1
|
Huang J, Cheng F, He L, Lou X, Li H, You J. Effect driven prioritization of contaminants in wastewater treatment plants across China: A data mining-based toxicity screening approach. WATER RESEARCH 2024; 264:122223. [PMID: 39116614 DOI: 10.1016/j.watres.2024.122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
A diversity of contaminants of emerging concern (CECs) are present in wastewater effluent, posing potential threats to receiving waters. It is urgent for a holistic assessment of the occurrence and risk of CECs related to wastewater treatment plants (WWTP) on national and regional scales. A data mining-based risk prioritization method was developed to collect the reported contaminants and their respective concentrations in municipal and industrial WWTPs and their receiving waters across China over the past 20 years. A total of 10,781 chemicals were reported in 8336 publications, of which 1037 contaminants were reported with environmental concentrations. While contaminant categories varied across WWTP types (municipal vs. industrial) and regions, pharmaceuticals and cyclic hydrocarbons were the most studied CECs. Contaminant composition in receiving water was closer to that in municipal than industrial WWTPs. Publications on legacy pesticides and polycyclic aromatic hydrocarbons in WWTP decreased recently compared to the past, while pharmaceuticals and perfluorochemicals have received increasing attention, showing a changing concern over time. Detection frequency, concentration, removal efficiency, and toxicity data were integrated for assessing potential risks and prioritizing CECs on national and regional scales using an environmental health prioritization index (EHPi) approach. Among 666 contaminants in municipal WWTP effluent, trichlorfon and perfluorooctanesulfonic acid were with the highest EHPi scores, while 17ɑ-ethinylestradiol and bisphenol A had the highest EHPi scores among 304 contaminants in industrial WWTPs. The prioritized contaminants varied across regions, suggesting a need for tailoring regional measures of wastewater treatment and control.
Collapse
Affiliation(s)
- Jiehui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Fei Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Liwei He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaohan Lou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
2
|
Han J, Choong CE, Jang M, Lee J, Hyun S, Lee WS, Kim M. Causative mechanisms limiting the removal efficiency of short-chain per- and polyfluoroalkyl substances (PFAS) by activated carbon. CHEMOSPHERE 2024; 365:143320. [PMID: 39303790 DOI: 10.1016/j.chemosphere.2024.143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Short-chain per and polyfluoroalkyl substances (PFAS) have been found to be relatively high in water treatment systems compared to long-chain PFAS because of the unsatisfactory adsorption efficiency of short-chain PFAS. Knowledge about why short-chain PFAS are less removed by porous carbon is very limited. The study focused on providing causal mechanisms that link the low adsorption of short-chain PFAS and proposing an improved method for removing both short- and long-chain PFAS. The long-chain PFAS with higher hydrophobicity diffused more quickly than the short-chain PFAS due to stronger partitioning driving forces. In the initial adsorption stage, therefore, pores of activated carbon were blocked by long-chain PFAS, which makes it difficult for the short-chain PFAS to enter the internal pores. Although several short-chain PFAS diffuse into the pores, the relatively more hydrophilic short-chain congeners cannot be fully adsorbed on activated carbon due to limited positively charged sites. Moreover, compared to larger particle sizes, smaller activated carbon particles have shorter pore channels near the surface, reducing the risk of pore-blocking and ensuring the pores remain accessible for more efficient adsorption. Additionally, these smaller particles offer a greater external surface area and more functional groups, which enhance the adsorption capacity. It indicates that the smaller particle size of activated carbon would have a positive effect on the short-chain PFAS removal.
Collapse
Affiliation(s)
- Junho Han
- Environmental Planning Institute, Seoul National University, Seoul, 08826, Republic of Korea; Department of Earth and Environmental Science, Rutgers University, New Jersey, 07102, United States
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea; Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Junghee Lee
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea
| | - Seunghun Hyun
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Seok Lee
- Yeongsan River Environment Research Center, National Institute of Environmental Research, Gwangju, 61945, Republic of Korea
| | - Minhee Kim
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea.
| |
Collapse
|
3
|
Alukkal CR, Lee LS, Staton K. Per- and polyfluoroalkyl substances behavior: Insights from autothermal thermophilic aerobic digestion - Storage nitrification-denitrification reactors. CHEMOSPHERE 2024; 365:143357. [PMID: 39293685 DOI: 10.1016/j.chemosphere.2024.143357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as significant environmental contaminants due to their persistence, bioaccumulative properties, and potential adverse impacts on health and ecosystems. Water Resource Recovery Facilities (WRRFs) play a crucial role in the management of PFAS, given their widespread presence in consumer products and subsequent reintroduction into the environment. This study investigated the dynamics of PFAS within the solids stream treatment processing that utilized autothermal thermophilic aerobic digestion (ATAD) followed by a storage nitrification-denitrification reactor (SNDR). PFAS analysis included 60 PFAS analyzed via liquid chromatography-triple quadrupole time-of-flight mass spectrometry of pre-ATAD, post-ATAD, and post-SNDR samples. Complexities such as volatile solids loss during the treatment processes were considered in assessing the effect of ATAD and SNDR on PFAS concentrations. Significant changes were observed in the relative contributions of various PFAS classes throughout the treatment processes due to biotransformation; similar changes were reflected in both 2019 and 2021. The relative contribution of perfluoroalkyl alkyl acids (PFAAs) increased while phosphorus-containing PFAS (e.g., di-substituted polyfluoroalkyl phosphate esters) and fluorotelomer carboxylic acids decreased. Shorter-chain PFAAs were enriched during ATAD, whereas most PFAS increased during SNDR except diPAPs and FTCAs, reflecting treatment conditions' impact. Overall, minor decreases in total PFAS concentrations during ATAD as well as SNDR were observed and hypothesized to be due to enhanced biotransformation to ultra-short PFAS that were not quantified. Even with up to 60 PFAS quantified in the samples, PFAS accounted for <1% of the total fluorine with <2% of that total fluorine being fluoride prompting interest in additional exploration.
Collapse
Affiliation(s)
- Caroline Rose Alukkal
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Linda S Lee
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA; Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | | |
Collapse
|
4
|
Liu T, Hu LX, Han Y, Xiao S, Dong LL, Yang YY, Liu YS, Zhao JL, Ying GG. Non-target discovery and risk prediction of per- and polyfluoroalkyl substances (PFAS) and transformation products in wastewater treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135081. [PMID: 38964036 DOI: 10.1016/j.jhazmat.2024.135081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/19/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Wastewater treatment plants (WWTPs) serve as the main destination of many wastes containing per- and polyfluoroalkyl substances (PFAS). Here, we investigated the occurrence and transformation of PFAS and their transformation products (TPs) in wastewater treatment systems using high-resolution mass spectrometry-based target, suspect, and non-target screening approaches. The results revealed the presence of 896 PFAS and TPs in aqueous and sludge phases, of which 687 were assigned confidence levels 1-3 (46 PFAS and 641 TPs). Cyp450 metabolism and environmental microbial degradation were found to be the primary metabolic transformation pathways for PFAS within WWTPs. An estimated 52.3 %, 89.5 %, and 13.6 % of TPs were believed to exhibit persistence, bioaccumulation, and toxicity effects, respectively, with a substantial number of TPs posing potential health risks. Notably, the length of the fluorinated carbon chain in PFAS and TPs was likely associated with increased hazard, primarily due to the influence of biodegradability. Ultimately, two high riskcompounds were identified in the effluent, including one PFAS (Perfluorobutane sulfonic acid) and one enzymatically metabolized TP (23-(Perfluorobutyl)tricosanoic acid@BTM0024_cyp450). It is noteworthy that the toxicity of some TPs exceeded that of their parent compounds. The results from this study underscores the importance of PFAS TPs and associated environmental risks.
Collapse
Affiliation(s)
- Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Sheng Xiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Li Dong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
5
|
Gao M, Zhang Q, Wu S, Wu L, Cao P, Zhang Y, Rong L, Fang B, Yuan C, Yao Y, Wang Y, Sun H. Contamination Status of Novel Organophosphate Esters Derived from Organophosphite Antioxidants in Soil and the Effects on Soil Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10740-10751. [PMID: 38771797 DOI: 10.1021/acs.est.3c10611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The contamination status of novel organophosphate esters (NOPEs) and their precursors organophosphite antioxidants (OPAs) and hydroxylated/diester transformation products (OH-OPEs/di-OPEs) in soils across a large-scale area in China were investigated. The total concentrations of the three test NOPEs in soil were 82.4-716 ng g-1, which were considerably higher than those of traditional OPEs (4.50-430 ng g-1), OPAs (n.d.-30.8 ng g-1), OH-OPEs (n.d.-0.49 ng g-1), and di-OPEs (0.57-21.1 ng g-1). One NOPE compound, i.e., tris(2,4-di-tert-butylphenyl) phosphate (AO168 = O) contributed over 65% of the concentrations of the studied OPE-associated contaminants. A 30-day soil incubation experiment was performed to confirm the influence of AO168 = O on soil bacterial communities. Specific genera belonging to Proteobacteria, such as Lysobacter and Ensifer, were enriched in AO168 = O-contaminated soils. Moreover, the ecological function of methylotrophy was observed to be significantly enhanced (t-test, p < 0.01) in soil treated with AO168 = O, while nitrogen fixation was significantly inhibited (t-test, p < 0.01). These findings comprehensively revealed the contamination status of OPE-associated contaminants in the soil environment and provided the first evidence of the effects of NOPEs on soil microbial communities.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lina Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peiyu Cao
- Department of Global Development, College of Agriculture and Life Science, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, New York 14850, United States
| | - Yaozhi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chaolei Yuan
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Zhu X, Li H, Luo Y, Li Y, Zhang J, Wang Z, Yang W, Li R. Evaluation and prediction of anthropogenic impacts on long-term multimedia fate and health risks of PFOS and PFOA in the Elbe River Basin. WATER RESEARCH 2024; 257:121675. [PMID: 38692258 DOI: 10.1016/j.watres.2024.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have aroused great concern owing to their widespread occurrence and toxic effects. However, their long-term trends and multimedia fate remain largely unknown. Here, we investigate the spatiotemporal characteristics and periodic oscillations of PFOS and PFOA in the Elbe River between 2010 and 2021. Anthropogenic emission inventories and multimedia fugacity model were developed to analyse their historical and future transport fates and quantify related human risks in each medium for the three age groups. The results show that average PFOS and PFOA concentrations in the Elbe River were 4.08 and 3.41 ng/L, declining at the annual rate of 7.36% and 4.98% during the study period, respectively. Periodic oscillations of their concentrations and mass fluxes were most pronounced at 40-60 and 20-40 months. The multimedia fugacity model revealed that higher concentrations occurred in fish (PFOS: 14.29, PFOA: 0.40 ng/g), while the soil was their dominant sink (PFOS: 179, PFOA: 95 tons). The exchange flux between water and sediment was the dominant pathway in multimedia transportation (397 kg/year). Although PFOS and PFOA concentrations are projected to decrease by 22.41% and 50.08%, respectively, from 2021 to 2050, the hazard quotient of PFOS in fish is a low hazard. This study provides information for the assessment of PFOS and PFOA pollution in global watersheds and the development of related mitigation policies, such as banning fish predation in polluted rivers, to mitigate their risks.
Collapse
Affiliation(s)
- Xu Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, 210098 Nanjing, China
| | - Zhenyu Wang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Wenyu Yang
- Department of Hydrogeology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Ruifei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Behnami A, Zoroufchi Benis K, Pourakbar M, Yeganeh M, Esrafili A, Gholami M. Biosolids, an important route for transporting poly- and perfluoroalkyl substances from wastewater treatment plants into the environment: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171559. [PMID: 38458438 DOI: 10.1016/j.scitotenv.2024.171559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pervasive presence of poly- and perfluoroalkyl substances (PFAS) in diverse products has led to their introduction into wastewater systems, making wastewater treatment plants (WWTPs) significant PFAS contributors to the environment. Despite WWTPs' efforts to mitigate PFAS impact through physicochemical and biological means, concerns persist regarding PFAS retention in generated biosolids. While numerous review studies have explored the fate of these compounds within WWTPs, no study has critically reviewed their presence, transformation mechanisms, and partitioning within the sludge. Therefore, the current study has been specifically designed to investigate these aspects. Studies show variations in PFAS concentrations across WWTPs, highlighting the importance of aqueous-to-solid partitioning, with sludge from PFOS and PFOA-rich wastewater showing higher concentrations. Research suggests biological mechanisms such as cytochrome P450 monooxygenase, transamine metabolism, and beta-oxidation are involved in PFAS biotransformation, though the effects of precursor changes require further study. Carbon chain length significantly affects PFAS partitioning, with longer chains leading to greater adsorption in sludge. The wastewater's organic and inorganic content is crucial for PFAS adsorption; for instance, higher sludge protein content and divalent cations like calcium and magnesium promote adsorption, while monovalent cations like sodium impede it. In conclusion, these discoveries shed light on the complex interactions among factors affecting PFAS behavior in biosolids. They underscore the necessity for thorough considerations in managing PFAS presence and its impact on environmental systems.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Nguyen HT, Thai PK, Kaserzon SL, O'Brien JW, Mueller JF. Nationwide occurrence and discharge mass load of per- and polyfluoroalkyl substances in effluent and biosolids: A snapshot from 75 wastewater treatment plants across Australia. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134203. [PMID: 38581874 DOI: 10.1016/j.jhazmat.2024.134203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Wastewater treatment plants (WWTPs) have been recognized as secondary sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. In this study, PFAS concentrations were measured in effluent and biosolids samples collected from 75 WWTPs across Australia during the 2016 Census period, which covers more than half of the Australian population. Twelve PFAS compounds, including six C5-C10 perfluoroalkyl carboxylic acids (PFCAs), four perfluoro sulfonic acids (PFSAs) such as perfluorobutane sulfonate (PFBS), perfuorohexane sulfonic (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorodecane sulfonic acid (PFDS), and one fluorotelomer sulfonic acid (6:2 FTS), were detected in the effluent, with concentrations up to 504 ng/L (PFHxS). Among these, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluoropentanic acid (PFPeA) exhibited the highest median concentrations. In the biosolids, a total of 21 PFAS compounds were detected, encompassing ten C4-C14 PFCAs, four PFSAs, two FTS (6:2 and 8:2 FTS), perfluorooctane sulfonamide (PFOSA), two perfluorooctane sulfonamido acetic acid (NMethyl FOSAA and NEthyl FOSAA), and two perfluorooctane sulfonamido ethanol (FOSE), with dry weight (dw) concentrations approaching 235 ng/g (PFOS). The highest median and mean concentrations were observed for perfluorodecanoic acid (PFDA) and PFOS. An annual discharge of approximately 250 kg of the total 21 PFAS compounds was estimated through the effluent and biosolids of the participating WWTPs. Notably, PFOS and 6:2 FTS constituted the largest proportion of total PFAS in the WWTPs' output. While PFCAs were higher in effluent concentrations compared to influent levels across most WWTPs (92% of WWTPs for ∑8PFCAs), the concentrations of PFSAs either decreased or remained relatively stable (in 80% of WWTPs for ∑4PFSAs) throughout the wastewater treatment process.
Collapse
Affiliation(s)
- Hue T Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), the University of Queensland, Brisbane, QLD 4102, Australia; Faculty of Environment, University of Sciences, Vietnam National University, Ho Chi Minh City 748500, Viet Nam.
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), the University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), the University of Queensland, Brisbane, QLD 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), the University of Queensland, Brisbane, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), the University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
9
|
Qian X, Huang J, Yan C, Xiao J, Cao C, Wu Y, Wang L. Evaluation of ecological impacts with ferrous iron addition in constructed wetland under perfluorooctanoic acid stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134074. [PMID: 38518702 DOI: 10.1016/j.jhazmat.2024.134074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
In this study, ferrous ion (Fe(II)) had the potential to promote ecological functions in constructed wetlands (CWs) under perfluorooctanoic acid (PFOA) stress. Concretely, Fe(II) at 30 mg/L and 20-30 mg/L even led to 11.37% increase of urease and 93.15-243.61% increase of nitrite oxidoreductase respectively compared to the control. Fe(II) promotion was also observed on Nitrosomonas, Nitrospira, Azospira, and Zoogloea by 1.00-6.50 folds, which might result from higher expression of nitrogen fixation and nitrite redox genes. These findings could be explanation for increase of ammonium removal by 7.47-8.75% with Fe(II) addition, and reduction of nitrate accumulation with 30 mg/L Fe(II). Meanwhile, both Fe(II) stimulation on PAOs like Dechloromonas, Rhodococcus, Mesorhizobium, and Methylobacterium by 1.58-2.00 folds, and improvement on chemical phosphorus removal contributed to higher total phosphorus removal efficiency under high-level PFOA exposure. Moreover, Fe(II) raised chlorophyll content and reduced the oxidative damage brought by PFOA, especially at lower dosage. Nevertheless, combination of Fe(II) and high-level PFOA caused inhibition on microbial alpha diversity, which could result in decline of PFOA removal (by 4.29-12.83%). Besides, decrease of genes related to nitrate reduction demonstrated that enhancement on denitrification was due to nitrite reduction to N2 pathways rather than the first step of denitrifying process.
Collapse
Affiliation(s)
- Xiuwen Qian
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Chunni Yan
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Jun Xiao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Chong Cao
- Department of Municipal Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yufeng Wu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Luming Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
Lin Z, Zhou W, Ke Z, Wu Z. Ecotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate on aquatic plant Vallisneria natans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26646-26664. [PMID: 38451456 DOI: 10.1007/s11356-024-32705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Perfluorinated compounds (PFCs) are persistent organic contaminants that are highly toxic to the environment and bioaccumulate, but their ecotoxic effects on aquatic plants remain unclear. In this study, the submerged plant Vallisneria natans was treated with short-term (7 days) and long-term (21 days) exposures to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentrations of 0, 0.01, 0.1, 1.0, 5.0, and 10 mg/L, respectively. The results showed that both high concentrations of PFOA and PFOS inhibited the growth of V. natans and triggered the increase in photosynthetic pigment content in leaves. The oxidative damage occurred mainly in leaves, but both leaves and roots gradually built up tolerance during the stress process without serious membrane damage. Both leaves and roots replied to short-term stress by activating superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO), while peroxidase (POD) was involved under high concentration stress with increasing exposure time. Leaves showed a dose-effect relationship in integrated biomarker response (IBR) values under short-term exposure, and the sensitivity of roots and leaves to PFOS was higher than that of PFOA. Our findings help to increase knowledge of the toxic effects of PFCs and have important reference value for risk assessment and environmental remediation of PFCs in the aquatic ecosystem.
Collapse
Affiliation(s)
- Zhen Lin
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wei Zhou
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhen Ke
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
11
|
Li J, Li X, An R, Duan L, Wang G. Occurrence, source apportionment, and ecological risk of legacy and emerging per- and poly-fluoroalkyl substances (PFASs) in the Dahei river basin of a typical arid region in China. ENVIRONMENTAL RESEARCH 2024; 246:118111. [PMID: 38184065 DOI: 10.1016/j.envres.2024.118111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are artificial chemicals with broad commercial and industrial applications. Many studies about PFASs have been conducted in densely industrial and populated regions. However, fewer studies have focused on the PFASs' status in a typical arid region. Here, we investigated 30 legacy and emerging PFASs in surface water from the mainstream and tributaries of the Dahei River. Our results revealed that total PFASs concentrations (∑30PFASs) in water ranged from 3.13 to 289.1 ng/L (mean: 25.40 ng/L). Perfluorooctanoic acid (PFOA) had the highest mean concentration of 2.44 ng/L with a 100% detection frequency (DF), followed by perfluorohexanoic acid (PFHxA) (mean concentration: 1.34 ng/L, DF: 59.26%). Also, perfluorohexane sulfonate (DF: 44.44%), perfluorobutane sulfonate (DF: 88.89%), and perfluorooctane sulfonate (PFOS) (DF: 92.59%) had mean concentrations of 12.94, 2.00, and 1.05 ng/L, respectively. Source apportionment through ratio analysis and principal component analysis-multiple linear regression analysis showed that treated or untreated sewage, aqueous film-forming foam, degradation of precursors, and fluoropolymer production were the primary sources. The PFOS alternatives were more prevalent than those of PFOA. Conductivity, total phosphorus, and chlorophyll a positively correlated with Σ30PFASs and total perfluoroalkane sulfonates concentrations. Furthermore, ecological risk assessment showed that more attention should be paid to perfluorooctadecanoic acid, perfluorohexadecanoic acid, perfluorooctane sulfonate, perfluorohexane sulfonate, and (6:2 and 6:2/8:2) polyfluoroalkyl phosphate mono- and di-esters. The mass load of PFASs to the Yellow River was 1.28 kg/year due to the low annual runoff in the Dahei River in the arid region. This study provides baseline data for PFASs in the Dahei River that can aid in the development of effective management strategies for controlling PFASs pollution in typical arid regions in China.
Collapse
Affiliation(s)
- Jie Li
- . Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Xinlei Li
- . Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Rui An
- . China Institute for Geo-Environmental Monitoring, Beijing, 100081, China
| | - Limin Duan
- . Inner Mongolia Key Laboratory of Water Resource Protection and Utilization, College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guoqiang Wang
- . Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
12
|
Wang J, Shen C, Zhang J, Lou G, Shan S, Zhao Y, Man YB, Li Y. Per- and polyfluoroalkyl substances (PFASs) in Chinese surface water: Temporal trends and geographical distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170127. [PMID: 38242487 DOI: 10.1016/j.scitotenv.2024.170127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
PFAS, recognized as persistent organic pollutants, present risks to both the ecological environment and human health. Studying PFASs in surface water yields insights into pollution dynamics. However, existing research on PFASs surface water pollution in China often focuses on specific regions, lacking comprehensive nationwide analyses. This study examined 48 research papers covering PFAS pollution in Chinese surface water, involving 49 regions and 1338 sampling sites. The results indicate widespread PFAS contamination, even in regions like Tibet. Predominant PFAS types include PFOA and PFOS, and pollution is associated with the relocation of industries from developed to developing countries post-2010. The shift from long-chain to short-chain PFASs aligns with recent environmental policy proposals. Geographic concentration of PFAS pollution correlates with industry distribution and economic development levels. Addressing point source pollution, especially from wastewater plant tailwater, is crucial for combating PFAS contamination. Greater emphasis should be placed on addressing short-chain PFASs.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Guangyu Lou
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, PR China.
| |
Collapse
|
13
|
Liu SS, Cheng SM, Cai QS, Ying GG, Chen CE. Short-term mass loads of per- and polyfluoroalkyl substances in a wastewater treatment plant from South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17417-17425. [PMID: 38337116 DOI: 10.1007/s11356-024-32204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Wastewater treatment plants (WWTPs) are one of the most important sources and sinks for per- and polyfluoroalkyl substances (PFAS). However, limited studies have evaluated short-term temporal variability of PFAS in WWTPs, particularly for their intra-day variations. For this purpose, a time-composite sampling campaign was carried out at a WWTP influent from South China for 1 week. Five out of ten PFAS were found in the influent, i.e., perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutane sulfonic acid (PFBS), and perfluorooctanesulfonic acid (PFOS). PFOA was the most domain PFAS whereas PFOS was detected occasionally, which might be associated with the prohibition of PFOS use in China. For the first time, we observed significant intra-day fluctuations in mass fluxes for PFOS. Different from a morning peak of pharmaceuticals reported previously, PFOS mass loads fluctuated sharply at noon and night on the weekdays. Furthermore, the mass fluxes of PFOA on the weekend were significantly elevated. For the other PFAS detected, no significant diurnal variations in mass loads were identified. Correlation analysis indicated that domestic activities (e.g., home cleaning) are likely to be the major source of these perfluorocarboxylic acids especially PFOA. In addition, flow fluxes had little effects on these PFAS mass load. These results can aid in future sampling campaigns and optimizing removal strategies for PFAS in wastewater.
Collapse
Affiliation(s)
- Si-Si Liu
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Sheng-Ming Cheng
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Qi-Si Cai
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guang-Guo Ying
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Chang-Er Chen
- School of Environment/Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Link GW, Reeves DM, Cassidy DP, Coffin ES. Per- and polyfluoroalkyl substances (PFAS) in final treated solids (Biosolids) from 190 Michigan wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132734. [PMID: 37922581 DOI: 10.1016/j.jhazmat.2023.132734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Trends in concentration, distribution, and variability of per- and polyfluoroalkyl substances (PFAS) in biosolids are characterized using an extensive dataset of 350 samples from 190 wastewater treatment plants (WWTPs) across Michigan. All samples are comprised of final treated solids generated at the end of the wastewater treatment process. Concentrations of both individual and Σ24 PFAS are lognormally distributed, with Σ24 PFAS concentrations ranging from 1-3200 ng/g and averaging 108 ± 277 ng/g dry wt. PFAS with carboxyl and sulfonic functional groups comprise 29% and 71% of Σ24 PFAS concentrations, respectively, on average. Primary sample variability in concentration is associated with long-chain PFAS with higher tendency for partitioning to biosolids. Short-chain carboxylic compounds, most notably PFHxA, are responsible for secondary concentration variability. Usage of FTSA and PFBS replacements to long-chain sulfonic compounds also contributes to variance in biosolids concentrations. Sulfonamide precursor compounds as a collective group are detected at a similar frequency as PFOS and often have higher concentrations. Trends in PFAS enrichment for individual PFAS vary at least 3 orders-of-magnitude and generally increase with compound hydrophobicity; however, partitioning of PFAS onto solids in WWTPs is a complex process not easily described nor constrained using experimentally-derived partitioning coefficients.
Collapse
Affiliation(s)
- Garrett W Link
- Department of Geological and Environmental Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| | - Donald M Reeves
- Department of Geological and Environmental Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008-5241, USA.
| | - Daniel P Cassidy
- Department of Geological and Environmental Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| | - Ethan S Coffin
- Department of Geological and Environmental Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| |
Collapse
|
15
|
Li C, Zhong H, Wu J, Meng L, Wang Y, Liao C, Wang Y, He Y. Migration mechanism and risk assessment of per- and polyfluoroalkyl substances in the Ya'Er Lake oxidation pond area, China. J Environ Sci (China) 2024; 136:301-312. [PMID: 37923440 DOI: 10.1016/j.jes.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 11/07/2023]
Abstract
The migration mechanisms, sources, and environmental risks of 29 legacy and emerging perfluorinated and polyfluoroalkyl species present in an oxidation pond (Ya'Er Lake) were investigated for treating sewage based on the analysis of their occurrence and distribution. The concentration of per- and polyfluoroalkyl substances (PFAS) in pond area was between 0.30 and 63.2 ng/g dw (dry weight), with the overall average concentration of 8.00 ng/g dw. Notably, the PFAS concentrations in the surface sediments near the sewage outlet in Pond-1 (50.2 ng/g dw) and Pond-5 (average 15.1 ng/g dw) were 1-2 orders of magnitude higher than those in other areas. In general, the legacy PFAS, i.e., perfluorooctane sulfonic acid was considered to be the major pollutant in the polluted area, on average, accounting for 73.0% of the total concentration of PFAS pollutants. By evaluating the regional distribution of different PFAS homologs, the short-chain PFAS pollutants with lower Kow were found to migrate farther in both horizontal and vertical directions. The sewage outlets in Pond-1 and Pond-5 are the main pollution sources in polluted area and the emerging PFAS pollutants in Pond-5 have replaced the legacy PFAS pollutants as the main pollutants. Based on positive matrix factorization analysis, three main industrial sources of PFAS pollutants in the study area were identified: protective coating, fire-fighting, and food packaging sources. Moreover, the environmental risk assessment results showed that most study areas exhibited medium environmental risk (0.01 ≤ Risk quotient (RQ) < 1), indicating that the ecological environment risks in this area need further attention.
Collapse
Affiliation(s)
- Chang Li
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Wu
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Lingyi Meng
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyang Liao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yujian He
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Wu D, Dai S, Feng H, Karunaratne SHPP, Yang M, Zhang Y. Persistence and potential risks of tetracyclines and their transformation products in two typical different animal manure composting treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122904. [PMID: 37951528 DOI: 10.1016/j.envpol.2023.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Abundant residues of tetracyclines in animal manures and manure-derived organic fertilizers can pose a substantial risk to environments. However, our knowledge on the residual levels and potential risk of tetracyclines and their transformation products (TPs) in manure and manure-derived organic fertilizers produced by different composting treatments is still limited. Herein, the occurrence and distribution of four veterinary tetracyclines (tetracycline, oxytetracycline, chlortetracycline, and doxycycline) and ten of their TPs were investigated in paired samples of fresh manure and manure-derived organic fertilizers. Tetracyclines and TPs were frequently detected in manure and manure-derived organic fertilizer samples in ranging from 130 to 118,137 μg·kg-1 and 54.6 to 104,891 μg·kg-1, respectively. Notably, the TPs concentrations of tetracycline and chlortetracycline were comparable to those of the parent compounds, with 4-epimers being always dominant and retained antibacterial potency. Based on paired-sampling strategy, the removal efficiency of tetracyclines and TPs in thermophilic composting was higher than that in manure storage. Toxicological data in the soil environment and the data derived from equilibrium partitioning method, indicated that tetracyclines and some TPs like 4-epitetracycline, 4-epichlortetracycline and isochlortetracycline could pose median to high ecological risk to terrestrial organisms. Total concentrations of TPs in manure-derived organic fertilizers were significantly correlated with the absolute abundance of tet(X) family genes, which provide evidence to evaluate the effects of TPs on the levels of antibiotic resistance in the environment. Among them, the 4-epitetracycline could pose ecological risk and retain antibacterial potency. Our findings emphasize the importance of monitoring and controlling the prevalence of tetracyclines and their TPs in livestock-related environments.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haodi Feng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Morethe MF, Mpenyana-Monyatsi L, Daso AP, Okonkwo OJ. Unveiling the hidden threat: spatiotemporal trends and source apportionments of per-and polyfluorinated alkyl substances in wastewater treatment plants in South Africa. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:71-88. [PMID: 38214987 PMCID: wst_2023_401 DOI: 10.2166/wst.2023.401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
At least 11 per-and polyfluorinated alkyl substances (PFASs) were more prevalent during the dry season, whereas only PFBA, L-PFBS, L-PFOS, and PFOA were prevalent during the wet season in 11 WWTPs. The ∑21 PFAS levels in the influent and the effluent ranged from 137 to 3327 ng/L and 265-7,699 ng/L in the dry season and 61-2,953 ng/L and 171-3,458 ng/L in the wet season, respectively. The highest mean concentrations were observed in the influent and effluent for PFOA (586 ng/L) and L-PFBS (552 ng/L); and FOET (1,399 ng/L) and PFNA (811 ng/L) during dry and wet seasons, respectively. During the wet season, 6:2 FTS was observed at the highest concentrations, exhibiting 4,900 ng/L (66%) and 2,351 ng/L (39%), 1,950 ng/L (53%) in SST and BNR, respectively. Principal component analysis (PCA), hierarchical clustering (HCA), and PFHpA/PFOA, PFBA/PFOA, and PFNA/PFOA ratios revealed mixtures of PFAS sources into WWTPs.
Collapse
Affiliation(s)
- Moloko Florence Morethe
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa E-mail:
| | - Lizzy Mpenyana-Monyatsi
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| | - Adegbenro Peter Daso
- Department of Chemistry, Faculty of Science, and Research and Innovation Services (RIS), University of Bath, Claverton Down Campus, Bath BA2 7AY, UK
| | - Okechukwu Jonathan Okonkwo
- Department of Environmental, Water & Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
18
|
Zhang J, Tao H, Shi J, Ge H, Li B, Wang Y, Zhang M, Li X. Deriving aquatic PNECs of endocrine disruption effects for PFOS and PFOA by combining species sensitivity weighted distributions and adverse outcome pathway networks. CHEMOSPHERE 2024; 346:140583. [PMID: 37918539 DOI: 10.1016/j.chemosphere.2023.140583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), as emerging endocrine-disrupting chemicals (EDCs), pose adverse effects on aquatic organisms. Conventional ecological risk assessment (ERA) not fully considering the mode of toxicity action of PFOS and PFOA, may result in an underestimation of risks and confuse decision-makers. In the study, we developed species sensitivity weighted distribution (SSWD) models based on adverse outcome pathway (AOP) networks for deriving predicted no-effect concentrations (PNECs). Three kinds of weighting criteria (intraspecies variation, trophic level abundance, and data quality) and weighted log-normal distribution methods were adopted. The developed models considered the inter/intraspecies variation and integrated nontraditional endpoints of endocrine-disrupting effects. The PNECs of endocrine disruption effects were derived as 2.52 μg/L (95% confidence intervals 0.667-9.85 μg/L) for PFOS and 18.7 μg/L (5.40-71.0 μg/L) for PFOA, which were more conservative than those derived from the SSD method and were comparable with the values in the literature based on the chronic toxicity data. For PFOS, the effect of growth and development was the most sensitive; however, for PFOA, the effect of reproduction was the most sensitive in the effects of growth and development, reproduction, biochemistry and genetics, and survival. The endocrine-disrupting effects of PFOS and PFOA are significant and need to be fully recognized in the ERA. This study provided an ERA framework that can improve the ecological relevance and reduce the uncertainty of PNECs of EDCs.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yunhe Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mengtao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Ilieva Z, Hamza RA, Suehring R. The significance of fluorinated compound chain length, treatment technology, and influent composition on per- and polyfluoroalkyl substances removal in worldwide wastewater treatment plants. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:59-69. [PMID: 37096563 DOI: 10.1002/ieam.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Wastewater treatment plants (WWTPs) are deemed major conveyors and point sources of per- and polyfluoroalkyl substances (PFAS) to the environment. This statistical meta-analysis of existing literature from the past 15 years focused on the significance of treatment type for PFAS removal efficiencies and the influence of PFAS sources (domestic vs. industrial) on their removal. Different sampling events, WWTPs across the world, different treatment technologies, configurations, and processes, as well as different PFAS classes and compounds were considered. This study evaluated 13 PFAS analyzed predominantly in 161 WWTPs across the world. The statistical test results revealed that these 13 frequently detected and reported PFAS can be divided into four groups based on their behavior during wastewater treatment, namely (1) C6-10 perfluorocarboxylic acids (PFCAs), (2) C4,5,11,12 PFCAs, (3) C4,6,8 perfluoroalkane sulfonic acids (PFSAs), and (4) C10 PFSA. In this study, biological treatments such as (1) membrane bioreactors, (2) combination of two or more biological treatments, and (3) biofilm processes revealed the highest PFAS removals, although the addition of a tertiary treatment actually had a nonbeneficial effect on PFAS removal. Moreover, a strong statistical correlation was observed between industrial wastewater sources and the presence of high influent PFAS concentrations in the receiving WWTPs. This indicates that industrial sources were the main contributors of the PFAS load in the analyzed WWTPs. Integr Environ Assess Manag 2024;20:59-69. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Zanina Ilieva
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Rania A Hamza
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Roxana Suehring
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Haron DEM, Yoneda M, Hod R, Ramli MR, Aziz MY. Assessment of 18 endocrine disrupting chemicals in tap water samples from Klang Valley, Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111062-111075. [PMID: 37801249 DOI: 10.1007/s11356-023-30022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Multiclass of endocrine disrupting chemicals (EDCs) such as nine perfluoroalkyl and polyfluoroalkyl substances (PFAS), five bisphenols, and four parabens were analysed in tap water samples from Malaysia's Klang Valley region. All samples were analysed using liquid chromatography mass tandem spectrometry (LC-MS/MS) with limit of quantitation (LOQ) ranged between 0.015 and 5 ng/mL. Fifteen of the 18 EDCs were tested positive in tap water samples, with total EDC concentrations ranging from 0.28 to 5516 ng/L for all 61 sampling point locations. In a specific area of the Klang Valley, the total concentration of EDCs was found to be highest in Hulu Langat, followed by Sepang, Putrajaya, Petaling, Kuala Lumpur, Seremban, and Gombak/Klang. PFAS and paraben were the most found EDCs in all tap water samples. Meanwhile, ethyl paraben (EtP) exhibited the highest detection rate, with 90.2% of all locations showing its presence. Over 60% of the regions showed the presence of perfluoro-n-butanoic acid (PFBA), perfluoro-n-hexanoic acid (PFHXA), perfluoro-n-octanoic acid (PFOA), perfluoro-n-nonanoic acid (PFNA), and perfluoro-1-octanesulfonate (PFOS), whereas the frequency of detection for other compounds was less than 40%. The spatial distribution and mean concentrations of EDCs in the Klang Valley regions revealed that Hulu Langat, Petaling Jaya, and Putrajaya exhibited higher levels of bisphenol A (BPA). On the other hand, Kuala Lumpur and Sepang displayed the highest mean concentrations of PFBA. In the worst scenario, the estimated daily intake (EDI) and risk quotient of some EDCs in this study exceeded the acceptable daily limits recommended by international standards, particularly for BPA, PFOA, PFOS, and PFNA, where the risk quotient (RQ) was found to be greater than 1, indicating a high risk to human health. The increasing presence of EDCs in tap water is undoubtedly a cause for concern as these substances can have adverse health consequences. This highlights the necessity for a standardised approach to evaluating EDC exposure and its direct impact on human populations' health.
Collapse
Affiliation(s)
- Didi Erwandi Mohamad Haron
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Centre of Research Service, Institute of Research Management and Services, Deputy Vice-Chancellor (Research and Renovation), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Minoru Yoneda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Rafidah Hod
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Redzuan Ramli
- Department of Environmental Management, Ministry of Environmental and Water, 62000, Putrajaya, Malaysia
| | - Mohd Yusmaidie Aziz
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
- Department of Occupational Health and Safety, Public Health Faculty, Universitas Airlangga, 60115, Surabaya, Indonesia.
| |
Collapse
|
21
|
Butruille L, Jubin P, Martin E, Aigrot MS, Lhomme M, Fini JB, Demeneix B, Stankoff B, Lubetzki C, Zalc B, Remaud S. Deleterious functional consequences of perfluoroalkyl substances accumulation into the myelin sheath. ENVIRONMENT INTERNATIONAL 2023; 180:108211. [PMID: 37751662 DOI: 10.1016/j.envint.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Exposure to persistent organic pollutants during the perinatal period is of particular concern because of the potential increased risk of neurological disorders in adulthood. Here we questioned whether exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) could alter myelin formation and regeneration. First, we show that PFOS, and to a lesser extent PFOA, accumulated into the myelin sheath of postnatal day 21 (p21) mice, whose mothers were exposed to either PFOA or PFOS (20 mg/L) via drinking water during late gestation and lactation, suggesting that accumulation of PFOS into the myelin could interfere with myelin formation and function. In fact, PFOS, but not PFOA, disrupted the generation of oligodendrocytes, the myelin-forming cells of the central nervous system, derived from neural stem cells localised in the subventricular zone of p21 exposed animals. Then, cerebellar slices were transiently demyelinated using lysophosphatidylcholine and remyelination was quantified in the presence of either PFOA or PFOS. Only PFOS impaired remyelination, a deleterious effect rescued by adding thyroid hormone (TH). Similarly to our observation in the mouse, we also showed that PFOS altered remyelination in Xenopus laevis using the Tg(Mbp:GFP-ntr) model of conditional demyelination and measuring, then, the number of oligodendrocytes. The functional consequences of PFOS-impaired remyelination were shown by its effects using a battery of behavioural tests. In sum, our data demonstrate that perinatal PFOS exposure disrupts oligodendrogenesis and myelin function through modulation of TH action. PFOS exposure may exacerbate genetic and environmental susceptibilities underlying myelin disorders, the most frequent being multiple sclerosis.
Collapse
Affiliation(s)
- L Butruille
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - P Jubin
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - E Martin
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - M S Aigrot
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - M Lhomme
- IHU ICAN (ICAN OMICS Lipidomics) Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - J B Fini
- CNRS UMR 7221, Sorbonne University, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - B Demeneix
- CNRS UMR 7221, Sorbonne University, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - B Stankoff
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - C Lubetzki
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - B Zalc
- Sorbonne University, Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital, F-75013 Paris, France.
| | - S Remaud
- CNRS UMR 7221, Sorbonne University, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| |
Collapse
|
22
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Guo D, Zhou Y, Chen F, Wang Z, Li H, Wang N, Gan H, Fang S, Bao R. Temporal variation of per- and polyfluoroalkyl substances (PFASs) abundances in Shenzhen Bay sediments over past 65 years. MARINE POLLUTION BULLETIN 2023; 194:115387. [PMID: 37595453 DOI: 10.1016/j.marpolbul.2023.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
We examined the vertical distribution of per- and polyfluoroalkyl substances (PFASs) and total organic carbon in sediment cores located in Shenzhen Bay area. We investigated the 210Pbex specific activity of the sediments and calculated the flux of PFASs to understand the temporal variation of PFASs in the past 65 years. The results showed that the concentrations of PFASs generally decreased with depth, ranging from 13 to 251 pg/g dw. The highest PFASs detected were perfluorobutanesulfonic acid, perfluorooctanoic acid, and perfluorohexanoic acid, which correspond to raw materials used in fire-fighting foam and food packaging industries. The flux of PFASs in Shenzhen Bay showed varying growth after 1978 when China's GDP entered a rapid growth stage. Our findings suggest that the vertical distribution of PFASs in Shenzhen Bay is fluctuating with the changes in industrial types and economic development, with implications for studying the fate of other persistent pollutants in the oceans.
Collapse
Affiliation(s)
- Danxu Guo
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yang Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 5111458, China; Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou, 511458, China
| | - Fang Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 5111458, China; Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou, 511458, China.
| | - Zimin Wang
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haoshuai Li
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Nan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
| | - Huayang Gan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 5111458, China; Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou, 511458, China
| | - Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China.
| | - Rui Bao
- Key Laboratory of Marine Chemistry Theory and Engineering Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
24
|
Boisacq P, De Keuster M, Prinsen E, Jeong Y, Bervoets L, Eens M, Covaci A, Willems T, Groffen T. Assessment of poly- and perfluoroalkyl substances (PFAS) in commercially available drinking straws using targeted and suspect screening approaches. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1230-1241. [PMID: 37619405 DOI: 10.1080/19440049.2023.2240908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Many food contact materials (FCMs) and reusable plastics in the food industry contain poly- and perfluoroalkyl substances (PFAS), a group of synthetic pollutants that are known to be potentially harmful for wildlife, humans, and the environment. PFAS may migrate from FCMs to food consumed by humans. As a replacement for plastics, often paper and other plant-based materials are used in commercial settings. This also applies to drinking straws, where plant-based and other presumably eco-friendly straws are increasingly used to reduce plastic pollution. In order to make these materials water-repellent, PFAS are added during manufacturing but can also already be present early in the supply chain due to the use of contaminated raw materials. In the present study, we examined the PFAS concentrations in 39 different brands of straws, made from five materials (i.e. paper, bamboo, glass, stainless steel, and plastic) commercially available on the Belgian market. We combined both targeted and suspect-screening approaches to evaluate a wide range of PFAS. PFAS were found to be present in almost all types of straws, except for those made of stainless steel. PFAS were more frequently detected in plant-based materials, such as paper and bamboo. We did not observe many differences between the types of materials, or the continents of origin. The presence of PFAS in plant-based straws shows that they are not necessarily biodegradable and that the use of such straws potentially contributes to human and environmental exposure of PFAS.
Collapse
Affiliation(s)
- Pauline Boisacq
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Maarten De Keuster
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Yunsun Jeong
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
- Division for Environmental Health, Korea Environment Institute (KEI), Sejong, Republic of Korea
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Jia Y, Shan C, Fu W, Wei S, Pan B. Occurrences and fates of per- and polyfluoralkyl substances in textile dyeing wastewater along full-scale treatment processes. WATER RESEARCH 2023; 242:120289. [PMID: 37413748 DOI: 10.1016/j.watres.2023.120289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Industrial wastewater is a substantial source of per- and polyfluoroalkyl substances (PFASs) in the environment. However, very limited information is available on the occurrences and fates of PFASs along industrial wastewater treatment processes, particularly for the textile dyeing industry where PFASs occur extensively. Herein, the occurrences and fates of 27 legacy and emerging PFASs were investigated along the processes of three full-scale textile dyeing wastewater treatment plants (WWTPs) based on UHPLC-MS/MS in combination with self-developed solid extraction protocol featuring selective enrichment for ultrasensitive analysis. The total PFASs ranged at 630-4268 ng L-1 in influents, 436-755 ng L-1 in effluents, and 91.5-1182 μg kg-1 in the resultant sludge. PFAS species distribution varied among WWTPs, with one WWTP dominated by legacy perfluorocarboxylic acids while the other two dominated by emerging PFASs. Perfluorooctane sulfonate (PFOS) was trivial in the effluents from all the three WWTPs, indicating its diminished use in textile industry. Various emerging PFASs were detected at different abundances, demonstrating their use as alternatives to legacy PFASs. Most conventional processes of the WWTPs were inefficient in removing PFASs, especially for the legacy PFASs. The microbial processes could remove the emerging PFASs to different extents, whereas commonly elevated the concentrations of legacy PFASs. Over 90% of most PFASs could be removed by reverse osmosis (RO) and was enriched into the RO concentrate accordingly. The total oxidizable precursors (TOP) assay revealed that the total concentration of PFASs was increased by 2.3-4.1 times after oxidation, accompanied by formation of terminal perfluoroalkyl acids (PFAAs) and degradation of emerging alternatives to various extents. This study is believed to shed new light on the monitoring and management of PFASs in industries.
Collapse
Affiliation(s)
- Yuqian Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Lv L, Liu B, Zhang B, Yu Y, Gao L, Ding L. A systematic review on distribution, sources and sorption of perfluoroalkyl acids (PFAAs) in soil and their plant uptake. ENVIRONMENTAL RESEARCH 2023; 231:116156. [PMID: 37196690 DOI: 10.1016/j.envres.2023.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in environment, which have attracted increasing concerns in recent years. This study collected the data on PFAAs concentrations in 1042 soil samples from 15 countries and comprehensively reviewed the spatial distribution, sources, sorption mechanisms of PFAAs in soil and their plant uptake. PFAAs are widely detected in soils from many countries worldwide and their distribution is related to the emission of the fluorine-containing organic industry. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are found to be the predominant PFAAs in soil. Industrial emission is the main source of PFAAs contributing 49.9% of the total concentrations of PFAAs (Ʃ PFAAs) in soil, followed by activated sludge treated by wastewater treatment plants (WWTPs) (19.9%) and irrigation of effluents from WWTPs, usage of aqueous film-forming foam (AFFFs) and leaching of leachate from landfill (30.2%). The adsorption of PFAAs by soil is mainly influenced by soil pH, ionic strength, soil organic matter and minerals. The concentrations of perfluoroalkyl carboxylic acids (PFCAs) in soil are negatively correlated with the length of carbon chain, log Kow, and log Koc. The carbon chain lengths of PFAAs are negatively correlated with the root-soil concentration factors (RCFs) and shoot-soil concentration factors (SCFs). The uptake of PFAAs by plant is influenced by physicochemical properties of PFAAs, plant physiology and soil environment. Further studies should be conducted to make up the inadequacy of existing knowledge on the behavior and fate of PFAAs in soil-plant system.
Collapse
Affiliation(s)
- Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Bimi Zhang
- Food and Drug Engineering Institute, Jilin Province Economic Management Cadre College, Changchun, 130012, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
27
|
Li X, Wang Y, Qian C, Zheng Z, Shi Y, Cui J, Cai Y. Perfluoroalkyl acids (PFAAs) in urban surface water of Shijiazhuang, China: Occurrence, distribution, sources and ecological risks. J Environ Sci (China) 2023; 125:185-193. [PMID: 36375904 DOI: 10.1016/j.jes.2022.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/16/2023]
Abstract
It is extremely important to analyze the contaminative behaviors of Perfluoroalkyl acids (PFAAs) due to their serious threats to urban environments which are closely related to humans. Current study aimed to explore the distribution, source apportionment and ecological risk assessment of PFAAs in surface water from Shijiazhuang, China. The concentrations of ∑PFAAs ranged from 19.5 to 125.9 ng/L in the investigation area. Perfluorobutanesulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were the predominant contaminants (mean value: 14.3 ng/L and 16.6 ng/L, respectively). The distribution of PFAAs according to geospatial analysis and hierarchical clustering analysis (HCA) showed that higher levels of ∑PFAAs were detected in the southern surface water of Shijiazhuang and there was a stepwise decrease from the wet season to the dry season. Furthermore, based on source apportionment, the dominant potential sources were found to be wastewater treatment plant (WWTP) effluents and industrial discharge. The risk quotients (RQs) revealed low ecological risks of all PFAAs for aquatic organisms in Shijiazhuang surface water. Collectively, this study provided basic data for regulatory strategies for controlling PFAA pollutions in urban surface water.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yuan Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Chengjing Qian
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Zhixin Zheng
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
28
|
Zeng L, Han X, Pang S, Ge J, Feng Z, Li J, Du B. Nationwide Occurrence and Unexpected Severe Pollution of Fluorescent Brighteners in the Sludge of China: An Emerging Anthropogenic Marker. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3156-3165. [PMID: 36780503 DOI: 10.1021/acs.est.2c08491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescent brighteners (FBs) are a group of mass-produced dyestuff chemicals that have been extensively used for decades. However, knowledge of their occurrence in municipal wastewater treatment plants on a large geographical scale remains unknown. Herein, we implemented the first nationwide survey for wastewater-derived FBs in sludge across major cities in China. All 25 target FBs were detected in the nationwide sludge. Ionic FBs exhibited much higher concentrations than nonionic FBs. The total sludge concentrations of 25 FBs (∑25FBs) ranged from 7300 to 1,520,000 ng/g, with a median of 35,300 ng/g. A clear geographical distribution of significantly higher concentrations of FBs was found in East and Central China than in West China (p < 0.05). The sludge concentrations of ∑25FBs were correlated well with the gross domestic product (GDP) and population size at the provincial level in China (p < 0.05), demonstrating the significance of anthropogenic impacts on FB levels in urban sludge. The nationwide annual emission of total FBs into sludge in China is estimated to be 835 tons/year, of which 134 tons/year is directly released into sludge-applied soils. Our work highlights another new class of chemicals that significantly contribute to the chemical mixtures in urban sludge and thus require immediate attention.
Collapse
Affiliation(s)
- Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Siqin Pang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Jiali Ge
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Zhiqing Feng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Jiehua Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| |
Collapse
|
29
|
Zheng X, Zhang H, Xu Z, Lin T, Yang S, Zhao Z, Han Z, Zhou C. Tolerance and recovery of aerobic granular sludge: Impact of perfluorooctanoic acid. CHEMOSPHERE 2023; 313:137430. [PMID: 36460153 DOI: 10.1016/j.chemosphere.2022.137430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The widespread use of perfluorooctanoic acid (PFOA) has rendered its frequent detection in wastewater. The tolerance and recovery of aerobic granular sludge (AGS) to PFOA were investigated in short-term (Phase Ⅰ) and long-term (Phase Ⅱ, operation strategy adjustment: shortening aeration time and prolonging anaerobic and anoxic time). Results showed that in Phase Ⅰ, the performance of R2 reactor (0.05 mg/L PFOA) was slightly negatively affected, while 0.5 and 2.0 mg/L PFOA in R3 and R4 reactors significantly damaged the key enzyme activities of AGS, leading to deterioration of nutrients removal. TN and TP removal efficiencies decreased correspondingly from 79.32% to 78.41% on day 0 to 74.66% and 74.14% in R2 and 68.57% and 67.80% in R3 and 56.94% and 57.47% in R4 on day 7, respectively. In Phase Ⅱ, the key enzyme activities of AGS were obviously renewed dependent on operation strategy adjustment and AGS self-regulation. The performance of AGS in R2 (continuously dosing 0.05 mg/L PFOA) and R4 (stopping dosing PFOA) recovered quite good, while the long-term adverse effects of 0.5 mg/L PFOA on AGS in R3 were still more difficult to be alleviated. In end of Phase Ⅱ (69-97days), the average TN and TP removal efficiencies correspondingly reached 83.31% and 82.09% in R1 (control), 80.67% and 79.62% in R2, 76.38% and 74.27% in R3, and 79.01% and 78.25% in R4, respectively. Further analysis revealed that the effect of PFOA on proteins in extracellular polymeric substances (EPS) was greater than that on polysaccharides. Specifically, short-term dosage of PFOA mainly affected loosely bound EPS, while long-term dosage of PFOA affected tightly bound EPS. Although AGS is severely inhibited by short exposure to 2.0 mg/L PFOA (in R4), after the operation strategy adjustment, EPS content decreased, nutrient and oxygen transport channels of AGS were re-established, which contributed to the recovery of AGS.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Huijie Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhi Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shanshan Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zhilin Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zongshuo Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Chao Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
30
|
Jiang L, Yao J, Ren G, Sheng N, Guo Y, Dai J, Pan Y. Comprehensive profiles of per- and polyfluoroalkyl substances in Chinese and African municipal wastewater treatment plants: New implications for removal efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159638. [PMID: 36280053 DOI: 10.1016/j.scitotenv.2022.159638] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) can reflect the pollution status of per- and polyfluoroalkyl substances (PFASs) pollution. Here, matched influent, effluent, and sludge samples were collected from 58 municipal WWTPs in China, South Sudan, Tanzania, and Kenya. Target and suspect screening of PFASs was performed to explore their profiles in WWTPs and assess removal efficiency and environmental emissions. In total, 155 and 58 PFASs were identified in WWTPs in China and Africa, respectively; 146 and 126 PFASs were identified in wastewater and sludge, respectively. Novel compounds belonging to per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs), hydrogen-substituted polyfluorocarboxylic acids (H-PFCAs), and perfluoroalkyl sulfonamides (PFSMs) accounted for a considerable proportion of total PFASs (ΣPFASs) in Chinese WWTPs and were also widely detected in African samples. In China, estimated national emissions of ΣPFASs in WWTPs exceeded 16.8 t in 2015, with >60 % originating from emerging PFASs. Notably, current treatment processes are not effective at removing PFASs, with 35 of the 54 WWTPs showing emissions higher than mass loads. PFAS removal was also structure dependent. Based on machine learning models, we found that molecular descriptors (e.g., LogP and molecular weight) may affect adsorption behavior by increasing hydrophobicity, while other factors (e.g., polar surface area and molar refractivity) may play critical roles in PFAS removal and provide novel insights into PFAS pollution control. In conclusion, this study comprehensively screened PFASs in municipal WWTPs and determined the drivers affecting PFAS behavior in WWTPs based on machine learning models.
Collapse
Affiliation(s)
- Lulin Jiang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Ren
- National Institute of Metrology, Beijing 100029, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Mahmoudnia A. The role of PFAS in unsettling ocean carbon sequestration. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:310. [PMID: 36652110 PMCID: PMC9848026 DOI: 10.1007/s10661-023-10912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) and global climate change have attracted worldwide attention. PFAS have been found all across the planet, from the polar regions to the global ocean. Global oceans have emerged as a substantial sink for the carbon in the environment due to their remarkable capacity to absorb atmospheric carbon. Oceans absorb around 24% of the world's CO2 emissions. Thus, the ocean plays a prominent role in the earth's carbon cycle. However, the widespread application of PFAS in a wide range of products and the inefficient management of PFAS-containing wastes made them ubiquitous pollutants, which are increasingly getting as a pollutant of emerging concern. Marine PFAS pollutants can produce harmful effects on gas exchange and the ocean's carbon cycle. Thus, it leads to an increase in greenhouse gas emissions, which eventually adversely affects global warming and climate change. Consequently, threats of marine PFAS to oceans carbon sequestration are discussed in this paper. Marine PFAS pollutants adversely affect the following sectors: (1) The growth and photosynthesis of phytoplankton, (2) development and reproduction of zooplankton by causing toxicity in zooplankton, (3) marine biological pomp, and (4) carbon stock of oceans. In this way, marine PFAS can pose a threat to ocean carbon sequestration. It is expected that this study can develop knowledge about the potential impact of PFAS on ocean carbon sequestration. However, the need for further research to investigate the hidden dimensions of this issue, including the potential scope and scale of this impact, should not be overlooked.
Collapse
Affiliation(s)
- Ali Mahmoudnia
- Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Mroczko O, Preisendanz HE, Wilson C, Mashtare ML, Elliott HA, Veith TL, Soder KJ, Watson JE. Spatiotemporal patterns of PFAS in water and crop tissue at a beneficial wastewater reuse site in central Pennsylvania. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1282-1297. [PMID: 36070520 PMCID: PMC9828414 DOI: 10.1002/jeq2.20408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a collective name for thousands of synthetic compounds produced to enhance consumer and industrial products since the 1940s. They do not easily degrade, and some are known to pose serious ecological and human health concerns at trace concentrations (ng L-1 levels). Per- and polyfluoroalkyl substances persist in treated wastewater and are inadvertently introduced into the environment when treated wastewater is reused as an irrigation source. The Pennsylvania State University (PSU) has been spray-irrigating its wastewater at a 2.45 km2 mixed-use agricultural and forested site known as the "Living Filter" since the 1960s. To understand the spatiotemporal patterns of 20 PFAS at the Living Filter, water samples were collected bimonthly from fall 2019 through winter 2021 from the PSU's wastewater effluent and from each of the site's 13 monitoring wells. Crop tissue was collected at the time of harvest to assess PFAS presence in corn silage and tall fescue grown at the study site. Total measured PFAS concentrations in the monitoring wells ranged from nondectable to 155 ng L-1 , with concentrations increasing with the direction of groundwater flow. Concentrations within each well exhibited little temporal variability across sampling events, with mixed relationships between PFAS and groundwater elevation observed between wells. Further, >84% of the PFAS present in livestock feed crops were short-chain compounds, with PFAS consumed annually by livestock fed crops harvested from the site estimated to be 2.46-7.67 mg animal-1 yr-1 . This research provides insight into the potential impacts of long-term beneficial reuse of treated wastewater on groundwater and crop tissue quality.
Collapse
Affiliation(s)
- Olivia Mroczko
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Heather E Preisendanz
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
- Institute for Sustainable Agricultural, Food, and Environmental Science, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Christopher Wilson
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Michael L Mashtare
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Herschel A Elliott
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Tamie L Veith
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Kathy J Soder
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - John E Watson
- Dep. of Ecosystem Science and Management, The Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
33
|
Liu J, Cui Y, Lu M, Lv J, Dong L, Guo J, Zhang X, Sun Y, Huang Y, Zhang L. 6:2 Chlorinated polyfluoroalkyl ether sulfonate as perfluorooctanesulfonate alternative in the electroplating industry and the receiving environment. CHEMOSPHERE 2022; 302:134719. [PMID: 35483663 DOI: 10.1016/j.chemosphere.2022.134719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Electroplating industry is an important application field of per- and polyfluoroalkyl substances (PFASs) as the chromium mist suppressants. 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFAES) and perfluorooctanesulfonate (PFOS) have been the two widely used mist suppressants, and after the ban of PFOS, 6:2 Cl-PFAES will become the dominant suppressant. The behavior and mechanisms of 6:2 Cl-PFAES in the electroplating industry and the receiving environment were studied and compared with PFOS. 6:2 Cl-PFAES behaved similarly with PFOS due to their similar chemical structure. However, some difference exists for the relatively stronger hydrophobicity of 6:2 Cl-PFAES. Up to 35.7 mg/L of PFOS and 13.4 mg/L of 6:2 Cl-PFAES were found in the industrial wastewater influents, and were effectively reduced to 0.3-0.8 mg/L by the interaction with chromium hydroxide through hydrophobic interaction and ligand exchange. The stronger hydrophobicity of 6:2 Cl-PFAES than PFOS resulted in its accumulation in the surface of foams and comparable or less removal during the industrial and municipal wastewater treatment. 6:2 Cl-PFAES exhibited higher bioaccumulation potential than PFOS in the surface water. 6:2 Cl-PFAES emitted by both mists and water may pose health risks to humans. More attentions towards 6:2 Cl-PFAES are needed after the replacement of PFOS by it in the electroplating industry as a global contaminant of emerging concerns.
Collapse
Affiliation(s)
- Jinlin Liu
- National Research Center for Environmental Analysis and Measurement, Beijing, 100028, PR China.
| | - Yuanyuan Cui
- Shimadzu China Co. Ltd, Shanghai, 200233, PR China
| | - Meiling Lu
- Agilent Technologies Co. Ltd (China), Beijing, 100102, PR China
| | - Jungang Lv
- Procuratoral Technology and Information Research Center, Supreme People's Procuratorate, Beijing, 100144, PR China
| | - Liang Dong
- National Research Center for Environmental Analysis and Measurement, Beijing, 100028, PR China
| | - Jing Guo
- National Research Center for Environmental Analysis and Measurement, Beijing, 100028, PR China
| | - Xiulan Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100028, PR China
| | - Youbao Sun
- Shimadzu China Co. Ltd, Shanghai, 200233, PR China
| | - Yeru Huang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100028, PR China
| | - Lifei Zhang
- National Research Center for Environmental Analysis and Measurement, Beijing, 100028, PR China
| |
Collapse
|
34
|
Li J, Peng G, Xu X, Liang E, Sun W, Chen Q, Yao L. Per- and polyfluoroalkyl substances (PFASs) in groundwater from a contaminated site in the North China Plain: Occurrence, source apportionment, and health risk assessment. CHEMOSPHERE 2022; 302:134873. [PMID: 35551938 DOI: 10.1016/j.chemosphere.2022.134873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) are manmade chemicals that have wide industrial and commercial application. However, little research has been carried out on PFASs pollution in groundwater from a previously contaminated site. Here, we investigated 43 PFASs in a monitoring campaign from two different aquifers in the North China Plain. Our results revealed that total PFASs concentrations (∑43PFASs) ranged from 0.22 to 3,776.76 ng/L, with no spatial or compositional differences. Moreover, perfluorooctanoic acid (PFOA) and perfluoroheptane sulfonate (PFHpS) were the dominant pollutants with mean concentrations of 177.33 ng/L and 51 ng/L, respectively. ∑43PFAS decreased with well depth due to the adsorption of PFASs to the aquifer materials. Water temperature, total organic carbon, dissolved oxygen, and total phosphorus concentrations were correlated to the PFAS concentrations. Principal component analysis indicated that the main sources of PFASs in groundwater were untreated industrial discharge, untreated domestic wastewater, food packaging, aqueous film forming foams and metal plating, and surface runoff, which overlapped with the industries that previously existed in a nearby city. Human health risks from drinking contaminated groundwater were low to the local residents, with children aged 1-2 years being the most sensitive group. One specific site with a high PFOA concentration was of concern, as it was several orders higher than the 70 ng/L recommended by US Environmental Protection Agency health advisory. This study provided baseline data for PFASs in a previously-contaminated site, which will help in the development of effective strategies for controlling PFASs pollution in the North China Plain.
Collapse
Affiliation(s)
- Jie Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Guyu Peng
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
35
|
Huang D, Xu R, Sun X, Li Y, Xiao E, Xu Z, Wang Q, Gao P, Yang Z, Lin H, Sun W. Effects of perfluorooctanoic acid (PFOA) on activated sludge microbial community under aerobic and anaerobic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63379-63392. [PMID: 35459989 DOI: 10.1007/s11356-022-18841-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have received increasing attention due to their widespread presence in diverse environments including wastewater treatment plants (WWTPs) and their potential adverse health effects. Perfluorooctanoic acid (PFOA) is one of the most detected forms of PFASs in WWTPs. However, there is still a paucity of knowledge about the effect of PFASs on microorganisms of the key component of WWTP, activated sludge. In this study, lab-scale microcosm experiments were established to evaluate the influences of PFOA on activated sludge microbes under aerobic and anaerobic conditions. The diversity, structure, and microbe-microbe interaction of microbial community were determined by 16S rRNA gene amplicon sequencing and co-occurrence network analysis. After 90 days of exposure to PFOA, activated sludge microbial richness decreased under both aerobic and anaerobic conditions. Specifically, under aerobic condition, Rhodopseudomonas (mean relative abundance 3.6%), Flavobacterium (2.4%), and Ignavibacterium (6.6%) were enriched in PFOA-spiked activated sludge compared with that in the unspiked sludge (2.6%, 0.1%, and 1.9%, respectively). By contrast, after 90 days of exposure to PFOA, Eubacterium (2.1%), Hyphomicrobium (1.8%), and Methyloversatilis (1.2%) were enriched under anaerobic condition, and more abundant than that in the control sludge (0.4%, 1.5%, and 0.6%, respectively). These genera were the potential PFOA-resistant members. In addition, Azospirillum and Sporomusa were the most connected taxa in PFOA-aerobic and PFOA-anaerobic networks, respectively. Prediction of the functional gene showed that PFOA inhibited some gene expression of sludge microbes, such as transcription, amino acid transport and metabolism, and energy production and conversion. In summary, continued exposure to PFOA induced substantial shifts of the sludge bacterial diversity and composition under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Duanyi Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China.
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, China.
- School of Environment, Henan Normal University, Xinxiang, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
| |
Collapse
|
36
|
Mu H, Li J, Chen L, Hu H, Wang J, Gu C, Zhang XX, Ren HQ, Wu B. Distribution, source and ecological risk of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2022; 167:107447. [PMID: 35940032 DOI: 10.1016/j.envint.2022.107447] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) are sinks of per- and polyfluoroalkyl substances (PFASs) generated by human activities and are also sources of PFASs in aquatic environment. This study analyzed distribution, source and ecological risk of 14 PFASs in influent and effluent samples from 148 Chinese municipal WWTPs. Composition and concentrations of PFASs in the influents and effluents had obvious spatial differences. Fluoropolymer processing aids/wrappers and textile treatments/coatings were found to be the dominant sources in WWTP influents, which accounted for 78.34% of all sources. Consumption structure and metal and transportation equipment manufacturing affected the spatial differences of PFASs in WWTPs. Further, mean removal rate of total PFASs in all WWTPs was -5.45%. The conventional treatment processes can not effectively remove PFASs and no significant difference was found among different treatment processes. However, risk quotient values of PFASs in effluents were all below 0.1, indicating low risk or no risk to aquatic organisms. It should be noted that the composition, source and ecological risk of PFASs in east China were different from the other regions, which need more attentions. This study sheds insights into occurrencesof PFASs in municipal WWTPs, which should be helpful for their control strategy development.
Collapse
Affiliation(s)
- Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jiahao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
37
|
Developing a QSPR Model of Organic Carbon Normalized Sorption Coefficients of Perfluorinated and Polyfluoroalkyl Substances. Molecules 2022; 27:molecules27175610. [PMID: 36080379 PMCID: PMC9457706 DOI: 10.3390/molecules27175610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Perfluorinated and polyfluoroalkyl substances (PFASs) are known for their long-distance migration, bioaccumulation, and toxicity. The transport of PFASs in the environment has been a source of increasing concerned. The organic carbon normalized sorption coefficient (Koc) is an important parameter from which to understand the distribution behavior of organic matter between solid and liquid phases. Currently, the theoretical prediction research on log Koc of PFASs is extremely limited. The existing models have limitations such as restricted application fields and unsatisfactory prediction results for some substances. In this study, a quantitative structure–property relationship (QSPR) model was established to predict the log Koc of PFASs, and the potential mechanism affecting the distribution of PFASs between two phases from the perspective of molecular structure was analyzed. The developed model had sufficient goodness of fit and robustness, satisfying the model application requirements. The molecular weight (MW) related to the hydrophobicity of the compound; lowest unoccupied molecular orbital energy (ELUMO) and maximum average local ionization energy on the molecular surface (ALIEmax), both related to electrostatic properties; and the dipole moment (μ), related to the polarity of the compound; are the key structural variables that affect the distribution behavior of PFASs. This study carried out a standardized modeling process, and the model dataset covered a comprehensive variety of PFASs. The model can be used to predict the log Koc of conventional and emerging PFASs effectively, filling the data gap of the log Koc of uncommon PFASs. The explanation of the mechanism of the model has proven to be of great value for understanding the distribution behavior and migration trends of PFASs between sediment/soil and water, and for estimating the potential environmental risks generated by PFASs.
Collapse
|
38
|
Cookson ES, Detwiler RL. Global patterns and temporal trends of perfluoroalkyl substances in municipal wastewater: A meta-analysis. WATER RESEARCH 2022; 221:118784. [PMID: 35949071 DOI: 10.1016/j.watres.2022.118784] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Despite increasing regulatory efforts to reduce production of per- and polyfluoroalkyl substances (PFAS), continued human and ecological exposure to PFAS has led to concerns about historical releases. Municipal wastewater treatment plants (WWTPs) provide important conduits between waste sources and the environment. We present a meta-analysis of results reported in 44 peer-reviewed publications that include 460 influent and 528 effluent samples, collected from 21 countries, for which some or all of five perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were measured. Our meta analysis revealed global patterns and trends that, to our knowledge, have not been reported elsewhere. Regression analyses of samples collected from 2004 to 2020 quantified the temporal trends of global wastewater effluent concentrations of each of the PFAS and the corresponding mean concentration for each country. Although legacy compounds, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), have been reported with the highest measured concentrations, their global temporal trends are lowest of all PFAS considered. Concentrations of most PFAS analyzed in wastewater in the United States have not changed significantly with time, whereas reported PFAS concentrations in wastewater effluent from China have increased from 11% to 37% per year. In addition, our results show significant positive correlations between previous wastewater effluent concentrations of individual PFAS and the gross domestic product per capita of each country. Our analysis of this global data set also confirmed conclusions from previous studies on smaller data sets: (i) none of the PFAS studied are effectively removed by conventional treatment processes; (ii) effluents from treatment plants that include a significant industrial component to their influent tend to have higher PFAS concentrations; and (iii) the few studies that measured both aqueous concentrations and concentrations adsorbed to suspended particulate matter (SPM) indicate that PFAS adsorbed to SPM can contribute significantly to the total PFAS load.
Collapse
Affiliation(s)
- Esther S Cookson
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA.
| | - Russell L Detwiler
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Ma C, Peng H, Chen H, Shang W, Zheng X, Yang M, Zhang Y. Long-term trends of fluorotelomer alcohols in a wastewater treatment plant impacted by textile manufacturing industry. CHEMOSPHERE 2022; 299:134442. [PMID: 35346737 DOI: 10.1016/j.chemosphere.2022.134442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Fluorotelomer alcohols (FTOHs) are important precursors and substitutes of perfluoroalkyl carboxylic acids (PFCAs). This study investigated the long-term trends of FTOHs in a municipal wastewater treatment plant impacted by textile manufacturing industry (T-WWTP) in Wuxi city from 2013 to 2021. For comparison, four domestic wastewater treatment plants (D-WWTPs) were also selected for the investigation. The total concentrations of FTOHs, which were 9.8-43 ng/L, 5.9-29 ng/L and 10-50 ng/g in influent, secondary effluent, and sludge samples from the T-WWTP, were significantly higher than those of the D-WWTPs (p < 0.01). The significant correlation between decrease of mass loads for FTOHs and the increase for PFCAs was observed, suggesting the potential biotransformation of FTOHs to PFCAs. Concentration variation in FTOH concentrations was observed for the T-WWTP, which was in accord with the variation in annual output of textile products in Wuxi city (p = 0.005). The predominance of 8:2 FTOH in the influents of T-WWTP between 2013 and 2016 switched over to 6:2 FTOH in 2020-2021. This work highlighted the textile manufacturing industry as a significant discharge route for FTOHs to municipal WWTP, as well as the dramatic change in the usage of FTOHs in the textile manufacturing industry in Wuxi.
Collapse
Affiliation(s)
- Chunmeng Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| | - Hongrui Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Shang
- North China Municipal Engineering Design and Research Institute Co. Ltd, Tianjin, 300074, China
| | - Xingcan Zheng
- North China Municipal Engineering Design and Research Institute Co. Ltd, Tianjin, 300074, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Lewis AJ, Yun X, Spooner DE, Kurz MJ, McKenzie ER, Sales CM. Exposure pathways and bioaccumulation of per- and polyfluoroalkyl substances in freshwater aquatic ecosystems: Key considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153561. [PMID: 35101505 DOI: 10.1016/j.scitotenv.2022.153561] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Due to the bioaccumulative behavior, toxicity, and recalcitrance to degradation, per- and polyfluoroalkyl substances (PFAS) are a focus for many researchers investigating freshwater aquatic ecosystems. PFAS are a diverse set of chemicals that accumulate and transport quite differently in the environment depending on the length of their fluoroalkyl chains and their functional groups. This diversity in PFAS chemical characteristics combined with varying environmental factors also impact the bioaccumulation of these compounds in different organisms. In this review, we evaluate environmental factors (such as organic carbon, proteins, lipids, and dissolved cations) as well as PFAS characteristics (head group, chain-length, and concentration) that contribute to the significant variation seen in the literature of bioaccumulation metrics reported for organisms in aquatic ecosystems. Of the factors evaluated, it was found that PFAS concentration, dissolved organic matter, sediment organic matter, and biotransformation of precursor PFAS tended to significantly impact reported bioaccumulation metrics the most. Based on this review, it is highly suggested that future studies provide sufficient details of important environmental factors, specific organism traits/ behavior, and PFAS concentrations/compounds when reporting on bioaccumulation metrics to further fill data gaps and improve our understanding of PFAS in aquatic ecosystems.
Collapse
Affiliation(s)
- Asa J Lewis
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Xiaoyan Yun
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA 19122, USA
| | - Daniel E Spooner
- Department of Biology, Lock Haven University, Lock Haven, PA 17745, USA
| | - Marie J Kurz
- Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA 19122, USA
| | - Christopher M Sales
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Perfluoroalkyl Substances (PFASs) in Rivers and Drinking Waters from Qingdao, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095722. [PMID: 35565116 PMCID: PMC9104605 DOI: 10.3390/ijerph19095722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023]
Abstract
Perfluoroalkyl substances (PFASs) in rivers; drinking water sources (reservoirs and groundwater); and various types of drinking waters (tap waters, barreled pure waters, and bottled mineral waters) in Qingdao, Eastern China were quantified by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The total concentrations of PFASs (ΣPFASs) in the river waters ranged from 28.3 to 292.2 ng/L, averaging 108 ± 70.7 ng/L. PFBS was the most abundant compound, with a maximum concentration of 256.8 ng/L, followed by PFOA (maximum concentration: 72.4 ng/L) and PFBA (maximum concentration: 41.6 ng/L). High levels of PFASs were found in rivers in the suburban and rural areas. The estimated annual mass loading of the total PFASs to Jiaozhou Bay (JZB) was 5.9 tons. The PFASs in the drinking water reservoirs were relatively low. The ΣPFASs in the tap water ranged from 20.5 ng/L to 29.9 ng/L. Differences in the PFAS levels and composition profiles were found among barreled water at different market sites and for different brands of mineral water products. The sequence of the contamination levels of the waters related to drinking water was reservoir water > tap water > barrel water > groundwater > bottled mineral water. The PFASs in drinking water may not pose a serious risk to the drinking water consumers of Qingdao City.
Collapse
|
42
|
Kumar M, Ngasepam J, Dhangar K, Mahlknecht J, Manna S. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. BIORESOURCE TECHNOLOGY 2022; 352:127054. [PMID: 35351567 DOI: 10.1016/j.biortech.2022.127054] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Emerging contaminants (ECs) are not completely removed by wastewater treatment owing to their capabilities of making complexes, toxic derivatives, byproduct formation, and dynamic partitioning. Negative contaminant removal i.e., higher concentrations (up to 5731%) of these ECs in the effluent with respect to the influent sampled on the same occasions, is globally prevalent in almost all types of treatment systems. Conventional WWTPs showed the highest negative removal (NR) for Carbamazepine, and Carbadox. Conjugation-deconjugation, types of WWTPs, transformations, leaching, operational parameters, sampling schemes, and nature of substance governs the NR efficiencies. Among the various categories of micropollutants, pesticides and beta-blockers are reported to exhibit the maximum percentage of NR, posing threat to human and the environment. With > 200% of NR for beta-blockers, low blood-pressure related symptoms may likely to get more prevalent in the near future. Study red-flags this phenomenon of negative removal that needs urgent attention.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | | | - Kiran Dhangar
- Discipline of Civil Engineering, IIT Gandhinagar, Gujarat 382355, India
| | - Jurgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Sur Monterrey 64849, Mexico
| | - Suvendu Manna
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
43
|
Lenka SP, Kah M, Padhye LP. Occurrence and fate of poly- and perfluoroalkyl substances (PFAS) in urban waters of New Zealand. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128257. [PMID: 35063834 DOI: 10.1016/j.jhazmat.2022.128257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Information on the occurrence of PFAS in aquatic matrices of countries with no PFAS manufacturing, e.g., New Zealand, is limited. Also, the fingerprint of PFAS along an urban water cycle, following water path from wastewater treatment plant (WWTP) effluent to treated drinking water has not been widely assessed. Hence, 38 long-, short-, ultrashort-chain PFAS and fluorinated alternatives (including precursors) were monitored in this study by collecting composite samples from two urban WWTPs of New Zealand and grab samples from the water bodies receiving the WWTPs' effluents and a drinking water treatment plant, whose source water received the effluent of one of the studied WWTPs. ∑PFAS at concentrations 0.1 - 13 ng/L were detected in all wastewater samples, including influents and different treatment stages of the two WWTPs (WW1 and WW2). The fate of most PFAS was similar in the two WWTPs, despite large differences in WWTPs' PFAS loads in the influents, serving populations (1.6 vs 0.16 million), total capacities (300 vs 54 million liters per day), and designs (aerobic and anoxic secondary treatment vs aerobic only). The fate of PFAS in WWTPs appeared to be driven by a range of processes. For instance, a simultaneous increase (41.6%) in short-chain perfluorohexanoic acid (PFHxA) concentrations and decrease (49.7%) in precursor 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations after secondary biological treatment suggested possible transformation of 6:2 FTS into PFHxA during the treatment. In contrast, the reason behind an average decrease of 35% in ultrashort-chain perfluoropropionic acid (PFPrA) concentrations after treatment was unclear, and further studies are recommended. The concentrations of a linear isomer of long-chain perfluorosulfonic acid (PFOS-L) decreased (48%) in the effluent, possibly due to its partitioning to sludge. Although the concentrations of PFAS in coastal waters suggested that the WW1 effluent is a potential source of PFAS, earlier dispersion model and no detection of PFAS in the receiving waters of WW2 implied that other sources, such as septic systems, peripheral industries, and the airport, could also be contributing to PFAS in coastal waters. The source of ultrashort-chain PFPrA (5.5 ng/L) detected in the treated drinking water produced from that river was unclear. The monitoring results confirm incomplete removal of PFAS in WWTPs, indicate a possible transformation of unknown precursors present in wastewater into short-chain perfluoroalkylcarboxylic acids (PFCAs) during biological treatment, and reveal a possible accumulation of perfluoroalkylsulfonic acids (PFSAs) in the sludge, overall suggesting the circulation of PFAS in urban water systems.
Collapse
Affiliation(s)
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
44
|
Yu Q, Yang X, Zhao F, Hu X, Ren H, Geng J. Occurrence and removal of progestogens from wastewater treatment plants in China: Spatiotemporal variation and process comparison. WATER RESEARCH 2022; 211:118038. [PMID: 35045367 DOI: 10.1016/j.watres.2022.118038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the overall occurrence and spatiotemporal variation of 19 progestogens in 608 samples collected from 17 wastewater treatment plants (WWTPs) distributed across China during four seasons. The aqueous removal efficiencies of progestogens were calculated and the efficacies of process segments, secondary and advanced processes, and process units in the removal of progestogens were explored. The results indicated that progestogens were widely detected in investigating WWTPs, with the progesterone, dydrogesterone, dienogest, ethisterone, and norethindrone were always dominant in the influent, secondary effluent, final effluent, and excess sludge. Seasonally, the influent exhibited more variability than the other matrices, that 10 progestogens concentrations varied significantly during the four seasons. Spatially, the influent concentrations of progestogens were generally higher in northern WWTPs than that in southern WWTPs during spring and summer. Eight progestogens were stably removed by the WWTPs across seasons, and most progestogens varied considerably in removal in different WWTPs. The conventional process segment was the dominant contributor to progestogen removal. The anaerobic-anoxic-oxic process and a combined process consisting of densadeg and cloth media filter and ultraviolet disinfection showed the highest removal of progestogens among various secondary and advanced treatment processes, respectively. Mass balance analysis showed that most progestogens were effectively eliminated in the aerobic unit, with biodegradation being the primary removal pathway. This study presents the first picture of the spatiotemporal dynamics of the distribution of progestogens in WWTPs of China and provides valuable information for better understanding of the occurrence and removal of progestogens in WWTPs.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xudong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Anning West Road No. 88, Lanzhou 730070, China
| | - Xianda Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
45
|
Ma D, Zhong H, Lv J, Wang Y, Jiang G. Levels, distributions, and sources of legacy and novel per- and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China. J Environ Sci (China) 2022; 112:71-81. [PMID: 34955224 DOI: 10.1016/j.jes.2021.04.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/16/2023]
Abstract
Soil is a major sink for per- and perfluoroalkyl substances (PFAS), wherein PFAS may be transferred through the food chain to predators at upper trophic levels, which poses a threat to human health. Herein, the concentrations and distributions of legacy and novel PFAS in topsoil samples from different functional areas in Tianjin were comprehensively investigated. Seventeen PFAS congeners were identified, with concentrations ranging from 0.21 ng/g to 5.35 ng/g, with a mean concentration of 1.25 ng/g. The main PFAS in the topsoil was perfluorooctanoic acid (PFOA). 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; <MDL-1.95 ng/g, mean 0.11 ng/g), as an emerging substitute for perfluorooctane sulfonate (PFOS), was also detected in the topsoil. It showed slightly higher concentrations than PFOS (<MDL-1.62 ng/g, mean 0.10 ng/g), indicating it has gradually replaced legacy PFOS in this area. Based on the positive-definite matrix factor (PMF) receptor model, the major PFAS sources was dominated by textile treatment, metal electroplating plants, and some potential precursors of PFAS with longer chains (>C8) were the major sources (43.4%), followed by food packaging as well as coating materials (25.5%). In addition, Spearman correlation analysis and the structural equation model showed that population density significantly impacted the PFAS distribution in the topsoil of Tianjin.
Collapse
Affiliation(s)
- Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
46
|
Björnsdotter MK, Yeung LWY, Kärrman A, Jogsten IE. Mass Balance of Perfluoroalkyl Acids, Including Trifluoroacetic Acid, in a Freshwater Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:251-259. [PMID: 34927432 PMCID: PMC8733927 DOI: 10.1021/acs.est.1c04472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/28/2021] [Accepted: 12/05/2021] [Indexed: 06/02/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are highly persistent chemicals that are ubiquitously found in the environment. The atmospheric degradation of precursor compounds has been identified as a source of PFAAs and might be an important pathway for contamination. Lake Vättern is one of Sweden's largest lakes and is an important source for drinking water. In addition to contamination via atmospheric deposition, the lake is subject to several potential contamination sources via surface water inflow. The relevance of different sources is not well understood. A mass balance of selected PFAAs was assembled based on measured concentrations in atmospheric deposition, surface water from streams that constitute the main inflow and outflow, and surface water in the lake. The largest input was seen for trifluoroacetic acid (150 kg/year), perfluoropropanoic acid (1.6 kg/year), perfluorobutanoic acid (4.0 kg/year), and perfluoro-octanoic acid (1.5 kg/year). Both atmospheric deposition and surface water inflow was found to be important input pathways. There was a positive correlation between the input of most perfluoroalkyl carboxylic acids via atmospheric deposition and global radiation and between the input via surface water inflow and catchment area. These findings highlight the importance of atmospheric oxidation of volatile precursor compounds for contamination in surface waters.
Collapse
|
47
|
Yu L, Liu X, Hua Z. Occurrence, distribution, and risk assessment of perfluoroalkyl acids in drinking water sources from the lower Yangtze River. CHEMOSPHERE 2022; 287:132064. [PMID: 34474389 DOI: 10.1016/j.chemosphere.2021.132064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The occurrence, spatial distribution, potential sources, and risk assessment of 14 perfluoroalkyl acids (PFAAs), including 11 perfluoroalkyl carboxylic acids and 3 perfluoroalkyl sulfonates acids, were investigated in 21 drinking water sources from the lower Yangtze River in November 2019. The total PFAAs (∑PFAAs) concentrations ranged from 39.3 to 220.3 ng/L, and perfluorooctanoic acid and perfluorooctanesulfonate were predominant with average concentrations of 19.4 and 15.4 ng/L, respectively. The higher ∑PFAAs concentrations in the southern shore and downstream could be attributed to industrial development and surface runoff/tide currents, respectively. Principal component analysis-multiple linear regression revealed that the primary sources of PFAAs were fluororesin coatings/metal plating, surface runoff/textile, effluent discharge/food packaging, and leather/fabrics. Human intake risks of PFAAs were assessed by target hazard quotient (THQ), which showed that human health risks of PFAAs decreased with increasing age, excluding 13-17 years age group. Moreover, the total exposure risks of PFOA/PFOS in all sampling sites to people aged over 18 years calculated based on contribution from drinking water were noted to be at safe level. The results obtained were helpful for improving our understanding of human health risks of PFAAs, and expanding our knowledge on PFAAs in drinking water.
Collapse
Affiliation(s)
- Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
48
|
Björnsdotter MK, Hartz WF, Kallenborn R, Ericson Jogsten I, Humby JD, Kärrman A, Yeung LWY. Levels and Seasonal Trends of C 1-C 4 Perfluoroalkyl Acids and the Discovery of Trifluoromethane Sulfonic Acid in Surface Snow in the Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15853-15861. [PMID: 34779623 PMCID: PMC8655978 DOI: 10.1021/acs.est.1c04776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 05/31/2023]
Abstract
C1-C4 perfluoroalkyl acids (PFAAs) are highly persistent chemicals that have been found in the environment. To date, much uncertainty still exists about their sources and fate. The importance of the atmospheric degradation of volatile precursors to C1-C4 PFAAs were investigated by studying their distribution and seasonal variation in remote Arctic locations. C1-C4 PFAAs were measured in surface snow on the island of Spitsbergen in the Norwegian Arctic during January-August 2019. Trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), perfluorobutanoic acid (PFBA), and trifluoromethane sulfonic acid (TFMS) were detected in most samples, including samples collected at locations presumably receiving PFAA input solely from long-range processes. The flux of TFA, PFPrA, PFBA, and TFMS per precipitation event was in the ranges of 22-1800, 0.79-16, 0.19-170, and 1.5-57 ng/m2, respectively. A positive correlation between the flux of TFA, PFPrA, and PFBA with downward short-wave solar radiation was observed. No correlation was observed between the flux of TFMS and solar radiation. These findings suggest that atmospheric transport of volatile precursors and their subsequent degradation plays a major role in the global distribution of C2-C4 perfluoroalkyl carboxylic acids and their consequential deposition in Arctic environments. The discovery of TFMS in surface snow at these remote Arctic locations suggests that TFMS is globally distributed. However, the transport mechanism to the Arctic environment remains unknown.
Collapse
Affiliation(s)
- Maria K. Björnsdotter
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - William F. Hartz
- Department
of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom
- Department
of Arctic Geology, University Centre in
Svalbard (UNIS), Longyearbyen, Svalbard NO-9171, Norway
| | - Roland Kallenborn
- Faculty
of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
- Department
of Arctic Technology, University Centre
in Svalbard (UNIS), Longyearbyen, Svalbard NO-9171, Norway
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Jack D. Humby
- Ice Dynamics
and Paleoclimate, British Antarctic Survey, High Cross, Cambridge CB3 0ET, United
Kingdom
| | - Anna Kärrman
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Leo W. Y. Yeung
- Man-Technology-Environment
Research Centre (MTM), Örebro University, Örebro SE-701 82, Sweden
| |
Collapse
|
49
|
Barisci S, Suri R. Occurrence and removal of poly/perfluoroalkyl substances (PFAS) in municipal and industrial wastewater treatment plants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3442-3468. [PMID: 34928819 DOI: 10.2166/wst.2021.484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The presence of poly- and perfluoroalkyl substances (PFAS) has caused serious problems for drinking water supplies especially at intake locations close to PFAS manufacturing facilities, wastewater treatment plants (WWTPs), and sites where PFAS-containing firefighting foam was regularly used. Although monitoring is increasing, knowledge on PFAS occurrences particularly in municipal and industrial effluents is still relatively low. Even though the production of C8-based PFAS has been phased out, they are still being detected at many WWTPs. Emerging PFAS such as GenX and F-53B are also beginning to be reported in aquatic environments. This paper presents a broad review and discussion on the occurrence of PFAS in municipal and industrial wastewater which appear to be their main sources. Carbon adsorption and ion exchange are currently used treatment technologies for PFAS removal. However, these methods have been reported to be ineffective for the removal of short-chain PFAS. Several pioneering treatment technologies, such as electrooxidation, ultrasound, and plasma have been reported for PFAS degradation. Nevertheless, in-depth research should be performed for the applicability of emerging technologies for real-world applications. This paper examines different technologies and helps to understand the research needs to improve the development of treatment processes for PFAS in wastewater streams.
Collapse
Affiliation(s)
- Sibel Barisci
- Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, Temple University, 1947 N 12th Street, Philadelphia, PA 19122, USA E-mail:
| | - Rominder Suri
- Civil and Environmental Engineering Department, Water and Environmental Technology (WET) Center, Temple University, 1947 N 12th Street, Philadelphia, PA 19122, USA E-mail:
| |
Collapse
|
50
|
Hua Z, Yu L, Liu X, Zhang Y, Ma Y, Lu Y, Wang Y, Yang Y, Xue H. Perfluoroalkyl acids in surface sediments from the lower Yangtze River: Occurrence, distribution, sources, inventory, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149332. [PMID: 34375265 DOI: 10.1016/j.scitotenv.2021.149332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence, spatial distribution, potential sources, mass inventory, and ecological risk assessment of perfluoroalkyl acids (PFAAs) in surface sediments from the lower Yangtze River were investigated based on field and laboratory assays conducted in November 2019. The total concentrations of 13 target PFAAs (∑PFAAs) ranged from 13.83 to 20.33 ng/g dw, and perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were predominant in the surface sediments with average concentrations of 2.89 and 4.07 ng/g dw, respectively. The ∑PFAAs concentrations in pore-water ranged from 23.30 to 58.81 ng/L, and PFOA and PFOS were predominant with mean concentrations of 6.29 and 5.04 ng/L, respectively. The profiles of PFAAs composition in surface sediments showed limited difference. Results of fugacity model revealed that PFOS was in relative equilibrium, whereas PFOA exhibited a diffusion trend from sediments to water body. Correlation analysis and positive matrix factorization demonstrated that the main sources of ∑PFAAs were electroplating and fast-food packaging, degradation products and textile, mixed sources, and PFOA-based products. The mass inventory of ∑PFAAs was estimated to be 1680.72 kg, and the results of ecological risk assessments based on equilibrium partition and species sensitivity distribution methods suggested that the hazards of PFAAs in sediments to local aquatic organisms are low. However, the evaluation methods and control measures of PFAAs in surface sediments are still limited, requiring further research.
Collapse
Affiliation(s)
- Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yundong Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|