1
|
Fu Y, He M, Liu Y, Li M, Zhu M, Wang Y, Lin W, Yu L, Yang L, Zhang Y, Liu Y, Ji H, Ding H, Wang J. Reduction of haemoglobin is related to metal mixtures exposure in Chinese preschoolers: Joint effect models. J Trace Elem Med Biol 2024; 84:127427. [PMID: 38518386 DOI: 10.1016/j.jtemb.2024.127427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Heavy metal exposure is a known risk factor for hematologic disorders in children, yet the impact of co-exposure to multiple metals remains underexplored. This cross-sectional study investigates the relationship between urinary levels of 23 metals and haemoglobin (Hb) in 1460 Chinese preschoolers. The concentrations of the 23 urinary metals were quantified using an inductively coupled plasma mass spectrometer, while Hb levels were assessed through finger prick blood samples. To evaluate the co-exposure effects, we employed three approaches: Generalized linear regression model, joint effect models including Quantile g-Computation and Bayesian Kernel Machine Regression (BKMR). From the generalized linear regression and Quantile g-computation, urinary uranium, thallium, aluminium, iron and tungsten were correlated negatively with Hb, while urinary barium was correlated positively (all P < 0.05). Moreover, significant negative associations between metal mixtures exposure with Hb were identified in both Quantile g-computation [β (95% CI): -0.083 (-0.132, -0.033), P = 0.0012] and BKMR [90th percentile vs. 50th percentile β (95% CI): -0.238 (-0.368, -0.107), P < 0.001] with aluminium emerging as the primary contributor to this joint effect (weight in Quantile g-computation = 0.399, PIPs in BKMR = 0.896). These findings provide a potential explanation for environmental exposure to metals and Hb-related disease in preschoolers.
Collapse
Affiliation(s)
- Ye Fu
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China; Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minghui He
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yang Liu
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mingzhu Li
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meiqin Zhu
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Wang
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China; Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Lin
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Lili Yu
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liting Yang
- Biomedical Research Institute of Hubei University of Medicine, Shiyan, Hubei, China
| | - Yao Zhang
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yanli Liu
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hongxian Ji
- Department of Child Health, Maternal and Child Health Hospital, Shiyan, Hubei, China
| | - Hongcheng Ding
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Jing Wang
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
2
|
Schertenleib T, Karve VV, Stoian D, Asgari M, Trukhina O, Oveisi E, Mensi M, Queen WL. A post-synthetic modification strategy for enhancing Pt adsorption efficiency in MOF/polymer composites. Chem Sci 2024; 15:8323-8333. [PMID: 38846398 PMCID: PMC11151820 DOI: 10.1039/d4sc00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Growing polymers inside porous metal-organic frameworks (MOFs) can allow incoming guests to access the backbone of otherwise non-porous polymers, boosting the number and/or strength of available adsorption sites inside the porous support. In the present work, we have devised a novel post-synthetic modification (PSM) strategy that allows one to graft metal-chelating functionality onto a polymer backbone while inside MOF pores, enhancing the material's ability to recover Pt(iv) from complex liquids. For this, polydopamine (PDA) was first grown inside of a MOF, known as Fe-BTC (or MIL-100 Fe). Next, a small thiol-containing molecule, 2,3-dimercapto-1-propanol (DIP), was grafted to the PDA via a Michael addition. After the modification of the PDA, the Pt adsorption capacity and selectivity were greatly enhanced, particularly in the low concentration regime, due to the high affinity of the thiols towards Pt. Moreover, the modified composite was found to be highly selective for precious metals (Pt, Pd, and Au) over common base metals found in electronic waste (i.e., Pb, Cu, Ni, and Zn). X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption spectroscopy (XAS) provided insight into the Pt adsorption/reduction process. Last, the PSM was extended to various thiols to demonstrate the versatility of the chemistry. It is hoped that this work will open pathways for the future design of novel adsorbents that are fine-tuned for the rapid, selective retrieval of high-value and/or critical metals from complex liquids.
Collapse
Affiliation(s)
- Till Schertenleib
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Vikram V Karve
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Research Facilities (ESRF) BP 220 Grenoble France
| | - Mehrdad Asgari
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
- Department of Chemical Engineering and Biotechnology, University of Cambridge CB3 0AS Cambridge UK
| | - Olga Trukhina
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Emad Oveisi
- Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Mounir Mensi
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| | - Wendy L Queen
- Institute of Chemical Science and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'industrie 17 1951 Sion Switzerland
| |
Collapse
|
3
|
Vuppaladadiyam SSV, Thomas BS, Kundu C, Vuppaladadiyam AK, Duan H, Bhattacharya S. Can e-waste recycling provide a solution to the scarcity of rare earth metals? An overview of e-waste recycling methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171453. [PMID: 38453089 DOI: 10.1016/j.scitotenv.2024.171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Recycling e-waste is seen as a sustainable alternative to compensate for the limited natural rare earth elements (REEs) resources and the difficulty of accessing these resources. Recycling facilitates the recovery of valuable products and minimizes emissions during their transportation. Numerous studies have been reported on e-waste recycling using various techniques, including thermo-, hydro- and biometallurgical approaches. However, each approach still has technical, economic, social, or environmental limitations. This review highlights the potential of recycling e-waste, including outlining the current unutilized potential of REE recycling from different e-waste components. An in-depth analysis of e-waste generation on a global scale and Australian scenario, along with various hazardous impacts on ecosystem and human health, is reported. In addition, a comprehensive summary of various metal recovery processes and their merits and demerits is also presented. Lifecycle analysis for recovering REEs from e-waste indicate a positive environmental impact when compared to REEs produced from virgin sources. In addition, recovering REEs form secondary sources eliminated ca. 1.5 times radioactive waste, as seen in production from primary sources scenario. The review outcome demonstrates the increasing potential of REE recycling to overcome critical challenges, including issues over supply security and localized dependency.
Collapse
Affiliation(s)
| | - Bennet Sam Thomas
- Department of Chemical and Biological Engineering, Monash University, Australia
| | - Chandan Kundu
- Department of Chemical and Biological Engineering, Monash University, Australia
| | | | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Sankar Bhattacharya
- Department of Chemical and Biological Engineering, Monash University, Australia.
| |
Collapse
|
4
|
Zhang S, Ni S, Zeng Z, Yu G, Huang B, Sun X. A clean process for the recovery of rare earth and transition metals from NiMH battery based on primary amine and lauric acid. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119788. [PMID: 38100857 DOI: 10.1016/j.jenvman.2023.119788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
A novel rare earth separation system composed of lauric acid (LA) and primary ammonium (RNH2) was studied. Compared with individual LA and RNH2, the mixed extraction system can significantly improve the extraction and separation ability of rare earth (RE). When LA and RNH2 are mixed in an equal molar ratio, the synergistic coefficient for extracting Nd(III) in the system reaches 136.85. Effective separation of Nd from Co and Ni can be achieved, with the separation coefficients of 1503 and 2762 for Nd/Co and Nd/Ni, respectively. The ion association mechanism of developed extraction system can avoid the generation of saponification wastewater. Thus, the negative impact of saponification wastewater on the economy and environment can be reduced. The extraction system is simple to be prepared and easy to be stripped, which helps to reduce acid and alkali consumption. Application of this extraction system can effectively realize the separation of RE elements La, Ce, Pr, Nd and transition metals Co, Ni, Mn in nickel-metal hydride (NiMH) battery. This paper provides a new strategy for the development of ionic liquid saponification technology without saponified wastewater.
Collapse
Affiliation(s)
- Sijia Zhang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; School of Rare Earths, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shuainan Ni
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Zhiyuan Zeng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Guisu Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Bin Huang
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Xiaoqi Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, PR China; Fujian Research Center for Rare Earth Engineering Technology, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, PR China; School of Rare Earths, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
5
|
El Ayari T, Ben Ahmed R, Hammemi Z, Kouki A, Chelb E, Nechi S, Trigui El Menif N. Effects of rare earth element samarium doped zinc oxide nanoparticles on Mytilus galloprovincialis (Lamarck, 1819): Filtration rates and histopathology. J Trace Elem Med Biol 2024; 81:127349. [PMID: 38006813 DOI: 10.1016/j.jtemb.2023.127349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Doping was reported to improve the photo catalytic performance, antioxidant, antibacterial and other biological properties of nanoparticles. While, improving the nanoparticle properties, doping could change toxicity profile to living organism. Hence, the aim of this work was to assess the effects of samarium doped zinc oxide nanoparticles (Sm doped ZnO NPs) on the edible mussel Mytilus galloprovincialis. METHODS Sm doped ZnO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) techniques. 156 mussels were exposed during 7 days to a low, intermediate and high concentration of Sm doped ZnO NPs (0.5, 1 and 1.5 mg/L, respectively). The filtration rates were assessed after 1 and 2 h. Histopathological alterations were determined in gills, digestive glands and gonads using a quantitative analysis. RESULTS The filtration rates decreased in all individuals exposed to Sm doped ZnO NPs, a significant decrease was noted with the low and intermediate concentration (0.5 and 1 mg/L) of Sm doped ZnO NPs after 1 and 2 h, respectively. The histopathological index (Ih) estimated for gills, digestive glands and gonads showed differences depending on the organ and the nanoparticle concentration. The highest Ih were reported for digestive glands and female gonads exposed to the intermediate concentration (1 mg/L) of Sm doped ZnO NPs. As for gills and male gonads, the highest Ih were noted with the high concentration (1.5 mg/L) of Sm doped ZnO NPs. CONCLUSION Results from this study revealed the toxicity of Sm doped ZnO NPs in Mytilus galloprovincialis gills, digestive glands and gonads. The toxicity induced by this nanoparticle varies depending on the organ and the concentration.
Collapse
Affiliation(s)
- Tahani El Ayari
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia.
| | - Raja Ben Ahmed
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and physiology of Aquatic Organisms Laboratory, Tunis, Tunisia
| | - Zaineb Hammemi
- Laboratoire des composes hétāéro-organiques et des matériaux nanostructurés, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Emna Chelb
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| |
Collapse
|
6
|
Dong Y, Mingtana N, Zan J, Lin H. Recovery of precious metals from waste printed circuit boards though bioleaching route: A review of the recent progress and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119354. [PMID: 37864939 DOI: 10.1016/j.jenvman.2023.119354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
The rapid proliferation of electronic waste (e-waste), including waste printed circuit boards (WPCBs), has exerted immense pressure on the environment. The recovery of precious metals from WPCBs not only serves as an effective means of alleviating this environmental burden but also generates economic value. This review focuses on bioleaching, an environmentally friendly method for extracting precious metals from WPCBs. Under various conditions, this method has achieved leaching rates of 30%-73% for Au and 33.8%-90% for Ag. However, there is a relative scarcity of studies on the bioleaching of precious metals from WPCBs. In this paper, we provide an overview of the current status of bioleaching for precious metals from WPCBs and describe the underlying mechanisms. We also briefly outline the influence of various process factors on leaching efficiency. While this review underscores the considerable potential of bioleaching in WPCBs applications, certain limitations hinder the engineering-scale application of the technology. Consequently, this paper describes the current enhanced processes for enhancing leaching efficiency. Overall, this review can serve as a valuable reference for future research endeavors, ultimately promoting the widespread utilization of bioleaching for the recovery of precious metals from WPCBs.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Nuo Mingtana
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinyu Zan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
7
|
Mishra S, Ghosh S, van Hullebusch ED, Singh S, Das AP. A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology. Appl Biochem Biotechnol 2023; 195:7859-7888. [PMID: 36988841 DOI: 10.1007/s12010-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Pollution by end-of-life electronics is a rapid ever-increasing threat and is a universal concern with production of million metric tons of these wastes per annum. Electronic wastes (E-waste) are rejected electric or electronic equipment which have no other applications. The aggrandized unproper land filling of E-waste may generate hazardous effects on living organisms and ecosystem. At present, millions of tons of E-waste await the advancement of more efficient and worthwhile recycling techniques. Recovery of base and critical elements from electronic scraps will not only reduce the mining of these elements from natural resources but also reduces the contamination caused by the hazardous chemicals (mostly organic micropollutants) released from these wastes when unproperly disposed of. Bioleaching is reported to be the most eco-friendly process for metal recycling from spent electronic goods. A detailed investigation of microbial biodiversity and a molecular understanding of the metabolic pathways of bioleaching microorganisms will play a vital function in extraction of valuable minerals from the end-of-life scraps. Bioleaching technique as an economic and green technology costs around 7 USD per kg for effective reusing of E-waste as compared to other physical and chemical techniques. This review provides a summary of worldwide scenario of electronic pollutants; generation, composition and hazardous components of electronic waste; recycling of valuable elements through bioleaching; mechanism of bioleaching; microorganisms involved in base and critical element recovery from E-waste; commercial bioleaching operations; and upcoming aspects of this eco-friendly technique.
Collapse
Affiliation(s)
- Sunanda Mishra
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | | | - Eric D van Hullebusch
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Shikha Singh
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India
| | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India.
| |
Collapse
|
8
|
Ungureanu EL, Mocanu AL, Stroe CA, Duță DE, Mustățea G. Assessing Health Risks Associated with Heavy Metals in Food: A Bibliometric Analysis. Foods 2023; 12:3974. [PMID: 37959095 PMCID: PMC10649142 DOI: 10.3390/foods12213974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Bibliometric analysis is an effective method used to identify research trends based on historical publications that involves combining different frameworks, tools and methods, leading to the creation of different metrics. This study employed bibliometric analysis to investigate the global health risk assessment of heavy metals in food from 2000 to 2022 using Web of Science and VOSviewer. We explore publication trends, affiliations, countries, journals, citations, keywords and author collaborations. Of the 573 publications on this topic, there has been a notable increase in recent years. The Ministry of Agriculture and Rural Affairs (China) and Shahid Beheshti University of Medical Sciences (Iran) are the most prolific affiliations. Environmental Science and Pollution Research is the top journal. Notably, "heavy metals", "risk assessment", "cadmium", "lead", and "trace elements" are frequently used keywords. A study by Miraglia et al. in 2009 received the most citations. Amin Mousavi Khaneghah (Poland) is the most prolific author, with 24 papers. Articles mainly focus on contamination levels in fish, seafood, cereals, dairy, meat, and fruit/vegetables. Some studies highlight potential risks, necessitating stricter food product controls for consumer safety.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Mustățea
- National Research & Development Institute for Food Bioresources, 020323 Bucharest, Romania; (E.L.U.); (A.L.M.); (C.A.S.); (D.E.D.)
| |
Collapse
|
9
|
Bharathi SD, Dilshani A, Rishivanthi S, Khaitan P, Vamsidhar A, Jacob S. Resource Recycling, Recovery, and Xenobiotic Remediation from E-wastes Through Biofilm Technology: A Review. Appl Biochem Biotechnol 2023; 195:5669-5692. [PMID: 35796946 DOI: 10.1007/s12010-022-04055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Around 50 million tonnes of electronic waste has been generated globally per year, causing an environmental hazard and negative effects on human health, such as infertility and thyroid disorders in adults, endocrine and neurological damage in both animals and humans, and impaired mental and physical development in children. Out of that, only 15% is recycled each year and the remaining is disposed of in a landfill, illegally traded or burned, and treated in a sub-standard way. The processes of recycling are challenged by the presence of brominated flame retardants. The different recycling technologies such as the chemical and mechanical methods have been well studied, while the most promising approach is the biological method. The process of utilizing microbes to decontaminate and degrade a wide range of pollutants into harmless products is known as bioremediation and it is an eco-friendly, cost-effective, and sustainable method. The bioremediation process is significantly aided by biofilm communities attached to electronic waste because they promote substrate bioavailability, metabolite transfer, and cell viability, all of which accelerate bioleaching and biodegradation. Microbes existing in biofilm mode relatable to free-floating planktonic cells are advantageous of bioremediation due to their tolerant ability to environmental stress and pollutants through diverse catabolic pathways. This article discusses the harmful effects of electronic waste and its management using biological strategies especially biofilm-forming communities for resource recovery.
Collapse
Affiliation(s)
- Sundaram Deepika Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Aswin Dilshani
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Srinivasan Rishivanthi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Pratham Khaitan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Adhinarayan Vamsidhar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu Dist., 603203, Tamil Nadu, India.
| |
Collapse
|
10
|
Wang G, Hou J, Yu K, Xu H. Synthesis of AgNPs from waste mobile phone circuit boards using an emulsion liquid membrane method. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131251. [PMID: 36958164 DOI: 10.1016/j.jhazmat.2023.131251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
The disposal of mobile phone print circuit boards (WMPCBs) has now been a problem because of the continually increasing production of mobile phones. It could be considered a new source of precious metal but may jeopardize the environment and human health without proper management. An emulsion liquid membrane (ELM) method is applied and improved to recover silver from WMPCBs and prepare AgNPs. The effects of significant operating parameters were studied for a better understanding of the ELM process. Under the optimized conditions i.e., 0.25 % (v/v) Cyanex 302, 6 % (v/v) Span 80, 5 % (w/v) ASC, 3500 rpm emulsification speed, 10 min emulsification time, 300 rpm extraction stirring speed, 10 min extraction stirring time and 3 (v/v) phase ratio, 98.7 % silver was extracted. AgNPs produced were flower structures assembled by a group of individual nanosheets with a diameter of 800-1400 nm and a thickness of 10-14 nm. The purity was 98.7 % and the yield was 96.6 %. AgNPs of oblate spheroidal structure with a diameter of 30-50 nm could be synthesized by controlling the concentration of Span 80 in ELM. The current study intends to fulfill the gap by exploring the recovery of silver from WMPCBs by the ELM method.
Collapse
Affiliation(s)
- Guangzheng Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jiaona Hou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Kai Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - He Xu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Institute of Ecological Civilization, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
11
|
D'Adamo I, Ferella F, Gastaldi M, Ippolito NM, Rosa P. Circular solar: Evaluating the profitability of a photovoltaic panel recycling plant. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1144-1154. [PMID: 36703248 DOI: 10.1177/0734242x221149327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photovoltaic (PV) panels have a crucial role in coping with the global warming mitigation and the energetic crisis currently affecting the European Community. However, from the circular perspective of end-of-life (EoL) management, there are still big issues to be solved in order to recover materials from this kind of e-wastes. Because of several reasons (e.g. type of embedded materials, illegal shipments, location of manufacturers) EoL businesses do not have the interest in approaching them. This poses a significant environmental concern in terms of their management. This work wants to assess the profitability of a specific PV module recycling plant, by evaluating several market contexts in which multiple scenarios of material price, investment and process costs will be considered. The results for a 3000 tonnes plant show that profitability is not verified in the absence of an avoided landfill cost. Instead, when a value of 200 €/tonnes is applied, the net present value is positive in 35.2% of the scenarios and at 87.6% when a value of 350 €/tonnes is considered. The policy choice of this value requires linking the PV module disposal fee to the circular benefits associated with its recovery.
Collapse
Affiliation(s)
- Idiano D'Adamo
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Roma, Italy
| | - Francesco Ferella
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, L'Aquila, Italy
| | - Massimo Gastaldi
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, L'Aquila, Italy
| | - Nicolò M Ippolito
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, L'Aquila, Italy
| | - Paolo Rosa
- Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
12
|
Yadav V, Manjhi A, Vadakedath N. Mercury remediation potential of mercury-resistant strain Rheinheimera metallidurans sp. nov. isolated from a municipal waste dumping site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114888. [PMID: 37075645 DOI: 10.1016/j.ecoenv.2023.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
A novel mercury-resistant bacterium, designated strain DCL_24T, was isolated from the legacy waste at the Daddu Majra dumping site in Chandigarh, India. It showed resistance up to 300 µM of inorganic mercury (mercuric chloride). The isolate was found to be a Gram-negative, facultative anaerobic, motile, and rod-shaped bacterium that can grow at 4 - 30 °C (optimum 25 °C), pH 6.0 - 12.0 (optimum 7.0), and 0 - 4.0 % (w/v) NaCl (optimum 0.5 - 2.0 %). The 16 S rRNA gene-based phylogenetic analysis showed that DCL_ 24 T shared a 97.53 % similarity with itsºlosest type strain Rheinheimera muenzenbergensis E-49T. Insilico DNA-DNA hybridization and average nucleotide identity values were found to be 18.60 % and 73.77 %, respectively, between the genomes of DCL_24T and R. muenzenbergensis E-49T. The strain DCL_24T has 44.33 DNA G+C content (mol %). Based on the phenotypic, chemotaxonomic, and genotypic data, the strain DCL_24T represents a novel species within the genus Rheinheimera, for which the name Rheinheimera metallidurans sp. nov is proposed. The type strain is DCL_24T (MTCC13203T = NBRC115780T = JCM 35551 T). The isolate was found to volatilize and remove mercury efficiently, as demonstrated by X-ray film and dithizone-based colorimetric methods. Around 92 % of mercury removal was observed within 48 h. The mercury-resistant determinant mer operon consisting of merA, encoding the mercuric reductase enzyme, and transport and regulatory genes (merT, merP, merD, and merR) were found in the isolate. Relative expression analysis of merA at increasing concentrations of HgCl2 was confirmed by quantitative real-time PCR. These data indicate the merA-mediated reduction of toxic Hg2+ into a non-toxic volatile Hg0. The phytotoxicity assay performed using Arabidopsis thaliana seeds further demonstrated the mercury toxicity reduction potential of DCL_24T. The study shows that this novel isolate, DCL_24T, is an interesting candidate for mercury bioremediation. However, further studies are required to assess the bioremediation efficacy of the strain under the harsh environmental conditions prevailing in polluted sites.
Collapse
Affiliation(s)
- Vinay Yadav
- CSIR, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anjali Manjhi
- CSIR, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Nithya Vadakedath
- CSIR, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India.
| |
Collapse
|
13
|
Srivastav AL, Markandeya, Patel N, Pandey M, Pandey AK, Dubey AK, Kumar A, Bhardwaj AK, Chaudhary VK. Concepts of circular economy for sustainable management of electronic wastes: challenges and management options. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48654-48675. [PMID: 36849690 PMCID: PMC9970861 DOI: 10.1007/s11356-023-26052-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/17/2023] [Indexed: 04/16/2023]
Abstract
The electronic and electrical industrial sector is exponentially growing throughout the globe, and sometimes, these wastes are being disposed of and discarded with a faster rate in comparison to the past era due to technology advancements. As the application of electronic devices is increasing due to the digitalization of the world (IT sector, medical, domestic, etc.), a heap of discarded e-waste is also being generated. Per-capita e-waste generation is very high in developed countries as compared to developing countries. Expansion of the global population and advancement of technologies are mainly responsible to increase the e-waste volume in our surroundings. E-waste is responsible for environmental threats as it may contain dangerous and toxic substances like metals which may have harmful effects on the biodiversity and environment. Furthermore, the life span and types of e-waste determine their harmful effects on nature, and unscientific practices of their disposal may elevate the level of threats as observed in most developing countries like India, Nigeria, Pakistan, and China. In the present review paper, many possible approaches have been discussed for effective e-waste management, such as recycling, recovery of precious metals, adopting the concepts of circular economy, formulating relevant policies, and use of advance computational techniques. On the other hand, it may also provide potential secondary resources valuable/critical materials whose primary sources are at significant supply risk. Furthermore, the use of machine learning approaches can also be useful in the monitoring and treatment/processing of e-wastes. HIGHLIGHTS: In 2019, ~ 53.6 million tons of e-wastes generated worldwide. Discarded e-wastes may be hazardous in nature due to presence of heavy metal compositions. Precious metals like gold, silver, and copper can also be procured from e-wastes. Advance tools like artificial intelligence/machine learning can be useful in the management of e-wastes.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India
| | - Markandeya
- Ex-Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Naveen Patel
- Department of Civil Engineerin, IET, Dr. RammanoharLohia Avadh University, Uttar Pradesh, Ayodhya, India
| | - Mayank Pandey
- Department of Environmental Studies, P.G.D.A.V. College (Evening), University of Delhi, Delhi, 110065, India
| | - Ashutosh Kumar Pandey
- Department of Earth Sciences, Banasthali Vidyapith, Radha Kishnpura, P. O. Banasthali, Rajasthan, 304022, India
| | - Ashutosh Kumar Dubey
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, 174103, India.
| | - Abhishek Kumar
- Department of Computer Science and Engineering, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Abhishek Kumar Bhardwaj
- Amity School of Life Sciences, Department of Environmental Science, Amity University, Madhya Pradesh, Gwalior, 474001, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
14
|
de Oliveira Neto JF, Candido LA, de Freitas Dourado AB, Santos SM, Florencio L. Waste of electrical and electronic equipment management from the perspective of a circular economy: A Review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:760-780. [PMID: 36413067 DOI: 10.1177/0734242x221135341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In addition to the difficulties involved in the management of conventional solid waste, the management of waste of electrical and electronic equipment (WEEE) is significantly more complex due to its unusual chemical composition and fast generation. Both developed and developing countries have been looking for solutions to deal with the problems caused by the growing flow of WEEE, especially regarding sustainable solutions based on reducing resource exploitation by the recovery of materials from this type of waste. In this context, this work presents a quali-quantitative and comprehensive literature review of the publications on the management of WEEE, from the perspective of a circular economy. The results showed that the first publications on the topic appear in 2006, with a significant increase from 2015, the year when the Circular Economy Action Plan was instituted in the European Community. The most prominent authors have been giving emphasis to researches on recycling, reuse and technologies for the recovery of materials/energy from WEEE. Nevertheless, few studies have been found focusing on the prevention/reduction in WEEE generation, priority actions of the WEEE management hierarchy. The works analysed show that the current management of WEEE, despite considering the circularity of materials, prioritizes the development of technological solutions of the end-of-pipe type, greatly represented by the recovery of materials, instead of preventing the generation, which may be detrimental to long-term sustainability. The work ends with the presentation of a SWOT-TOWS (strengths, weaknesses, opportunities and threats) analysis conducted to define the main strategies for the improvement of WEEE management from a circular economy perspective.
Collapse
Affiliation(s)
| | - Laíse Alves Candido
- Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Lourdinha Florencio
- Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Pacifico LR, Pizzolante A, Guarino A, Iannone A, Esposito M, Albanese S. Wildfires as a Source of Potentially Toxic Elements (PTEs) in Soil: A Case Study from Campania Region (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4513. [PMID: 36901522 PMCID: PMC10001887 DOI: 10.3390/ijerph20054513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The worldwide increase in fire events has attracted global attention, as potentially toxic elements (PTEs) have been widely recognised within the produced ash. Ash is transported, dispersed by wind, and deposited into the soil and surficial waters even far from fires. Considering that their composition can be enriched in PTEs, they represent a potential hazard for humans and other animals exposed to airborne particles and, afterwards, to resuspended matter, even at a considerable distance from the source. This study aimed to assess the environmental impact of fire events that occurred during the 2017 summer season at two different sites in the Campania region (Southern Italy). One of the fires affected a waste disposal site west of Caserta, and one involved a forest on the slopes of Mt. Somma-Vesuvius, a few kilometres southeast of Naples, the regional capital. Changes to the PTE concentration in the topsoil in the surroundings of both sites, after the fire events, were investigated. Enrichment factors (EFs) of a selection of PTEs were determined by comparing geochemical data from two sampling campaigns, one completed before and one after the fire events. A combined application of multivariate statistics (based on robust principal component analysis; RPCA) and geospatial analysis was used to determine the materials affected by the fire on the slopes of Mt. Somma-Vesuvius, and roughly locate their place. Specifically, a statistically significant enrichment of Hg was identified in the topsoil of both study areas. In addition, in soil samples collected at Mt. Somma-Vesuvius, more PTEs showed significant changes in their concentration. For both areas, Hg enrichments were related to the deposition of ash proceeding from waste burning; furthermore, as regards the soil of the Vesuvian area, Cr and Cd enrichments were associated with the fallout of ash generated during biomass combustion, and the increase in Cu and Zn concentrations was linked to the burning of crops on cultivated lands. Apart from the specific results obtained, concerning the examined case studies, the methods applied can be seen as a reliable option to determine the compositional characteristics of materials burned during a fire event, even with the prospect of improving the eventual assessment process of the related environmental hazards.
Collapse
Affiliation(s)
- Lucia Rita Pacifico
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Antonio Pizzolante
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Naples, Italy
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, IZS Mezzogiorno, Via Salute 2, 80055 Portici, Naples, Italy
| | - Annalise Guarino
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Antonio Iannone
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Naples, Italy
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, IZS Mezzogiorno, Via Salute 2, 80055 Portici, Naples, Italy
| | - Stefano Albanese
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
16
|
Dasgupta D, Majumder S, Adhikari J, Ghosh P, Purchase D, Garelick H, Debsarkar A, Chatterjee D. Environmental impact of e-waste management in Indian microscale informal sectors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29581-29597. [PMID: 36417061 DOI: 10.1007/s11356-022-23700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Inappropriate e-waste processing in the informal sector is a serious issue in developing countries. Field investigations in microscale informal recycling sites have been performed to study the impact of hazardous metal(loid)s (released from e-waste dismantling) on the environment (water and soil). Eight hazardous metal(loid)s (Pb, Cd, Cu, Zn, As, Hg, Ni, and Cr) were primarily found in the monitored water and soil samples (Sangrampur, West Bengal) because of widespread informal e-waste handling and primitive processing. Elevated concentrations of Cd, Pb, As, Cu, and Cr were observed in pond water samples (0.04, 1.62, 0.03, 1.40, 1.74 mg/L respectively). These ponds, which are regularly used for e-waste handling/dismantling, are usually flooded during the monsoon season mixing with further larger water resources - posing a serious threat to public health. Enriched levels of Pb, Cd, Cu, and Zn were detected in collected soil samples, both top surface soil (Pb up to 2042.27 ± 206.80, Cd up to 25.90 ± 9.53, Cu up to 6967.30 ± 711.70, and Zn up to 657.10 ± 67.05 mg/Kg) and deeper subsurface soil (Pb, 419.70 ± 44.70; Cd, 18.34 ± 3.81; Cu, 3928.60 ± 356.40; and Zn, 134.40 ± 33.40 mg/Kg), compared to the levels of As, Hg, Ni, and Cr. Seasonal variation of soil metal(loid) content indicated that higher levels of most of the metal(loids) were detected in the pre-monsoon (Nov-May) season, possibly due to the monsoonal dilution effect, except for Pb and Cd. The results highlighted that the composition and the handling of e-waste were important factors affecting the metal(loid) concentrations. E-waste policy and legislation have great influence on the handling and disposal procedures. An improved e-waste management practice has been proposed to encourage eco-friendly and safe e-waste disposal. It is recommended that regulatory agencies and manufacturers should create a road map to convince the informal sector to develop a systematic approach towards a more standardized formal e-waste management practices at the microscale field level.
Collapse
Affiliation(s)
- Dipsikha Dasgupta
- Environmental Engineering Division, Department of Civil Engineering, Jadavpur University, Kolkata, 700 032, India
| | - Santanu Majumder
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741 235, India
| | - Jishnu Adhikari
- , Sanborn, Head & Associates, Inc., 20 Foundry Street, Concord, NH, 03301, USA
| | - Pinaki Ghosh
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741 235, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Hemda Garelick
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Anupam Debsarkar
- Environmental Engineering Division, Department of Civil Engineering, Jadavpur University, Kolkata, 700 032, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, 741 235, India.
| |
Collapse
|
17
|
Dutta D, Rautela R, Gujjala LKS, Kundu D, Sharma P, Tembhare M, Kumar S. A review on recovery processes of metals from E-waste: A green perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160391. [PMID: 36423849 DOI: 10.1016/j.scitotenv.2022.160391] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
E-waste management has become a global concern because of the enormous rise in the rate of end-of-life electrical and electronic equipment's (EEEs). Disposal of waste EEE directly into the environment leads to adverse effects on the environment as well as on human health. For the management of E-waste, numerous studies have been carried out for extracting metals (base, precious, and rare earth) following pyrometallurgy, hydrometallurgy, and biometallurgy. Irrespective of the advantages of these processes, certain limitations still exist with each of these options in terms of their adoption as treatment techniques. Several journal publications regarding the different processes have been made which aids in future research in the field of E-waste management. This review provides a comprehensive summary of the various metal recovery processes (pyrometallurgy, hydrometallurgy, and biometallurgy) from E-waste, along with their advantages and limitations. A bibliometric study based on the published articles using different keywords in Scopus has been provided for a complete idea about E-waste with green technology perspective like bioleaching, biosorption, etc. The present study also focussed on the circular economic approach towards sustainable E-waste management along with its socio-economic aspects and the economic growth of the country. The present study would provide valuable knowledge in understanding E-waste and its different treatment processes to the students, researchers, industrialists, and policymakers of the country.
Collapse
Affiliation(s)
- Deblina Dutta
- Department of Environmental Science, SRM University- AP, Amaravati, Andhra Pradesh 522 240
| | - Rahul Rautela
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Lohit Kumar Srinivas Gujjala
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Debajyoti Kundu
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Mamta Tembhare
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, Maharashtra, India.
| |
Collapse
|
18
|
Brindhadevi K, Barceló D, Lan Chi NT, Rene ER. E-waste management, treatment options and the impact of heavy metal extraction from e-waste on human health: Scenario in Vietnam and other countries. ENVIRONMENTAL RESEARCH 2023; 217:114926. [PMID: 36435494 DOI: 10.1016/j.envres.2022.114926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Ho Chi Minh (HCM) City is the most important urban region of Vietnam, Southeast Asia. In recent times, the quantity of electronic waste (e-waste) has been growing by several thousand tonnes every year. In this research, some of the existing and developing technologies being employed for the recycling of e-waste have been reviewed. Accordingly, the paper has been divided into three sections namely, e-waste treatment technologies in Ho Chi Minh City, the effect of heavy metals on human health and the extraction of metals from e-waste using pyrolysis, hydrometallurgy, bioleaching, mechanical, and air classifier methods, respectively. The extraction of precious metals and heavy metals such as Cd, Cr, Pb, Hg, Cu, Se, and Zn from e-waste can be hazardous to human health. For example, lead causes hazards to the central and peripheral nervous systems, blood system and kidneys; copper causes liver damage; chronic exposure to cadmium ends up causing lung cancer and kidney damage, and mercury can cause brain damage. Thus, this study examines the key findings of many research and review articles published in the field of e-waste management and the health impacts of metal pollution.
Collapse
Affiliation(s)
- Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C. Emili Grahit 101, 17003, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands.
| |
Collapse
|
19
|
Zapata-Corella P, Ren ZH, Liu YE, Rigol A, Lacorte S, Luo XJ. Presence of novel and legacy flame retardants and other pollutants in an e-waste site in China and associated risks. ENVIRONMENTAL RESEARCH 2023; 216:114768. [PMID: 36370811 DOI: 10.1016/j.envres.2022.114768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Electrical and Electronic Equipment (EEE) residues and their management have been widely identified as potential sources of plasticizers and flame retardants to the environment, especially in non-formal e-waste facilities. This study evaluates the distribution, partitioning and environmental and human impact of organophosphate esters (OPEs), legacy polychlorinated biphenyls (PCBs), polybromodiphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) in the e-waste recycling area of Baihe Tang village, in the Qingyuan county, Guangdong province, China. A plastic debris lump accumulated in a small pond during years was identified as the main source of pollution with ∑pollutants of 8400 μg/g dw, being OPEs the main contaminants detected, followed by PBDEs. This lump produced the contamination of water, sediments, soils and hen eggs in the surrounding area at high concentrations. Plastic-water and water-sediment partitioning coefficients explained the migration of OPEs to the water body and accumulation in sediments, with a strong dependence according to the KOW. Triphenyl phosphate (TPhP), tricresyl phosphate (TCPs) and high chlorination degree PCBs produced a risk in soils and sediments, considering the lowest predicted no effect concentration, while the presence of PCBs and PBDEs in free range hen eggs exceeded the acceptable daily intake. OCPs were detected at low concentrations in all samples. The presence of organic contaminants in e-waste facilities worldwide is discussed to highlight the need for a strict control of EEE management to minimize environmental and human risks.
Collapse
Affiliation(s)
- Pablo Zapata-Corella
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Zi-He Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Research Centre of Eco-environment of the Middle Yellow River, Shanxi normal University, Taiyuan, 030031, China
| | - Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Anna Rigol
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Catalonia, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain.
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
20
|
Yadav R, Kumar Panda D, Kumar S. Understanding the individuals' motivators and barriers of e-waste recycling: A mixed-method approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116303. [PMID: 36191502 DOI: 10.1016/j.jenvman.2022.116303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The increasing amount of e-waste and poor participation of individuals in proper recycling or disposal has become a big concern for policymakers. Therefore, it is essential to understand the factors that may facilitate or inhibit individuals from adopting e-waste recycling. The present research examines the attitude and intentions of individuals by applying the theoretical lens of Behavioral Reasoning Theory (BRT). The study uses a mixed-method approach and has been conducted in two phases: Phase 1- qualitative study (one-to-one interview: 30 respondents) and Phase 2: quantitative study (survey-based questionnaire- 348 responses). The qualitative part employs thematic analysis, and the quantitative study has been analyzed using SEM. Through the qualitative research, the study has identified self-image perceived negative effect and salvage value as the 'reasons for', whereas inconvenience, lack of support system, and emotional attachment have been identified as the 'reasons against' e-waste recycling. The findings show that moral and social norms significantly impact individual reasoning ('reason for'/'reason against') and attitude toward e-waste recycling. The result has also confirmed the moderation effect on self-efficacy among reasoning, attitude, and intention. The findings offer interesting insights to the government and policymakers for increasing individuals' participation in e-waste recycling.
Collapse
Affiliation(s)
- Rambalak Yadav
- Indian Institute of Management Jammu, Old University Campus, Canal Road, Nawabad, Cantonment, Jammu, 180016, Jammu & Kashmir, India.
| | - Debadutta Kumar Panda
- Strategy and General Management, Xavier Institute of Management, Bhubaneswar (XIMB), XIM University, Bhubaneswar, 751013, India.
| | - Sushant Kumar
- Indian Institute of Management Raipur, Atal Nagar, Naya Raipur, Raipur, 493661, India.
| |
Collapse
|
21
|
Thongkaow P, Prueksasit T, Siriwong W. Quantification and characterization of recovered materials in the cycle of the informal household electronic waste dismantling in Buriram province, Thailand: A challenge towards sustainable management and circular economy. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1766-1776. [PMID: 35723614 DOI: 10.1177/0734242x221105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The numerous amount of electronic waste (e-waste) has not been managed effectively resulting informal dismantling sites are being expanded in Thailand. The government attempts to improve the efficiency of an integrated e-waste management system, but baseline data of e-waste stream in informal sectors are insufficient. This research aimed to investigate the inflow and outflow of the materials throughout the informal e-waste dismantling processes at the well-known second-largest community in Buriram province during 2017-2018. To describe the quantities of dismantled materials, a material flow analysis was performed. The overall amount of e-waste taken to the community was estimated to be in the range of 1593-12,943 tonnes year-1. Valuable materials could be recovered at more than 90% (by mass) from fans, refrigerators, washing machines, microwaves and air conditioners. The amount of e-waste residue that the local administrative organization had to handle was up to 1144 tonnes year-1. The quantitative data retrieved from this study could provide a satisfactory equation for estimating the amount of separated valuable and non-valuable materials. Recyclable materials from dismantling have an economic incentive, e-waste dismantlers in a small and large household group that can earn approximately 798 and 1262 USD month-1 income, respectively. The notable e-waste characterization and quantification of recovered materials would be useful for improving the potential circular flow of e-waste in Thailand.
Collapse
Affiliation(s)
- Pattida Thongkaow
- Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, Bangkok, Thailand
- School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tassanee Prueksasit
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Program of Municipal Solid Waste and Hazardous Waste Management, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| | - Wattasit Siriwong
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Trivedi A, Vishwakarma A, Saawarn B, Mahanty B, Hait S. Fungal biotechnology for urban mining of metals from waste printed circuit boards: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116133. [PMID: 36099867 DOI: 10.1016/j.jenvman.2022.116133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Rapid surge in electronic waste (e-waste) and its unscientific handling has an adverse impact on humans and the environment. Waste printed circuit board (WPCB), an integrated component of e-waste, has a high metallic content that includes both toxic and precious metals. Therefore, metal recovery is essential not just to avoid environmental degradation but also for economic growth. The current literature analysis focuses on one such eco-friendly approach, known as fungal biotechnology, for extracting metals from WPCBs. Among diverse bioleaching agents, fungi have shown promising metal extraction efficiency (Al: 65-96%; Co: 45-90%; Cu: 34-100%; Ni: 8-95%; Mn: 70-95%; Pb: 27-95%; Zn: 54-99%) and the ability to work in a wide pH range. However, in terms of metal recovery from WPCBs, fungal bioleaching has been less explored. This review, thus, assesses the fungal biotechnology for metal extraction from WPCBs and discusses the associated mechanism and kinetics involved. Different process parameters affecting the fungal bioleaching have also been discussed briefly. The review highlights that, while this process has enough potential, some associated drawbacks hinder its practical applicability on an industrial scale. Lastly, some suggestions for scaling up and reducing the cost of the process have been made, which need to be addressed.
Collapse
Affiliation(s)
- Amber Trivedi
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Anusha Vishwakarma
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Bhavini Saawarn
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| |
Collapse
|
23
|
Gorka R, Kumar R, Yadav S, Verma A. Health implications, distribution and source apportionment of heavy metals in road deposited dust of Jammu City in northern India. CHEMOSPHERE 2022; 308:136475. [PMID: 36122744 DOI: 10.1016/j.chemosphere.2022.136475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 05/25/2023]
Abstract
Road deposited dust (RDD) is an important indicators of heavy metal contamination in urban areas. In this study, we measured eight heavy metals (V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) in RDD collected from 34 different locations in Jammu city represented by different land uses such as industrial, urban-residential, high-density traffic, and sub-urban locations, and evaluated their ecological and health risks. The ratio of metal concentrations in RDD to their respective background levels varied as: Cu (3.94) > Pb (3.75) > Zn (3.01) > Cr (1.75) > Ni (1.51) > Mn (1.40) > V (1.35) > Fe (1.1) suggesting Cr, Ni, Cu, Zn and Pb were enriched anthropogenically. Geospatial maps revealed a heterogeneous distribution of metals in Jammu city with metal(s) specific hotspots primarily localized around high traffic density locations and industrial clusters. The index of geoaccumulation indicated 32%, 26%, 20%, 9%, and 8%, of samples belonged to "moderately polluted" category for Zn, Cu, Pb, Cr, and Ni respectively. Health index (HI) showed low non-carcinogenic hazards of metal contamination to adults but a high hazard to children. Though the values of total carcinogenic risks (TCR) (6.53E-05 to 3.71E-04) considerably exceeded the USEPA acceptable levels (1 × 10-6 ≤ TCR <1 × 10-4) suggesting high carcinogenic risks of metal contamination to both adults and children. Besides potential ecological risk index (PERI) revealed that 56% of samples had PERI >40 suggesting "moderate to high ecological risk" of metal contamination in the Jammu city RDD.
Collapse
Affiliation(s)
- Ruby Gorka
- Department of Environmental Sciences, University of Jammu, J&K, 180006, India
| | - Rakesh Kumar
- Department of Environmental Sciences, University of Jammu, J&K, 180006, India.
| | - Sudesh Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, 110067, India
| | - Anju Verma
- School of Environmental Sciences, Jawaharlal Nehru University, 110067, India
| |
Collapse
|
24
|
Feng Z, Zhu C, Meng Y, Wang Z. Preparation of highly selective polyether sulfone /polym-phenylenediamine membrane for recovery of Au(III) from aqueous solutions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
25
|
Wu Y, Li G, An T. Toxic Metals in Particulate Matter and Health Risks in an E-Waste Dismantling Park and Its Surrounding Areas: Analysis of Three PM Size Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215383. [PMID: 36430101 PMCID: PMC9691227 DOI: 10.3390/ijerph192215383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 05/28/2023]
Abstract
Heavy metals generated from e-waste have created serious health risks for residents in e-waste disposal areas. This study assessed how airborne toxic metals from an e-waste dismantling park (EP) influenced surrounding residential areas after e-waste control. PM2.5, PM10, and total suspended particles (TSP) were sampled from 20 sites, including an EP, residential areas, and an urban site; ten kinds of metals were analyzed using ICP-MS and classified as PM2.5, PM2.5-10, and PM10-100. Results showed that metals at the EP tended to be in coarser particles, while metals from residential areas tended to be in finer particles. A source analysis showed that metals from the EP and residential areas may have different sources. Workers' cancer and non-cancer risks were higher when exposed to PM2.5-10 metals, while residents' risks were higher when exposed to PM2.5 metals. As and Cr were the most strongly associated with cancer risks, while Mn was the most strongly associated with the non-cancer risk. Both workers and residents had cancer risks (>1.0 × 10-6), but risks were lower for residents. Therefore, e-waste control can positively affect public health in this area. This study provides a basis for further controlling heavy metal emissions into the atmosphere by e-waste dismantling and encouraging worldwide standardization of e-waste dismantling.
Collapse
Affiliation(s)
- Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Uraguchi S, Ohshiro Y, Okuda M, Kawakami S, Yoneyama N, Tsuchiya Y, Nakamura R, Takanezawa Y, Kiyono M. Mesophyll specific expression of a bacterial mercury transporter-based vacuolar sequestration machinery sufficiently enhances mercury tolerance of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:986600. [PMID: 36035696 PMCID: PMC9412105 DOI: 10.3389/fpls.2022.986600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
We aimed to efficiently enhance plant Hg(II) tolerance by the transgenic approach utilizing a bacterial mercury transporter MerC, an Arabidopsis mesophyll specific promoter pRBCS1A, and a vacuolar membrane targeting syntaxin AtVAM3/SYP22. We generated two independent homozygous Arabidopsis pRBCS1A-TCV lines expressing mT-Sapphire-MerC-AtVAM3 under the control of pRBCS1A. Quantitative RT-PCR showed that the transgene was expressed specifically in shoots of pRBCS1A-TCV lines. Confocal analyses further demonstrated the leaf mesophyll specific expression of mT-Sapphire-MerC-AtVAM3. Confocal observation of the protoplast derived from the F1 plants of the pRBCS1A-TCV line and the tonoplast marker line p35S-GFP-δTIP showed the tonoplast colocalization of mT-Sapphire-MerC-AtVAM3 and GFP-δTIP. These results clearly demonstrated that mT-Sapphire-MerC-AtVAM3 expression in Arabidopsis is spatially regulated as designed at the transcript and the membrane trafficking levels. We then examined the Hg(II) tolerance of the pRBCS1A-TCV lines as well as the p35S-driven MerC-AtVAM3 expressing line p35S-CV under the various Hg(II) stress conditions. Short-term (12 d) Hg(II) treatment indicated the enhanced Hg(II) tolerance of both pRBCS1A-TCV and p35S-CV lines. The longer (3 weeks) Hg(II) treatment highlighted the better shoot growth of the transgenic plants compared to the wild-type Col-0 and the pRBCS1A-TCV lines were more tolerant to Hg(II) stress than the p35S-CV line. These results suggest that mesophyll-specific expression of MerC-AtVAM3 is sufficient or even better to enhance the Arabidopsis Hg(II) tolerance. The Hg accumulation in roots and shoots did not differ between the wild-type Col-0 and the MerC-AtVAM3 expressing plants, suggesting that the boosted Hg(II) tolerance of the transgenic lines would be attributed to vacuolar Hg-sequestration by the tonoplast-localized MerC. Further perspectives of the MerC-based plant engineering are also discussed.
Collapse
|
27
|
Abubakar A, Zangina AS, Maigari AI, Badamasi MM, Ishak MY, Abdullahi AS, Haruna JA. Pollution of heavy metal threat posed by e-waste burning and its assessment of human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61065-61079. [PMID: 35435558 DOI: 10.1007/s11356-022-19974-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Improper treatment during recycling of e-waste materials by means of open burning is on the rise which has led to an increase in air pollution. This study looked at heavy metal concentrations, concentrations in relation to threshold values, and assessments of risk for noncarcinogenic and cancer risk threat. The Microwave Plasma-Atomic Emission Spectrometry (MP-AES 4210) series instrument of Agilent Technology, United States of America (USA), was used in analyzing heavy metal (Cd, Cu, and Pb) concentrations. The result of the analysis of the Kuka Bulukiya treatment point revealed that Pb has the highest mean concentration of 0.0693 ppm, Cu 0.0525 parts per million (PPM), and Cd 0.0042 ppm. The mean concentration at PRP Gidan Ruwa for Cd was found to be 0.0059 ppm, Cu 0.0363 ppm, and Pb 0.049 ppm. The result of the adult and children population calculated shows that the hazard quotient (HQ) and hazard index (HI) values are not up to 1 in all the pathways (inhalation, ingestion, and dermal) at both treatment points (1.2 ˟ 10-4 and 9.8 ˟ 10-5) and (6.4 ˟ 10-4 and 5.9 ˟ 10-4), respectively. The cancer risk for Kuka Bulukiya 6 ˟ 10-10 and PRP G/Ruwa 5 ˟ 10-10 for adults and 7 ˟ 10-10 and 4 ˟ 10-10 for children were both lower than the threshold set for cancer risk by the United States Environmental Protection Agency (USEPA). This meant that both adults and children were not at risk of cancer and noncarcinogenic threat based on the assessment in this study. The study concluded that informal e-waste burning has substantially helped in the relatively high levels of air pollution identified in the treatment points and in turn posed environmental and public health concerns to people around the area. This study recommends that samples of the vegetable products at the PRP G/Ruwa treatment point should be investigated immediately and adequate restrictions and regulations should be enacted and enforced in order to safeguard the environment and the populace. There is need for caution from the authorities to avert the possible implications (e-waste extractors and the public) of being affected with noncarcinogenic or carcinogenic ailments over time.
Collapse
Affiliation(s)
- Ahmed Abubakar
- Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Aminu Sulaiman Zangina
- National Biotechnology Development Agency, North-West Zone, Katsina, 2140, P.M.B, Nigeria
| | | | | | - Mohd Yusoff Ishak
- Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Jamilu Adamu Haruna
- Pollution Control Laboratory, Kano State Ministry of Environment, Kano, Nigeria
| |
Collapse
|
28
|
Adenuga AA, Amos OD, Olajide OD, Eludoyin AO, Idowu OO. Environmental impact and health risk assessment of potentially toxic metals emanating from different anthropogenic activities related to E-wastes. Heliyon 2022; 8:e10296. [PMID: 36090215 PMCID: PMC9449574 DOI: 10.1016/j.heliyon.2022.e10296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
The global desire for modernization through technology has thrown up a major disposal challenge for e-wastes, especially in low-economic countries. This study assessed the environmental impacts and possible health risks of potentially toxic metals emanating from poorly managed e-wastes across three main representative sites in southwest Nigeria. Soil samples were collected from three major cities in Southwestern Nigeria and analyzed for As, Cd, Pb, Cu, Cr, Ni and Zn. Pollution assessments were done using indices including contamination factor (Cf), pollution load index (PLI) and potential ecological risk index (PERI) coupled with evaluation of non-cancer and cancer health risks. Results showed enrichment of the local soil with metals due to e-wastes related activities, with an elevated level of Cf (>6), revealing that the soils around the e-waste dumpsites were severely contaminated. In addition, the assessment of individual metal potential ecological risk index (Ei f) showed a high level of potential ecological risk for Cd (Ei f >320) at all the sites while As, Pb, Cu and Ni exhibited high ecological risk at the sites, especially at topsoil layer. Furthermore, the study established varying potentials for carcinogenic health risks for residents around the dumpsites, such that while a negligible risk index occurred for Cd and Ni (RI < 10-6), the risk is tolerable for Pb (0-6 < RI < 10-4) but within cancer-development range for As and Cr (RI > 10-4). The study concluded that poorly managed e-wastes in the area poses significant threats to the health of humans and the entire ecosystem. Further study is recommended to identify similar e-waste dumpsites at regional and national - scales for sustainable restoration and improved e-waste management.
Collapse
Affiliation(s)
| | - Olufemi David Amos
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, 220282, Nigeria
| | | | | | | |
Collapse
|
29
|
Qi Q, Hu C, Lin J, Wang X, Tang C, Dai Z, Xu J. Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119406. [PMID: 35561794 DOI: 10.1016/j.envpol.2022.119406] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination with multiple heavy metals poses threats to human health and ecosystem functioning. Using the Nemerow pollution index, which considers the effects of multiple heavy metals, we compared the diversity and composition of bacteria, fungi and protists and their potential interactions in response to a multi-metal contamination gradient. Multi-metal contamination significantly altered the community composition of bacteria, fungi and protists, and the degree of alteration increased with increasing severity of contamination. The alpha-diversity of bacteria, fungi and protists significantly decreased with increasing contamination level. The dominant generalists, found in all soil samples, were Gammaproteobacteria, Chloroflexi and Bacillus sp, whereas the dominant specialists were Anaerolineaceae, Entoloma sp. and Sandonidae_X sp. The relative abundances of generalists were positively correlated, whereas those of specialists were negatively correlated, with the Nemerow pollution index. In addition, the complexity of the microbial co-occurrence network increased with increasing contamination level. Generalists, rather than specialists, were the keystones in the microbial co-occurrence network and played a crucial role in adaptation to multi-metal contamination through enhanced potential interactions within the entire microbiome. Our results provide insights into the ecological effects of multi-metal contamination on the soil microbiome and will help to develop bio-remediation technologies for contaminated soils.
Collapse
Affiliation(s)
- Qian Qi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixia Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
30
|
Liu K, Huang S, Jin Y, Ma L, Wang WX, Lam JCH. A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128702. [PMID: 35395522 DOI: 10.1016/j.jhazmat.2022.128702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The continuous growth of e-waste necessitates an efficient method to recover their metal contents to improve their recycling rate. The successful recovery of the metallic component from Waste Electrical and Electronic Equipment (WEEE) can generate great economic benefits to incentivize the industrial recycling effort. In this study, we report the use of slurry electrolysis (SE) in pH-neutral ethylene glycol (EG) electrolyte to extract and recover the metallic component from waste printed circuit broad (WPCB) powder. The system operates at room temperature and atmospheric pressure, and the electrolyte can be recycled multiple times with no signs of chemical degradation. The EG electrolyte system can oxidize the metallic component without triggering anodic gas evolution, which allowed us to incorporate a reticulated vitreous carbon (RVC) foam anode to maximize the capture and oxidation of the metal content. The system demonstrated up to 99.1% Faraday efficiency for the cathodic metal deposition and could recover Cu from the WPCB powder in a selective manner of 59.7% in the presence of 12 other metals. The SE reaction system was also scalable and displayed no compromises on the Cu recovery selectivity. With the ability to leach and recover metallic content from WPCB in a mild and chemically benign condition, the SE system displayed much promise to be adapted for industrial-scale metal recovery from WPCB.
Collapse
Affiliation(s)
- Kaixin Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Yangxin Jin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Lan Ma
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Wen-Xiong Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
31
|
Makwarimba CP, Tang M, Peng Y, Lu S, Zheng L, Zhao Z, Zhen AG. Assessment of recycling methods and processes for lithium-ion batteries. iScience 2022; 25:104321. [PMID: 35602951 PMCID: PMC9117887 DOI: 10.1016/j.isci.2022.104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This review discusses physical, chemical, and direct lithium-ion battery recycling methods to have an outlook on future recovery routes. Physical and chemical processes are employed to treat cathode active materials which are the greatest cost contributor in the production of lithium batteries. Direct recycling processes maintain the original chemical structure and process value of battery materials by recovering and reusing them directly. Mechanical separation is essential to liberate cathode materials that are concentrated in the finer size region. However, currently, the cathode active materials are being concentrated at a cut point that is considerably greater than the actual size found in spent batteries. Effective physical methods reduce the cost of subsequent chemical treatment and thereafter re-lithiation successfully reintroduces lithium into spent cathodes. Some of the current challenges are the difficulty in controlling impurities in recovered products and ensuring that the entire recycling process is more sustainable.
Collapse
Affiliation(s)
- Chengetai Portia Makwarimba
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yaqi Peng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Lingxia Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhefei Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ai-gang Zhen
- Zhejiang Tianneng New Materials Co., Ltd., Huzhou 313000, PR China
| |
Collapse
|
32
|
Lin S, Ali MU, Zheng C, Cai Z, Wong MH. Toxic chemicals from uncontrolled e-waste recycling: Exposure, body burden, health impact. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127792. [PMID: 34802823 DOI: 10.1016/j.jhazmat.2021.127792] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Uncontrolled electronic-waste (e-waste) recycling processes have induced serious environmental pollution and human health impacts. This paper reviewed studies on the wide range of toxic chemicals through the use of primitive recycling techniques, their transfer to various ecological compartments, and subsequent health impacts. Results indicated that local food items were heavily polluted by the pollutants emitted, notably heavy metals in vegetables, rice, fish and seafood, and persistent organic pollutants (POPs) in livestock. Dietary exposure is the most important exposure pathway. The associations between exposure to e-waste and high body burdens of these pollutants were evident. It seems apparent that toxic chemicals emitted from e-waste activities are causing a number of major illnesses related to cardiovascular, digestive and respiratory systems, according to the information provided by a local hospital (Taizhou, an e-waste recycling hot spot in China). More epidemiological data should be made available to the general public. It is envisaged that there are potential dangers of toxic chemicals passing on to the next generation via placental transfer and lactation. There is a need to monitor the development and health impacts of infants and children, born and brought up in the e-waste sites.
Collapse
Affiliation(s)
- Siyi Lin
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Muhammad Ubaid Ali
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ming Hung Wong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Song M, Wang Y, Chen Z, Gao H, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated genotoxicity of 2,2',4,4'-tetrabromobiphenyl ether in mammalian cells. CHEMOSPHERE 2022; 291:132784. [PMID: 34742755 DOI: 10.1016/j.chemosphere.2021.132784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated biphenyl ethers (PBDEs) are a group of persistent organic pollutants with endocrine-disrupting, neurotoxic, tumorigenic and DNA-damaging activities. They are hydroxylated by human liver microsomal CYP enzymes, however, their mutagenicity remains unknown. In this study, 2,2',4,4'-tetrabromobiphenyl ether (BDE-47, relatively abundant in human tissues) was investigated for micronuclei induction and DNA damage in mammalian cells. The results indicated that BDE-47 up to 80 μM under a 6 h/18 h (exposure/recovery, covering 2 cell cycles) regime did not induce micronuclei in V79-Mz and V79-derived cell lines expressing human CYP1A1 or 1A2, while it was moderately positive in human CYP2B6-, 2E1-and 3A4-expressing cell lines (V79-hCYP2B6, V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4-hOR, respectively). Following 24 h exposure, BDE-47 induced micronuclei in V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4 cells at increased potencies. In the human hepatoma (HepG2) cells BDE-47 (48 h exposure) was inactive up to 40 μM, however, pretreatment of the cells with ethanol (0.2%, v:v, inducer of CYP2E1) or rifampicin (10 μM, inducer of CYP3A4) led to significant micronuclei formation by BDE-47; pretreatment with bisphenol AF (100 nM) also potentiated BDE-47-induced micronuclei formation (which was blocked by a CYP2E1 inhibitor trans-1,2-dichloroethylene or a CYP3A inhibitor (ketoconazole). Immunofluorescent staining of centromere protein B with the micronuclei formed by BDE-47 in HepG2 cells pretreated with ethanol or rifampicin demonstrated selective formation of centromere-containing micronuclei. The increased phosphorylation of both histones H2AX and H3 in HepG2 by BDE-47 also indicated an aneugenic potential. Therefore, this study suggests that BDE-47 is an aneugen activated by several human CYP enzymes.
Collapse
Affiliation(s)
- Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yujian Wang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongbin Gao
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China; Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
34
|
Othmani A, Magdouli S, Senthil Kumar P, Kapoor A, Chellam PV, Gökkuş Ö. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. ENVIRONMENTAL RESEARCH 2022; 204:111916. [PMID: 34428450 DOI: 10.1016/j.envres.2021.111916] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 05/21/2023]
Abstract
Management of basic natural resources and the spent industrial and domestic streams to provide a sustainable safe environment for healthy living is a magnum challenge to scientists and environmentalists. The present remedial approach to the wastewater focuses on recovering pure water for reuse and converting the contaminants into a solid matrix for permanent land disposal. However, the ground water aquifers, over a long period slowly leach the contaminants consequently polluting the ground water. Synthetic adsorbents, mainly consisting of polymeric resins, chelating agents, etc. are efficient and have high specificity, but ultimate disposal is a challenge as most of these materials are non-biodegradable. In this context, it is felt appropriate to review the utility of adsorbents based on natural green materials such as agricultural waste and restricted to few model contaminants: phenols, and heavy metals chromium(VI), and cadmium(II) in view of the vast amount of literature available. The article discusses the features of the agricultural waste material-based adsorbents including the mechanism. It is inferred that agricultural waste materials are some of the common renewable sources available across the globe and can be used as sustainable adsorbents. A discussion on challenges for industrial scale implementation and integration with advanced technologies like magnetic-based approaches and nanotechnology to improve the removal efficiency is included for future prospects.
Collapse
Affiliation(s)
- Amina Othmani
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia.
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, M3J 1P3, Ontario, Canada; Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 Rue de la Couronne, Québec, G1K 9A9, Qc, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 Boulevard du Collège, J9X0E1, Canada
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | | | - Ömür Gökkuş
- Erciyes University, Engineering Faculty Environmental Engineering Department, 38039, Kayseri, Turkey
| |
Collapse
|
35
|
Ma S, Lin M, Tang J, Liu R, Yang Y, Yu Y, Li G, An T. Occurrence and fate of polycyclic aromatic hydrocarbons from electronic waste dismantling activities: A critical review from environmental pollution to human health. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127683. [PMID: 34799168 DOI: 10.1016/j.jhazmat.2021.127683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Electronic waste (e-waste) is one of the fastest-growing solid wastes and has become an urgent issue due to the potential adverse consequences of exposure to emitted toxic pollutants, especially for these occupational exposed workers and local residents. In this review, the environmental occurrences, emission characteristics, sources, and possible adverse effects of polycyclic aromatic hydrocarbons (PAHs) emitted from primitive e-waste dismantling activities are summarized. In general, the atmospheric levels of PAHs at typical e-waste sites, e.g., in Guiyu, China, have substantially decreased by more than an order of magnitude compared with levels a decade ago. The PAH concentrations in soil from old e-waste sites in China are also generally lower than those at newly emerged e-waste sites in India, Pakistan and Ghana. However, elevated concentrations of PAHs have been reported in human milk, hair and urine from the populations near these e-waste sites. Source apportionment both from bench-scale studies to field observations has demonstrated that the pyrolysis and combustion processing of electronic circuit board are mainly responsible for the emissions of various PAHs. In addition, some specific PAHs and their derivatives, such as triphenylbenzene, halogenated and oxygenated PAHs, have frequently been identified and could be considered as indicators in routine analysis in addition to the 16 U.S. EPA priority PAHs currently used.
Collapse
Affiliation(s)
- Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
36
|
The Status Quo and Prospect of Sustainable Development of Smart Clothing. SUSTAINABILITY 2022. [DOI: 10.3390/su14020990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
With the booming development of the Internet and AI (Artificial Intelligence), smart clothing has emerged to meet consumers’ personalized needs in healthcare, work, entertainment, etc., and has rapidly become a hotspot in the clothing industry and research field. However, as smart clothing gets popular, sustainability issues are becoming increasingly prominent during its development and circulation. To explore the status quo of the sustainable development of smart clothing, from the perspective of the industry chain, this paper discusses its challenges during raw material supply, design, manufacturing, storage, logistics and recycling. Based on these challenges and the characteristics of smart clothing and the future trend of the apparel industry, some countermeasures are put forward from three aspects: design, raw material and supply chain management. This review aims to arouse the reflection of practitioners and provide feasible suggestions for the healthy and lasting development of the apparel industry, also hoping to offer references for other industries.
Collapse
|
37
|
Effects of Artificial Sweat Formulation and Extraction Temperature on Estimation of the Dermal Bioaccessibility of Potentially Toxic Elements in a Contaminated Soil from an E-Waste Recycling Site. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Informal recycling of electronic waste leads to soil contamination that can impact human health. To accurately assess exposure to potentially toxic elements (PTE) in soil it is necessary to consider their bioavailability through ingestion, inhalation and dermal contact. However, bioaccessibility tests that estimate dermal absorption following adhesion of contaminated soil particles to skin are not well established. In this study the concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were estimated in the <45 µm particle size fraction of a bulk composite soil from an e-waste recycling site using five different artificial sweat formulations. Extractions were performed at temperatures ranging from 17 to 47 °C to investigate the effect of ambient temperature on bioaccessibility. Results obtained using the different artificial sweats were not consistent with one another. In particular, the NIHS 96-10 formulation solubilized larger amounts of analytes (ranging from 6.3 times the next most effective extractant for Cu to 1700 times the next most effective for Pb). There was a general increase in release of PTE with increasing temperature, except for As. Although trends varied between analytes and formulations, this highlights the need to consider ambient temperature when estimating dermal bioaccessibility of PTE in soil.
Collapse
|
38
|
Kwarteng L, Devasurendra AM, Laskaris Z, Arko-Mensah J, Amoabeng Nti AA, Takyi S, Acquah AA, Dwomoh D, Basu N, Robins T, Fobil JN, Batterman S. Occupational exposures to particulate matter and PM 2.5-associated polycyclic aromatic hydrocarbons at the Agbogbloshie waste recycling site in Ghana. ENVIRONMENT INTERNATIONAL 2022; 158:106971. [PMID: 34991242 PMCID: PMC8745907 DOI: 10.1016/j.envint.2021.106971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 05/09/2023]
Abstract
Electronic waste (e-waste) disposal and recycling activities such as burning and smelting can emit particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and other pollutants that expose workers and nearby communities. At informal e-waste recycling facilities, both emission controls and protective measures for workers are absent. This study characterizes personal exposures (breathing zone) of PM and PAHs of e-waste workers at the large Agbogbloshie e-waste site in Accra, Ghana. We collected gravimetric and optical measurements of PM2.5 and PM10 using shift samples for workers and for an age- and gender-matched reference population. PM2.5 filters were analyzed for 26 PAHs using gas chromatography/mass spectroscopy. Among e-waste workers, PM2.5 and PM10 concentrations were 99 ± 56 and 218 ± 158 µg/m3 (median ± interquartile range, optical measurements), respectively; these levels were 78 and 57% higher, respectively, than levels measured at a fixed site that was centrally located at the waste site. In the reference community, breathing zone PM2.5 and PM10 levels were lower, 49 ± 20 and 131 ± 108 µg/m3, respectively, and the fraction of coarse PM was larger. We detected all 26 target PAHs, of which naphthalene and phenanthrene were the most abundant. PAH concentrations were weakly correlated to PM levels, but PAH abundances, representing the fraction of PAH mass to the total PM2.5 mass collected, were strongly and inversely correlated to PM levels, suggesting multiple and different sources of PAHs and PM that affected exposures. Both PM and PAH levels were elevated for workers performing burning and dismantling, and both exceeded standards or risk-based guidelines, e.g., lifetime excess cancer risks for several PAHs were in the 10-4 to 10-6 range, indicating the need to reduce emissions as well as provide respiratory protection. The study emphasizes the importance of using personal and shift samples to accurately characterize worker exposure.
Collapse
Affiliation(s)
- Lawrencia Kwarteng
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Amila M Devasurendra
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Zoey Laskaris
- Department of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - John Arko-Mensah
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Afua A Amoabeng Nti
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Sylvia Takyi
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Augustine A Acquah
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, QC H9X 3V9, Canada
| | - Thomas Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Julius N Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Dang DH, Thompson KA, Ma L, Nguyen HQ, Luu ST, Duong MTN, Kernaghan A. Toward the Circular Economy of Rare Earth Elements: A Review of Abundance, Extraction, Applications, and Environmental Impacts. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:521-530. [PMID: 34170356 DOI: 10.1007/s00244-021-00867-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Rare earth elements (REEs) are increasingly critical to the high-technology and low-carbon economy. With a shift to sustainable socioeconomic development that aims to be less fossil fuel dependent, global demand for REEs continues to rise, despite their uncertain supply chain and high environmental impact of production. Here, we review recent research on REEs, including global reserve assessment, REE-based applications, major REE production pathways, environmental impacts, and the potential to leverage circular economies within the REE industry. The main objective of this review is to provide an overall socioeconomic and environmental perspective of the REE industry with a central focus on environmental impacts of various REE-related activities. The literature reveals significant interest in extracting REEs from secondary materials (e.g., tailings, bauxite residues, coal combustion ash) and electronic wastes. However, some of these REE recovery processes are not yet economically profitable and environmental-friendly. Continued technological advancements and increasing demands for REEs may entice countries with recently discovered REE reserves to break the current monopolistic REE supply chain. Furthermore, the sustainability of REE usage may also depend on consumer awareness of environmental and human health impacts associated with end-of-life electronics that contain REEs. On the other hand, REEs may show promise in sustainable agriculture and environmental applications. Nevertheless, further research on REE ecotoxicological impacts is required to establish environmental regulations that protect the environment and human health.
Collapse
Affiliation(s)
- Duc Huy Dang
- Trent School of the Environment, Trent University, Peterborough, Canada.
- Department of Chemistry and Water Quality Centre, Trent University, Peterborough, Canada.
| | - Karen A Thompson
- Trent School of the Environment, Trent University, Peterborough, Canada
| | - Lan Ma
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hong Quan Nguyen
- Institute for Circular Economy Development and Center of Water Management and Climate Change/Institute for Environment and Resources, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Son Tung Luu
- School of Engineering Technology and High-Technology Agriculture, Baria-Vungtau University, Vung Tau, Vietnam
| | | | - Ashlyn Kernaghan
- Trent School of the Environment, Trent University, Peterborough, Canada
| |
Collapse
|
40
|
Issah I, Arko-Mensah J, Rozek LS, Zarins KR, Agyekum TP, Dwomoh D, Basu N, Batterman S, Robins TG, Fobil JN. Global DNA (LINE-1) methylation is associated with lead exposure and certain job tasks performed by electronic waste workers. Int Arch Occup Environ Health 2021; 94:1931-1944. [PMID: 34148106 DOI: 10.1007/s00420-021-01733-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study assessed the associations between blood and urine levels of toxic metals; cadmium (Cd) and lead (Pb), and methylation levels of the LINE-1 gene among e-waste and control populations in Ghana. METHODS The study enrolled 100 male e-waste workers and 51 all-male non-e-waste workers or controls. The concentrations of Cd and Pb were measured in blood and urine using inductively coupled plasma mass spectrometry, while LINE1 methylation levels were assessed by pyrosequencing of bisulfite-converted DNA extracted from whole blood. Single and multiple metals linear regression models were used to determine the associations between metals and LINE1 DNA methylation. RESULTS Blood lead (BPb) and urine lead (UPb) showed higher median concentrations among the e-waste workers than the controls (76.82 µg/L vs 40.25 µg/L, p ≤ 0.001; and 6.89 µg/L vs 3.43 µg/L, p ≤ 0.001, respectively), whereas blood cadmium (BCd) concentration was lower in the e-waste workers compared to the controls (0.59 µg/L vs 0.81 µg/L, respectively, p = 0.003). There was no significant difference in LINE1 methylation between the e-waste and controls (85.16 ± 1.32% vs 85.17 ± 1.11%, p = 0.950). In our single metal linear regression models, BPb was significantly inversely associated with LINE1 methylation in the control group (βBPb = - 0.027, 95% CI - 0.045, - 0.010, p = 0.003). In addition, a weak association between BPb and LINE1 was observed in the multiple metals analysis in the e-waste worker group (βBPb = - 0.005, 95% CI - 0.011, 0.000, p = 0.058). CONCLUSION Continuous Pb exposure may interfere with LINE1 methylation, leading to epigenetic alterations, thus serving as an early epigenetic marker for future adverse health outcomes.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana.
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| |
Collapse
|
41
|
Mudassir MA, Aslam HZ, Ansari TM, Zhang H, Hussain I. Fundamentals and Design-Led Synthesis of Emulsion-Templated Porous Materials for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102540. [PMID: 34553500 PMCID: PMC8596121 DOI: 10.1002/advs.202102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Indexed: 05/06/2023]
Abstract
Emulsion templating is at the forefront of producing a wide array of porous materials that offers interconnected porous structure, easy permeability, homogeneous flow-through, high diffusion rates, convective mass transfer, and direct accessibility to interact with atoms/ions/molecules throughout the exterior and interior of the bulk. These interesting features together with easily available ingredients, facile preparation methods, flexible pore-size tuning protocols, controlled surface modification strategies, good physicochemical and dimensional stability, lightweight, convenient processing and subsequent recovery, superior pollutants remediation/monitoring performance, and decent recyclability underscore the benchmark potential of the emulsion-templated porous materials in large-scale practical environmental applications. To this end, many research breakthroughs in emulsion templating technique witnessed by the recent achievements have been widely unfolded and currently being extensively explored to address many of the environmental challenges. Taking into account the burgeoning progress of the emulsion-templated porous materials in the environmental field, this review article provides a conceptual overview of emulsions and emulsion templating technique, sums up the general procedures to design and fabricate many state-of-the-art emulsion-templated porous materials, and presents a critical overview of their marked momentum in adsorption, separation, disinfection, catalysis/degradation, capture, and sensing of the inorganic, organic and biological contaminants in water and air.
Collapse
Affiliation(s)
- Muhammad Ahmad Mudassir
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
- Department of ChemistryKhwaja Fareed University of Engineering & Information Technology (KFUEIT)Rahim Yar Khan64200Pakistan
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Hafiz Zohaib Aslam
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| | - Tariq Mahmood Ansari
- Institute of Chemical SciencesBahauddin Zakariya University (BZU)Multan60800Pakistan
| | - Haifei Zhang
- Department of ChemistryUniversity of LiverpoolOxford StreetLiverpoolL69 7ZDUK
| | - Irshad Hussain
- Department of Chemistry & Chemical EngineeringSBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)Lahore54792Pakistan
| |
Collapse
|
42
|
Tahir M, Rehman MYA, Malik RN. Heavy metal-associated oxidative stress and glutathione S-transferase polymorphisms among E-waste workers in Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4441-4458. [PMID: 33871746 DOI: 10.1007/s10653-021-00926-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Increased E-waste generation during recent times has become a global concern, especially for developing countries that are at receiving end from the developed countries. Their improper handling and lacking management practices in developing countries including Pakistan are contributing enormous addition of toxicants into the environment and affecting the health of exposed workers associated with E-waste recycling activities. A systematic cross-sectional study was designed comprising workers associated with E-waste recycling activities in Peshawar city, Pakistan. The study aimed to investigate metal concentrations in dust, particulate matter and urine of exposed workers and correlate with oxidative stress and glutathione S-transferases genotypes (GSTM1 and GSTT1) that play a role in detoxification of metals in humans. A total of 120 blood samples comprising dismantlers (n = 52), repairers (n = 21), smelters (n = 17) and controls (n = 30) were collected. Results showed that metal concentrations were significantly higher in the dust (P = 0.020), particulate matter (P = 0.021) and urine samples (P = 0.00) as compared to controls. We observed significant increase in MDA (P = 0.00) and decrease in SOD (P = 0.00) and CAT (P = 0.00) levels among exposed subjects as compared to controls. Additionally, GSTT1 null genotype was more significantly associated with the dismantlers (P = 0.02). The study shows that E-waste workers are exposed to high level of toxic metals through dust and particulate matter, resulting in significant oxidative stress and related health implications, while GSTT1 null polymorphism is associated with increased susceptibility to these metals and induced health outcomes.
Collapse
Affiliation(s)
- Muneeb Tahir
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| |
Collapse
|
43
|
Health Risk Assessment of Metals via Multi-Source Oral Exposure for Children Living in Areas with Intense Electronic Manufacturing Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111409. [PMID: 34769926 PMCID: PMC8583640 DOI: 10.3390/ijerph182111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Oral ingestion is the predominant pathway of metal(loid)s exposure. In this study, the health risks of typical metal(loid)s (including Mn, As, Cr, Cd, and Pb) via multi-source, oral pathways for children aged 3-12 years, living in an area of China dominated by the electronic manufacturing industry, were studied based on the field sampling of duplicated diet, soil, and drinking water. Child-specific ingestion parameters were measured (except the soil ingestion rates, which were from a previous study of the same population), and a Monte Carlo method was applied to determine the uncertainty of the risk assessment. It was observed that children living in such environments were at risk of metal(loid)s exposure, with the accumulative carcinogenic risk exceeding the maximum acceptable level. Food intake was identified to be the primary exposure pathway. Moreover, Pb and Cr were the major risk elements to local children's health. Compared with primary school students, kindergarten children experienced a higher risk. This study highlights that high attention should be paid to children living in suburban areas dominated by the electronic manufacturing industry, and that priority should be given to studies on metal(loid)s exposure deriving from different types of food and their corresponding bioavailability, in order to further discern the precise risk sources to protect children's health.
Collapse
|
44
|
Xiong H, Ling S, Li Y, Duan F, Zhu H, Lu S, Du M. Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. J Colloid Interface Sci 2021; 608:1126-1134. [PMID: 34735849 DOI: 10.1016/j.jcis.2021.10.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
The recyclable, self-healing and easily-degradable transient electronic technology has aroused tremendous attention in flexible electronic products. However, integrating the above advantages into one single flexible electronic device is still a huge challenge. Herein, we demonstrate a flexible and recyclable bio-based memory device using fish colloid as the resistive switching layer on a polyimine substrate, which affords reliable mechanical and electrical properties under repetitive conformal deformation operation. This flexible bio-based memory device presents potential analog behaviors including memory characteristics and excitatory current response, which undergoes incremental potentiation in conductance under successive electrical pulses. Moreover, this device is expected to greatly alleviate the environmental problems caused by electronic waste. It can be decomposed rapidly in water and well recycled, which is a promising candidate for transient memories and information security. We believe that this study can provide new possibilities to the field of high-performance transient electronics and flexible resistive memory devices.
Collapse
Affiliation(s)
- Hanli Xiong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
45
|
Ahmed A, Myers P, Zhang H. Silica Microspheres-in-Pores Composite Monoliths with Fluorescence and Potential for Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2681. [PMID: 34685124 PMCID: PMC8537733 DOI: 10.3390/nano11102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
Water pollution is a severe worldwide issue. Constructing advanced porous composite materials has been an efficient route to water remediation via adsorption. In this study, a unique microspheres-in-pores monolithic structure was fabricated. An emulsion-templated polymer monolith was first prepared and silica microspheres were subsequently formed in the porous polymer. A silica precursor was modified with a fluorescent dye and co-condensed with other precursors to fabricate porous composites with fluorescent properties, which were enhanced by the presence of Ag nanoparticles in the polymer matrix. This unique material showed good promise in water remediation by removing organic dyes and heavy metal ions from wastewater via a flowing filter or monolithic column separation.
Collapse
Affiliation(s)
- Adham Ahmed
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, UK; (A.A.); (P.M.)
- Thermo Fisher Scientific, Runcorn WA7 1TA, UK
| | - Peter Myers
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, UK; (A.A.); (P.M.)
| | - Haifei Zhang
- Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 7ZD, UK; (A.A.); (P.M.)
| |
Collapse
|
46
|
Basant N, Singh J, Kumari B, Sinam G, Gautam A, Singh G, Mishra K, Mallick S. Nickel and cadmium phytoextraction efficiencies of vetiver and lemongrass grown on Ni-Cd battery waste contaminated soil: A comparative study of linear and nonlinear models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113144. [PMID: 34214789 DOI: 10.1016/j.jenvman.2021.113144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/21/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
A comparative assessment of the phytoremediation efficiency of two tolerant grass species viz. vetiver and lemongrass were performed in pots against simulated Ni-Cd battery electrolyte waste (EW) contaminated soil (EW1%, EW2% and EW4% w/w). Ni (μg g-1) accumulation was higher in shoots (36.8) and roots (252.9) of vetiver than in lemongrass (12.5 and 79.7, respectively). While the same trend was true for Cd (μg g-1) accumulation in vetiver and lemon grass roots (232.2 and 147.2, respectively), however, the accumulation in vetiver shoot (43.4) was less than in lemongrass (99.9). The bioaccumulation factor of metals in both grasses increased with EW contamination. Vetiver was tolerant towards EW toxicity than lemongrass, as it exhibited lesser decline in morphological parameters, lesser rise in TBARS against the doses of EW. The activities of SOD, APX, POD enzymes were higher in vetiver whereas, only GR in lemongrass. Multiple linear regression model show, pH had strong and positive influence over the Ni and Cd uptake by the plants whereas, phosphate, OM and bioavailable metals influenced negatively. The higher R2 (>0.9) and Chi-square values ≤ 1 in sigmoid non-linear model demonstrates robustness of the model for predicting the Ni and Cd accumulation (MHM) in both the grasses. Ni accumulation was higher than Cd, roots had greater accumulation of heavy metal and vetiver was a greater accumulator of Ni and Cd from EW the contaminated soil than lemongrass.
Collapse
Affiliation(s)
- Nikita Basant
- Maharishi University of Information Technology, Sitapur Road, Lucknow, 226013, UP, India
| | - Jogendra Singh
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Babita Kumari
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, UP, India
| | - Geetgovind Sinam
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, UP, India
| | - Ambedkar Gautam
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, UP, India; Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, India
| | - Gayatri Singh
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, UP, India
| | - Kumkum Mishra
- Department of Botany, University of Lucknow, Lucknow, India
| | - Shekhar Mallick
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, UP, India.
| |
Collapse
|
47
|
Yifru A, Dare G, Demissie TB, Mehretie S, Admassie S. Cheap and sensitive polymer/bismuth film modified electrode for simultaneous determination of Pb(II) and Cd(II) ions. Heliyon 2021; 7:e08215. [PMID: 34926845 PMCID: PMC8648549 DOI: 10.1016/j.heliyon.2021.e08215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 10/15/2021] [Indexed: 10/31/2022] Open
Abstract
Different aminonaphetalenesulphonic acid derivatives like 5-aminonaphthalene-1-sulphonic acid (5AN1SA), 2-aminonaphthalene-1-sulphonic acid (2AN1SA), 8-aminonaphthalene-2-sulphonic acid (8AN2SA) and 4-amino-3-hydroxynaphthalene-1-sulphonic acid (4A3HN1SA) were used to construct polymer/bismuth film modified electrode for simultaneous determination of Pb(II) and Cd(II) ions with the aim of developing a cheaper and sensitive electrode that could possibly replace Nafion. Among the different modified electrodes, poly (8AN2SA)/bismuth film modified electrodes showed the highest electrochemical response for both ions. These electrochemical results were also supported by density functional theory (DFT) calculations. Based on these experimental and theoretical results, poly (8AN2SA)/bismuth film glassy carbon modified electrode was further investigated to develop a simple and sensitive electrochemical method for the simultaneous determination of Pb(II) and Cd(II) ions. After optimizing the different experimental parameters, the proposed method gave a linear range of 1-40 μg/L with the detection limit of 0.38 and 0.08 μg/L for the simultaneous determination of Pb(II) and Cd(II) ions, respectively.
Collapse
Affiliation(s)
- Alemayehu Yifru
- Department of Chemistry, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Gossa Dare
- Department of Chemistry, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Taye B. Demissie
- Materials Science Program, Department of Chemistry, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Solomon Mehretie
- Department of Chemistry, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Shimelis Admassie
- Department of Chemistry, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
48
|
Bokka N, Karhade J, Sahatiya P. Deep learning enabled classification of real-time respiration signals acquired by MoSSe quantum dot-based flexible sensors. J Mater Chem B 2021; 9:6870-6880. [PMID: 34612334 DOI: 10.1039/d1tb01237a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Respiration rate is a vital parameter which is useful for the earlier identification of diseases. In this context, various types of devices have been fabricated and developed to monitor different breath rates. However, the disposability and biocompatibility of such sensors and the poor classification of different breath rates from sensor data are significant issues in medical services. This report attempts to focus on two important things: the classification of respiration signals from sensor data using deep learning and the disposability of devices. The use of the novel Janus MoSSe quantum dot (MoSSe QD) structure allows for stable respiration sensing because of unchanged wear rates under humid conditions, and also, the electron affinity and work function values suggest that MoSSe has a higher tendency to donate electrons and interact with the hydrogen molecule. Furthermore, for the real-time classification of different respiration signals, a 1D convolutional neural network (1D CNN) was incorporated. This algorithm was applied to four different breath patterns which achieved a state-of-the-art 10-trial accuracy of 98.18% for normal, 95.25% for slow, 97.64% for deep, and 98.18% for fast breaths. The successful demonstration of a stable, low-cost, and disposable respiration sensor with a highly accurate classification of signals is a major step ahead in developing wearable respiration sensors for future personal healthcare monitoring systems.
Collapse
Affiliation(s)
- Naveen Bokka
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Hyderabad, 500078, India.
| | | | | |
Collapse
|
49
|
Wan R, Li X, Wang L, Yang G, Zheng X, Zha Y, Chen Y, Meng J. Ionic copper strengthens the toxicity of tetrabromobisphenol A (TBBPA) to denitrification by decreasing substrate transport and electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126203. [PMID: 34492966 DOI: 10.1016/j.jhazmat.2021.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Increasing electrical and electronic waste have raised concerns about the potential toxicity of brominated flame retardants (BFRs) and heavy metals (HMs). However, few studies have focused on the combined effect of BFRs and HMs on microorganisms, especially denitrifying bacteria, which have an essential role in N cycles and N2O emission. Herein, we investigate the combined effect of tetrabromobisphenol A (TBBPA) and Cu on model denitrifying bacteria. A further 24.5% decline in N removal efficiency was observed when 0.05 mg/L Cu were added into a denitrifying system containing 0.75 mg/L TBBPA. Further study demonstrated that Cu heightened the toxicity of TBBPA to denitrification via following aspects: (1) Cu stimulated EPS secretion induced by TBBPA during denitrification, blocked the transmembrane transport of glucose, which caused insufficient carbon substrate for bacteria growth and electron provision; (2) Cu further suppressed key denitrifying enzymes' activity and down-regulated genes involving electron transport induced by TBBPA, led to the decrease of electron transport activity. Finally, the decrease of bacterial growth, insufficient electron donor, and lower electron transport activity caused the synergetic toxic effect of TBBPA and Cu on denitrification. Overall, the present study provides new insights into the combined effect of BFRs and HMs on microorganisms.
Collapse
Affiliation(s)
- Rui Wan
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Lei Wang
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Geng Yang
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jing Meng
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui 241002, China
| |
Collapse
|
50
|
Rene ER, Sethurajan M, Kumar Ponnusamy V, Kumar G, Bao Dung TN, Brindhadevi K, Pugazhendhi A. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125664. [PMID: 33838506 DOI: 10.1016/j.jhazmat.2021.125664] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The growing population and increased disposal of end-of-life (EoL) electrical and electronic products have caused serious concerns to the environment and human health. Electronic waste (e-waste) is a growing problem because the quantity and the rate at which it is generated has increased exponentially in the last 5 years. The rapid changes or upgradation in technologies, IT requirements for working or learning from home during COVID-19, manufacturers releasing new electronic gadgets and devices that serves the consumers comfort and a declension in services has contributed to an increase in the e-waste or waste of electrical and electronic equipment (WEEE) generation rates. The current status of e-waste generation, handling procedures and regulatory directives in USA, EU, China, India, Vietnam and Gulf Cooperation Council (GCC) countries are presented in this review. The recent developments in e-waste recycling methods/recovery of base and precious metals, the advantages and limitations of hydrometallurgy, pyrometallurgy, biohydrometallurgy and pyrolysis are discussed. Considering the impediments in the present technologies, the extraction of valuable resources, i.e. precious metals, from e-waste using suitable biocatalysts shows promising applications. This review also stresses on the research needs to assess the economic effects of involving different unit operations/process industries for resource recovery, reuse and recycling.
Collapse
Affiliation(s)
- Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, The Netherlands
| | - Manivannan Sethurajan
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, The Netherlands
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, and Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Thi Ngoc Bao Dung
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|