1
|
Menezes N, Nascimento MM, Cruz I, Martinez ST, da Rocha GO, Souza Filho JR, Leão ZMNA, de Andrade JB. Polycyclic aromatic hydrocarbons in coral reefs from Southwestern Atlantic: A seascape approach using tissue and skeleton of the coral Montastraea cavernosa (Cnidaria; Scleractinia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175913. [PMID: 39226965 DOI: 10.1016/j.scitotenv.2024.175913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Coastal marine ecosystems, such as coral reefs, are severely threatened by climate changes, overexploitation, and marine pollution. Particularly, environmental pollution caused by petroleum-derived substances is poorly studied in coral reefs in tropical developing countries, with a total absence of data about these contaminants in some regions. In this work, we determined the levels of conventional and unconventional PAHs in the tissue and skeleton of the coral Montastraea cavernosa in a seascape scale of the Southwest Atlantic. We sampled in 12 coral reefs adjacent to the coast along approximately 200 km. We found 14 PAHs, 2 Oxy-PAHs, and 15 Nitro-PAHs in the samples, and among them, benzo[a]pyrene, chrysene, benzo[a]anthracene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and dibenz[a,h]anthracene, which are mutagenic, teratogenic and carcinogenic substances. Skeletons presented predominantly lower quantities of ∑PAHs than the respective tissue, except for the skeletons from one reef severely impacted by oil spills. The ∑PAHs levels were lower in a bay near an urbanized region than in open sea reefs. Diagnostic ratios indicate mixogenic sources, with the predominance of petrogenic origin. Our study provides the first occurrence of PAHs, Nitro-PAHs, and Oxy-PAHs distribution in corals from the Southwest Atlantic Ocean, and we expect that these data will help to evaluate any future impacts and management of this ecosystem.
Collapse
Affiliation(s)
- Natália Menezes
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil.
| | - Madson Moreira Nascimento
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil
| | - Igor Cruz
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Laboratory of Biological Oceanography, Department of Oceanography, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | | | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - José R Souza Filho
- Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Catu, Departamento de Ciências Humanas, Rua Barão de Camaçari, n° 118, Barão de Camaçari, 48110-000 Catu, Bahia, Brazil
| | - Zelinda M N A Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110, Salvador, BA, Brazil
| |
Collapse
|
2
|
Qiu YW, Li J, Zhao MX, Yu KF, Zhang G. The emerging and legacy persistent organic contaminants in corals of the South China Sea. CHEMOSPHERE 2024; 359:142324. [PMID: 38740339 DOI: 10.1016/j.chemosphere.2024.142324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Seawater warming, ocean acidification and chemical pollution are the main threats to coral growth and even survival. The legacy persistent organic contaminants (POCs), such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), and the emerging contaminants, including polybrominated diphenyl ethers (PBDEs), dechlorane plus (DPs) and novel brominated flame retardants (NBFRs) were studied in corals from Luhuitou fringing reef in Sanya Bay and Yongle atoll in Xisha Islands, the South China Sea (SCS). Total average concentrations of ∑16PAHs, ∑23OCPs, ∑34PCBs, ∑8PBDEs, ∑2DPs and ∑5NBFRs in 20 coral species (43 samples) from the SCS were 40.7 ± 34.6, 5.20 ± 5.10, 0.197 ± 0.159, 3.30 ± 3.70, 0.041 ± 0.042 and 36.4 ± 112 ng g-1 dw, respectively. PAHs and NBFRs were the most abundant compounds and they are likely to be dangerous pollutants for future coral growth. Compared to those found in other coral reef regions, these pollutants concentrations in corals were at low to median levels. Except for PBDEs, POCs in massive Porites were significantly higher than those in branch Acropora and Pocillopora (p < 0.01), as large, closely packed corals may be beneficial for retaining more pollutant. The current study contributes valuable data on POCs, particularly for halogenated flame retardants (HFRs, including PBDEs, DPs and NBFRs), in corals from the SCS, and will improve our knowledge of the occurrence and fate of these pollutants in coral reef ecosystems.
Collapse
Affiliation(s)
- Yao-Wen Qiu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mei-Xia Zhao
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ke-Fu Yu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
3
|
Cao X, Wang L, Lin J, Wu G, Tang K, Tang J, Yan Z, An M, Liu Z, Zhou Z. Differential bioaccumulation and tolerances of massive and branching scleractinian corals to polycyclic aromatic hydrocarbons in situ. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172920. [PMID: 38701933 DOI: 10.1016/j.scitotenv.2024.172920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Scleractinian corals are capable of accumulating polycyclic aromatic hydrocarbons (PAHs) in reef environments; however, the mechanism behind their PAHs tolerance is unknown. This study investigated the occurrence and bioaccumulation of PAHs in coral reef ecosystems and examined the physiological responses induced by PAHs in coral hosts and their algal symbionts, the massive coral Galaxea fascicularis and branching coral Pocillopora damicornis. G. fascicularis had a higher PAHs accumulation capacity than P. damicornis. Both the coral hosts and algal symbionts preferentially accumulated acenaphthene, dibenzo(a,h)anthracene, and benzo(a)pyrene. The accumulated PAHs by G. fascicularis and P. damicornis hosts was accompanied by a reduction in detoxification ability. The accumulated PAHs could induce oxidative stress in P. damicorni hosts, thus G. fascicularis demonstrated a greater tolerance to PAHs compared to P. damicornis. Meanwhile, their algal symbionts had fewer physiological responses to accumulated PAHs than the coral hosts. Negative effects were not observed with benzo(a)pyrene. Taken together, these results suggest massive and branching scleractinian corals have different PAHs bioaccumulation and tolerance mechanisms, and indicate that long-term PAHs pollution could cause significant alterations of community structures in coral reef ecosystems.
Collapse
Affiliation(s)
- Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Jiamin Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Guowen Wu
- Hainan Research Academy of Environmental Sciences, Haikou 571127, China
| | - Kai Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhicong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Vignesh ER, Gireeshkumar TR, Arya KS, Nair MM, Rakesh PS, Jayadev BS, Asma Shirin PP. Occurrence, sources and risk assessment of polycyclic aromatic hydrocarbons in the coral reef waters of the Lakshadweep Archipelago, Arabian Sea. MARINE POLLUTION BULLETIN 2024; 200:116123. [PMID: 38330814 DOI: 10.1016/j.marpolbul.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The compound effects of anthropogenic disturbances on global and local scales threaten coral reef ecosystems of the Arabian Sea. The impacts of organic pollutants on the coral reefs and associated organisms have received less attention and are consequently less understood. This study examines the background levels, sources, and ecological implications of polycyclic aromatic hydrocarbons (PAHs) in the coral reef ecosystems of Lakshadweep Archipelago. Water and particulate matter were collected from four coral Islands (Kavaratti, Agatti, Bangaram and Perumal Par) of Lakshadweep Archipelago during January and December 2022 and analysed for 15 PAHs priority pollutants. The 15 PAHs congeners generally ranged from 2.77 to 250.47 ng/L in the dissolved form and 0.44 to 6469.86 ng/g in the particulate form. A comparison of available data among the coral reef ecosystems worldwide revealed relatively lower PAHs concentrations in the Lakshadweep coral ecosystems. The isomeric ratios of individual PAH congeners and principal component analysis (PCA) indicate mixed sources of PAHs in the water column derived from pyrogenic, low-temperature combustion and petrogenic. The risk quotient (RQ) values in the dissolved form indicate moderate risk to the aquatic organisms, while they indicate moderate to severe risk in the particulate form.
Collapse
Affiliation(s)
- E R Vignesh
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - T R Gireeshkumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India.
| | - K S Arya
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - Midhun M Nair
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - P S Rakesh
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - B S Jayadev
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| | - P P Asma Shirin
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| |
Collapse
|
5
|
Pereira PHF, Fernandes L, Jesus HE, Costa PG, Lacerda CHF, Mies M, Bianchini A, Santos HF. The Impact of Highly Weathered Oil from the Most Extensive Oil Spill in Tropical Oceans (Brazil) on the Microbiome of the Coral Mussismilia harttii. Microorganisms 2023; 11:1935. [PMID: 37630495 PMCID: PMC10458584 DOI: 10.3390/microorganisms11081935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
In 2019, the largest oil spill ever recorded in tropical oceans in terms of extent occurred in Brazil. The oil from the spill was collected directly from the environment and used in an exposure experiment with the endangered reef-building coral Mussismilia harttii. The treatments of the experiment were control (without oil), 1% oil, 2.5% oil, and direct contact of coral with oil. The most abundant hydrocarbon in the seawater of the experiment was phenatrene, which is toxic to corals. However, overall, the concentration of PAHs was not very high. The analysis of the maximum photosynthetic capacity of Symbiodiniaceae dinoflagellates showed a small impact of oil on corals, mainly on the contact treatment. However, coral microbiomes were affected in all oil treatments, with the contact treatment showing the most pronounced impact. A greater number and abundance of stress-indicating and potentially pathogenic bacteria were found in all oil treatments. Finally, this highly weathered oil that had lain in the ocean for a long time was carrying potentially coral-pathogenic bacteria within the Vibrionaceae family and was able to transmit some of these bacteria to corals. Bacteria within Vibrionaceae are the main causes of disease in different species of corals and other marine organisms.
Collapse
Affiliation(s)
- Pedro Henrique F. Pereira
- Department of Marine Biology, Fluminense Federal University—UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói 24210-201, RJ, Brazil; (P.H.F.P.); (L.F.); (H.E.J.)
| | - Luanny Fernandes
- Department of Marine Biology, Fluminense Federal University—UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói 24210-201, RJ, Brazil; (P.H.F.P.); (L.F.); (H.E.J.)
| | - Hugo E. Jesus
- Department of Marine Biology, Fluminense Federal University—UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói 24210-201, RJ, Brazil; (P.H.F.P.); (L.F.); (H.E.J.)
| | - Patricia G. Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande—FURG, Av. Itália, s/n, Carreiros, Rio Grande 96203-900, RS, Brazil; (P.G.C.); (A.B.)
| | - Carlos H. F. Lacerda
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabrália 45807-000, BA, Brazil; (C.H.F.L.); (M.M.)
| | - Miguel Mies
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabrália 45807-000, BA, Brazil; (C.H.F.L.); (M.M.)
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, São Paulo 05508-120, SP, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande—FURG, Av. Itália, s/n, Carreiros, Rio Grande 96203-900, RS, Brazil; (P.G.C.); (A.B.)
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabrália 45807-000, BA, Brazil; (C.H.F.L.); (M.M.)
| | - Henrique F. Santos
- Department of Marine Biology, Fluminense Federal University—UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói 24210-201, RJ, Brazil; (P.H.F.P.); (L.F.); (H.E.J.)
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabrália 45807-000, BA, Brazil; (C.H.F.L.); (M.M.)
| |
Collapse
|
6
|
Wang H, Huang X, Kuang Z, Zheng X, Zhao M, Yang J, Huang H, Fan Z. Source apportionment and human health risk of PAHs accumulated in edible marine organisms: A perspective of "source-organism-human". JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131372. [PMID: 37060753 DOI: 10.1016/j.jhazmat.2023.131372] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Most PAHs produced by human activities can be absorbed and accumulated by edible organisms and pose a potential hazard to human health. However, the source apportionment and human health risk of PAHs accumulated in edible organisms remains largely unknown. Therefore, we conducted source analysis and health risk assessment based on the PAH concentrations in ten marine fish from coastal areas of Guangdong, China. Results showed that the pollution of PAHs in fish organisms was at "Minimally polluted" level, and that all marine fish had the ability to accumulate PAHs. Risk assessment indicated Carcinogenic risk of PAHs in four populations was at a "Cautionary risk" level, with urban children suffered the highest risk. Petroleum pollution, Coal and biomass combustion, and Marine transport emissions were identified as the main anthropogenic sources for PAHs in organisms, and Marine transport emissions accounted for the highest Carcinogenic risk. The Acceptable daily intake for all populations were far below their actual daily intake without causing "Cautionary risk". Our findings provide new insights into the source apportionment and health risk of PAHs from a "source-organism-human" perspective, and suggested that joint management of three anthropogenic sources would be an effective way to prevent the health risks of PAHs.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xinmiao Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zexing Kuang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Menglu Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jing Yang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, China
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Menezes N, Cruz I, da Rocha GO, de Andrade JB, Leão ZMAN. Polycyclic aromatic hydrocarbons in coral reefs with a focus on Scleractinian corals: A systematic overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162868. [PMID: 36934938 DOI: 10.1016/j.scitotenv.2023.162868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
The impact of petroleum exploitation and oil spills in marine ecosystems has increased over time. Among the concerns regarding these events, the impact on coral reefs stand out because this ecosystem has ecological and economic importance and is globally threatened. We performed a systematic review and bibliometric analysis of studies that determine polycyclic aromatic hydrocarbons (PAHs) in coral reefs, attempting to answer how the studies were distributed around the globe, the main environmental matrices and species of coral studied, the main PAHs found and their mean concentrations, and the methodology used. A bibliographic search resulted in 42 studies with worldwide distribution. The bibliometric results presented more explored terms, such as sediments and toxicology, and newly investigated terms, which should encourage a new area of study, such as those related to zooxanthellae and mucus. The main matrices studied in coral reefs are sediments, corals, and water, whereas air and other invertebrates have rarely been studied. Approximately 45 species of corals with several morphotypes have been reported. PAHs recommended by the United States Environmental Protection Agency (US EPA) were analyzed in all studies, while additional compounds were analyzed in only five. The methods used to determine hydrocarbons are predominantly the most traditional; however, for corals, studies have tended to separate tissue, zooxanthellae, skeleton, and mucus. In the future, we recommend investment in improving the capacity to detect non-conventional PAHs, more studies in regions that are rarely explored in developing countries, and the creation of databases to facilitate management planning on marine coasts.
Collapse
Affiliation(s)
- Natália Menezes
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil.
| | - Igor Cruz
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Laboratory of Biological Oceanography, Federal University of Bahia (UFBA), Department of Oceanography, Institute of Geosciences, Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| | - Gisele O da Rocha
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Jailson B de Andrade
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil; Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil; Centro Universitário SENAI-CIMATEC, 41650-110 Salvador, BA, Brazil
| | - Zelinda M A N Leão
- Laboratory of Coral Reefs and Global Changes-RECOR, Institute of Geosciences, Federal University of Bahia (UFBA), Barão de Jeremoabo Street, Ondina, Salvador 40210-340, Bahia, Brazil
| |
Collapse
|
8
|
Deborah Lee FJ, Hwang JS, Cheng JO, Lin HT, Ko FC. Comparison of polycyclic aromatic hydrocarbon accumulation in crab tissues with the ambient marine particles from shallow hydrothermal vents, northeast Taiwan. ENVIRONMENTAL RESEARCH 2023; 217:114863. [PMID: 36414106 DOI: 10.1016/j.envres.2022.114863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
This study investigated and compared polycyclic aromatic hydrocarbons (PAHs) in crab (Xenograpsus testudinatus), suspended particulate matter, and surface sediment sampled from Kuei-shan-tao (KST) shallow water vents just offshore northeast Taiwan. The total concentrations of PAHs (t-PAHs) in suspended particles near the vents (533-685 ng g-1 dw) were two orders of magnitude higher than the overlying sediment (3.42-6.06 ng g-1 dw). The t-PAHs in sediment were significantly lower than those found in suspended particulate matter and all crab tissues tested, including hepatopancreas (192-1154 ng g-1 dw), gill (221-748 ng g-1 dw), muscle (30-174 ng g-1 dw), and exoskeleton (22-96 ng g-1 dw). Principal component analysis (PCA) indicated tissue-specific bioaccumulation of PAHs in crabs. The compositions of PAHs in gill, muscle, and exoskeleton were mainly low molecular weight, while the composition in the hepatopancreas included both high and low molecular weight PAHs. Highly variable but characteristic PAH congeners and concentrations in crab tissues and ambient aquatic particles reflect bioaccumulation.
Collapse
Affiliation(s)
- Fang-Jing Deborah Lee
- National Museum of Marine Biology and Aquarium, Taiwan; Institute of Marine Biology, National Taiwan Ocean University, Taiwan; Institute of Oceanography, National Taiwan University, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Taiwan
| | - Jing-O Cheng
- National Museum of Marine Biology and Aquarium, Taiwan
| | - Huei-Ting Lin
- Institute of Oceanography, National Taiwan University, Taiwan.
| | - Fung-Chi Ko
- National Museum of Marine Biology and Aquarium, Taiwan; Institute of Marine Biology, National Dong-Hwa University, Taiwan.
| |
Collapse
|
9
|
Liu Z, An M, Geng X, Wu Z, Cai W, Tang J, Zhang K, Zhou Z. The scleractinian coral Pocillopora damicornis relies on neuroendocrine regulation to cope with polycyclic aromatic hydrocarbons under heat stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120565. [PMID: 36332711 DOI: 10.1016/j.envpol.2022.120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/05/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic environmental pollutants and are threatening scleractinian corals. In this study, PAHs treatment did not induce significant physiological responses of the coral Pocillopora damicornis and its algal symbionts, but biological processes including response to toxin, drug metabolic, and oxidation reduction were triggered at the mRNA level. These results implied that PAHs could be a group of slow-acting environmental toxicants, whose effects were moderate but persistent. Besides, it was interesting to find that PAHs activated the neuroendocrine system in the coral by triggering the expression of monoaminergic and acetylcholinergic system related genes, indicating that PAHs might function as environmental hormones. Moreover, the combined treatments of PAHs and heat caused a much obvious effect on the coral and its algal symbionts by elevating antioxidant activity and suppressing photosynthesis in the symbionts. Results from the transcriptome data further indicated that corals might perform stress responses upon PAHs and heat challenges through the TNF and apoptosis pathways, which perhaps was modulated by the neuroendocrine system of corals. Collectively, our survey demonstrates that the PAHs can function as environmental hormones and activate the neuroendocrine regulation in scleractinian corals, which may contribute to the stress responses of symbiotic association by modulating photosynthesis, antioxidation, and apoptosis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Xinxing Geng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China; Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Emanuela F, Erik C, Silvia F, Fiorella P, Mauro M, Stefano G. Peculiar polycyclic aromatic hydrocarbons accumulation patterns in a non-zooxanthellate scleractinian coral. MARINE POLLUTION BULLETIN 2022; 184:114109. [PMID: 36115194 DOI: 10.1016/j.marpolbul.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Frapiccini Emanuela
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Caroselli Erik
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Franzellitti Silvia
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Prada Fiorella
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Marini Mauro
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Goffredo Stefano
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| |
Collapse
|
11
|
Han M, Liu F, Kang Y, Zhang R, Yu K, Wang Y, Wang R. Occurrence, distribution, sources, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in multi environmental media in estuaries and the coast of the Beibu Gulf, China: a health risk assessment through seafood consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52493-52506. [PMID: 35258733 DOI: 10.1007/s11356-022-19542-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The coastal zone is a crucial transitional area between land and ocean, which is facing enormous pressure due to global climate change and anthropogenic activities. It is essential to pay close attention to the pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the coastal environment and their effect on human health. The pollution status of PAHs was investigated in the Beibu Gulf, taking into consideration various environmental media. The results showed that the total concentration of 16 PAHs (Σ16PAHs) was significantly higher in winter than in summer. Compared to the coastal area, the status of PAHs in the estuarine areas was found to be more severe in summer, while the regional difference was insignificant in winter. In summer, the Σ16PAHs in estuarine waters (71.4 ± 9.58 ng/L) > coastal waters (50.4 ± 9.65 ng/L); estuarine sediment (146 ± 116 ng/g) > coastal zone (76.9 ± 108 ng/g). The source apportionment indicated that spilled oil, biomass, and coal burning were the primary sources of PAHs in the water. The predominant sources of pollution in the sediments were spilled oil, fossil fuel burning, and vehicle emissions. With regard to the status of PAHs in marine organisms in the coastal area of the Beibu Gulf, the highest average concentration of PAHs was indicated in shellfishes (183 ± 165 ng/g), followed by fishes (73.7 ± 57.2 ng/g), shrimps (42.7 ± 19.2 ng/g), and crabs (42.7 ± 19.2 ng/g) in Beibu Gulf coastal area. The calculated bioaccumulation factor indicates a low bioaccumulation capacity of PAHs in various seafood considering the ambient environment. The human health risk assessment considering multiple age groups indicates minimal health risk on accidental ingestion of PAHs through seafood. However, it is suggested that the intake of shellfish in children be controlled.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Yaru Kang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Yinghui Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruixuan Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| |
Collapse
|
12
|
Palmer TA, Klein AG, Sweet ST, Frazier AJ, Montagna PA, Wade TL, Beseres Pollack J. Using epibenthic fauna as biomonitors of local marine contamination adjacent to McMurdo Station, Antarctica. MARINE POLLUTION BULLETIN 2022; 178:113621. [PMID: 35421642 DOI: 10.1016/j.marpolbul.2022.113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Ten benthic fauna taxa in a polluted marine area adjacent to McMurdo Station, Antarctica were deemed to be potential biomonitors because PCBs, DDTs, PAHs, copper, lead and/or zinc in their tissues were significantly higher than in tissues of taxa living in reference areas (p < 0.05). Concentrations of PCBs and DDT were highest in Trematomus (fish). Total PAH concentrations were highest in Alcyonium antarcticum (soft coral), Isotealia antarctica (anemone) and L. elliptica. Copper and lead concentrations were highest in Laternula elliptica (bivalve) and Flabegraviera mundata (polychaete), and lowest in Trematomus and Parbolasia corrugatus (nemertean). However, copper concentrations were even higher in the asteroids Perknaster fuscus antarcticus, Odontaster validus and Psilaster charcoti. Bioaccumulation factors for different species were highest for PCBs and DDT, and lowest for lead. Bioaccumulation of some contaminants are likely prevalent in benthic taxa at McMurdo Station, but concentrations are usually low relative to human consumption standards.
Collapse
Affiliation(s)
- Terence A Palmer
- Harte Research Institute, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412-5869, USA.
| | - Andrew G Klein
- Department of Geography, Texas A&M University, College Station, TX 77843, USA
| | - Stephen T Sweet
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843, USA
| | - Amanda J Frazier
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Paul A Montagna
- Harte Research Institute, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412-5869, USA
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843, USA
| | - Jennifer Beseres Pollack
- Harte Research Institute, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5869, Corpus Christi, TX 78412-5869, USA
| |
Collapse
|
13
|
Ashok A, Høj L, Brinkman DL, Negri AP, Agusti S. Food-chain length determines the level of phenanthrene bioaccumulation in corals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118789. [PMID: 34990739 DOI: 10.1016/j.envpol.2022.118789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Exposure from the dissolved-phase and through food-chains contributes to bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in organisms such as fishes and copepods. However, very few studies have investigated the accumulation of PAHs in corals. Information on dietary uptake contribution to PAHs accumulation in corals is especially limited. Here, we used Cavity-Ring-Down Spectroscopy (CRDS) to investigate the uptake rates and accumulation of a 13C-labeled PAH, phenanthrene, in Acropora millepora corals over 14 days. Our experiment involved three treatments representing exposure levels of increasing food-chain length. In Level W, corals were exposed to 13C-phenanthrene directly dissolved in seawater. In Level 1 representing herbivory, Dunaliella salina microalgal culture pre-exposed to 13C-phenanthrene for 48 h was added to the coral treatment jars. In Level 2 representing predation, corals were provided a diet of copepod (Parvocalanus crassirostris) nauplii fed on D. salina pre-exposed to 13C-phenanthrene. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were calculated as appropriate for all organisms, and biomagnification factors (BMF) were calculated for A. millepora. We found that while phenanthrene uptake rates were not significantly different for the treatments, the accumulated concentration in corals was significantly higher in Level W (33.5 ± 2.83 mg kg-1) than in Level 1 (27.55 ± 2.77 mg kg-1) and Level 2 (29.36 ± 3.84 mg kg-1). Coral log BAF values increased with food-chain length; Level 2 log BAF (6.45) was higher than Level W log BCF (4.18) and Level 1 log BAF (4.5). Coral BMF was also higher for Level 2 than for Level 1. Exposure to dissolved or diet-bound phenanthrene had no significant effect on the coral symbionts' photosynthetic efficiency (Fv/Fm) as monitored by pulse-amplitude-modulation (PAM) fluorometry, indicating the PAH can be accumulated without toxic effects to their Photosystem II. Our study highlights the critical role of dietary exposure for pollutant accumulation in corals.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Lone Høj
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
14
|
Dimbarre Lao Guimarães I, Casanova Monteiro F, Vianna da Anunciação de Pinho J, de Almeida Rodrigues P, Gomes Ferrari R, Adam Conte-Junior C. Polycyclic aromatic hydrocarbons in aquatic animals: a systematic review on analytical advances and challenges. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:198-217. [PMID: 35262454 DOI: 10.1080/10934529.2022.2048614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), the main component of petroleum, are a concern due to their environmental persistence, long-range transport, and potential toxic effects on animal, human health, and the environment. PAHs are considered persistent compounds and can be bioaccumulated in sediments and aquatic biota. Determining PAHs in animals and environmental samples consists of three steps: extraction, clean-up or purification, and analytical determination. The matrix complexity and the diversity of environmental contaminants, such as PAHs resulted in the development of numerous analytical techniques and protocols for the extraction of these components and analysis in several samples. This systematic review article seeks to relate the extraction and preparation methods of complex samples from aquatic animals and the two main detection techniques of PAHs. For the elaboration of the research, 67 articles published between 2011 and 2021 were sought, which specifically contemplated the isolation of aquatic extracts and detection and quantification techniques of PAHs.
Collapse
Affiliation(s)
| | | | | | - Paloma de Almeida Rodrigues
- Department of Food Technology, Molecular and Analytical Laboratory Center, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Rafaela Gomes Ferrari
- Department of Biochemistry, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Zootechnics, Agrarian Sciences Center, Federal University of Paraiba, Paraiba, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Food Technology, Molecular and Analytical Laboratory Center, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Hou R, Huang Q, Pan Y, Lin L, Liu S, Li H, Xu X. Novel Brominated Flame Retardants (NBFRs) in a Tropical Marine Food Web from the South China Sea: The Influence of Hydrophobicity and Biotransformation on Structure-Related Trophodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3147-3158. [PMID: 35175039 DOI: 10.1021/acs.est.1c08104] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing discharge and ubiquitous occurrence of novel brominated flame retardants (NBFRs) in aquatic environments have initiated intense global concerns; however, little information is available regarding their structure-related trophodynamics in marine food webs. In this study, a tropical marine food web including 29 species (18 fish and 11 invertebrate species) was collected from coral reef waters of the Xisha Islands, the South China Sea, for an analysis of 11 representative NBFRs. The mean ∑NBFR concentrations generally increased in the following sequence: sea cucumbers (0.330 ng/g lw) < crabs (0.380 ng/g lw) < shells (2.10 ng/g lw) < herbivorous fishes (2.30 ng/g lw) < carnivorous fishes (4.13 ng/g lw), with decabromodiphenyl ethane (DBDPE) and hexabromobenzene (HBB) as the predominant components. Trophic magnification was observed for all of the investigated NBFRs, with trophic magnification factors (TMFs) ranging from 1.53 (tetrabromobisphenol A bis(dibromopropyl ether)) to 5.32 (HBB). Significant negative correlations were also found between the TMFs and the tested in vitro transformation clearance rates (CLin vitro) for the target NBFRs except for bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH) (p < 0.05). Multiple linear regression analysis confirmed that the transformation rate is a more powerful predictor for TMFs than the hydrophobicity of NBFRs in this marine food web.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
16
|
Morgan MB, Ross J, Ellwanger J, Phrommala RM, Youngblood H, Qualley D, Williams J. Sea Anemones Responding to Sex Hormones, Oxybenzone, and Benzyl Butyl Phthalate: Transcriptional Profiling and in Silico Modelling Provide Clues to Decipher Endocrine Disruption in Cnidarians. Front Genet 2022; 12:793306. [PMID: 35087572 PMCID: PMC8787064 DOI: 10.3389/fgene.2021.793306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023] Open
Abstract
Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - James Ross
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Ellwanger
- Department of Biology, Berry College, Mount Berry, GA, United States
| | | | - Hannah Youngblood
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| |
Collapse
|
17
|
Ma X, Yang H, Li S, Huang C, Huang T, Wan H. Trends in the impact of socioeconomic developments on polycyclic aromatic hydrocarbon concentrations in Dianchi Lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2954-2964. [PMID: 34382168 DOI: 10.1007/s11356-021-15690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
An analysis of the correlation between polycyclic aromatic hydrocarbons (PAHs) and economic parameters demonstrates that the total population, gross domestic product, coal consumption, petroleum, temperature, and day consumption significantly affect PAH concentrations in Dianchi Lake, Yunnan province, China. An artificial neural network (ANN) model was developed to predict the trend in PAH concentrations in the sediments of Dianchi Lake over the next 10 years based on current indicators of economic development. The ANN model estimated the concentration of PAHs from 1980 to 2014. The model was evaluated using available observations for the historical trends; concentrations of PAHs in the sediments of Dianchi Lake are calculated to be at 2128.1 ng/g in 2025 and are expected to decline up to 1044.3 ng/g by 2030. These concentrations are considered relatively high because of their impacts on the health of people and aquatic organisms and the development of surrounding industries. We show the importance of the socioeconomic and climate factors in increasing the pollution levels. Our results could support the local government to formulate effective measures to reduce the pollution levels in the lake.
Collapse
Affiliation(s)
- Xiaohua Ma
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Hao Yang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Shuaidong Li
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Changchun Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China.
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China.
| | - Tao Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, People's Republic of China
| | - Hongbin Wan
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
18
|
Kang Y, Zhang R, Yu K, Han M, Wang Y, Huang X, Wang R, Liu F. First report of organochlorine pesticides (OCPs) in coral tissues and the surrounding air-seawater system from the South China Sea: Distribution, source, and environmental fate. CHEMOSPHERE 2022; 286:131711. [PMID: 34340115 DOI: 10.1016/j.chemosphere.2021.131711] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The levels, fate, and potential sources of 22 organochlorine pesticides (OCPs) in coral tissues and the surrounding air-seawater system from the South China Sea (SCS) were elucidated for the first time. ∑22OCPs (total concentration of 22 OCPs) (16.1-223 pg L-1) was relatively higher in coastal seawater than in offshore seawater, which may be the widespread influence of coastal pollution inputs under the western boundary current. The atmospheric ∑22OCPs were predominantly distributed in the gas phase (48.0-2264 pg m-3) and were mainly influenced by continental air mass origins. The air-seawater exchange of selected OCPs showed that OCPs tended to migrate from the atmosphere to seawater. The distribution of ∑22OCPs in coral tissues (0.02-52.2 ng g-1 dw) was significantly correlated with that in air samples, suggesting that OCPs may have a migration pattern of atmosphere-ocean corals in the SCS. Corals exhibited higher bioaccumulation ability (Log BAFs: 2.42-7.41) for OCPs. Source analysis showed that the new application of technical Chlordanes (CHLs) was primarily responsible for the current levels of CHLs in the surrounding environment over the SCS, while historical residues were the primary sources of other OCPs.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruixuan Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
19
|
Wang A, Guo X, Morimoto A, Maetani K, Tanoue R, Tong-U-Dom S, Buranapratheprat A. Transport and dilution of fluvial antibiotic in the Upper Gulf of Thailand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117779. [PMID: 34284203 DOI: 10.1016/j.envpol.2021.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
A three-dimensional hydrodynamic-antibiotic model is developed to investigate the transport and dilution of sulfamethoxazole (SMX) in the Upper Gulf of Thailand (UGoT). The simulation produced a spatially averaged annual mean SMX concentration of 0.58 μgm-3, which varied slightly between seasons assuming a temporally constant river SMX loading observed in August. In contrast, the horizontal distribution of SMX concentrations strongly varied with season because of the changing residual currents. In addition, SMX is diluted to concentrations lower than 10% of those in river waters a short distance offshore of the estuaries. To better understand this behavior, we examined the relationship between salinity and SMX concentrations in the UGoT. The annual budget demonstrates that 98% of SMX in the UGoT is removed by natural decomposition. As the concentrations of fluvial pollutants in the UGoT depend on their river loading and decomposition rates, functions were derived to predict pollutant concentrations and flushing times based on the river input flux and half-life.
Collapse
Affiliation(s)
- Aobo Wang
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Xinyu Guo
- Center for Marine Environmental Studies (CMES), Ehime University, Japan.
| | - Akihiko Morimoto
- Center for Marine Environmental Studies (CMES), Ehime University, Japan
| | - Kana Maetani
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies (CMES), Ehime University, Japan
| | - Siraporn Tong-U-Dom
- Department of Aquatic Science, Faculty of Science, Burapha University, Thailand
| | | |
Collapse
|
20
|
Han M, Kang Y, Wang W, Liu F, Pei J, Wang Y, Zhang R, Yu K. The impact of national energy structure on the concentrations, environmental behavior, and sources of polycyclic aromatic hydrocarbons in riverine and coastal sediments of the Beibu Gulf, China. MARINE POLLUTION BULLETIN 2021; 172:112817. [PMID: 34364141 DOI: 10.1016/j.marpolbul.2021.112817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, polycyclic aromatic hydrocarbons (PAHs) were measured in sediments of the Beibu Gulf in 2017 to investigate sources and a risk assessment. The results showed the total PAH concentration (∑16PAHs) in sediments of the Beibu Gulf in 2017 (17.6 ± 16.7 ng g-1) was significantly lower than that in 2010 (47.8 ± 27.4 ng g-1). The ∑16PAHs concentrations varied spatially within the Beibu Gulf, impacted by point source pollution. The results of adsorption/desorption and water-air partitioning suggest that the environmental behavior of PAHs in the Beibu Gulf is affected by atmospheric deposition and sediment-water partitioning. A risk assessment showed that the PAHs in sediments were within a safety threshold. Three source apportionment methods show that oil spills and oil and biomass burning were the most important (>83.8%) sources of PAHs in sediments of the Beibu Gulf.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Weiquan Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
21
|
Pradhap D, Gandhi KS, Krishnakumar S, Neelavannan K, Radhakrishnan K, Saravanan P. Baseline distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in reef-associated sediments of Vembar group of Islands, Gulf of Mannar, India. MARINE POLLUTION BULLETIN 2021; 171:112727. [PMID: 34340147 DOI: 10.1016/j.marpolbul.2021.112727] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The study aims to investigate the source and concentration of PAH fractions in the reef sediments of the Vembar group of Islands, Gulf of Mannar, India. The concentration of PAHs ranged from 0.36 to 15.98 ng/g. The reef environment was less contaminated with low-molecular-weight PAH fractions. The accumulation of the LMW-PAH fraction was very less, whereas the HMW fraction was derived from pyrolytic sources. The level of low and high molecular weight PAHs was lower than the level of Effective Range Median (ERM) and Effective Range Low (ERL).The calculated total TEQ value ranged from ND to 10.24 ng/g in the reef sediments.
Collapse
Affiliation(s)
- D Pradhap
- Department of Geology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - K Sanjai Gandhi
- Department of Geology, Periyar University, PG Extension Centre, Dharmapuri 636701, Tamil Nadu, India
| | - S Krishnakumar
- Department of Geology, Malankara Catholic college, Mariyagiri, Kaliyakkavilai, Kanyakumari District 629153, Tamil Nadu, India.
| | - K Neelavannan
- Institute for Ocean Management, Anna University, Chennai 600025, India; Department of Earth Sciences, Indian Institute of Technology Kanpur, UP 208016, India
| | - K Radhakrishnan
- Department of Geology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - P Saravanan
- Department of Geology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
22
|
Li Y, Guo N, Zou X, Li P, Zou S, Luo J, Yang Y. Pollution level and health risk assessment of polycyclic aromatic hydrocarbons in marine fish from two coastal regions, the South China Sea. MARINE POLLUTION BULLETIN 2021; 168:112376. [PMID: 33975159 DOI: 10.1016/j.marpolbul.2021.112376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Marine fishes are consumed in large quantities by humans as nutritious food. However, the intake of fish polluted by chemicals may pose a severe threat to human health. This study measured the concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in the muscles of 22 species of marine fish from two coastal regions, i.e., Tanmen and Zhuhai, identified the source of PAHs, and assessed the human health risk by dietary exposure. Total PAH (Σ16PAHs) levels in Tanmen and Zhuhai fish were in the range of 24.29-684.83 ng g-1 dry weight (dw) and 13.74-42.59 ng g-1 dw, averaging 161.46 ng g-1 dw and 31.21 ng g-1 dw, respectively. Compared with other regions in the world, PAH concentrations in Tanmen fish were at median levels, and Zhuhai fish were at low levels. Low molecular weight PAHs (with 2- and 3-rings) were the predominant compounds detected. Molecular diagnostic ratios suggested that PAHs in Tanmen mainly originated from petrogenic sources such as vessel operations or tanker accidents, while Zhuhai fish were mainly polluted by pyrolytic sources such as combustion of coal and wood. The human health risk assessment results indicated that the risk of PAH intake via fish consumption from Zhuhai was negligible, while five species from Tanmen may pose potential health risks to local residents.
Collapse
Affiliation(s)
- Yali Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing 210093, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Nairong Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Xinqing Zou
- Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing 210093, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Jieling Luo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China.
| |
Collapse
|
23
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. A potential threat to the coral reef environments: Polybrominated diphenyl ethers and phthalate esters in the corals and their ambient environment (Persian Gulf, Iran). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145822. [PMID: 33631596 DOI: 10.1016/j.scitotenv.2021.145822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Pollution of the surrounding habitat poses one of the biggest threats to the coral health and even survival. This study focuses on the occurrence, distribution, bioaccumulation and bioconcentration of polybrominated diphenyl ethers (PBDEs) and phthalate esters (PAEs) in corals, their zooxanthellae and mucus, as well as in their ambient environment in Larak coral reef (Persian Gulf) for the first time. The highest concentrations of the pollutants were recorded in mucus, followed by zooxanthellae, tissue and skeleton. Soft corals with higher lipid content contained more PBDEs and PAEs. Pollutants were both efficiently bioconcentrated from water and bioaccumulated from the ambient sediment, albeit bioconcentration played the most prominent role. Elevated PBDEs and especially PAEs concentrations were detected in the skeletons of the bleached corals if compared to the skeleton samples of the non-bleached individuals.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
24
|
Zhang R, Han M, Yu K, Kang Y, Wang Y, Huang X, Li J, Yang Y. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: A case study in spring-summer. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125214. [PMID: 33529835 DOI: 10.1016/j.jhazmat.2021.125214] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Our previous study revealed PAHs' wide occurrence in corals from multiple coral reef regions (CRRs) in the South China Sea. However, little is known about their occurrence, distribution, fate, and sources in the ambient environment of these CRRs. This study aimed to resolve these research gaps. The results showed ∑15PAHs (total concentrations of 15 US EPA priority controlled PAHs exclude naphthalene) in the atmosphere (gas-phase: 0.31-49.6 ng m-3; particle-phase: 2.6-649 pg m-3) were mainly influenced by air mass origins. Southwesterly wind caused higher ∑15PAHs than the southeasterly wind. The ∑15PAHs in seawater from the nearshore (462 ± 244 ng L-1) was higher than that from offshore Zhongsha Islands (80.5 ± 72.1 ng L-1) because of the effect of terrigenous pollution and ocean current. Source apportionment indicated that the mixed sources of spilled oil and combustion from neighboring countries were the main contributors to PAHs in these CRRs. The total deposition fluxes showed that PAHs tended to migrate from the atmosphere to seawater. Global warming may inhibit this process, but PAHs still have a migration pattern of atmosphere-ocean-corals, which will further increase the environmental pressure on coral reef ecology.
Collapse
Affiliation(s)
- Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Yang
- School of Marine Sciences, SunYat-SenUniversity, Guangzhou 510006, China
| |
Collapse
|
25
|
Oladi M, Shokri MR. Multiple benthic indicators are efficient for health assessment of coral reefs subjected to petroleum hydrocarbons contamination: A case study in the Persian Gulf. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124993. [PMID: 33482480 DOI: 10.1016/j.jhazmat.2020.124993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/11/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
The ever-increasing anthropogenic activities have adversely impacted coral reef ecosystems and their ecological functions. This calls for an urgent assessment of the health state of these valuable ecosystems to justify the need for mitigation and proper management efforts. In this contribution, we used multiple indicators to assess the impact of intense oil-related activities on coral reefs in two near-by impacted and non-impacted islands in the northwestern Persian Gulf. The efficacy of indices was assessed using estimations of the effect size (omega-squared), precision, and decision trees (Classification and Regression Tree (CART)). The results demonstrated that the combination of bioaccumulation of ƩPAH in coral tissues, the percent of live coral cover, and the Sediment Constituent (SEDCON) Index were the most robust proxies reflecting the influence of human activities on reef's health. Based on sedimentary PAH concentration, the CART classified most of the indicators into two classes consisting of those in impacted and those in non-impacted locations, further supporting the feasibility of the employed indices. The findings of this study provided a warning of degradation in coral reefs of the island subjected to PAH pollution. This encourages decision-makers to execute routine monitoring and mitigation practices to maintain healthy reefs in the study areas.
Collapse
Affiliation(s)
- Mahshid Oladi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| | - Mohammad Reza Shokri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| |
Collapse
|
26
|
Ranjbar Jafarabadi A, Mashjoor S, Riyahi Bakhtiari A, Cappello T. Ecotoxico Linking of Phthalates and Flame-Retardant Combustion Byproducts with Coral Solar Bleaching. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5970-5983. [PMID: 33886295 DOI: 10.1021/acs.est.0c08730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Persian Gulf coral reefs are unique biota communities in the global sunbelts in being able to survive in multiple stressful fields during summertime (>36 °C). Despite the high-growth emerging health-hazard microplastic additive type of contaminants, its biological interactions with coral-algal symbiosis and/or its synergistic effects linked to solar-bleaching events remain unknown. This study investigated the bioaccumulation patterns of polybrominated diphenyl ether (PBDE) and phthalate ester (PAE) pollutants in six genera of living/bleached corals in Larak Island, Persian Gulf, and their ambient abiotic matrixes. Results showed that the levels of ∑18PBDEs and ∑13PAEs in abiotic matrixes followed the order of SPMs > surface sediments > seawater, and the cnidarian POP-uptake patterns (soft corals > hard corals) were as follows: coral mucus (138.49 ± 59.98 and 71.57 ± 47.39 ng g-1 dw) > zooxanthellae (82.05 ± 28.27 and 20.14 ± 12.65 ng g-1 dw) ≥ coral tissue (66.26 ± 21.42 and 34.97 ± 26.10 ng g-1 dw) > bleached corals (45.19 ± 8.73 and 13.83 ± 7.05 ng g-1 dw) > coral skeleton (35.66 ± 9.58 and 6.47 ± 6.47 ng g-1 dw, respectively). Overall, findings suggest that mucus checking is a key/facile diagnostic approach for fast detection of POP bioaccumulation (PB) in tropical corals. Although studied corals exhibited no consensus concerning hazardous levels of PB (log BSAF < 3.7), our bleaching evidence showed soft corals as the ultimate "summer winners" due to their flexibility/recovering ability.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sakineh Mashjoor
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
27
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. Chlorinated paraffins (SCCPs and MCCPs) in corals and water-SPM-sediment system in the Persian Gulf, Iran: A potential global threat for coral reefs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116531. [PMID: 33581638 DOI: 10.1016/j.envpol.2021.116531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Swift degradation of the coral reef ecosystems urges the need to identify the reef decline drivers. Due to their widespread use, bioaccumulative and toxic characteristics, chlorinated organic compounds, such as chlorinated paraffins (CPs), are regarded as specific pollutants of concern. Yet little is known about the occurrence of CPs in the coral reef ecosystems. This study focuses on the short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs). Their distribution and congener pattern were investigated in the water-SPM-sediment system and in the corals of the Larak coral reef for the first time. Chlorinated paraffins were detected in all the coral species. Their total loadings ranged from 42.1 to 178 ng g-1 dw in coral tissue, from 6.0 to 144 ng g-1dw in the skeleton, and from 55.0 to 240 ng g-1dw in zooxanthellae. Soft corals were found to accumulate more CPs than Scleractinian corals. Zooxanthellae and mucus accumulated more CPs than tissue and skeleton. In most cases, congener group patterns were dominated by C13 (for SCCPs) and C17 (MCCPs) groups, respectively. The congener patterns of CPs altered to some extent between mucus and the remaining coral compartments. High loadings of CPs were detected in the skeleton of the bleached corals. Moreover, a significant negative correlation between the levels of CPs and the symbiodinium density was observed.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
28
|
Nunes BZ, Zanardi-Lamardo E, Choueri RB, Castro ÍB. Marine protected areas in Latin America and Caribbean threatened by polycyclic aromatic hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116194. [PMID: 33288292 DOI: 10.1016/j.envpol.2020.116194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The present study is a literature-based analysis investigating occurrence and the possible consequences of polycyclic aromatic hydrocarbons (PAH) in marine protected areas (MPAs) of Latin America and Caribbean. The approach using overlapping of georeferenced MPA polygons with data compiled from peer-reviewed literature, published during the last 15 years, showed 341 records of PAH in 9 countries. PAH was reported to occur within the boundaries of 36 MPAs located in Argentina, Brazil, Colombia, Mexico, Nicaragua and Uruguay. According to quality guidelines, low to moderate impacts are expected in MPAs categorized in different management classes. Considering sediment samples, 13% of the records presented concentrations enough to cause occasional toxicity. Such level of risk was also seen in Ramsar sites and in Amazonian MPAs. In addition, based on concentrations reported in biota, occasional deleterious effects on organisms from Biosphere Reserves might occur. Diagnostic ratios pointed out petrogenic and pyrolytic processes as PAH predominant sources, and were mainly attributed to the proximity to ports, industries and urban areas. MPAs located in the vicinity of impact-generating areas may be under threat and require government attention and action, mainly through implementation of contamination monitoring programs.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Instituto Do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil; Instituto de Oceanografia, Universidade Federal Do Rio Grande (IO-FURG), Rio Grande, RS, Brazil
| | - Eliete Zanardi-Lamardo
- Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Ítalo Braga Castro
- Instituto Do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, SP, Brazil; Instituto de Oceanografia, Universidade Federal Do Rio Grande (IO-FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
29
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. Biomonitoring of perylene in symbiotic reef and non-reef building corals and species-specific responses in the Kharg and Larak coral reefs (Persian Gulf, Iran): Bioaccumulation and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115476. [PMID: 32891049 DOI: 10.1016/j.envpol.2020.115476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, coral soft tissue, skeleton and zooxanthellae, as well as their ambient sediment and seawater were analyzed for polycyclic aromatic hydrocarbons (PAHs) with a special focus on perylene. Samples were collected from two different environments: the Kharg Island, which is affected by numerous anthropogenic stressors and Larak Island, which is mainly used for recreational and fishing activities and is characterized by dense vegetation. The heaviest loadings of PAHs were observed on Kharg Island, yet higher concentrations of perylene were detected on Larak Island and it was identified as the prevailing compound in this area. Pyrogenic perylene sources were prevailing on Kharg Island, whereas the perylene on Larak Island was determined to be of natural origin. After analyzing the biological samples, higher perylene concentrations were observed in zooxanthellae than in tissue and skeleton. The lowest and the highest perylene loadings were found in the tissue and skeleton of Platygyra daedalea and Porites lutea, respectively. This applies to both reefs. We found that perylene distribution in the corals and their ambient environment follows an irregular pattern, demonstrating remarkable effects from the local inputs. The lipid content in the coral tissue and the location of the coral colony were deduced to be the main factors affecting perylene distribution in corals. On Larak Island, a significant correlation between perylene loadings in sediment and corals was observed. On Kharg Island, a strong interaction between the water column and the corals was detected. The symbiotic relationship between the corals and zooxanthellae might play the most significant role in bioconcentration and bioaccumulation of perylene. Due to the insolubility of PAHs, they could be transferred through a food chain to zooxanthellae and eventually deposited in the coral bodies.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
30
|
Caroselli E, Frapiccini E, Franzellitti S, Palazzo Q, Prada F, Betti M, Goffredo S, Marini M. Accumulation of PAHs in the tissues and algal symbionts of a common Mediterranean coral: Skeletal storage relates to population age structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140781. [PMID: 32673924 DOI: 10.1016/j.scitotenv.2020.140781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread and harmful environmental pollutants that threaten marine ecosystems. Assessing their level and source is crucial to estimate the potential risks for marine organisms, as PAHs represent an additional threat to organism resilience under ongoing climatic change. Here we applied the QuEChERS extraction method to quantify four PAHs (i.e. acenaphthene, fluorene, fluoranthene, and pyrene) in three biological compartments (i.e. skeleton, tissue, and zooxanthellae symbiotic algae) of adult and old specimens of a scleractinian coral species (Balanophyllia europaea) that is widespread throughout the Mediterranean Sea. A higher concentration of all four investigated PAHs was observed in the zooxanthellae, followed by the coral tissue, with lowest concentration in the skeleton, consistently with previous studies on tropical species. In all the three biological compartments, the concentration of low molecular weight PAHs was higher with respect to high-molecular weight PAHs, in agreement with their bioaccumulation capabilities. PAH concentration was unrelated to skeletal age. Observed PAHs were of petrogenic origin, reflecting the pollution sources of the sampling area. By coupling PAH data with population age structure data measured in the field, the amount of PAHs stored in the long term (i.e. up to 20 years) in coral skeletons was quantified and resulted in 53.6 ng m-2 of acenaphthene, 69.4 ng m-2 of fluorene, 2.7 ng m-2 of fluoranthene, and 11.7 ng m-2 of pyrene. This estimate provides the basis for further assessments of long-term sequestration of PAHs from the marine environment in the whole Mediterranean, given the widespread distribution of the investigated coral species.
Collapse
Affiliation(s)
- Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Emanuela Frapiccini
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Quinzia Palazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Mattia Betti
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Mauro Marini
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| |
Collapse
|
31
|
Hook SE. Beyond Thresholds: A Holistic Approach to Impact Assessment Is Needed to Enable Accurate Predictions of Environmental Risk from Oil Spills. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:813-830. [PMID: 32729983 DOI: 10.1002/ieam.4321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 05/25/2023]
Abstract
The risk assessment for the environmental impact of oil spills in Australia is often conducted in part using a combination of spill mapping and toxicological thresholds derived from laboratory studies. While this process is useful in planning operational responses, such as where to position equipment stockpiles and whether to disperse oil, and can be used to identify areas near the spill site where impacts are likely to occur, it cannot accurately predict the environmental consequences of an oil spill or the ecosystem recovery times. Evidence of this disconnect between model predictions and observed impacts is the lack of a profound effect of the Deepwater Horizon wellhead blowout on recruitment to fisheries in the northern Gulf of Mexico, contrary to the predictions made in the Natural Resources Damage Assessment and despite the occurrence of impacts of the spill on marine mammals, marshes, and deep water ecosystems. The incongruity between predictions made with the current approach using threshold monitoring and impacts measured in the field results from some of the assumptions included in the oil spill models. The incorrect assumptions include that toxicity is acute, results from dissolved phase exposure, and would be readily reversible. The toxicity tests from which threshold models are derived use members of the ecosystem that are easily studied in the lab but may not represent the ecosystem as a whole. The test species are typically highly abundant plankton or planktonic life stages, and they have life histories that account for rapid changes in environmental conditions. As a consequence, these organisms recover quickly from an oil spill. The interdependence of ecosystem components, including the reliance of organisms on their microbiomes, is often overlooked. Additional research to assess these data gaps conducted using economically and ecologically relevant species, especially in Australia and other understudied areas of the world, and the use of population dynamic models, will improve the accuracy of environmental risk assessment for oil spills. Integr Environ Assess Manag 2020;16:813-830. © 2020 SETAC.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
| |
Collapse
|
32
|
Yang T, Diao X, Cheng H, Wang H, Zhou H, Zhao H, Chen CM. Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, sediments and seawater from coral reefs of Hainan, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114719. [PMID: 32417574 DOI: 10.1016/j.envpol.2020.114719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
This work investigated levels of PAHs and HMs in fourteen species from seven genera of scleractinian corals, adjacent sediments, and surface seawater in Hainan, China. The sources of contaminations were analyzed as well. The results showed that scleractinian corals had a relatively higher bioaccumulation capacity for PAHs from sediments than for HMs. There were inter-species differences for these contaminants enriched in corals. Pavona varians and Porites lutea could accumulate PAHs more readily. While higher concentrations of Cr, Mn and Pb occurred in Favites flexuosa, other metal levels, such as for Ni, Cu, Zn and As, were found to be elevated in Pocillopora damicornis, as well as for Cd in Acropora echinata. It was found that PAHs originated from petrogenic and pyrolytic sources, and were mainly linked to onshore and on-sea activities, such as motorboats. Mn, Ni, As and Cd were from crustal materials or natural weathering, while Cr, Cu, Zn and Pb were non-crustal origin connecting with the use of anti-fouling boat paint and agricultural and/or aquacultural chemicals. This study suggested that corals could serve as good bioindicators for two types of chemical pollution in the reef system, especially for the two species P. varians and P. lutea for PAHs contaminants.
Collapse
Affiliation(s)
- Tinghan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Huamin Cheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Xiamen University, Xiamen, 361102, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Chien Min Chen
- Department of Environmental Resources and Management, Chia Nan University of Pharmacy and Science, Taiwan, China
| |
Collapse
|
33
|
Yang W, Zhang H, Lang Y, Li Z. Pollution status of PAHs in surface sediments from different marginal seas along China Mainland: A quantitative evaluation on a national scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114431. [PMID: 32251980 DOI: 10.1016/j.envpol.2020.114431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/18/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
China is one of the largest coastal countries in the world, which have all kinds of marginal systems. Studies have reported the sedimentary Polycyclic aromatic hydrocarbons (PAHs) pollution status, including their concentrations, sources and risks, in localized marginal systems, which showed significant differences. Thus, a comprehensive understanding of their pollution in marginal systems along China Mainland is urgently needed on a national scale. In the present study, the concentrations of 16 priority PAHs in surface sediments from 62 different marginal systems along China Mainland were reviewed. Their sources were identified and apportioned, and the health risks and ecological risks were also evaluated. As a result, the total sedimentary PAHs varied in a wide range of 4-3700 ng/g, with the lowest values observed in Kenting National Park in East China Sea and the highest values observed in Daliao River estuary in Bohai Sea. Their concentrations suggested that they were not contaminated-weakly contaminated in most study areas, but were contaminated-heavily contaminated in some pollution hot-spots. Source identification and apportion suggested that the sedimentary PAHs were mainly originated from coal combustion, vehicular emission, natural gas combustion and petrogenic source, but the coal combustion and vehicular emission contributed most to their emission (>90%). Risk assessment suggested that the carcinogenic risks were lower than the upper limit of the acceptable range (10-4), which were acceptable at a large spatial scale. However, for sediments from Qinhuangdao coastal wetland, Daliao River estuary and Yangpu Bay, their carcinogenic risks were higher than 10-4, which will pose high carcinogenic risks for adults. The non-carcinogenic risks were acceptable in all marginal systems with values lower than the safety guideline (<1). In the ecological risk assessment, their concentrations in some pollution hot-spots were higher than the safety guidelines (effects range low, ERL), suggesting a higher potential ecological risk.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | | | - Yinhai Lang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
34
|
Ashok A, Kottuparambil S, Høj L, Negri AP, Duarte CM, Agustí S. Accumulation of 13C-labelled phenanthrene in phytoplankton and transfer to corals resolved using cavity ring-down spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110511. [PMID: 32247239 DOI: 10.1016/j.ecoenv.2020.110511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in marine ecosystems including threatened and potentially sensitive coral reefs. Lower organisms such as phytoplankton, known to bioconcentrate PAHs, could serve as potential entry points for these chemicals into higher trophic levels. Here, we present a novel method using a 13C-labelled PAH and cavity ring-down spectroscopy (CRDS) to investigate accumulation, uptake rates and trophic transfer of PAHs in corals, which are key organisms to sustain biodiversity in tropical seas. We quantified the accumulation of 13C-phenanthrene in the marine microalga Dunaliella salina, and in the coral Acropora millepora after diffusive uptake from seawater or dietary uptake via labelled D. salina. Additionally, we monitored the photophysiological health of D. salina and A. millepora during phenanthrene exposure by pulse-amplitude modulation (PAM) fluorometry. Dose-dependent accumulation of 13C-phenanthrene in the microalga showed a mean bioconcentration factor (BCF) of 2590 ± 787 L kg-1 dry weight. Corals accumulated phenanthrene from both exposure routes. While uptake of 13C-phenanthrene in corals was faster through aqueous exposure than dietary exposure, passive diffusion showed larger variability between individuals and both routes resulted in accumulation of similar concentrations of phenanthrene. The 13C-PAH labelling and analysis by CRDS proved to be a highly sensitive method. The use of stable isotopic label eliminated additional toxicity and risks by radioactive isotopic-labelling, and CRDS reduced the analytical complexity of PAH (less biomass, no extraction, fast analysis). The simultaneous, precise quantification of both carbon content and 13C/12C ratio (δ13C) enabled accurate determination of 13C-phenanthrene accumulation and uptake rate. This is the first study to provide empirical evidence for accumulation of phenanthrene in a phytoplankton-coral food chain.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sreejith Kottuparambil
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lone Høj
- Australian Institute of Marine Science (AIMS), Townsville, 4810, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville, 4810, Queensland, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Susana Agustí
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
35
|
May LA, Burnett AR, Miller CV, Pisarski E, Webster LF, Moffitt ZJ, Pennington P, Wirth E, Baker G, Ricker R, Woodley CM. Effect of Louisiana sweet crude oil on a Pacific coral, Pocillopora damicornis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105454. [PMID: 32179335 DOI: 10.1016/j.aquatox.2020.105454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Recent oil spill responses such as the Deepwater Horizon event have underscored the need for crude oil ecotoxicological threshold data for shallow water corals to assist in natural resource damage assessments. We determined the toxicity of a mechanically agitated oil-seawater mixture (high-energy water-accommodated fraction, HEWAF) of a sweet crude oil on a branched stony coral, Pocillopora damicornis. We report the results of two experiments: a 96 h static renewal exposure experiment and a "pulse-chase" experiment of three short-term exposure durations followed by a recovery period in artificial seawater. Five endpoints were used to determine ecotoxicological values: 1) algal symbiont chlorophyll fluorescence, 2) a tissue regeneration assay and a visual health metric with three endpoints: 3) tissue integrity, 4) tissue color, and 5) polyp behavior. The sum of 50 entrained polycyclic aromatic hydrocarbons (tPAH50) was used as a proxy for oil exposure. For the 96 h exposure dose response experiment, dark-adapted maximum quantum yield (Fv/Fm) of the dinoflagellate symbionts was least affected by crude oil (EC50 = 913 μg/L tPAH50); light-adapted effective quantum yield (EQY) was more sensitive (EC50 = 428 μg/L tPAH50). In the health assessment, polyp behavior (EC50 = 27 μg/L tPAH50) was more sensitive than tissue integrity (EC50 = 806 μg/L tPAH50) or tissue color (EC50 = 926 μg/L tPAH50). Tissue regeneration proved to be a particularly sensitive measurement for toxicity effects (EC50 = 10 μg/L tPAH50). Short duration (6-24 h) exposures using 503 μg/L tPAH50 (average concentration) resulted in negative impacts to P. damicornis and its symbionts. Recovery of chlorophyll a fluorescence levels for 6-24 h oil exposures was observed in a few hours (Fv/Fm) to several days (EQY) following recovery in fresh seawater. The coral health assessments for tissue integrity and tissue color were not affected following short-term oil exposure durations, but the 96 h treatment duration resulted in significant decreases for both. A reduction in polyp behavior (extension) was observed for all treatment durations, with recovery observed for the short-term (6-24 h) exposures within 1-2 days following placement in fresh seawater. Wounded and intact fragments exposed to oil treatments were particularly sensitive, with significant delays observed in tissue regeneration. Estimating ecotoxicological values for P. damicornis exposed to crude oil HEWAFs provides a basis for natural resource damage assessments for oil spills in reef ecosystems. These data, when combined with ecotoxicological values for other coral reef species, will contribute to the development of species sensitivity models.
Collapse
Affiliation(s)
- Lisa A May
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA.
| | - Athena R Burnett
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Carl V Miller
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Emily Pisarski
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Laura F Webster
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Zachary J Moffitt
- Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Paul Pennington
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, 219 Ft. Johnson Rd., Charleston, SC, 29412, USA
| | - Edward Wirth
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| | - Greg Baker
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, 1305 East West Highway, Room 10317, Silver Spring, MD, 20910, USA
| | - Robert Ricker
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, Assessment and Restoration Division, 1410 Neotomas Ave., Suite 110, Santa Rosa, CA, 95405, USA
| | - Cheryl M Woodley
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA
| |
Collapse
|
36
|
Zhang C, Li Y, Wang C, Feng Z, Hao Z, Yu W, Wang T, Zou X. Polycyclic aromatic hydrocarbons (PAHs) in marine organisms from two fishing grounds, South Yellow Sea, China: Bioaccumulation and human health risk assessment. MARINE POLLUTION BULLETIN 2020; 153:110995. [PMID: 32275544 DOI: 10.1016/j.marpolbul.2020.110995] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
Sediment and marine organism samples collected from Haizhou Bay and Lusi fishing ground in South Yellow Sea, China were analysed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 PAHs in marine organisms ranged from 127.43 to 350.53 ng/g dry weight (dw, Haizhou Bay fishing ground) and from 86.37 to 213.02 ng/g dw (Lusi fishing ground). The dominant compounds were 2- and 3-ring PAHs in marine organism tissues. The main PAH sources were found to be coal combustion. Specific habitat, feeding habit, trophic level and environmental differences may affect the PAH levels in marine organisms in our study area. The biota-sediment accumulation factor (BSAF) decreased with increasing PAH log Kow and BSAF values might differ in response to various environmental conditions and species. The excess cancer risk from PAH-contaminated seafood consumption was slightly higher than the guideline value (10-6), but much lower than the priority risk level (10-4).
Collapse
Affiliation(s)
- Chuchu Zhang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Yali Li
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China; School of Marine Sciences, Sun Yat-sun University, Zhuhai 519082, China.
| | - Chenglong Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Ziyue Feng
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Zhe Hao
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Wenwen Yu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China
| | - Teng Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
37
|
Han M, Zhang R, Yu K, Li A, Wang Y, Huang X. Polycyclic aromatic hydrocarbons (PAHs) in corals of the South China Sea: Occurrence, distribution, bioaccumulation, and considerable role of coral mucus. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121299. [PMID: 31585293 DOI: 10.1016/j.jhazmat.2019.121299] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Coral reefs have suffered degradation from climate change and water quality deterioration. Studies have shown that PAHs are present widely in some coastal seawater and coral tissues. However, no studies have focused on the PAHs in coastal coral mucus and offshore coral tissues. Targeting the South China Sea, this study for the first time investigated the occurrence, tissue-mucus partitioning, and bioaccumulation of PAHs in coastal and offshore corals. The tissue and mucus of the corals were processed separately. The results indicated that the total concentration of 15 of the 16 PAHs that are prioritized by U.S. EPA (excluding naphthalene) (∑15PAHs) was significantly higher in the coastal tissues (173 ± 314 ng g-1 dw) than in the offshore tissues (71 ± 109 ng g-1 dw), as well as in coastal seawater (196 ± 96 ng L-1) than in the offshore water (54 ± 9 ng L-1). ∑15PAHs is two orders of magnitude higher in the mucus (3200 ± 6470 ng g-1 dw) than in the tissues (128 ± 43 ng g-1 dw). By average, 29% of ∑15PAHs were accumulated in the mucus. The results suggest that mucus plays an important role in the bioaccumulation of PAHs by corals from ambient seawater.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - An Li
- Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
38
|
Occurrence and potential health risks assessment of polycyclic aromatic hydrocarbons (PAHs) in different tissues of bivalves from Hainan Island, China. Food Chem Toxicol 2020; 136:111108. [DOI: 10.1016/j.fct.2019.111108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 11/22/2022]
|
39
|
van der Schyff V, Kwet Yive NSC, Bouwman H. Metal concentrations in corals from South Africa and the Mascarene Basin: A first assessment for the Western Indian Ocean. CHEMOSPHERE 2020; 239:124784. [PMID: 31520976 DOI: 10.1016/j.chemosphere.2019.124784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Little knowledge exists on the state of metal contamination in corals from the Western Indian Ocean (WIO). Fragments of four soft and five hard coral genera were collected from five sites in the WIO- Sodwana Bay and Aliwal Shoal from South Africa, and Agalega, Rodrigues, and St. Brandon's Rock from the Mascarene Basin. Fragments were analysed for 31 metallic elements using inductively coupled plasma mass spectrometry. Corals from the WIO contained lower concentrations of most metals than corals from the Red Sea. South African corals contained higher concentrations of most of the metallic elements than the Mascarene corals. Sinularia was the coral with the most elements at the highest mean concentrations. A very high concentration of Ni was found in Sinularia (1300 mg/kg dm) from Sodwana Bay. Corals from the Mascarene Islands, especially Agalega, had comparatively low concentrations and could serve as a benchmark for corals from other regions.
Collapse
Affiliation(s)
- Veronica van der Schyff
- Research Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | | | - Hindrik Bouwman
- Research Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
40
|
Nie H, Wang J, Xu K, Huang Y, Yan M. Microplastic pollution in water and fish samples around Nanxun Reef in Nansha Islands, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134022. [PMID: 31470325 DOI: 10.1016/j.scitotenv.2019.134022] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Nanxun Reef is one of the typical reefs in Nansha Islands, South China Sea. As the Nansha Islands are surrounded by certain developing countries, the economic and population growth have resulted in increased surface runoff of persistent organic pollutants in offshore areas. Microplastic has been found in many freshwaters and sea areas in recent years. However, the levels of microplastics contamination in Nansha Islands are still uncharted. In this study, 15 water and 35 fish samples were collected around the Nanxun Reef. The average concentration of microplastics was 1733 items/m3 for surface water samples and 3.1 items per individual for fish samples. The majority of ingested microplastics by fish were fibers, mostly transparent or blue. In surface water samples, blue microbeads were the main types of microplastics, accounting for 76.5% of all the detected particles. The main size of microplastics was <0.5 mm both in water and fish samples. Our results demonstrated that fishery activities and human domestic sewage might be the dominant sources of microplastic pollution in the Nansha Island, South China Sea.
Collapse
Affiliation(s)
- Huayue Nie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| | - Kaihang Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Youjia Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
41
|
Xiang N, Jiang C, Huang W, Nordhaus I, Zhou H, Drews M, Diao X. The impact of acute benzo(a)pyrene on antioxidant enzyme and stress-related genes in tropical stony corals (Acropora spp.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133474. [PMID: 31400692 DOI: 10.1016/j.scitotenv.2019.07.280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Coral reefs have extremely high ecological value in tropical and subtropical waters worldwide. However, they have been subjected to the most extensive and prolonged damage in recent decades. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous hazardous pollutants and are highly resistant to degradation in marine environments. Among these compounds, benzo(a)pyrene (BaP) has exerted pressure on corals due to water discharges, oil spills and coastal tourism. In the present study, the physiological response, oxidative stress and stress-related genetic expressions of two Acropora spp. (Acropora formosa and Acropora nasuta) were analysed. These two coral species were exposed to 10 and 40 μg·L-1 BaP for 24 hand 72 h, respectively. The results show that (1) BaP affects the health of the zooxanthellae in coral symbiosis after BaP exposure for 72 h due to a significant decline in chlorophyll a concentrations in Acropora spp. during this period. (2) An exposure of 10 μg·L-1 BaP for 24 h induced serious oxidative damage to Acropora spp., with a significant decline and increase in superoxide dismutase (SOD) activities in A. formosa and A. nasuta. (3) The P-gp gene is more sensitive in A. formosa, while the Hsp70 gene is more sensitive in A. nasuta. (4) A. formosa showed a lower ability to resist organic pollutants in coral reefs. Overall, further ecotoxicological studies are needed to investigate the impact of chemical pollutants on corals and to compare their different response mechanisms.
Collapse
Affiliation(s)
- Nan Xiang
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstraße 6, Bremen 28359, Germany
| | - Chunxia Jiang
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Huang
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Inga Nordhaus
- Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstraße 6, Bremen 28359, Germany
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Marco Drews
- Leibniz Center for Tropical Marine Research (ZMT), Fahrenheitstraße 6, Bremen 28359, Germany
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilisation, Hainan University, Haikou 570228, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; College of Life Science, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
42
|
Zhang R, Yu K, Li A, Wang Y, Huang X. Antibiotics in corals of the South China Sea: Occurrence, distribution, bioaccumulation, and considerable role of coral mucus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:503-510. [PMID: 31026697 DOI: 10.1016/j.envpol.2019.04.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Manmade antibiotics are emerging organic pollutants widely detected in the marine environment. In this study, 14 out of 19 target antibiotics were detected in corals collected from coastal and offshore regions in the South China Sea. The average total antibiotic concentrations (∑19ABs) in the two regions were similar: 28 ng/g for coastal corals and 31 ng/g for offshore corals, based on dry tissue weight (dw). Fluoroquinolones (FQs) were predominant antibiotics in the coastal corals (mean ∑FQs: 18 ng/g dw), while sulfonamides (SAs) predominated in the offshore corals (mean ∑SAs: 23 ng/g dw). However, corals living in coastal regions tend to excrete more mucus than corals in offshore habitat. We found 53% by average of ∑19ABs in the mucus of the coastal corals; while in offshore corals, most antibiotics (88% by average) were accumulated in the tissues. In addition, the tissue-mucus mass distribution differs among individual antibiotics. Sulfonamides were mainly accumulated in tissues while fluoroquinolones were present mainly in mucus. The results of this study suggest that mucus played an important role in the bioaccumulation of antibiotics by corals. It may resist the bioaccumulation of antibiotics by coral tissue, especially for the coastal corals. Additionally, corals were compared with other marine biotas in the study area and found to be more bioaccumulative towards antibiotics.
Collapse
Affiliation(s)
- Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, 60612, USA
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - An Li
- Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, 60612, USA
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
43
|
Hsieh HY, Huang KC, Cheng JO, Lo WT, Meng PJ, Ko FC. Environmental effects on the bioaccumulation of PAHs in marine zooplankton in Gaoping coastal waters, Taiwan: Concentration, distribution, profile, and sources. MARINE POLLUTION BULLETIN 2019; 144:68-78. [PMID: 31180008 DOI: 10.1016/j.marpolbul.2019.04.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic and ubiquitous in the environment and pose great risks. Bioaccumulation by plankton is the outset for PAHs entering marine food web. The long-term driving environmental factors for bioaccumulation of PAHs in zooplankton have not been well investigated. In this study, high variation of PAH concentrations in zooplankton (5 to 5440 ng g-1 dry weight) was found, with the highest PAH levels near the transect Kaohsiung Harbor. Precipitation significantly enhances the PAH concentration in zooplankton and affects the PAH distribution in the water column, indicating PAH input from terrestrial runoff. The sources of PAHs in the coastal waters are a mixture of petroleum and combustion. Biomass dilution dominates bioaccumulation of PAHs in zooplankton, especially for the dominant species, copepods. This study provides the first information on PAH bioaccumulation in zooplankton to understand PAH transport in the plankton food web in subtropical coastal waters.
Collapse
Affiliation(s)
- Hung-Yen Hsieh
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Kuang-Ching Huang
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Jing-O Cheng
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Wen-Tseng Lo
- Institute of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pei-Jie Meng
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Fung-Chi Ko
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.
| |
Collapse
|
44
|
Mitchelmore CL, He K, Gonsior M, Hain E, Heyes A, Clark C, Younger R, Schmitt-Kopplin P, Feerick A, Conway A, Blaney L. Occurrence and distribution of UV-filters and other anthropogenic contaminants in coastal surface water, sediment, and coral tissue from Hawaii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:398-410. [PMID: 30904653 DOI: 10.1016/j.scitotenv.2019.03.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 05/20/2023]
Abstract
The occurrence of UV-filters in the environment has raised concerns over potentially adverse impacts on corals. In this study, the concentrations of 13 UV-filters and 11 hormones were measured in surface seawater, sediment, and coral tissue from 19 sites in Oahu, Hawaii. At least eight UV-filters were detected in seawater, sediment, and coral tissue and total mass concentrations of all UV-filters were <750 ng L-1, <70 ng g-1 dry weight (dw), and <995 ng g-1 dw, respectively. Four UV-filters were detected in water, sediment, and coral tissue at detection frequencies of 63-100%, 56-91%, and 82-100%, respectively. These UV-filter concentrations generally varied as follows: water, homosalate (HMS) > octisalate (OS) > benzophenone-3 (BP-3, also known as oxybenzone) > octocrylene (OC); sediment, HMS > OS > OC > BP-3; coral, OS ≈ HMS > OC ≈ BP-3. BP-3 concentrations in surface seawater were <10 ng L-1 at 12 of 19 sites and highest at Waikiki beach (e.g., 10.9-136 ng L-1). While BP-3 levels were minimal in sediment (e.g., <1 ng g-1 dw at 18 of 19 sites), and ranged from 6.6 to 241 ng g-1 dw in coral tissue. No quantifiable levels of 2-ethylhexyl 4-methoxycinnamate (also known as octinoxate) were recorded in surface seawater or coral tissues, but 5-12.7 ng g-1 dw was measured for sediment at 5 of 19 sites. No hormones were detected in seawater or sediment, but 17α-ethinylestradiol was present in three corals from Kaneohe Bay. Surfactant degradation products were present in seawater, especially at Waikiki beach. These results demonstrate ubiquitous parts-per-trillion concentrations of UV-filters in surface seawater and is the first report of UV-filters in coral tissue from U.S.A. coastal waters. These data inform the range of environmentally-relevant concentrations for future risk assessments on the potential impacts of UV-filters on coral reefs in Oahu, Hawaii.
Collapse
Affiliation(s)
- Carys L Mitchelmore
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, USA.
| | - Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA; University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, 660 West Redwood Street, Howard Hall 103, MD 21021, USA
| | - Michael Gonsior
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, USA
| | - Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Andrew Heyes
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, USA
| | - Cheryl Clark
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, USA
| | | | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, Neuherberg D-85764, Germany; Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan D-85354, Germany
| | - Anna Feerick
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Annaleise Conway
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| |
Collapse
|
45
|
Silva DP, Duarte G, Villela HD, Santos HF, Rosado PM, Rosado JG, Rosado AS, Ferreira EM, Soriano AU, Peixoto RS. Adaptable mesocosm facility to study oil spill impacts on corals. Ecol Evol 2019; 9:5172-5185. [PMID: 31110670 PMCID: PMC6509398 DOI: 10.1002/ece3.5095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 11/05/2022] Open
Abstract
Although numerous studies have been carried out on the impacts of oil spills on coral physiology, most have relied on laboratory assays. This scarcity is partly explained by the difficulty of reproducing realistic conditions in a laboratory setting or of performing experiments with toxic compounds in the field. Mesocosm systems provide the opportunity to carry out such studies with safe handling of contaminants while reproducing natural conditions required by living organisms. The mesocosm design is crucial and can lead to the development of innovative technologies to mitigate environmental impacts. Therefore, this study aimed to develop a mesocosm system for studies simulating oil spills with several key advantages, including true replication and the use of gravity to control flow-through that reduces reliance on pumps that can clog thereby decreasing errors and costs. This adaptable system can be configured to (a) have continuous flow-through; (b) operate as an open or closed system; (c) be fed by gravity; (d) have separate mesocosm sections that can be used for individual and simultaneous experiments; and (e) simulate the migration of oil from ocean oil spills to the nearby reefs. The mesocosm performance was assessed with two experiments using the hydrocoral Millepora alcicornis and different configurations to simulate two magnitudes of oil spills. With few exceptions, physical and chemical parameters remained stable within replicates and within treatments throughout the experiments. Physical and chemical parameters that expressed change during the experiment were still within the range of natural conditions observed in Brazilian marine environments. The photosynthetic potential (Fv/Fm ) of the algae associated with M. alcicornis decreased in response to an 1% crude-oil contamination, suggesting a successful delivery of the toxic contaminant to the targeted replicates. This mesocosm is customizable and adjustable for several types of experiments and proved to be effective for studies of oil spills.
Collapse
Affiliation(s)
- Denise P. Silva
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Gustavo Duarte
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- IMAM‐AquaRio – Rio de Janeiro Aquarium Research CenterRio de JaneiroBrazil
| | - Helena D.M. Villela
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Henrique F. Santos
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Present address:
Department of Marine BiologyFluminense Federal UniversityRio de JaneiroBrazil
| | - Phillipe M. Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - João Gabriel Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Alexandre S. Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Edir M. Ferreira
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
| | - Adriana U. Soriano
- Biotechnology Section, Leopoldo Américo Miguez de Mello Research & Development Center – CENPESPETROBRASRio de JaneiroBrazil
| | - Raquel S. Peixoto
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de GóesFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- IMAM‐AquaRio – Rio de Janeiro Aquarium Research CenterRio de JaneiroBrazil
| |
Collapse
|
46
|
Yang T, Cheng H, Wang H, Drews M, Li S, Huang W, Zhou H, Chen CM, Diao X. Comparative study of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) in corals, surrounding sediments and surface water at the Dazhou Island, China. CHEMOSPHERE 2019; 218:157-168. [PMID: 30471496 DOI: 10.1016/j.chemosphere.2018.11.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
This study investigated polycyclic aromatic hydrocarbons (PAHs) content in corals (Acropora sp.), surficial sediments, and surface seawater, and heavy metals (HMs) contents in corals and sediments from Dazhou Island, Hainan, China. Concentrations of PAHs in seawater and sediment seasonally ranged from 191.5 ng L-1 to 587.7 ng L-1, and from 37.9 ng g-1 to 233 ng g-1, while levels in corals were higher (185.2-545.0 ng g-1) compared to those found in sediments, demonstrating bioaccumulation of PAHs by corals. A similar seasonally variation of PAHs was observed in water/sediments and corals, and the proportions of low molecular weight PAHs (LPAHs) in seawater and corals were higher. Pyrolytic and petrogenic contaminations were identified to be the main sources of PAHs. Lower HMs concentrations were detected in corals (9.8-39.4 μg g-1) than in sediments (65.0-83.3 μg g-1), but HMs bioaccumulation still occurs in corals. Higher concentrations of HMs in sediment and corals were detected in March and December, especially Mn and Zn. Application of an enrichment factor showed that Cu in corals was delivered from non-crustal materials, and anthropogenic inputs were possibly the main sources. According to Biota Sediment Accumulation Factor, corals could strongly bioaccumulate LPAHs and Cd, and PAHs at a higher (p < 0.05) rate than HMs. There was a lack of correlation between the accumulation of PAHs and HMs in corals based on the cluster analysis. Dual hierarchical clustering analysis result revealed that feeding, instead of symbiosis, might be the main process responsible for the bioaccumulation of PAHs and HMs.
Collapse
Affiliation(s)
- Tinghan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Huamin Cheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Xiamen University, Xiamen, 361102, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Marco Drews
- Leibniz Center for Marine Tropical Research, Bremen, 28359, Germany
| | - Sennan Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chien Min Chen
- Department of Environmental Resources and Management, Chia Nan University of Science and Pharmacy, Taiwan, ROC
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
47
|
Li Y, Wang C, Zou X, Feng Z, Yao Y, Wang T, Zhang C. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in coral reef fish from the South China Sea. MARINE POLLUTION BULLETIN 2019; 139:339-345. [PMID: 30686436 DOI: 10.1016/j.marpolbul.2019.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Little data are available on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in coral reef fish from the South China Sea (SCS). In this study, we collected 21 coral reef fish species from the Xisha and Nansha Islands in the SCS to investigate the occurrence of 16 US-EPA PAHs. The total PAH concentrations (ΣPAH) in the collected fish ranged from 12.79 to 409.28 ng/g dry weight (dw, Xisha Islands) and from 32.71 to 139.09 ng/g dw (Nansha Islands), respectively. The ΣPAH concentration of Scarus niger collected from the Xisha Islands (237.13 ng/g dw) was about twofold higher than that of Scarus niger collected from the Nansha Islands (139.09 ng/g dw). The dominant compounds were found to be 2-ring and 3-ring PAHs. Based on qualitative and quantitative analyses, the main PAH sources were found to be coal and biomass combustion (50.43%), petroleum sources (25.86%), and vehicular emissions (16.10%).
Collapse
Affiliation(s)
- Yali Li
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Chenglong Wang
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China.
| | - Xinqing Zou
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China.
| | - Ziyue Feng
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Yulong Yao
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Teng Wang
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Chuchu Zhang
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
48
|
Hassan SK, Mohammed AMF, Khoder MI. Characterization and Health Risk Assessment of Human Exposure to PAHs in Dust Deposited on Leaves of Street Trees in Egypt. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2018.1517810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Salwa K. Hassan
- Air Pollution Research Department, National Research Centre, Giza, Egypt
| | | | - Mamdouh I. Khoder
- Air Pollution Research Department, National Research Centre, Giza, Egypt
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Hedouin L, Shadmehri Toosi A, Cappello T. Spatio-temporal variability, distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in reef surface sediments of Kharg and Lark coral reefs, Persian Gulf, Iran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:307-322. [PMID: 30056345 DOI: 10.1016/j.ecoenv.2018.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollution, particularly oil pollution, has been a long-standing problem in marine areas. With the aim to assess the pollution status in the Persian Gulf, Iran, herein surface sediments were collected from Kharg and Lark coral reefs, in summer (dry season) and winter (wet season), to evaluate the spatio-temporal variations of n-alkanes and PAHs. The mean total organic carbon (TOC) contents of sediments showed a significantly dramatic variation (p < 0.05) in both seasons at both Islands, with high values recorded at sites located near pollutant inputs. The total mean percent of clay grain-sized sediments at Kharg were 26.57% and 28.86% in dry and wet seasons, respectively, while in Lark were 26.73% in summer and 24.57% in winter. Additionally, at Kharg the mean ∑25n-alkanes and ∑30PAHs ranged from 81.35 to 573 µg g-1 dw and 60.25-491 ng g-1 dw in dry season, and 171-754 µg g-1 dw and 41.61-693 ng g-1 dw in winter, respectively. At Lark, the average ∑25n-alkanes and ∑30PAHs varied from 31.18 to 272 µg g-1 dw and 41.25-196 ng g-1 dw in summer, whilst oscillated from 57.99 to 332 µg g-1 dw and 16.56-487 ng g-1 dw in wet season, respectively. The lowest mean level of the examined pollutants were spanned in offshore sites, while the highest average concentrations indicated that contaminated sediments were at onshore stations at both Islands in both seasons. Significant seasonal variations (p < 0.05) were observed at most sampling sites for all pollutants. Molecular Diagnostic Ratio (MDR) and Principal Component Analysis (PCA) indicated that n-alkanes and PAHs had mostly a petrogenic source. The compositional profile of PAHs showed that 2 and 3-ring PAHs were abundant at both sampling sites. Significant positive correlation (r > 0.76) was observed between ∑25n-alkanes and ∑30PAHs at Kharg and Lark sediments with TOC content, especially for the sites with high total pollutant concentrations. Based on the potential impact and ecological risk of n-alkanes and PAHs in surface sediments, it is, therefore, necessary in future studies to focus on their effects on corals and other marine organisms within this ecosystem.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University (TMU), Noor, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University (TMU), Noor, Mazandaran, Iran.
| | - Laetitia Hedouin
- Department of Marine Biology, Faculty of Sciences, Perpignan, France
| | - Amirhossein Shadmehri Toosi
- Department of Civil & Environmental Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Khorasan Razavi, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
50
|
Xiao R, Zhou H, Chen CM, Cheng H, Li H, Xie J, Zhao H, Han Q, Diao X. Transcriptional responses of Acropora hyacinthus embryo under the benzo(a)pyrene stress by deep sequencing. CHEMOSPHERE 2018; 206:387-397. [PMID: 29754063 DOI: 10.1016/j.chemosphere.2018.04.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Coral embryos are a critical and sensitive period for the early growth and development of coral. Benzo(a)pyrene (BaP) is widely distributed in the ocean and has strong toxicity, but there is little information on the toxic effects to coral embryos exposed to this widespread environmental contaminant. Thus, in this study, we utilized the Illumina Hiseq™ 4000 platform to explore the gene response of Acropora hyacinthus embryos under the BaP stress. A total of 130,042 Unigenes were obtained and analyzed, and approximately 37.67% of those matched with sequences from four different species. In total, 2606 Unigenes were up-regulated, and 3872 Unigenes were down-regulated. After Gene Ontology (GO) annotation, the results show that the "cellular process" and "metabolic process" were leading in the category of biological processes, which the "binding" and "catalytic activity" were the most abundant subcategories in molecular function. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the most differentially expressed genes (DEGs) were enriched, as well as down-regulated in the pathways of oxidative phosphorylation, metabolism of xenobiotics, immune-related genes, apoptosis and human disease genes. At the same time, 388,197 of Single-nucleotide Polymorphisms (SNPs) and 6164 of Simple Sequence Repeats (SSRs) were obtained, which can be served as the richer and more valuable SSRs molecular markers in the future. The results of this study can help to better understand the toxicological mechanism of coral embryo exposed to BaP, and it is also essential for the protection and restoration of coral reef ecosystem in the future.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chien-Min Chen
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan, China
| | - Huamin Cheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hongwu Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ocean, Hainan University, Haikou 570228, China
| | - Jia Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ocean, Hainan University, Haikou 570228, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Ministry of Education Key Laboratory of Tropical Island Ecology, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|