in both sexes, as well as attenuating RNI over time in females. Higher O3 exposure is associated with differences in RND and RNI at age 9, as well as changes in RND and RNI over time in both sexes. CONCLUSIONS Criteria air pollutants influence patterns of white matter maturation between 9-13 years old, with some sex-specific differences in the magnitude and anatomical locations of affected tracts. This occurs at concentrations that are below current U.S. standards, suggesting exposure to low-level pollution during adolescence may have long-term consequences.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Zundel CG, Ely S, Brokamp C, Strawn JR, Jovanovic T, Ryan P, Marusak HA. Particulate Matter Exposure and Default Mode Network Equilibrium During Early Adolescence. Brain Connect 2024; 14:307-318. [PMID: 38814823 PMCID: PMC11387001 DOI: 10.1089/brain.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Background: Air pollution exposure has been associated with adverse cognitive and mental health outcomes in children, adolescents, and adults, although youth may be particularly susceptible given ongoing brain development. However, the neurodevelopmental mechanisms underlying the associations among air pollution, cognition, and mental health remain unclear. We examined the impact of particulate matter (PM2.5) on resting-state functional connectivity (rsFC) of the default mode network (DMN) and three key attention networks: dorsal attention, ventral attention, and cingulo-opercular. Methods: Longitudinal changes in rsFC within/between networks were assessed from baseline (9-10 years) to the 2-year follow-up (11-12 years) in 10,072 youth (M ± SD = 9.93 + 0.63 years; 49% female) from the Adolescent Brain Cognitive Development (ABCD®) study. Annual ambient PM2.5 concentrations from the 2016 calendar year were estimated using hybrid ensemble spatiotemporal models. RsFC was estimated using functional neuroimaging. Linear mixed models were used to test associations between PM2.5 and change in rsFC over time while adjusting for relevant covariates (e.g., age, sex, race/ethnicity, parental education, and family income) and other air pollutants (O3, NO2). Results: A PM2.5 × time interaction was significant for within-network rsFC of the DMN such that higher PM2.5 concentrations were associated with a smaller increase in rsFC over time. Further, significant PM2.5 × time interactions were observed for between-network rsFC of the DMN and all three attention networks, with varied directionality. Conclusion: PM2.5 exposure was associated with alterations in the development and equilibrium of the DMN-a network implicated in self-referential processing-and anticorrelated attention networks, which may impact trajectories of cognitive and mental health symptoms across adolescence.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Samantha Ely
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Patrick Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience Program, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
12
|
Cotter DL, Morrel J, Sukumaran K, Cardenas-Iniguez C, Schwartz J, Herting MM. Prenatal and childhood air pollution exposure, cellular immune biomarkers, and brain connectivity in early adolescents. Brain Behav Immun Health 2024; 38:100799. [PMID: 39021436 PMCID: PMC11252082 DOI: 10.1016/j.bbih.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Ambient air pollution is a neurotoxicant with hypothesized immune-related mechanisms. Adolescent brain structural and functional connectivity may be especially vulnerable to ambient pollution due to the refinement of large-scale brain networks during this period, which vary by sex and have important implications for cognitive, behavioral, and emotional functioning. In the current study we explored associations between air pollutants, immune markers, and structural and functional connectivity in early adolescence by leveraging cross-sectional sex-stratified data from the Adolescent Brain Cognitive Development℠ Study®. Methods Pollutant concentrations of fine particulate matter, nitrogen dioxide, and ozone were assigned to each child's primary residential address during the prenatal period and childhood (9-10 years-old) using an ensemble-based modeling approach. Data collected at 11-13 years-old included resting-state functional connectivity of the default mode, frontoparietal, and salience networks and limbic regions of interest, intracellular directional and isotropic diffusion of available white matter tracts, and markers of cellular immune activation. Using partial least squares correlation, a multivariate data-driven method that identifies important variables within latent dimensions, we investigated associations between 1) pollutants and structural and functional connectivity, 2) pollutants and immune markers, and 3) immune markers and structural and functional connectivity, in each sex separately. Results Air pollution exposure was related to white matter intracellular directional and isotropic diffusion at ages 11-13 years, but the direction of associations varied by sex. There were no associations between pollutants and resting-state functional connectivity at ages 11-13 years. Childhood exposure to nitrogen dioxide was negatively correlated with white blood cell count in males. Immune biomarkers were positively correlated with white matter intracellular directional diffusion in females and both white matter intracellular directional and isotropic diffusion in males. Lastly, there was a reliable negative correlation between lymphocyte-to-monocyte ratio and default mode network resting-state functional connectivity in females, as well as a compromised immune marker profile associated with lower resting-state functional connectivity between the salience network and the left hippocampus in males. In post-hoc exploratory analyses, we found that the PLSC-identified white matter tracts and resting-state networks related to processing speed and cognitive control performance from the NIH Toolbox. Conclusions We identified novel links between childhood nitrogen dioxide and cellular immune activation in males, and brain network connectivity and immune markers in both sexes. Future research should explore the potentially mediating role of immune activity in how pollutants affect neurological outcomes as well as the potential consequences of immune-related patterns of brain connectivity in service of improved brain health for all.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Uy JP, Yuan JP, Colich NL, Gotlib IH. Effects of Pollution Burden on Neural Function During Implicit Emotion Regulation and Longitudinal Changes in Depressive Symptoms in Adolescents. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100322. [PMID: 38957313 PMCID: PMC11217611 DOI: 10.1016/j.bpsgos.2024.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 07/04/2024] Open
Abstract
Background Exposure to environmental pollutants early in life has been associated with increased prevalence and severity of depression in adolescents; however, the neurobiological mechanisms underlying this association are not well understood. In the current longitudinal study, we investigated whether pollution burden in early adolescence (9-13 years) was associated with altered brain activation and connectivity during implicit emotion regulation and changes in depressive symptoms across adolescence. Methods One hundred forty-five participants (n = 87 female; 9-13 years) provided residential addresses, from which we determined their relative pollution burden at the census tract level, and performed an implicit affective regulation task in the scanner. Participants also completed questionnaires assessing depressive symptoms at 3 time points, each approximately 2 years apart, from which we calculated within-person slopes of depressive symptoms. We conducted whole-brain activation and connectivity analyses to examine whether pollution burden was associated with alterations in brain function during implicit emotion regulation of positively and negatively valenced stimuli and how these effects were related to slopes of depressive symptoms across adolescence. Results Greater pollution burden was associated with greater bilateral medial prefrontal cortex activation and stronger bilateral medial prefrontal cortex connectivity with regions within the default mode network (e.g., temporoparietal junction, posterior cingulate cortex, precuneus) during implicit regulation of negative emotions, which was associated with greater increases in depressive symptoms across adolescence in those exposed to higher pollution burden. Conclusions Adolescents living in communities characterized by greater pollution burden showed altered default mode network functioning during implicit regulation of negative emotions that was associated with increases in depressive symptoms across adolescence.
Collapse
Affiliation(s)
- Jessica P. Uy
- Department of Psychology, Stanford University, Stanford, California
| | - Justin P. Yuan
- Department of Psychology, Stanford University, Stanford, California
| | - Natalie L. Colich
- Department of Psychology, Harvard University, Cambridge, Massachusetts
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, California
| |
Collapse
|
14
|
Torgerson C, Ahmadi H, Choupan J, Fan CC, Blosnich JR, Herting MM. Sex, gender diversity, and brain structure in early adolescence. Hum Brain Mapp 2024; 45:e26671. [PMID: 38590252 PMCID: PMC11002534 DOI: 10.1002/hbm.26671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
There remains little consensus about the relationship between sex and brain structure, particularly in early adolescence. Moreover, few pediatric neuroimaging studies have analyzed both sex and gender as variables of interest-many of which included small sample sizes and relied on binary definitions of gender. The current study examined gender diversity with a continuous felt-gender score and categorized sex based on X and Y allele frequency in a large sample of children ages 9-11 years old (N = 7195). Then, a statistical model-building approach was employed to determine whether gender diversity and sex independently or jointly relate to brain morphology, including subcortical volume, cortical thickness, gyrification, and white matter microstructure. Additional sensitivity analyses found that male versus female differences in gyrification and white matter were largely accounted for by total brain volume, rather than sex per se. The model with sex, but not gender diversity, was the best-fitting model in 60.1% of gray matter regions and 61.9% of white matter regions after adjusting for brain volume. The proportion of variance accounted for by sex was negligible to small in all cases. While models including felt-gender explained a greater amount of variance in a few regions, the felt-gender score alone was not a significant predictor on its own for any white or gray matter regions examined. Overall, these findings demonstrate that at ages 9-11 years old, sex accounts for a small proportion of variance in brain structure, while gender diversity is not directly associated with neurostructural diversity.
Collapse
Affiliation(s)
- Carinna Torgerson
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hedyeh Ahmadi
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jeiran Choupan
- Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Chun Chieh Fan
- Center for Population Neuroscience and GeneticsLaureate Institute for Brain ResearchTulsaOklahomaUSA
- Department of Radiology, School of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - John R. Blosnich
- Suzanne Dworak‐Peck School of Social WorkUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Megan M. Herting
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Cardenas-Iniguez C, Schachner JN, Ip KI, Schertz KE, Gonzalez MR, Abad S, Herting MM. Building towards an adolescent neural urbanome: Expanding environmental measures using linked external data (LED) in the ABCD study. Dev Cogn Neurosci 2024; 65:101338. [PMID: 38195369 PMCID: PMC10837718 DOI: 10.1016/j.dcn.2023.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
Many recent studies have demonstrated that environmental contexts, both social and physical, have an important impact on child and adolescent neural and behavioral development. The adoption of geospatial methods, such as in the Adolescent Brain Cognitive Development (ABCD) Study, has facilitated the exploration of many environmental contexts surrounding participants' residential locations without creating additional burdens for research participants (i.e., youth and families) in neuroscience studies. However, as the number of linked databases increases, developing a framework that considers the various domains related to child and adolescent environments external to their home becomes crucial. Such a framework needs to identify structural contextual factors that may yield inequalities in children's built and natural environments; these differences may, in turn, result in downstream negative effects on children from historically minoritized groups. In this paper, we develop such a framework - which we describe as the "adolescent neural urbanome" - and use it to categorize newly geocoded information incorporated into the ABCD Study by the Linked External Data (LED) Environment & Policy Working Group. We also highlight important relationships between the linked measures and describe possible applications of the Adolescent Neural Urbanome. Finally, we provide a number of recommendations and considerations regarding the responsible use and communication of these data, highlighting the potential harm to historically minoritized groups through their misuse.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Jared N Schachner
- Price School of Public Policy, University of Southern California, Los Angeles, CA, USA
| | - Ka I Ip
- Institute of Child Development, University of Minnesota, MN, USA
| | - Kathryn E Schertz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Marybel R Gonzalez
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Shermaine Abad
- Department of Radiology, University of California, San Diego, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Campbell CE, Cotter DL, Bottenhorn KL, Burnor E, Ahmadi H, Gauderman WJ, Cardenas-Iniguez C, Hackman D, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Air pollution and age-dependent changes in emotional behavior across early adolescence in the U.S. ENVIRONMENTAL RESEARCH 2024; 240:117390. [PMID: 37866541 PMCID: PMC10842841 DOI: 10.1016/j.envres.2023.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Recent studies have linked air pollution to increased risk for behavioral problems during development, albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional behaviors may be affected when exposure coincides with the transition to adolescence - a vulnerable time for developing mental health difficulties. This study investigates if annual average PM2.5 and NO2 exposure at ages 9-10 years moderates age-related changes in internalizing and externalizing behaviors over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the residential address of each participant using an ensemble-based modeling approach. Caregivers answered questions from the Child Behavior Checklist (CBCL) at the baseline, 1-year follow-up, and 2-year follow-up visits, for a total of 3 waves of data; from the CBCL we obtained scores on internalizing and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models were used to examine both the main effect of age as well as the interaction of age with each pollutant on behavior while adjusting for various socioeconomic and demographic characteristics. Against our hypothesis, there was no evidence that greater air pollution exposure was related to more behavioral problems with age over time.
Collapse
Affiliation(s)
- Claire E Campbell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089-2520, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089-2520, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90063, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
17
|
Herting M, Cotter D, Ahmadi H, Cardenas-Iniguez C, Bottenhorn K, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman D, Chen JC. Sex-specific effects in how childhood exposures to multiple ambient air pollutants affect white matter microstructure development across early adolescence. RESEARCH SQUARE 2023:rs.3.rs-3213618. [PMID: 37645919 PMCID: PMC10462194 DOI: 10.21203/rs.3.rs-3213618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ambient air pollution is ubiquitous, yet questions remain as to how it might impact the developing brain. Large changes occur in the brain's white matter (WM) microstructure across adolescence, with noticeable differences in WM integrity in male and female youth. Here we report sex-stratified effects of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on longitudinal patterns of WM microstructure from 9-13 years-old in 8,182 (49% female) participants using restriction spectrum imaging. After adjusting for key sociodemographic factors, multi-pollutant, sex-stratified models showed that one-year annual exposure to PM2.5 and NO2 was associated with higher, while O3 was associated with lower, intracellular diffusion at age 9. All three pollutants also affected trajectories of WM maturation from 9-13 years-old, with some sex-specific differences in the number and anatomical locations of tracts showing altered trajectories of intracellular diffusion. Concentrations were well-below current U.S. standards, suggesting exposure to these criteria pollutants during adolescence may have long-term consequences on brain development.
Collapse
|