1
|
Scott-Fordsmand JJ, Mariyadas J, Amorim MJ. Soil type dependent toxicity of AgNM300K can be predicted by internal concentrations in earthworms. CHEMOSPHERE 2024; 364:143079. [PMID: 39146991 DOI: 10.1016/j.chemosphere.2024.143079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
A continuous challenge in nanotoxicology is the interaction of nanoparticles with the soil components. In the present study, we compare the toxicity of silver nanoparticles (AgNM300K) on earthworms across 4 different soils, exploring which among the total-, soil solution-, or worm tissue-Ag-concentrations that enables the best prediction of toxicity across the soils. We exposed the earthworm Eisenia fetida to AgNM300K for 56 days to assess survival, reproduction, and bioaccumulation. These endpoints were related to measurements of Ag-ions and -nanoparticles in soil, soil solution, and in the worm tissue. Tested soils included the standard OECD, LUFA 2.2, Hygum, and RefSol 01A soils. Toxicity was strongly dependent on the soil type, highly correlated with the organic matter, clay, and Cation Exchange Capacity (CEC). CEC provided the best correlation with the internal silver concentrations across the soils. The soil solution did not provide useful predictions across the soils.
Collapse
Affiliation(s)
- Janeck J Scott-Fordsmand
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, Building 1120, DK-8000, Aarhus, Denmark.
| | - Jennifer Mariyadas
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, Building 1120, DK-8000, Aarhus, Denmark
| | - Mónica Jb Amorim
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Scott-Fordsmand JJ, Amorim MJDB, de Garidel-Thoron C, Castranova V, Hardy B, Linkov I, Feitshans I, Nichols G, Petersen EJ, Spurgeon D, Tinkle S, Vogel U, Westerhoff P, Wiesner MR, Hendren CO. Bridging international approaches on nanoEHS. NATURE NANOTECHNOLOGY 2021; 16:608-611. [PMID: 34017101 DOI: 10.1038/s41565-021-00912-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
| | | | | | | | | | - Igor Linkov
- US Army Engineer Research and Development Center, Concord, MA, USA
| | - Ilise Feitshans
- European Scientific Institute, Archamps, France
- Work Health and Survival Project, Haddonfield, USA
| | - Gregory Nichols
- Homeland Defense and Security Information Analysis Center, Oak Ridge, TN, USA
- GP Nichols & Company, Knoxville, USA
| | | | | | - Sally Tinkle
- IDA/Science and Technology Policy Institute, Washington, DC, USA
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | | | | |
Collapse
|
3
|
Grillo R, Fraceto LF, Amorim MJB, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124148. [PMID: 33059255 DOI: 10.1016/j.jhazmat.2020.124148] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Recent years have seen the development of various colloidal formulations of pesticides and other agrochemicals aimed at use in sustainable agriculture. These formulations include inorganic, organic or hybrid particulates, or nanocarriers composed of biodegradable polymers, that can provide a better control of the release of active ingredients. The very small particle sizes and high surface areas of nanopesticides may however also lead to some unintended (eco)toxicological effects due to the way in which they interact with the target and non-target species and the environment. The current level of knowledge on ecotoxicological effects of nanopesticides is scarce, especially in regard to the fate and behaviour of such formulations in the environment. Nanopesticides will however have to cross a stringent regulatory scrutiny before marketing in most countries for health and environmental risks under a range of regulatory frameworks that require pre-market notification, risk assessment and approval, followed by labelling, post-market monitoring and surveillance. This review provides an overview of the key regulatory and ecotoxicological aspects relating to nanopesticides that will need to be considered for environmentally-sustainable use in agriculture.
Collapse
Affiliation(s)
- Renato Grillo
- Department of Physics and Chemistry, São Paulo State University (UNESP), Avenida Brasil, 56, Centro, 15385-000 Ilha Solteira, SP, Brazil.
| | - Leonardo F Fraceto
- Department of Environmental Engineering, São Paulo State University (UNESP), Avenida Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Reinhilde Schoonjans
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43123 Parma, Italy
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester CH1 4BJ, United Kingdom
| |
Collapse
|
4
|
Giubilato E, Cazzagon V, Amorim MJB, Blosi M, Bouillard J, Bouwmeester H, Costa AL, Fadeel B, Fernandes TF, Fito C, Hauser M, Marcomini A, Nowack B, Pizzol L, Powell L, Prina-Mello A, Sarimveis H, Scott-Fordsmand JJ, Semenzin E, Stahlmecke B, Stone V, Vignes A, Wilkins T, Zabeo A, Tran L, Hristozov D. Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4532. [PMID: 33066064 PMCID: PMC7601697 DOI: 10.3390/ma13204532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022]
Abstract
The convergence of nanotechnology and biotechnology has led to substantial advancements in nano-biomaterials (NBMs) used in medical devices (MD) and advanced therapy medicinal products (ATMP). However, there are concerns that applications of NBMs for medical diagnostics, therapeutics and regenerative medicine could also pose health and/or environmental risks since the current understanding of their safety is incomplete. A scientific strategy is therefore needed to assess all risks emerging along the life cycles of these products. To address this need, an overarching risk management framework (RMF) for NBMs used in MD and ATMP is presented in this paper, as a result of a collaborative effort of a team of experts within the EU Project BIORIMA and with relevant inputs from external stakeholders. The framework, in line with current regulatory requirements, is designed according to state-of-the-art approaches to risk assessment and management of both nanomaterials and biomaterials. The collection/generation of data for NBMs safety assessment is based on innovative integrated approaches to testing and assessment (IATA). The framework can support stakeholders (e.g., manufacturers, regulators, consultants) in systematically assessing not only patient safety but also occupational (including healthcare workers) and environmental risks along the life cycle of MD and ATMP. The outputs of the framework enable the user to identify suitable safe(r)-by-design alternatives and/or risk management measures and to compare the risks of NBMs to their (clinical) benefits, based on efficacy, quality and cost criteria, in order to inform robust risk management decision-making.
Collapse
Affiliation(s)
- Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Mónica J. B. Amorim
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Magda Blosi
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Jacques Bouillard
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, 6708 WE Wageningen, The Netherlands;
| | - Anna Luisa Costa
- Institute of Science and Technology for Ceramics, National Research Council of Italy (CNR-ISTEC), Via Granarolo 64, 48018 Faenza, Italy; (M.B.); (A.L.C.)
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Teresa F. Fernandes
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Carlos Fito
- Instituto Tecnologico del Embalaje, Transporte y Logistica, 46980 Paterna-Valencia, Spain;
| | - Marina Hauser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (M.H.); (B.N.)
| | - Lisa Pizzol
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Leagh Powell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Adriele Prina-Mello
- Trinity Translational Medicine Institute, Trinity College, The University of Dublin, Dublin 8, Ireland;
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | | | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| | | | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (L.P.); (V.S.)
| | - Alexis Vignes
- Institut National de l’Environnement industriel et des Risques, Parc Technologique ALATA, 60550 Verneuil-en-Halatte, France; (J.B.); (A.V.)
| | - Terry Wilkins
- Nanomanufacturing Institute, School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Alex Zabeo
- GreenDecision Srl, Via delle Industrie, 21/8, 30175 Venice, Italy; (L.P.); (A.Z.)
| | - Lang Tran
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK;
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Via Torino 155, 30172 Venice, Italy; (E.G.); (V.C.); (A.M.); (E.S.)
| |
Collapse
|
5
|
Rodrigues NP, Scott-Fordsmand JJ, Amorim MJB. Novel understanding of toxicity in a life cycle perspective - The mechanisms that lead to population effect - The case of Ag (nano)materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114277. [PMID: 32163806 DOI: 10.1016/j.envpol.2020.114277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Silver (Ag) is amongst the most well studied nanomaterials (NMs), although most studies have only dealt with a single AgNM at a time and one biological endpoint. We here integrate the results of various testing-tools (endpoints) using a terrestrial worm, the standard ecotoxicological model organism Enchytraeus crypticus. Exposure spanned both water and soil exposure, it covered all life stages (cocoons, juveniles and adults), varying exposure durations (1-2-3-4-5-21 days), and covered 5 biological endpoints: hatching success, survival, reproduction, avoidance and gene expression (qPCR target genes GABA and Acetyl cholinesterase). We tested 4 Ag materials: PVP coated (PVP-AgNM), non-coated (NC-AgNM), the JRC reference Ag NM300K and AgNO3. Results showed that short-term exposure via water to assess impact on cocoons' hatching predicted longer term effects such as survival and reproduction. Moreover, if we extended the exposure from 11 to 17 day this allowed discrimination between hatch delay and impairment. Exposure of juveniles and adults via water showed that juveniles were most sensitive with survival affected. Across materials the following toxic ranking was observed: AgNO3 ≥ Ag NM300K ≫ NC-AgNM ≥ PVP-AgNM. E. crypticus avoided AgNO3 in a dose-response manner, avoiding most during the first 24 h. Avoidance of Ag NM300K and NC-AgNM only occurred during the first 24 h and the PVP coated AgNM were not avoided at all. The up-regulation of the GABA triggering anesthetic effects, indicated the high ecological impact of Ag materials in soil: Ag affects the GABAergic system hence organisms were not able to efficiently avoid and became intoxicated, this caused impacts in terms of survival and reproduction.
Collapse
Affiliation(s)
- Natália P Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600, Silkeborg, Denmark
| | - Mónica J B Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Świątek ZM, Woźnicka O, Bednarska AJ. Unravelling the ZnO-NPs mechanistic pathway: Cellular changes and altered morphology in the gastrointestinal tract of the earthworm Eisenia andrei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110532. [PMID: 32247243 DOI: 10.1016/j.ecoenv.2020.110532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 05/27/2023]
Abstract
A major uptake route of nanoparticles (NPs) occurs via the gastrointestinal (GI) tract. When GI tract cells are exposed, NPs cytotoxic effects are observed that subsequently adversely affect the GI tract morphology and have consequences for the whole organism. The aim of this study was to understand the mechanism of effects caused by ZnO-NPs compared to Zn ions on the earthworm Eisenia andrei. The following aspects of individually exposed earthworms were investigated: 1) qualitative structural alterations in the gut epithelium and chloragogen cells of the GI tract, 2) quantitative changes within chloragogen tissues after 48 h of exposure (using morphometric analysis), and 3) the ADP/ATP ratio in homogenized tissue of the whole organism after 21 days of exposure to contaminated soil (contamination phase) followed by 14 days of elimination in clean soil (decontamination phase) to identify possible recovery. Both ZnO-NPs and Zn ions adversely affect the gut epithelium and chloragogen tissue of earthworms after 48 h of exposure to contaminated soil. Morphometric measurements revealed that the proportions of debris vesicles in the chloragocytes were significantly lower in worms exposed to ZnO-NPs than in worms exposed to Zn ions. Moreover, numerous spherite granules were observed in the chloragocytes of ionic Zn-treated worms, but not the ZnO-NPs-treated worms, suggesting differential regulation of these Zn forms. The Zn cytotoxic effect was not reflected in ADP/ATP ratio measurements. Our study provides new insights into nano-specific effects that are distinctive from ion regulation inside the GI tract and furthers our understanding of the relationship between effects at the cellular and whole-body levels.
Collapse
Affiliation(s)
- Zuzanna M Świątek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
7
|
Gomes SIL, Roca CP, Scott-Fordsmand JJ, Amorim MJB. High-throughput transcriptomics: Insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:131-140. [PMID: 30415032 DOI: 10.1016/j.envpol.2018.10.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Nickel nanoparticles (NiNPs) have an estimated production of ca. 20 tons per year in the US. Nickel has been risk-assessed for long in Europe, but not NiNPs, hence the concern for the environment. In the present study, we focused on investigating the mechanisms of toxicity of NiNPs and the comparison to NiNO3. The high-throughput microarray for the soil ecotox model Enchytraeus crypticus (Oligochaeta) was used. To anchor gene to phenotype effect level, organisms were exposed to reproduction effect concentrations EC20 and EC50, for 3 and 7 days. Results showed commonly affected pathways between NiNPs and NiNO3, including increase in proteolysis, apoptosis and inflammatory response, and interference with the nervous system. Mechanisms unique to NiNO3 were also observed (e.g. glutathione synthesis). No specific mechanisms for NiNPs were found, which could indicate that longer exposure period (>7 days) is required to capture the peak response to NiNPs. A mechanisms scheme is assembled, showing both common and unique mechanisms to NiNO3 and NiNPs, providing an important framework for further, more targeted, studies.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos P Roca
- Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Goodchild CG, Simpson AM, Minghetti M, DuRant SE. Bioenergetics-adverse outcome pathway: Linking organismal and suborganismal energetic endpoints to adverse outcomes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:27-45. [PMID: 30259559 DOI: 10.1002/etc.4280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/07/2018] [Accepted: 09/20/2018] [Indexed: 05/21/2023]
Abstract
Adverse outcome pathways (AOPs) link toxicity across levels of biological organization, and thereby facilitate the development of suborganismal responses predictive of whole-organism toxicity and provide the mechanistic information necessary for science-based extrapolation to population-level effects. Thus far AOPs have characterized various acute and chronic toxicity pathways; however, the potential for AOPs to explicitly characterize indirect, energy-mediated effects from toxicants has yet to be fully explored. Indeed, although exposure to contaminants can alter an organism's energy budget, energetic endpoints are rarely incorporated into ecological risk assessment because there is not an integrative framework for linking energetic effects to organismal endpoints relevant to risk assessment (e.g., survival, reproduction, growth). In the present analysis, we developed a generalized bioenergetics-AOP in an effort to make better use of energetic endpoints in risk assessment, specifically exposure scenarios that generate an energetic burden to organisms. To evaluate empirical support for a bioenergetics-AOP, we analyzed published data for links between energetic endpoints across levels of biological organization. We found correlations between 1) cellular energy allocation and whole-animal growth, and 2) metabolic rate and scope for growth. Moreover, we reviewed literature linking energy availability to nontraditional toxicological endpoints (e.g., locomotor performance), and found evidence that toxicants impair aerobic performance and activity. We conclude by highlighting current knowledge gaps that should be addressed to develop specific bioenergetics-AOPs. Environ Toxicol Chem 2019;38:27-45. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Adam M Simpson
- Oklahoma State University, Stillwater, Oklahoma, USA
- Penn State Erie, The Behrend College, Erie, Pennsylvania, USA
| | | | - Sarah E DuRant
- Oklahoma State University, Stillwater, Oklahoma, USA
- University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
Gomes SIL, Roca CP, von der Kammer F, Scott-Fordsmand JJ, Amorim MJB. Mechanisms of (photo)toxicity of TiO 2 nanomaterials (NM103, NM104, NM105): using high-throughput gene expression in Enchytraeus crypticus. NANOSCALE 2018; 10:21960-21970. [PMID: 30444228 DOI: 10.1039/c8nr03251c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Titanium dioxide (TiO2) based nanomaterials (NMs) are among the most produced NMs worldwide. When irradiated with light, particularly UV, TiO2 is photoactive, a property that is explored for several purposes. There are an increasing number of reports on the negative effects of photoactivated TiO2 on non-target organisms. We have here studied the effect of a suite of reference type TiO2 NMs (i.e. NM103, NM104, and NM105 and compared these to the bulk) with and without UV radiation to the oligochaete Enchytraeus crypticus. High-throughput gene expression was used to assess the molecular mechanisms, while also anchoring it to the known effects at the organism level (i.e., reproduction). Results showed that the photoactivity of TiO2 (UV exposed) played a major role in enhancing TiO2 toxicity, activating the transcription of oxidative stress, lysosome damage and apoptosis mechanisms. For non-UV activated TiO2, where toxicity at the organism level (reproduction) was lower, results showed potential for long-term effects (i.e., mutagenic and epigenetic). NM specific mechanisms were identified: NM103 affected transcription and translation, NM104_UV negatively affected the reproductive system/organs, and NM105_UV activated superoxide anion response. Results provided mechanistic information on UV-related phototoxicity of TiO2 materials and evidence for the potential long-term effects.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
10
|
Ribeiro MJ, Maria VL, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB. Fate and Effect of Nano Tungsten Carbide Cobalt (WCCo) in the Soil Environment: Observing a Nanoparticle Specific Toxicity in Enchytraeus crypticus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11394-11401. [PMID: 30193070 DOI: 10.1021/acs.est.8b02537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tungsten carbide cobalt (WCCo) nanoparticles (NPs) are widely used in hard metal industries. Pulmonary diseases and risk of cancer are associated with occupational exposure, but knowledge about the environmental fate and effects is virtually absent. In this study, the fate and effects of crystalline WCCo NPs, WC, and Co2+ were assessed in the soil model Enchytraeus crypticus, following the standard Enchytraeid Reproduction Test (ERT). An additional 28 day exposure period compared to the ERT (i.e., a total of 56 days) was performed to assess longer-term effects. WCCo NPs affected reproduction at a concentration higher than the corresponding Co based (EC50 = 1500 mg WCCo/kg, equivalent to 128 mg Co/kg). WC showed no negative effect up to 1000 mg W/kg. Maximum uptake of Co was 10-fold higher for CoCl2 compared to WCCo exposed organisms. Overall toxicity seems to be due to a combined effect between WC and Co. This is supported by the soil bioavailable fraction and biological tissue measurements. Last, results highlight the need to consider longer exposure period of NPs for comparable methods standardized for conventional chemicals.
Collapse
Affiliation(s)
- Maria J Ribeiro
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Vera L Maria
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Amadeu M V M Soares
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience , Aarhus University , Vejlsovej 25 , PO BOX 314, DK-8600 Silkeborg , Denmark
| | - Mónica J B Amorim
- Department of Biology and CESAM , University of Aveiro , 3810-193 Aveiro , Portugal
| |
Collapse
|
11
|
Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials. Anal Bioanal Chem 2018; 410:6051-6066. [DOI: 10.1007/s00216-018-0940-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
|
12
|
Santos FCF, Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2934-2941. [PMID: 28488336 DOI: 10.1002/etc.3853] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NPs) such as nickel (Ni) are widely used in several applications. Nevertheless, the environmental effects of Ni NPs are still poorly understood. In the present study, the toxicity of Ni NPs and nickel nitrate (NiNO3 ) was assessed using the standard test species in soil ecotoxicology, Enchytraeus crypticus (Oligochaeta), in a full life cycle test, adding the endpoints hatching, growth, and time to reach maturity, besides survival and reproduction as in the standard Organisation for Economic Co-operation and Development Guideline 220 and/or International Organization for Standardization 16387. For Ni NPs, the Ni in soil and in soil solution was concentration- and time-dependent, with a relatively higher soil solution content in the lower and shorter exposure concentrations and times. Overall, NiNO3 was more toxic than Ni NPs, and toxicity seemed to occur via different mechanisms. The former caused reduced hatching (50% effect concentration [EC50] = 39 mg Ni/kg soil), and the negative effects remained throughout the life cycle, in all measured endpoints (growth, maturation, survival, and reproduction). For Ni NPs, hatching was the most sensitive endpoint (EC50 = 870 mg Ni/kg soil), although the organisms recovered; that is, additional endpoints across the life cycle showed that this effect corresponded to a delay in hatching because organisms survived and reproduced at concentrations up to 1800 mg Ni/kg soil. On the other hand, the lowest tested concentration of Ni NPs (100 mg Ni/kg soil) caused reproduction effects similar to those at higher concentrations (1000 and 1800 mg Ni/kg soil). The present results show that the potential implications of a nonmonotonic dose response should be considered when assessing the risks of Ni NP exposure in soil. Environ Toxicol Chem 2017;36:2934-2941. © 2017 SETAC.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Environmental Risk Assessment Strategy for Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101251. [PMID: 29048395 PMCID: PMC5664752 DOI: 10.3390/ijerph14101251] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.
Collapse
|
14
|
Gonçalves MFM, Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. Sci Rep 2017; 7:1355. [PMID: 28465591 PMCID: PMC5430955 DOI: 10.1038/s41598-017-01507-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022] Open
Abstract
Toxicity tests that last the all life duration of the organisms are not common, instead, long-term tests usually include one reproductive cycle. In the present study we optimized and propose a lifespan (all life) term test using Enchytraeus crypticus (Oligochaeta). The effect of copper oxide nanoparticles (CuO-NPs) was assessed in this lifespan test and compared to copper salt (CuCl2), using the same effect concentrations on reproduction (EC50). Monitored endpoints included survival and reproduction over-time (202 days). Results from survival showed that CuO-NPs caused shorter life of the adults compared to CuCl2 (control LT50: 218 days > CuCl2 LT50: 175 days > CuO-NPs LT50: 145 days). The effect was even more amplified in terms of reproduction (control ET50: 158 days > CuCl2 ET50: 138 days > CuO-NPs ET50: 92 days). Results suggest that CuO-NPs may cause a higher Cu effect via a trojan horse mechanism. The use of lifespan tests brings a novel concept in soil ecotoxicity, the longevity. This is a particularly important aspect when the subject is nanomaterials toxicity, where longer term exposure time is expected to reveal unpredicted effects via the current short/long-term tests. The present study confirms this higher effect for CuO-NPs.
Collapse
Affiliation(s)
| | - Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600, Silkeborg, Denmark
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Bicho RC, Santos FCF, Scott-Fordsmand JJ, Amorim MJB. Effects of copper oxide nanomaterials (CuONMs) are life stage dependent - full life cycle in Enchytraeus crypticus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:117-124. [PMID: 28216133 DOI: 10.1016/j.envpol.2017.01.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 05/26/2023]
Abstract
Copper oxide nanomaterials (CuONMs) have various applications in industry and enter the terrestrial environment, e.g. via sewage sludge. The effects of CuONMs and copper chloride (CuCl2) were studied comparing the standard enchytraeid reproduction test (ERT) and the full life cycle test (FLCt) with Enchytraeus crypticus. CuONMs mainly affected growth or juveniles' development, whereas CuCl2 mainly affected embryo development and/or hatching success and adults survival. Compared to the ERT, the FLCt allowed discrimination of effects between life stages and provided indication of the underlying mechanisms; further, the FLCt showed increased sensitivity, e.g. reproductive effects for CuONMs: EC10 = 8 mg Cu/kg and EC10 = 421 mg Cu/kg for the FLCt and the ERT respectively. The performance of the FLCt is preferred to the ERT and we recommend it as a good alternative to assess hazard of NMs. Effects of CuONMs and CuCl2 are life stage dependent and are different between Cu forms.
Collapse
Affiliation(s)
- Rita C Bicho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Fátima C F Santos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600, Silkeborg, Denmark
| | - Mónica J B Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Scott-Fordsmand JJ, Peijnenburg W, Amorim MJB, Landsiedel R, Oorts K. The way forward for risk assessment of nanomaterials in solid media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1363-1364. [PMID: 26700181 DOI: 10.1016/j.envpol.2015.11.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
There is an urgent need for sufficient knowledge to allow reliable assessment of the risks associated with engineered nanomaterials (ENPs). Significant advances in basic understanding of nano safety have been made, but there is still no clear systematic basis for risk-related research, and major uncertainties remain in the absence of uniform procedures. The following papers provide the guidance on how to proceed within the area of fate and hazard assessment, and how this links into grouping, testing and risk assessment of nanomaterials. This guidance is coupled with an industrial view on the most important research areas for nanomaterials.
Collapse
Affiliation(s)
- Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark.
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for Safety of Products and Substances, Bilthoven, Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Mónica J B Amorim
- University of Aveiro, Department of Biology & CESAM, 3810-193 Aveiro, Portugal
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | - Koen Oorts
- ARCHE (Assessing Risks of CHEmicals), Stapelplein 70 box 104, 9000 Gent, Belgium
| |
Collapse
|
17
|
Peijnenburg W, Praetorius A, Scott-Fordsmand J, Cornelis G. Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1365-1369. [PMID: 26794339 DOI: 10.1016/j.envpol.2015.11.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Exposure assessment of engineered nanoparticles (ENPs) in soil and sediment is severely hampered by a lack of understanding of the underlying processes and of the impact of matrix constituents on the fate of ENPs in natural systems, including porewater properties like pH, ionic strength, and presence of naturally occurring (nano)particles. Additional issues such as lack of proper methods for in-situ assessment of ENP speciation, ENP ageing, and agglomeration state, hinder proper exposure assessment. Let alone that the lack does not allow for development of predictive methods for endpoints like transformation and agglomeration potential. This paper discusses current approaches for fate assessment of ENPs in solids dominated media and addresses the most prominent knowledge gaps and how these may be addressed. It is concluded that the key issue to be dealt with, are the attachment and deposition processes that are characteristic for ENPs as opposed to equilibrium-driven partitioning processes of non-particulate organic and inorganic contaminants.
Collapse
Affiliation(s)
- W Peijnenburg
- National Institute of Public Health and The Environment, Center for Safety of Products and Substances, Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands.
| | - A Praetorius
- Department of Environmental Geosciences, University of Vienna, Althanstraße 14 UZAII, 1090 Vienna, Austria
| | - J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark
| | - G Cornelis
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, Göteborg 41296, Sweden
| |
Collapse
|
18
|
Amorim MJB. The Daunting Challenge of Ensuring Sustainable Development of Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:245. [PMID: 27072417 PMCID: PMC4772265 DOI: 10.3390/ijerph13020245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|