1
|
Pang Y, Tian J, Liu Q, Wang D. Whole-tree harvesting improves the ecosystem N, P and K cycling functions in secondary forests in the Qinling Mountains, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1394112. [PMID: 39759242 PMCID: PMC11699539 DOI: 10.3389/fpls.2024.1394112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Forest ecosystem nutrient cycling functions are the basis for the survival and development of organisms, and play an important role in maintaining the forest structural and functional stability. However, the response of forest nutrient cycling functions at the ecosystem level to whole-tree harvesting remains unclear. Herein, we calculated the ecosystem nitrogen (N), phosphorus (P), and potassium (K) absorption, utilization, retention, cycle, surplus, accumulation, productivity, turnover and return parameters and constructed N, P, and K cycling function indexes to identify the changes in ecosystem N, P, and K cycling functions in a secondary forest in the Qinling Mountains after 5 years of five different thinning intensities (0% (CK), 15%, 30%, 45%, and 60%). We showed that the ecosystem's N, P, and K cycling parameters varied significantly and responded differently to thinning treatments. As the thinning intensity increased, the N, P, and K cycling function indexes increased by 5%~232%, 32%~195%, and 104%~233% compared with CK. Whole-tree harvesting promoted ecosystem N and P cycling functions through two pathways: (a) directly regulated litter biomass, indirectly affected soil nutrient characteristics, and then regulated ecosystem N and P cycling functions; (b) directly regulated plant productivity, indirectly affected plant and soil nutrient characteristics, and then regulated ecosystem N and P cycling functions. In contrast, whole-tree harvesting mainly indirectly affected the plant and soil nutrient characteristics by directly adjusting the plant productivity, and promoting the ecosystem K cycling function. Furthermore, N and P cycling functions were mainly regulated by understory plant productivity while tree and herb nutrient characteristics were key driving factors for K cycling functions. These findings indicated that whole-tree harvesting significantly improved the ecosystem N, P and K cycling functions, and reveals varied regulatory mechanisms, which may aid in formulating effective measures for sustainable forest ecosystem nutrient management.
Collapse
Affiliation(s)
- Yue Pang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Jing Tian
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Qiang Liu
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Dexiang Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
McHugh K, Cummins T, Aherne J. The threat from ozone to vegetation in Ireland. ENVIRONMENTAL RESEARCH 2024; 262:119974. [PMID: 39270962 DOI: 10.1016/j.envres.2024.119974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Ozone is the most damaging air pollutant to vegetation globally. Metrics of accumulated ozone above a concentration threshold (e.g. AOT40, ppb·h) have been widely used to assess ozone risk. However, there is growing consensus that accumulated Phytotoxic Ozone Dose (POD) above a receptor-specific critical stomatal flux threshold (y; nmol O3 m-2 s-1), expressed per unit of projected leaf area, provides a more reliable risk assessment, as it considers ozone entering the leaf (PODy, mmol m-2 leaf area). Few studies have assessed both concentration- and flux-based metrics using site-specific observations of ozone and meteorology. In this study we assessed the risk that ozone poses to five vegetation types across eight sites in Ireland during 2005-2021, using AOT40 and PODy risk metrics, and we predicted impacts using dose-response relationships. Long-term trends in both metrics were also assessed. The PODy critical level for vegetation protection was exceeded for all vegetation types, with exceedances most common at Atlantic coastal sites, and for tree species (beech POD1 15.7-25.7 mmol/m2 PLA). When PODy and AOT40 results were normalised based on their respective critical levels, predicted impacts were higher for PODy. There were significant increases in PODy for three vegetation types at rural sites during the study period, which also experienced increases in temperature and global solar radiation. The long-term trends were consistent with other European studies that show decreases in AOT40 and increases in PODy. While ozone concentrations in Ireland are relatively low (39-75 μg/m3 five-year average range), the humid climate and longer growing season may lead to elevated stomatal ozone uptake and thereby a risk to vegetation.
Collapse
Affiliation(s)
- Keelan McHugh
- UCD School of Agriculture and Food Science, University College Dublin, D04 N2E5, Dublin, Ireland.
| | - Thomas Cummins
- UCD School of Agriculture and Food Science, University College Dublin, D04 N2E5, Dublin, Ireland
| | - Julian Aherne
- School of Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
3
|
Escriba Flores AA, de Almeida DS, Aguiar ML, Cava CE. Enhanced Air Filtration Efficiency through Electrospun PVC/PVP/MWCNTs Nanofibers: Design, Optimization, and Performance Evaluation. ACS OMEGA 2024; 9:37771-37779. [PMID: 39281912 PMCID: PMC11391459 DOI: 10.1021/acsomega.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
This study presents a novel approach for creating an effective air filtration medium using electrospun nanofibers comprised of poly(vinyl chloride) (PVC), poly(vinylpyrrolidone) (PVP), and impregnated with multiwall carbon nanotubes (MWCNTs). The membrane production was optimized using an experimental design methodology, resulting in a hydrophobic membrane that exhibits excellent dispersion of MWCNTs. Scanning electron microscopy images illustrate the nanofibers' morphology, featuring an average diameter of approximately 240 nm, minimal bead formation, and optimal MWCNT dispersion. Air filtration tests conducted with NaCl nanoparticles (7-300 nm) demonstrated superior permeability (10-12 m2) and minimal pressure drop (approximately 780 Pa at a 5 LPM airflow rate) compared to other electrospun materials. Both MWCNT-impregnated samples and individual PVC/PVP nanofibers exhibited filtration efficiencies nearing 96%. These results underscore the potential of this developed material for air filtration, particularly in indoor environments, where MWCNTs effectively adsorb and maintain low levels of gaseous and particulate pollutants. This study emphasizes the design, optimization, and comprehensive performance evaluation of PVC/PVP/MWCNT nanofibers, showcasing significant advancements in filtration efficiency with high flux. The findings suggest promising applications for this composite material in advanced air purification systems.
Collapse
Affiliation(s)
- Armando A Escriba Flores
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR 86036-370, Brazil
| | | | - Monica Lopes Aguiar
- Federal University of São Carlos, Rod. Washington Luiz, km 235, SP310, São Carlos, SP 13565-905, Brazil
| | - Carlos Eduardo Cava
- Federal University of Technology - Paraná, Av. Dos Pioneiros, 3131, Londrina, PR 86036-370, Brazil
| |
Collapse
|
4
|
Sondej I, Puchlik M, Paluch R. Air pollution in Białowieża forest: Analysis of short-term trends from 2014 to 2021. ENVIRONMENTAL RESEARCH 2024; 255:119219. [PMID: 38782348 DOI: 10.1016/j.envres.2024.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Air pollution caused by sulphur dioxide (SO2) and nitrogen oxides (NOx) has negative impacts on forest health and can initiate forest dieback. Long-term monitoring and analysis of these pollution are carried out in Białowieża Forest in NE Poland due to the threats from abiotic, biotic and anthropogenic factors. The main objective of our study was to monitor the levels and trends of air pollutant deposition in Białowieża Forest. During a short-term monitoring period over six years (2014-2021), the concentration of SO2 in the air decreased significantly (from 2.03 μg m-3 in December 2015 to 0.20 μg m-3 in July 2016), while the concentration of NO2 in the air showed a non-significant decrease (from 8.24 μg m-3 in December 2015 to 1.61 μg m-3 May 2016). There was no significant linear trend in the wet deposition of S-SO4 anions. Mean monthly S-SO4 deposition varies between 4.54 and 94.14 mg m-2month-1. Wet nitrogen deposition, including oxidized nitrogen (N-NO3) and reduced nitrogen (N-NH4), showed a non-significant increase. Mean monthly precipitation of N-NO3 and N-N H4 ranged from 1.91 to 451.73 mg m-2month-1. Neither did total sulphur deposition nor total nitrogen deposition exceed the mean deposition values for forests in Europe (below 6 ha-1yr-1 and 3-15 ha-1yr-1, respectively). Our results indicate that air pollutants originate from local sources (households), especially from the village of Białowieża, as demonstrated by the level and spatial distribution of air pollutant deposition. This indicates that air pollutants from the village of Białowieża could spread to other parts of Białowieża Forest in the future and may have a negative impact on forest health and can initiate forest dieback. It is therefore important to continue monitoring air pollution to assess the threats to this valuable forest ecosystem.
Collapse
Affiliation(s)
- Izabela Sondej
- Department of Natural Forests, Forest Research Institute, Park Dyrekcyjny 6, 17-230, Białowieża, Poland.
| | - Monika Puchlik
- Department of Silviculture and Forest Utilization, Faculty of Construction and Environmental Sciences, Białystok University of Technology, Wiejska 45A, 15-351, Białystok, Poland
| | - Rafał Paluch
- Department of Natural Forests, Forest Research Institute, Park Dyrekcyjny 6, 17-230, Białowieża, Poland
| |
Collapse
|
5
|
Singh AK, Kumar M, Bauddh K, Singh A, Singh P, Madhav S, Shukla SK. Environmental impacts of air pollution and its abatement by plant species: A comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79587-79616. [PMID: 37322401 DOI: 10.1007/s11356-023-28164-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Air pollution is one of the major global environmental issues urgently needed attention for its control through sustainable approaches. The release of air pollutants from various anthropogenic and natural processes imposes serious threats to the environment and human health. The green belt development using air pollution-tolerant plant species has become popular approach for air pollution remediation. Plants' biochemical and physiological attributes, especially relative water content, pH, ascorbic acid, and total chlorophyll content, are taken into account for assessing air pollution tolerance index (APTI). In contrast, anticipated performance index (API) is assessed based on socio-economic characteristics including "canopy structure, type, habit, laminar structure, economic value and APTI score" of plant species. Based on previous work, plants with high dust-capturing capacity are identified in Ficus benghalensis L. (0.95 to 7.58 mg/cm2), and highest overall PM accumulation capacity was observed in Ulmus pumila L. (PM10 = 72 µg/cm2 and PM2.5 = 70 µg/cm2) in the study from different regions. According to APTI, the plant species such as M. indica (11 to 29), Alstonia scholaris (L.) R. Br. (6 to 24), and F. benghalensis (17 to 26) have been widely reported as high air pollution-tolerant species and good to best performer in terms of API at different study sites. Statistically, previous studies show that ascorbic acid (R2 = 0.90) has good correlation with APTI among all the parameters. The plant species with high pollution tolerance capacity can be recommended for future plantation and green belt development.
Collapse
Affiliation(s)
- Akshay Kumar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Ajai Singh
- Department of Civil Engineering, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, New Delhi, India, 110065
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia University, New Delhi, India, 110025
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India, 835222.
| |
Collapse
|
6
|
Lovreškov L, Radojčić Redovniković I, Limić I, Potočić N, Seletković I, Marušić M, Jurinjak Tušek A, Jakovljević T, Butorac L. Are Foliar Nutrition Status and Indicators of Oxidative Stress Associated with Tree Defoliation of Four Mediterranean Forest Species? PLANTS (BASEL, SWITZERLAND) 2022; 11:3484. [PMID: 36559596 PMCID: PMC9788295 DOI: 10.3390/plants11243484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Mediterranean forest ecosystems in Croatia are of very high significance because of the ecological functions they provide. This region is highly sensitive to abiotic stresses such as air pollution, high sunlight, and high temperatures alongside dry periods; therefore, it is important to monitor the state of these forest ecosystems and how they respond to these stresses. This study was conducted on trees in situ and focused on the four most important forest species in the Mediterranean region in Croatia: pubescent oak (Quercus pubescens Willd.), holm oak (Quercus ilex L.), Aleppo pine (Pinus halepensis Mill.) and black pine (Pinus nigra J. F. Arnold.). Trees were selected and divided into two groups: trees with defoliation of >25% (defoliated) and trees with defoliation of ≤25% (undefoliated). Leaves and needles were collected from selected trees. Differences in chlorophyll content, hydrogen peroxide content, lipid peroxidation and enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, non-specific peroxidase), and nutrient content between the defoliated and undefoliated trees of the examined species were determined. The results showed that there were significant differences for all species between the defoliated and undefoliated trees for at least one of the examined parameters. A principal component analysis showed that the enzyme ascorbate peroxidase can be an indicator of oxidative stress caused by ozone. By using oxidative stress indicators, it is possible to determine whether the trees are under stress even before visual damage occurs.
Collapse
Affiliation(s)
- Lucija Lovreškov
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | | | - Ivan Limić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Nenad Potočić
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Ivan Seletković
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Mia Marušić
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tamara Jakovljević
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia
| | - Lukrecija Butorac
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
7
|
Gudynaitė-Franckevičienė V, Pliūra A. Performance and Genetic Parameters of Poplar Hybrids and Clones in a Field Trial Are Modified by Contrasting Environmental Conditions during the Vegetative Propagation Phase. PLANTS (BASEL, SWITZERLAND) 2022; 11:2401. [PMID: 36145802 PMCID: PMC9505758 DOI: 10.3390/plants11182401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
This study investigates epigenetics-like phenomena: how performance phenotypic plasticity, genotypic variation, and the heritability of growth traits and total phenolic compounds of Populus hybrids and clones in field trials may be modified by contrasting temperature conditions at their vegetation propagation phase. The significant effect of rooting-growing conditions on further tree performance in field trials was found for height increment in 2020, although the interaction hybrid by rooting-growing conditions was highly significant for phenolic compounds, tree height, and diameter, meaning that the performance of some hybrids was affected by rooting-growing conditions, thus demonstrating epigenetic-like effects. For phenolic compounds, interactions were also significant at the clonal level. High estimates of ecovalency indicate that some hybrids are ecologically sensitive, and epigenetic-like phenomena might occur. Hybrid P. balsamifera × P. trichocarpa is characterized by high ecovalency and specific adaptations according to mean tree height when vegetatively propagated under different rooting-growing conditions. Low estimates of P. deltoides × P. trichocarpa ecovalency demonstrate a general adaptation according to mean tree height in a field trial. Vegetative propagation conditions have also altered the genetic variation of traits in trees being planted in field trials.
Collapse
|
8
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
9
|
Agathokleous E, De Marco A, Paoletti E, Querol X, Sicard P. Air pollution and climate change threats to plant ecosystems. ENVIRONMENTAL RESEARCH 2022; 212:113420. [PMID: 35561825 DOI: 10.1016/j.envres.2022.113420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Alessandra De Marco
- National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Elena Paoletti
- National Research Council, Sesto Fiorentino, Florence, Italy
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | | |
Collapse
|
10
|
De Marco A, Garcia-Gomez H, Collalti A, Khaniabadi YO, Feng Z, Proietti C, Sicard P, Vitale M, Anav A, Paoletti E. Ozone modelling and mapping for risk assessment: An overview of different approaches for human and ecosystems health. ENVIRONMENTAL RESEARCH 2022; 211:113048. [PMID: 35257686 DOI: 10.1016/j.envres.2022.113048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Tropospheric ozone (O3) is one of the most concernedair pollutants dueto its widespread impacts on land vegetated ecosystems and human health. Ozone is also the third greenhouse gas for radiative forcing. Consequently, it should be carefully and continuously monitored to estimate its potential adverse impacts especially inthose regions where concentrations are high. Continuous large-scale O3 concentrations measurement is crucial but may be unfeasible because of economic and practical limitations; therefore, quantifying the real impact of O3over large areas is currently an open challenge. Thus, one of the final objectives of O3 modelling is to reproduce maps of continuous concentrations (both spatially and temporally) and risk assessment for human and ecosystem health. We here reviewedthe most relevant approaches used for O3 modelling and mapping starting from the simplest geo-statistical approaches andincreasing in complexity up to simulations embedded into the global/regional circulation models and pro and cons of each mode are highlighted. The analysis showed that a simpler approach (mostly statistical models) is suitable for mappingO3concentrationsat the local scale, where enough O3concentration data are available. The associated error in mapping can be reduced by using more complex methodologies, based on co-variables. The models available at the regional or global level are used depending on the needed resolution and the domain where they are applied to. Increasing the resolution corresponds to an increase in the prediction but only up to a certain limit. However, with any approach, the ensemble models should be preferred.
Collapse
Affiliation(s)
| | | | - Alessio Collalti
- Forest Modelling Lab., ISAFOM-CNR, Via Madonna Alta, Perugia, Italy
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health Engineering, Industrial Medial and Health, Petroleum Industry Health Organization (PIHO), Ahvaz, Iran
| | - Zhaozhong Feng
- Key Laboratory of Agro-meteorology of Jiangsu Province, School of Applied Meteorology,Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | | | | | - Marcello Vitale
- Sapienza University of Rome, Piazzale Aldo Moro, Rome, Italy
| | | | - Elena Paoletti
- IRET-CNR, Via Madonna Del Piano, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
11
|
Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HAS, Huang G, Skalicky M, Brestic M, Pandey S, El Sabagh A, Qari SH. Melatonin-Induced Protection Against Plant Abiotic Stress: Mechanisms and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:902694. [PMID: 35755707 PMCID: PMC9218792 DOI: 10.3389/fpls.2022.902694] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 05/23/2023]
Abstract
Global warming in this century increases incidences of various abiotic stresses restricting plant growth and productivity and posing a severe threat to global food production and security. The plant produces different osmolytes and hormones to combat the harmful effects of these abiotic stresses. Melatonin (MT) is a plant hormone that possesses excellent properties to improve plant performance under different abiotic stresses. It is associated with improved physiological and molecular processes linked with seed germination, growth and development, photosynthesis, carbon fixation, and plant defence against other abiotic stresses. In parallel, MT also increased the accumulation of multiple osmolytes, sugars and endogenous hormones (auxin, gibberellic acid, and cytokinins) to mediate resistance to stress. Stress condition in plants often produces reactive oxygen species. MT has excellent antioxidant properties and substantially scavenges reactive oxygen species by increasing the activity of enzymatic and non-enzymatic antioxidants under stress conditions. Moreover, the upregulation of stress-responsive and antioxidant enzyme genes makes it an excellent stress-inducing molecule. However, MT produced in plants is not sufficient to induce stress tolerance. Therefore, the development of transgenic plants with improved MT biosynthesis could be a promising approach to enhancing stress tolerance. This review, therefore, focuses on the possible role of MT in the induction of various abiotic stresses in plants. We further discussed MT biosynthesis and the critical role of MT as a potential antioxidant for improving abiotic stress tolerance. In addition, we also addressed MT biosynthesis and shed light on future research directions. Therefore, this review would help readers learn more about MT in a changing environment and provide new suggestions on how this knowledge could be used to develop stress tolerance.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Masood Iqbal Awan
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rizwan Maqbool
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
12
|
Yaneva R, Zhiyanski M, Dodev Y. Bioaccumulation of potentially toxic elements within the soil-plant system in Central Balkan region: analysis of the forest ecosystem capacity to mediate toxic elements. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:563-577. [PMID: 33140226 DOI: 10.1007/s10653-020-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of potentially toxic elements (PTEs) in terrestrial ecosystems has become a global concern, as PTEs may exert a wide range of negative impacts on forest's ecological state due to local or transboundary pollution. Forest vegetation and soil display great potential as means of coping with the accumulation mechanisms, absorption and dissolving the pollutants. Therefore, it is crucial to study the transfer of PTEs across these basic components of the forest ecosystem. Investigation on the PTEs concentrations in the soil-plant system in relatively non-polluted environment of Central Balkan National Park (Sredna Stara Planina Mountain) provides more information about the role of the forest patterns and soil properties for the bioaccumulation processes in the context of ecosystem services concept. In this paper, the transfer of PTEs in soil-plant system in relatively clean environment is studied in order to assess and map the ecosystem capacity of different types of forest ecosystems to mediate toxic elements. Based on in situ observations and sampling, the PTEs concentrations in soil and aboveground vegetation were analyzed. The potential of each forest type to reduce the impact of PTEs and bioaccumulation as an indicator of ecosystem service is also discussed. The GIS analysis supports the study by creating a common database and setting the basis for ecosystem services assessment. The generated maps represent areas where the forest ecosystems have the greatest capacity to provide related ecosystem service and mediate toxic elements. The bioaccumulation of PTEs in forest territories results in medium to low rates and higher supply capacity is not present at any spatial unit as the accumulation process is focused in the soil. The obtained results highlight the ecological importance of soil in terms of acting as a buffer against pollution, especially in areas with intensive road traffic.
Collapse
Affiliation(s)
- Rositsa Yaneva
- Forest Research Institute- Bulgarian Academy of Sciences (BAS), 132 "St. Kl. Ohridski" Blvd., 1756, Sofia, Bulgaria.
| | - Miglena Zhiyanski
- Forest Research Institute- Bulgarian Academy of Sciences (BAS), 132 "St. Kl. Ohridski" Blvd., 1756, Sofia, Bulgaria
| | - Yonko Dodev
- Forest Research Institute- Bulgarian Academy of Sciences (BAS), 132 "St. Kl. Ohridski" Blvd., 1756, Sofia, Bulgaria
| |
Collapse
|
13
|
Genetic Transformation of Quercus ilex Somatic Embryos with a Gnk2-like Protein That Reveals a Putative Anti-Oomycete Action. PLANTS 2022; 11:plants11030304. [PMID: 35161285 PMCID: PMC8838351 DOI: 10.3390/plants11030304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Holm oak is a key tree species in Mediterranean ecosystems, whose populations have been increasingly threatened by oak decline syndrome, a disease caused by the combined action of Phytophthora cinnamomi and abiotic stresses. The aim of the present study was to produce holm oak plants that overexpress the Ginkbilobin-2 homologous domain gene (Cast_Gnk2-like) that it is known to possess antifungal properties. Proembryogenic masses (PEMs) isolated from four embryogenic lines (Q8, E2, Q10-16 and E00) were used as target explants. PEMs were co-cultured for 5 days with Agrobacterium EHA105pGnk2 and then cultured on selective medium containing kanamycin (kan) and carbenicillin. After 14 weeks on selective medium, the transformation events were observed in somatic embryos of lines Q8 and E2 and a total of 4 transgenic lines were achieved. The presence of the Cast_Gnk2-like gene on transgenic embryos was verified by PCR, and the number of transgene copies and gene expression was estimated by qPCR. Transgenic plants were obtained from all transgenic lines after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In an in vitro tolerance assay with the pathogen P. cinnamomi, we observed that transgenic plants were able to survive longer than wild type.
Collapse
|
14
|
The Impact of Air Pollution on the Growth of Scots Pine Stands in Poland on the Basis of Dendrochronological Analyses. FORESTS 2021. [DOI: 10.3390/f12101421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate Scots pine stand degradation caused by the pollutants emitted from Zakłądy Azotowe Puławy, one of the biggest polluters of the environment in Poland for over 25 years (1966–1990). To assess the pollution stress in trees, we chose the dendrochronological analysis We outlined three directions for our research: (i) the spatio-temporal distribution of the growth response of trees to the stress associated with air pollution; (ii) the direct and indirect effects of air pollution which may have influenced the growth response of trees; and (iii) the role of local factors, both environmental and technological, in shaping the growth response of trees. Eight Scots pine stands were selected for study, seven plots located in different damage zones and a reference plot in an undamaged stand. We found that pollutant emission caused disturbances of incremental dynamics and long-term strong reduction of growth. A significant decrease in growth was observed for the majority of investigated trees (75%) from 1966 (start of factory) to the end of the 1990s. The zone of destruction extended primarily in easterly and southern directions, from the pollution source, associated with the prevailing winds of the region. At the end of the 1990s, the decreasing trend stopped and the wider tree-rings could be observed. This situation was related to a radical reduction in ammonia emissions and an improvement in environmental conditions. However, the growth of damaged trees due to the weakened health condition is lower than the growth of Scots pine on the reference plot and trees are more sensitive to stressful climatic conditions, especially to drought.
Collapse
|
15
|
Economic and Life Cycle Analysis of Passive and Active Monitoring of Ozone for Forest Protection. ENVIRONMENTS 2021. [DOI: 10.3390/environments8100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At forest sites, phytotoxic tropospheric ozone (O3) can be monitored with continuously operating, active monitors (AM) or passive, cumulative samplers (PM). For the first time, we present evidence that the sustainability of active monitoring is better than that of passive sensors, as the environmental, economic, and social costs are usually lower in the former than in the latter. By using data collected in the field, environmental, social, and economic costs were analyzed. The study considered monitoring sites at three distances from a control station in Italy (30, 400, and 750 km), two forest types (deciduous and Mediterranean evergreen), and three time windows (5, 10, and 20 years of monitoring). AM resulted in more convenience than PM, even after 5 years, in terms of O3 depletion, global warming, and photochemical O3 creation potential, suggesting that passive monitoring of ozone is not environmentally sustainable, especially for long time periods. AM led to savings ranging from a minimum of EUR 9650 in 5 years up to EUR 94,796 in 20 years in evergreen forests. The resulting social cost of PM was always higher than that of AM. The present evaluation will help in the decision process for the set-up of long-term forest monitoring sites dedicated to the protection of forests from O3.
Collapse
|
16
|
Jakovljević T, Lovreškov L, Jelić G, Anav A, Popa I, Fornasier MF, Proietti C, Limić I, Butorac L, Vitale M, De Marco A. Impact of ground-level ozone on Mediterranean forest ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147063. [PMID: 34088128 DOI: 10.1016/j.scitotenv.2021.147063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Given the high ozone concentrations observed in the Mediterranean region during summer, it is crucial to extend our knowledge on the potential ozone impacts on forest health with in situ studies, especially to protect typical endemic forests of the Mediterranean basin. This study is focused on ozone measurements and exposures over the Eastern Adriatic coast and on the calculation of different O3 metrics, i.e., accumulated exposure AOT40 (AOT40dir, AOT40ICP, AOT40pheno) and stomatal O3 fluxes with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (PODY, with Y = 0, 1, 2 nmol O3 m-2 s-1) used for forest protection. Finally, we provide an assessment of the relationships between the forest response indicators and environmental variables. Passive ozone measurements and monitoring of forest health indicators, namely growth and crown defoliation, were performed for Quercus ilex, Quercus pubescens, Pinus halepensis, and Pinus nigra forests. Results showed that, for all the analysed species, ozone levels were close to reached the upper plausibility limits for passive monitoring of air quality at forest sites (100 ppb), with the highest values found on P. halepensis in the summer period. O3 metrics based on exposure were found to be higher in pine plots than in oak plots, while the highest values of uptake-based metrics were found on P. nigra. Regarding relationships between environmental variables and forest-health response indicators, the crown defoliation was significantly correlated with the soil water content at various depth while the tree growth was correlated with the different O3 metrics. The most important predictors affecting tree growth of Q. pubescens and Q. ilex were AOT40pheno and AOT40dir and POD0 for P. nigra.
Collapse
Affiliation(s)
- Tamara Jakovljević
- Croatian Forest Research Institute, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia.
| | - Lucija Lovreškov
- Croatian Forest Research Institute, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia.
| | - Goran Jelić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia.
| | - Alessandro Anav
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Viale Anguillarese 301, 00123 Rome, Italy.
| | - Ionel Popa
- National Institute for Research and Development in Forestry "Marin Drăcea", Calea Bucovinei 73 bis, Campulung Moldovenesc, Romania; Centre of Mountain Economy - CE-MONT, Vatra Dornei, Romania
| | - Maria Francesca Fornasier
- Italian National Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Chiara Proietti
- Italian National Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy.
| | - Ivan Limić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia.
| | - Lukrecija Butorac
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia.
| | - Marcello Vitale
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Viale Anguillarese 301, 00123 Rome, Italy.
| |
Collapse
|
17
|
Voliotis A, Bezantakos S, Besis A, Shao Y, Samara C. Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations. Int J Hyg Environ Health 2021; 234:113710. [PMID: 33618174 DOI: 10.1016/j.ijheh.2021.113710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
To date, little is known about the effective doses of airborne particulate matter (PM) and PM-bound hazardous organic components to the human respiratory tract (HRT). In the light of this, here we provide particle mass dose rates (dose per hour of exposure) of PM and a suite of PM-bound hazardous organic compounds in the HRT for two population age groups (adults & children). More specifically, the mass dose rates of PM and PM-bound polycyclic aromatic hydrocarbons (PAHs), nitrated-PAH (NPAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) were estimated at two urban sites using a multiple path particle dosimetry model. We find that, in most cases, the total mass doses are following similar variations across sites and seasons as their ambient total concentrations, however their distribution in the HRT is a function of the particle size distributions and the physiological parameters of each age group. More specifically, the majority of the deposited mass of PM and all the chemical components investigated was accumulated in the upper airways instead of the lungs. We further show that children, due to their different physiology, are more susceptible and receive larger fraction of the total mass doses in the deepest parts of the lungs compared to the adults' group. Comparing the traditional method for estimating the inhalation risk, which is based on the ambient concentration of pollutants, and a modified version using the mass dose in the HRT, we find that the former may overestimate the reported risks. The results presented here provide a novel dataset composed by previously undetermined doses of hazardous airborne particulate organic components in the HRT and demonstrate that alternative health risk estimation approaches may capture some variabilities that are traditionally overlooked.
Collapse
Affiliation(s)
- Aristeidis Voliotis
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Centre for Atmospheric Science, Department of Earth and Environmental Sciences, The University of Manchester, M139PL, Manchester, United Kingdom.
| | - Spyridon Bezantakos
- Advanced Integrated Technology Solutions and Services (ADITESS) LTD, Nicosia, 2064, Cyprus; Energy Environment and Water Research Center, The Cyprus Institute, Nicosia, 1645, Cyprus
| | - Athanasios Besis
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Yunqi Shao
- Centre for Atmospheric Science, Department of Earth and Environmental Sciences, The University of Manchester, M139PL, Manchester, United Kingdom
| | - Constantini Samara
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
18
|
Shahid M, Dumat C, Niazi NK, Xiong TT, Farooq ABU, Khalid S. Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:65-113. [PMID: 31897760 DOI: 10.1007/398_2019_38] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atmospheric contamination by heavy metal-enriched particulate matter (metal-PM) is highly topical nowadays because of its high persistence and toxic nature. Metal-PMs are emitted to the atmosphere by various natural and anthropogenic activities, the latter being the major source. After being released into the atmosphere, metal-PM can travel over a long distance and can deposit on the buildings, water, soil, and plant canopy. In this way, these metal-PMs can contaminate different parts of the ecosystem. In addition, metal-PMs can be directly inhaled by humans and induce several health effects. Therefore, it is of great importance to understand the fate and behavior of these metal-PMs in the environment. In this review, we highlighted the atmospheric contamination by metal-PMs, possible sources, speciation, transport over a long distance, and deposition on soil, plants, and buildings. This review also describes the foliar deposition and uptake of metal-PMs by plants. Moreover, the inhalation of these metal-PMs by humans and the associated health risks have been critically discussed. Finally, the article proposed some key management strategies and future perspectives along with the summary of the entire review. The abovementioned facts about the biogeochemical behavior of metal-PMs in the ecosystem have been supported with well-summarized tables (total 14) and figures (4), which make this review article highly informative and useful for researchers, scientists, students, policymakers, and the organizations involved in development and management. It is proposed that management strategies should be developed and adapted to cope with atmospheric release and contamination of metal-PM.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, Toulouse, Cedex 9, France.
- Université de Toulouse, INP-ENSAT, Auzeville-Tolosane, France.
- Association Réseau-Agriville, Toulouse, France.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Tian Tian Xiong
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| | - Abu Bakr Umer Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
19
|
Sicard P, Agathokleous E, De Marco A, Paoletti E, Calatayud V. Urban population exposure to air pollution in Europe over the last decades. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:28. [PMID: 33717794 PMCID: PMC7937352 DOI: 10.1186/s12302-020-00450-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The paper presents an overview of air quality in the 27 member countries of the European Union (EU) and the United Kingdom (previous EU-28), from 2000 to 2017. We reviewed the progress made towards meeting the air quality standards established by the EU Ambient Air Quality Directives (European Council Directive 2008/50/EC) and the World Health Organization (WHO) Air Quality Guidelines by estimating the trends (Mann-Kendal test) in national emissions of main air pollutants, urban population exposure to air pollution, and in mortality related to exposure to ambient fine particles (PM2.5) and tropospheric ozone (O3). RESULTS Despite significant reductions of emissions (e.g., sulfur oxides: ~ 80%, nitrogen oxides: ~ 46%, non-methane volatile organic compounds: ~ 44%, particulate matters with a diameter lower than 2.5 µm and 10 µm: ~ 30%), the EU-28 urban population was exposed to PM2.5 and O3 levels widely exceeding the WHO limit values for the protection of human health. Between 2000 and 2017, the annual PM2.5-related number of deaths decreased (- 4.85 per 106 inhabitants) in line with a reduction of PM2.5 levels observed at urban air quality monitoring stations. The rising O3 levels became a major public health issue in the EU-28 cities where the annual O3-related number of premature deaths increased (+ 0.55 deaths per 106 inhabitants). CONCLUSIONS To achieve the objectives of the Ambient Air Quality Directives and mitigate air pollution impacts, actions need to be urgently taken at all governance levels. In this context, greening and re-naturing cities and the implementation of fresh air corridors can help meet air quality standards, but also answer to social needs, as recently highlighted by the COVID-19 lockdowns.
Collapse
Affiliation(s)
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agro-Meteorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment, C.R. Casaccia, Italy
| | - Elena Paoletti
- Institute of Research On Terrestrial Ecosystems, National Research Council, Sesto Fiorentino, Italy
| | - Vicent Calatayud
- Fundación CEAM, C/ Charles R. Darwin, Parque Tecnológico14, Paterna, Spain
| |
Collapse
|
20
|
Sicard P, Paoletti E, Agathokleous E, Araminienė V, Proietti C, Coulibaly F, De Marco A. Ozone weekend effect in cities: Deep insights for urban air pollution control. ENVIRONMENTAL RESEARCH 2020; 191:110193. [PMID: 32919964 PMCID: PMC7483290 DOI: 10.1016/j.envres.2020.110193] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Studying weekend-weekday variation in ground-level ozone (O3) allows one to better understand O3 formation conditions, with a potential for developing effective strategies for O3 control. Reducing inappropriately the O3 precursors emissions can either produce no reduction or increase surface O3 concentrations. This paper analyzes the weekend-weekday differences of O3 at 300 rural and 808 urban background stations worldwide from 2005 to 2014, in order to investigate the O3 weekend effect over time and assess the effectiveness of the precursors emissions control policies for reducing O3 levels. Data were analyzed with the non-parametric Mann-Kendall test and Theil-Sen estimator. Rural sites typically did not experience a weekend-weekday effect. In all urban stations, the mean O3 concentration on the weekend was 12% higher than on weekdays. Between 2005 and 2014, the annual mean of daily O3 concentrations increased at 74% of urban sites worldwide (+ 0.41 ppb year-1) and decreased in the United Kingdom (- 0.18 ppb year-1). Over this time period, emissions of O3 precursors declined significantly. However, a greater decline in nitrogen oxides (NOx) emissions caused an increase in Volatile Organic Compounds (VOCs) to NOx ratios leading to O3 formation. In France, South Korea and the United Kingdom, most urban stations showed a significant upward trend (+ 1.15% per year) for O3 weekend effect. Conversely, in Canada, Germany, Japan, Italy and the United States, the O3 weekend effect showed a significant downward trend (- 0.26% per year). Further or inappropriate control of anthropogenic emissions in Canada, Southern Europe, Japan, South Korea and the United States might result in increased daily O3 levels in urban areas.
Collapse
Affiliation(s)
- Pierre Sicard
- ARGANS, 260 Route Du Pin Montard, 06410, Biot, France.
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, National Research Council, Sesto Fiorentino, Italy
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agro-meteorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Valda Araminienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, Lithuania
| | - Chiara Proietti
- Institute for Environmental Protection and Research, ISPRA, Via Brancati 48, Rome, Italy
| | | | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment, C.R. Casaccia, Italy
| |
Collapse
|
21
|
Rouadi PW, Idriss SA, Naclerio RM, Peden DB, Ansotegui IJ, Canonica GW, Gonzalez-Diaz SN, Rosario Filho NA, Ivancevich JC, Hellings PW, Murrieta-Aguttes M, Zaitoun FH, Irani C, Karam MR, Bousquet J. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J 2020; 13:100467. [PMID: 33042360 PMCID: PMC7534666 DOI: 10.1016/j.waojou.2020.100467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Air pollution causes significant morbidity and mortality in patients with inflammatory airway diseases (IAD) such as allergic rhinitis (AR), chronic rhinosinusitis (CRS), asthma, and chronic obstructive pulmonary disease (COPD). Oxidative stress in patients with IAD can induce eosinophilic inflammation in the airways, augment atopic allergic sensitization, and increase susceptibility to infection. We reviewed emerging data depicting the involvement of oxidative stress in IAD patients. We evaluated biomarkers, outcome measures and immunopathological alterations across the airway mucosal barrier following exposure, particularly when accentuated by an infectious insult.
Collapse
Key Words
- AR, Allergic rhinitis
- Air pollution
- Antioxidant
- COPD, Chronic obstructive pulmonary disease
- CRS, Chronic rhinosinusitis
- DEP, Diesel exhaust particles
- IAD, Inflammatory airway diseases
- IL, Interleukin
- ILC, Innate lymphoid cells
- Inflammatory airway disease
- NOx, Nitrogen oxides
- Oxidative stress biomarkers
- PAH, Polycyclic aromatic hydrocarbons
- PM, Particulate matter
- ROS, Reactive oxygen species
- TBS, Tobacco smoke
- TLR, Toll-like receptors
- Tobacco smoke
- Treg, Regulatory T cell
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Robert M. Naclerio
- Johns Hopkins University Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD, USA
| | - David B. Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| | | | - Sandra Nora Gonzalez-Diaz
- University Autonoma de Nuevo Leon Facultad de Medicina y Hospital Universitario U.A.N.L, Monterrey, NL, c.p. 64460, México
| | | | - Juan Carlos Ivancevich
- Faculty of Medicine, Universidad del Salvador, Buenos Aires, Argentina and Head of Allergy and Immunology at the Santa Isabel Clinic, Buenos Aires, Argentina
| | - Peter W. Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center Amsterdam, The Netherlands - Department Otorhinolaryngology, University Hospital Ghent, Belgium
| | | | - Fares H. Zaitoun
- LAUMC Rizk Hospital, Otolaryngology-Allergy Department, Beirut, Lebanon
| | - Carla Irani
- Department of Internal Medicine and Infectious Diseases, St Joseph University, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Marilyn R. Karam
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Jean Bousquet
- INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France
- University Versailles St-Quentin-en-Yvelines, France
- Allergy-Centre-Charité, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Sicard P, De Marco A, Agathokleous E, Feng Z, Xu X, Paoletti E, Rodriguez JJD, Calatayud V. Amplified ozone pollution in cities during the COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139542. [PMID: 32447070 PMCID: PMC7237366 DOI: 10.1016/j.scitotenv.2020.139542] [Citation(s) in RCA: 349] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 04/14/2023]
Abstract
The effect of lockdown due to coronavirus disease (COVID-19) pandemic on air pollution in four Southern European cities (Nice, Rome, Valencia and Turin) and Wuhan (China) was quantified, with a focus on ozone (O3). Compared to the same period in 2017-2019, the daily O3 mean concentrations increased at urban stations by 24% in Nice, 14% in Rome, 27% in Turin, 2.4% in Valencia and 36% in Wuhan during the lockdown in 2020. This increase in O3 concentrations is mainly explained by an unprecedented reduction in NOx emissions leading to a lower O3 titration by NO. Strong reductions in NO2 mean concentrations were observed in all European cities, ~53% at urban stations, comparable to Wuhan (57%), and ~65% at traffic stations. NO declined even further, ~63% at urban stations and ~78% at traffic stations in Europe. Reductions in PM2.5 and PM10 at urban stations were overall much smaller both in magnitude and relative change in Europe (~8%) than in Wuhan (~42%). The PM reductions due to limiting transportation and fuel combustion in institutional and commercial buildings were partly offset by increases of PM emissions from the activities at home in some of the cities. The NOx concentrations during the lockdown were on average 49% lower than those at weekends of the previous years in all cities. The lockdown effect on O3 production was ~10% higher than the weekend effect in Southern Europe and 38% higher in Wuhan, while for PM the lockdown had the same effect as weekends in Southern Europe (~6% of difference). This study highlights the challenge of reducing the formation of secondary pollutants such as O3 even with strict measures to control primary pollutant emissions. These results are relevant for designing abatement policies of urban pollution.
Collapse
Affiliation(s)
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment, C.R. Casaccia, Italy.
| | - Evgenios Agathokleous
- Institute of Ecology, Key Laboratory of Agro-meteorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agro-meteorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Xiaobin Xu
- State Key Laboratory of Severe Weather and Key Laboratory for Atmospheric Chemistry of China Meteorology Administration, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, National Research Council, Sesto Fiorentino, Italy
| | | | - Vicent Calatayud
- Fundación CEAM, Parque Tecnológico, C/ Charles R. Darwin, 14, Paterna, Spain
| |
Collapse
|
23
|
Unprecedented Temporary Reduction in Global Air Pollution Associated with COVID-19 Forced Confinement: A Continental and City Scale Analysis. REMOTE SENSING 2020. [DOI: 10.3390/rs12152420] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shortly after the outbreak of the novel infectious disease (COVID-19) started at the end of 2019, it turned into a global pandemic, which caused the lockdown of many countries across the world. Various strict measures were adopted to reduce anthropogenic activities in order to prevent further spread and infection of the disease. In this study, we utilized continental scale remotely sensed data along with city scale in situ air quality observations for 2020 as well as data from the baseline period (2015–2019) to provide an early insight on air pollution changes in response to the COVID-19 pandemic lockdown, by combining both continental and city scales. For the continental scale analysis, data of NO2, SO2, and O3 were acquired from the ozone monitoring instrument (OMI) and data of aerosol optical depth (AOD) were collected from the moderate resolution imaging spectroradiometer (MODIS). For city scale analysis, data of NO2, CO, PM2.5, O3, and SO2 were derived from ground-based air quality observations. Results from satellite observations at the continental scale showed that concentrations of NO2, SO2, and AOD substantially dropped in 2020 during the lockdown period compared to their averages for the baseline period over all continents, with a maximum reduction of ~33% for NO2 in East Asia, ~41% for SO2 in East Asia, and ~37% for AOD in South Asia. In the case of O3, the maximum overall reduction was observed as ~11% in Europe, followed by ~10% in North America, while a slight increase was found in other study regions. These findings align with ground-based air quality observations, which showed that pollutants such as NO2, CO, PM2.5, and SO2 during the 2020 lockdown period decreased significantly except that O3 had varying patterns in different cities. Specifically, a maximum reduction of ~49% in NO2 was found in London, ~43% in CO in Wuhan, ~38% in PM2.5 in Chennai, and ~48% in SO2 in Beijing. In the case of urban O3, a maximum reduction of ~43% was found in Wuhan, but a significant increase of ~47% was observed in Chennai. It is obvious that restricted human activities during the lockdown have reduced the anthropogenic emissions and subsequently improved air quality, especially across the metropolitan cities.
Collapse
|
24
|
Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, Fornasier F, Tao F, Guo A, Paoletti E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. ENVIRONMENT INTERNATIONAL 2019; 131:104966. [PMID: 31284106 DOI: 10.1016/j.envint.2019.104966] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
China's economic growth has significantly increased emissions of tropospheric ozone (O3) precursors, resulting in increased regional O3 pollution. We analyzed data from >1400 monitoring stations and estimated the exposure of population and vegetation (crops and forests) to O3 pollution across China in 2015. Based on WHO metrics for human health protection, the current O3 level leads to +0.9% premature mortality (59,844 additional cases a year) with 96% of populated areas showing O3-induced premature death. For vegetation, O3 reduces annual forest tree biomass growth by 11-13% and yield of rice and wheat by 8% and 6%, respectively, relative to conditions below the respective AOT40 critical levels (CL). These CLs are exceeded over 98%, 75% and 83% of the areas of forests, rice and wheat, respectively. Using O3 exposure-response functions, we evaluated the costs of O3-induced losses in rice (7.5 billion US$), wheat (11.1 billion US$) and forest production (52.2 billion US$) and SOMO35-based morbidity for respiratory diseases (690.9 billion US$) and non-accidental mortality (7.5 billion US$), i.e. a total O3-related cost representing 7% of the China Gross Domestic Product in 2015.
Collapse
Affiliation(s)
- Zhaozhong Feng
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Alessandra De Marco
- ENEA, Via Anguillarese 301, Rome, Italy; Institute of Research on Terrestrial Ecosystems, National Council of Research, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | | | | | - Pierre Sicard
- ARGANS, 260 route du Pin Montard, 06410 Biot, France; Institute of Research on Terrestrial Ecosystems, National Council of Research, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Hanqin Tian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, USA
| | | | - Fulu Tao
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Anhong Guo
- National Meteorological Center, China Meteorological Administration, Beijing, 100081, China
| | | |
Collapse
|
25
|
Dusart N, Vaultier MN, Olry JC, Buré C, Gérard J, Jolivet Y, Le Thiec D. Altered stomatal dynamics of two Euramerican poplar genotypes submitted to successive ozone exposure and water deficit. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1687-1697. [PMID: 31284211 DOI: 10.1016/j.envpol.2019.06.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
The impact of ozone (O3) pollution events on the plant drought response needs special attention because spring O3 episodes are often followed by summer drought. By causing stomatal sluggishness, O3 could affect the stomatal dynamic during a subsequent drought event. In this context, we studied the impact of O3 exposure and water deficit (in the presence or in the absence of O3 episode) on the stomatal closure/opening mechanisms relative to irradiance or vapour pressure deficit (VPD) variation. Two genotypes of Populus nigra x deltoides were exposed to various treatments for 21 days. Saplings were exposed to 80 ppb/day O3 for 13 days, and then to moderate drought for 7 days. The curves of the stomatal response to irradiance and VPD changes were determined after 13 days of O3 exposure, and after 21 days in the case of subsequent water deficit, and then fitted using a sigmoidal model. The main responses under O3 exposure were stomatal closure and sluggishness, but the two genotypes showed contrasting responses. During stomatal closure induced by a change in irradiance, closure was slower for both genotypes. Nonetheless, the genotypes differed in stomatal opening under light. Carpaccio stomata opened more slowly than control stomata, whereas Robusta stomata tended to open faster. These effects could be of particular interest, as stomatal impairment was still present after O3 exposure and could result from imperfect recovery. Under water deficit alone, we observed slower stomatal closure in response to VPD and irradiance, but faster stomatal opening in response to irradiance, more marked in Carpaccio. Under the combined treatment, most of the parameters showed antagonistic responses. Our results highlight that it is important to take genotype-specific responses and interactive stress cross-talk into account to improve the prediction of stomatal conductance in response to various environmental modifications.
Collapse
Affiliation(s)
- Nicolas Dusart
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | | | - Jean-Charles Olry
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Cyril Buré
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Joëlle Gérard
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France
| | - Didier Le Thiec
- Université de Lorraine, AgroParisTech, Inra, Silva, F-54000 Nancy, France.
| |
Collapse
|
26
|
Anav A, De Marco A, Friedlingstein P, Savi F, Sicard P, Sitch S, Vitale M, Paoletti E. Growing season extension affects ozone uptake by European forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:1043-1052. [PMID: 30970453 DOI: 10.1016/j.scitotenv.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 05/27/2023]
Abstract
Climate change significantly modifies terrestrial ecosystems and vegetation activity, yet little is known about how climate change and ozone pollution interact to affect forest health. Here we compared the trends of two metrics widely used to protect forests against negative impacts of ozone pollution, the AOT40 (Accumulated Ozone over Threshold of 40 ppb) which only depends on surface air ozone concentrations, and the POD (Phytotoxic Ozone Dose) which relies on the amount of ozone uptaken by plants through stomata. Using a chemistry transport model, driven by anthropogenic emission inventories, we found that European-averaged ground-level ozone concentrations significantly declined (-1.6%) over the time period 2000-2014, following successful control strategies to reduce the ozone precursors emission; as a consequence, the AOT40 metric declined (-22%). In contrast, climate change increased both growing season length (~7 days/decade) and stomatal conductance and thus enhanced the stomatal ozone uptake by forests (5.9%), leading to an overall increase of potential ozone damage on plants, despite the reduction in ozone concentrations. Our results suggest that stomatal-flux based strategies of forest protection against ozone in a changing climate require a proper consideration of the duration of the growing season with a better estimation of start and end of the growing season.
Collapse
Affiliation(s)
- Alessandro Anav
- National Research Council, Sesto Fiorentino, Italy; Italian National Agency for New Technologies, Energy and the Environment (ENEA), Climate Modeling Laboratory, S. Maria di Galeria, Rome, Italy.
| | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), Climate Modeling Laboratory, S. Maria di Galeria, Rome, Italy
| | - Pierre Friedlingstein
- University of Exeter, College of Engineering, Mathematics and Physical Sciences, Exeter, UK
| | - Flavia Savi
- Council for Agricultural Research and Economics, Research Centre for Forestry and Wood, Arezzo, Italy
| | | | - Stephen Sitch
- University of Exeter, College of Life and Environmental Sciences, Exeter, UK
| | - Marcello Vitale
- University of Rome "Sapienza", Department of Environmental Biology, Rome, Italy
| | | |
Collapse
|
27
|
Agathokleous E, Kitao M, Calabrese EJ. Hormesis: A Compelling Platform for Sophisticated Plant Science. TRENDS IN PLANT SCIENCE 2019; 24:318-327. [PMID: 30755365 DOI: 10.1016/j.tplants.2019.01.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 05/26/2023]
Abstract
The field of dose-response has received attention from the early modern period in the history of science. While it was thought that linear dose-response is the rule of thumb, significant efforts revealed that biphasic dose-response commonly occurs when the experimental design permits its detection. This phenomenon is called hormesis and suggests that a basal stress level is needed for optimum health. Extensive evidence has accumulated showing the occurrence of hormesis in numerous plant species and the induction of adaptive responses by low stress doses that precondition plants for a following massive environmental challenge. However, the ecological consequences of low-level stress remain underexplored. In this Opinion article, we propose that hormesis can provide a compelling platform for sophisticated, next-generation plant science.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China; Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Sapporo, Hokkaido 062-8516, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, Sapporo, Hokkaido 062-8516, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
28
|
Araminienė V, Sicard P, Anav A, Agathokleous E, Stakėnas V, De Marco A, Varnagirytė-Kabašinskienė I, Paoletti E, Girgždienė R. Trends and inter-relationships of ground-level ozone metrics and forest health in Lithuania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1265-1277. [PMID: 30677989 DOI: 10.1016/j.scitotenv.2018.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 05/16/2023]
Abstract
Lithuania is representative of maritime to continental climate, no water limitation, and moderate ground-level ozone (O3) pollution. We investigated the trends of meteorological variables and O3 and how these environmental conditions associate with tree health from 2001 onward. Ozone metrics for forest protection, based on Accumulated O3 exposure Over a Threshold of X ppb (AOTX) or on Phytotoxic O3 Dose over a Y threshold (PODY), were modeled at nine ICP-Forests plots over the time period 2001-2014. Tree-response indicators, i.e. crown defoliation and visible foliar O3 injury, were assessed during annual field surveys carried out at each ICP-Forests plot over the time period 2007-2017. Mann-Kendall and Sen statistical tests were applied to estimate changes over time of meteorological variables, response indicators and O3 metrics. Finally, the O3 metrics were correlated (Spearman test) to the response indicators over the common period 2007-2014. Over this time period, trend analyses revealed an increasingly hotter (+0.27 °C decade-1, on average) and drier climate (rainfall, -48 mm decade-1). A reduction was found for O3 annual mean (-0.28 ppb decade-1, on average) and AOT40 (-2540 ppb·h decade-1, on average) whereas an increase was found for POD0 (+0.40 mmol m-2 decade-1, on average). Visible foliar O3 injury increased (+0.17% decade-1), while an improvement of the crown conditions (-5.0% decade-1) was observed. AOT40 was significantly associated with crown defoliation while PODY and soil water content were correlated with visible foliar O3 injury. As visible foliar O3 injury was negligible in all the studied species, the results suggest that moderate O3 pollution (approximately 30 ppb as annual average) does not induce biologically significant effects on this forest vegetation under the current conditions, however the overall O3 risk (POD0) is expected to increase in the future under a hotter and drier climate.
Collapse
Affiliation(s)
- Valda Araminienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas District, Lithuania.
| | | | | | - Evgenios Agathokleous
- Hokkaido Research Centre, Forestry and Forest Products Research Institute, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Vidas Stakėnas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas District, Lithuania.
| | | | | | | | - Rasa Girgždienė
- Center for Physical Sciences and Technology, Vilnius, Lithuania.
| |
Collapse
|
29
|
Ünal HE, Birben Ü, Bolat F. Rural population mobility, deforestation, and urbanization: case of Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 191:21. [PMID: 30554291 DOI: 10.1007/s10661-018-7149-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The benefits of the forests are well known and are by their existence alone an amenity. Nonetheless, urbanization as one of the most remarkable features of social development has immense effects on forest resources and land use. In this study, it is hypothesized that there are temporal interactions among the rural population dynamics, urbanization, and forest resources. Data set is based on rural population, total population, and forest areas for the period of 1990-2017. Regression analysis (the ordinary least square, OLS) and dummy variable in regression were used by taking the years into consideration. The coefficient of total population in the regression model developed in our study was positive, which means with the increasing total population, there is an increase in forest areas as well, contrary to common opinion in the literature. With this study, a positive/linear temporal relation between the forest area and urbanization via the regression statistics was determined. There is a significant inverse relation between rural population decline and forest area increase too. Our results provide also a compelling evidence that rural population mobility, afforestation, and forestry policy have strong effects and play an important role over the forest management and forest policy in Turkey.
Collapse
Affiliation(s)
- Hasan Emre Ünal
- Department of Forest Engineering, Faculty of Forestry, Çankırı Karatekin University, 18200, Çankırı, Turkey
| | - Üstüner Birben
- Department of Forest Engineering, Faculty of Forestry, Çankırı Karatekin University, 18200, Çankırı, Turkey.
| | - Ferhat Bolat
- Department of Forest Engineering, Faculty of Forestry, Çankırı Karatekin University, 18200, Çankırı, Turkey
| |
Collapse
|
30
|
Sicard P, Agathokleous E, Araminiene V, Carrari E, Hoshika Y, De Marco A, Paoletti E. Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:163-176. [PMID: 30172122 DOI: 10.1016/j.envpol.2018.08.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 05/06/2023]
Abstract
Outdoor air pollution is considered as the most serious environmental problem for human health, associated with some million deaths worldwide per year. Cities have to cope with the challenges due to poor air quality impacting human health and citizen well-being. According to an analysis in the framework of this study, the annual mean concentrations of tropospheric ozone (O3) have been increasing by on average 0.16 ppb year-1 in cities across the globe over the time period 1995-2014. Green urban infrastructure can improve air quality by removing O3. To efficiently reduce O3 in cities, it is important to define suitable urban forest management, including proper species selection, with focus on the removal ability of O3 and other air pollutants, biogenic emission rates, allergenic effects and maintenance requirements. This study reanalyzes the literature to i) quantify O3 removal by urban vegetation categorized into trees/shrubs and green roofs; ii) rank 95 urban plant species based on the ability to maximize air quality and minimize disservices, and iii) provide novel insights on the management of urban green spaces to maximize urban air quality. Trees showed higher O3 removal capacity (3.4 g m-2 year-1 on average) than green roofs (2.9 g m-2 year-1 as average removal rate), with lower installation and maintenance costs (around 10 times). To overcome present gaps and uncertainties, a novel Species-specific Air Quality Index (S-AQI) of suitability to air quality improvement is proposed for tree/shrub species. We recommend city planners to select species with an S-AQI>8, i.e. with high O3 removal capacity, O3-tolerant, resistant to pests and diseases, tolerant to drought and non-allergenic (e.g. Acer sp., Carpinus sp., Larix decidua, Prunus sp.). Green roofs can be used to supplement urban trees in improving air quality in cities. Urban vegetation, as a cost-effective and nature-based approach, aids in meeting clean air standards and should be taken into account by policy-makers.
Collapse
Affiliation(s)
| | - Evgenios Agathokleous
- Hokkaido Research Centre, Forestry and Forest Products Research Institute, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Girionys, Lithuania
| | - Elisa Carrari
- Consiglio Nazionale Delle Ricerche, Sesto Fiorentino, Italy
| | | | - Alessandra De Marco
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Elena Paoletti
- Consiglio Nazionale Delle Ricerche, Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Seo JW, Youn JS, Park S, Joo CK. Development of a Conjunctivitis Outpatient Rate Prediction Model Incorporating Ambient Ozone and Meteorological Factors in South Korea. Front Pharmacol 2018; 9:1135. [PMID: 30356707 PMCID: PMC6189411 DOI: 10.3389/fphar.2018.01135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Ozone (O3) is a commonly known air pollutant that causes adverse health effects. This study developed a multi-level prediction model for conjunctivitis in outpatients due to exposure to O3 by using 3 years of ambient O3 data, meteorological data, and hospital data in Seoul, South Korea. We confirmed that the rate of conjunctivitis in outpatients (conjunctivitis outpatient rate) was highly correlated with O3 (R2 = 0.49), temperature (R2 = 0.72), and relative humidity (R2 = 0.29). A multi-level regression model for the conjunctivitis outpatient rate was well-developed, on the basis of sex and age, by adding statistical factors. This model will contribute to the prediction of conjunctivitis outpatient rate for each sex and age, using O3 and meteorological data.
Collapse
Affiliation(s)
- Jeong-Won Seo
- Department of Ophthalmology, Hallym University, Dongtan Sacred Heart Hospital, Hwaseong-si, South Korea
| | - Jong-Sang Youn
- Department of Environmental Engineering, Inha University, Incheon, South Korea
| | - SeJoon Park
- Department of Industrial and Management Engineering, Myongji University, Yongin-si, South Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, South Korea
| |
Collapse
|
32
|
Zhang L, Hoshika Y, Carrari E, Badea O, Paoletti E. Ozone risk assessment is affected by nutrient availability: Evidence from a simulation experiment under free air controlled exposure (FACE). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:812-822. [PMID: 29627751 DOI: 10.1016/j.envpol.2018.03.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Assessing ozone (O3) risk to vegetation is crucial for informing policy making. Soil nitrogen (N) and phosphorus (P) availability could change stomatal conductance which is the main driver of O3 uptake into a leaf. In addition, the availability of N and P could influence photosynthesis and growth. We thus postulated that the sensitivity of plants to O3 may be changed by the levels of N and P in the soil. In this study, a sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha-1; N80, 80 kg N ha-1), three P levels (P0, 0 kg P ha-1; P40, 40 kg P ha-1; P80, 80 kg P ha-1) and three levels of O3 exposure (ambient concentration, AA; 1.5 × AA; 2.0 × AA) for a whole growing season in an O3 free air controlled exposure (FACE) facility. Flux-based (POD0 to 6) and exposure-based (W126 and AOT40) dose-response relationships were fitted and critical levels (CLs) were estimated for a 5% decrease of total annual biomass. It was found that N and P availability modified the dose-response relationships of biomass responses to O3. Overall, the N supply decreased the O3 CLs i.e. increased the sensitivity of poplar to O3. Phosphorus alleviated the O3-caused biomass loss and increased the CL. However, such mitigation effects of P were found only in low N and not in high N conditions. In each nutritional treatment, similar performance was found between flux-based and exposure-based indices. However, the flux-based approach was superior, as compared to exposure indices, to explain the biomass reduction when all nutritional treatments were pooled together. The best O3 metric for risk assessments was POD4, with 4.6 mmol m-2 POD4 as a suitable CL for Oxford poplars grown under various soil N and P conditions.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030, Harbin, China; Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| | - Yasutomo Hoshika
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy.
| | - Elisa Carrari
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| | - Ovidiu Badea
- INCDS, 13 Septembrie, sector 5, 050711, Bucarest, Romania
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Florence, Italy
| |
Collapse
|
33
|
Khaniabadi YO, Daryanoosh M, Sicard P, Takdastan A, Hopke PK, Esmaeili S, De Marco A, Rashidi R. Chronic obstructive pulmonary diseases related to outdoor PM 10, O 3, SO 2, and NO 2 in a heavily polluted megacity of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17726-17734. [PMID: 29671231 DOI: 10.1007/s11356-018-1902-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 05/22/2023]
Abstract
This study was conducted to quantify, by an approach proposed by the World Health Organization (WHO), the daily hospital admissions for chronic obstructive pulmonary disease (COPD) related to exposure to particulate matter (PM10) and oxidants such as ozone (O3), sulfur dioxide (SO2), and nitrogen dioxide (NO2) in a heavily polluted city in Iran. For the health impact assessment, in terms of COPD, the current published relative risk (RR) and baseline incidence (BI) values, suggested by the WHO, and the 1-h O3 concentrations and daily PM10, NO2, and SO2 concentrations were compiled. The results showed that 5.9, 4.1, 1.2, and 1.9% of the COPD daily hospitalizations in 2011 and 6.6, 1.9, 2.3, and 2.1% in 2012 were attributed to PM10, O3, SO2, and NO2 concentrations exceeding 10 μg/m3, respectively. This study indicates that air quality and the high air pollutant levels have an effect on COPD morbidity. Air pollution is associated with visits to emergency services and hospital admissions. A lower relative risk can be achieved if some stringent control strategies for reducing air pollutants or emission precursors are implemented.
Collapse
Affiliation(s)
- Yusef Omidi Khaniabadi
- Department of Environmental Health, Health Care System of Karoon, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Daryanoosh
- Department of Environmental Health, Health Center of Hendijan, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Afshin Takdastan
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, 13699, USA
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14619, USA
| | - Shirin Esmaeili
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alessandra De Marco
- Department of Territorial and Production Systems Sustainability, ENEA, Rome, Italy
| | - Rajab Rashidi
- Nutrition Health Research Center, Department of Occupational Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
34
|
Yurtseven I, Serengil Y, Gökbulak F, Şengönül K, Ozhan S, Kılıç U, Uygur B, Ozçelik MS. Results of a paired catchment analysis of forest thinning in Turkey in relation to forest management options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:785-792. [PMID: 29054628 DOI: 10.1016/j.scitotenv.2017.08.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Adaptation to climate change has become a more serious concern as IPCC assessment reports estimate a rise of up to 2°C in average global temperatures by the end of the century. Several recently published studies have underlined the importance of forest management in mitigating the impacts of climate change and in supporting the adaptation capacity of the ecosystem. This study focuses on the role of water-related forest services in this adaptation process. The effects of forestry practices on streamflow can best be determined by paired watershed analysis. The impact of two cutting treatments on runoff was analyzed by a paired experimental watershed study in the Belgrade Forest and the results were evaluated in relation to similar experiments conducted around the world. Forest thinning treatments at 11% and 18% were carried out in a mature oak-beech forest ecosystem over different time periods. Although the thinning increased the runoff statistically, the amount of surplus water remained <5% of the annual water yield. Evidently, the hydrologic response of the watersheds was low due to the reduced intensity of the timber harvest. Finally, the results were combined with those of global studies on thinning, clearcutting and species conversion with the aim of formulating management options for adaptation.
Collapse
Affiliation(s)
- Ibrahim Yurtseven
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey.
| | - Yusuf Serengil
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey
| | - Ferhat Gökbulak
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey
| | - Kamil Şengönül
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey
| | - Süleyman Ozhan
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey
| | - Umit Kılıç
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey
| | - Betül Uygur
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey
| | - Mehmet Said Ozçelik
- Istanbul University, Faculty of Forestry, Department of Watershed Management, 34473 Sariyer, Istanbul, Turkey
| |
Collapse
|
35
|
Fu W, He X, Xu S, Chen W, Li Y, Li B, Su L, Ping Q. Changes in nutrients and decay rate of Ginkgo biloba leaf litter exposed to elevated O 3 concentration in urban area. PeerJ 2018. [PMID: 29527413 PMCID: PMC5842764 DOI: 10.7717/peerj.4453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ground-level ozone (O3) pollution has been widely concerned in the world, particularly in the cities of Asia, including China. Elevated O3 concentrations have potentially influenced growth and nutrient cycling of trees in urban forest. The decomposition characteristics of urban tree litters under O3 exposure are still poorly known. Ginkgo biloba is commonly planted in the cities of northern China and is one of the main tree species in the urban forest of Shenyang, where concentrations of ground-level O3 are very high in summer. Here, we hypothesized that O3 exposure at high concentrations would alter the decomposition rate of urban tree litter. In open-top chambers (OTCs), 5-year-old G. biloba saplings were planted to investigate the impact of elevated O3 concentration (120 ppb) on changes in nutrient contents and decomposition rate of leaf litters. The results showed that elevated O3 concentration significantly increased K content (6.31 ± 0.29 vs 17.93 ± 0.40, P < 0.01) in leaves of G. biloba, significantly decreased the contents of total phenols (2.82 ± 0.93 vs 1.60 ± 0.44, P < 0.05) and soluble sugars (86.51 ± 19.57 vs 53.76 ± 2.40, P < 0.05), but did not significantly alter the contents of C, N, P, lignin and condensed tannins, compared with that in ambient air. Furthermore, percent mass remaining in litterbags after 150 days under ambient air and elevated O3 concentration was 56.0% and 52.8%, respectively. No significant difference between treatments was observed in mass remaining at any sampling date during decomposition. The losses of the nutrients in leaf litters of G. biloba showed significant seasonal differences regardless of O3 treatment. However, we found that elevated O3 concentration slowed down the leaf litter decomposition only at the early decomposition stage, but slightly accelerated the litter decomposition at the late stage (after 120 days). This study provides our understanding of the ecological processes regulating biogeochemical cycles from deciduous tree species in high-O3 urban area.
Collapse
Affiliation(s)
- Wei Fu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xingyuan He
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China
| | - Sheng Xu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China
| | - Wei Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China
| | - Yan Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China
| | - Bo Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China
| | - Lili Su
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China
| | - Qin Ping
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, CAS, Shenyang, China
| |
Collapse
|
36
|
Paoletti E, De Marco A, Anav A, Gasparini P, Pompei E. Five-year volume growth of European beech does not respond to ozone pollution in Italy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8233-8239. [PMID: 28540544 DOI: 10.1007/s11356-017-9264-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
A unique database of stand volume growth, estimated as periodic annual volume increment (in m3 ha-1 per year over the period 2001-2005) from 728 European beech (Fagus sylvatica L.) sites distributed across Italy, was used to assess the effects of ambient ozone (O3), expressed as annual average (M24), accumulated exposure above a 40 ppb hourly threshold (AOT40), and total stomatal ozone flux (POD0). Growth data were from the National forest inventory of Italy, while climate data and ozone concentrations were computed by the WRF and CHIMERE models, respectively. Results show that the growth increased with increasing solar radiation and air temperature and decreased with increasing number of cold days, while effects of soil water content and O3 were not significant. In contrast, the literature results suggest that European beech is sensitive to both drought and O3. Ozone levels resulted to be very high (48 ppb M24, 51,200 ppb h AOT40, 21.08 mmol m-2 POD0, on average) and thus able to potentially affect European beech growth. We hypothesize that the high-frequency signals of soil water and O3 got lost when averaged over 5 years and recommended finer time-resolution investigations and inclusion of other factors of variability, e.g., thinning, tree age, and size.
Collapse
Affiliation(s)
| | | | | | | | - Enrico Pompei
- Ministry of Agriculture, Food and Forest Policies, Via XX Settembre 20, Rome, Italy
| |
Collapse
|
37
|
Augustaitis A, Augustaitienė I, Baugarten M, Bičenkienė S, Girgždienė R, Kulbokas G, Linkevičius E, Marozas V, Mikalajūnas M, Mordas G, Mozgeris G, Petrauskas E, Pivoras A, Šidlauskas G, Ulevičius V, Vitas A, Matyssek R. Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1247-1261. [PMID: 29751430 DOI: 10.1016/j.scitotenv.2017.09.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 06/08/2023]
Abstract
Global changes occurring under different environmental conditions have changed stand competition, as well as nutrient and light availability, which has resulted in changes in productivity. Therefore, in the present study, the characteristics of tree-ring width formation of the prevailing Lithuanian tree species, Norway spruce, Scots pine and silver and downy birch, and key factors resulting in their differences during the last 36-year period were investigated at forest sites located on poor mineral oligotrophic and on nutrient-rich organic mesoeutrophic soils. The aim of the study was as follows: first, to separately detect the maximum possible seasonal effect of three groups of variables - meteorology, acidifying pollutants and surface ozone on the stem basal area increment (BAI) of the evaluated tree species; second, to assess the significance of each group of variables affecting the BAI of these tree species integrally with the remaining groups of variables. Norway spruce was found to be well adapted to recent environmental changes, which makes it one of the most favourable tree species for silviculture in the northeastern part of Europe. The rapid increases recorded in growth intensity since 1980 were attributed to the increase in air temperature, precipitation amount, nitrogen deposition during the vegetative stage and reductions in SO2 concentrations and S deposition. Scots pine demonstrated the highest level of resilience and capacity to adapt to recent global changes because its reaction to both negative and favourable environmental factors was best expressed. Silver and downy birch tree reactions to the effects of air concentrations of acidifying compounds, their deposition and surface ozone concentrations were the least expressed; however, a significant decline in growth intensity indicated that these tree species experienced a reduced resistance to recent changes in environmental conditions in the mature and over-mature age groups.
Collapse
Affiliation(s)
- Algirdas Augustaitis
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | | | - Manuela Baugarten
- Chair Ecophysiology of Plants, Dep. Ecology, WZW, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Steigvilė Bičenkienė
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Raselė Girgždienė
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Gintaras Kulbokas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Edgaras Linkevičius
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Vitas Marozas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Marius Mikalajūnas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Genrik Mordas
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Gintautas Mozgeris
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Edmundas Petrauskas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Ainis Pivoras
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Giedrius Šidlauskas
- Aleksandras Stulginskis University, Studentų 13, LT-53362, Kaunas dstr, Lithuania.
| | - Vidmantas Ulevičius
- Center for Physical Sciences and Technology, Saulėtekio ave. 3, Vilnius, Lithuania.
| | - Adomas Vitas
- Vytautas Magnum University, Centre of Environmental Research, Faculty of Nature Sciences, Vytautas Magnus University, Ž.E. Žilibero str. 2, LT-46324 Kaunas, Lithuania.
| | - Rainer Matyssek
- Chair Ecophysiology of Plants, Dep. Ecology, WZW, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| |
Collapse
|
38
|
Du E, Dong D, Zeng X, Sun Z, Jiang X, de Vries W. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:764-769. [PMID: 28679120 DOI: 10.1016/j.scitotenv.2017.06.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain.
Collapse
Affiliation(s)
- Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Dan Dong
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xuetong Zeng
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Zhengzhong Sun
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xiaofei Jiang
- School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Wim de Vries
- Environmental Research (Alterra), Wageningen University and Research, PO Box 47, 6700 AA Wageningen, The Netherlands; Environmental Systems Analysis Group, Wageningen University and Research, PO Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
39
|
Characteristics of Particulate Pollution (PM2.5 and PM10) and Their Spacescale-Dependent Relationships with Meteorological Elements in China. SUSTAINABILITY 2017. [DOI: 10.3390/su9122330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model. CLIMATE 2017. [DOI: 10.3390/cli5040078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Yao L. Causative impact of air pollution on evapotranspiration in the North China Plain. ENVIRONMENTAL RESEARCH 2017; 158:436-442. [PMID: 28689035 DOI: 10.1016/j.envres.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric dispersion conditions strongly impact air pollution under identical surface emissions. The degree of air pollution in the Jing-Jin-Ji region is so severe that it may impose feedback on local climate. Reference evapotranspiration (ET0) plays a significant role in the estimation of crop water requirements, as well as in studies on climate variation and change. Since the traditional correlation analysis cannot capture the causality, we apply the convergent cross mapping method (CCM) in this study to observationally investigate whether the air pollution impacts ET0. The results indicate that southwest regions of Jing-Jin-Ji always suffer higher PM2.5 concentration than north regions through the whole year, and correlation analysis suggests that PM2.5 concentration has a significant negative effect on ET0 in most cities. The causality detection with CCM quantitatively demonstrates the significantly causative influence of PM2.5 concentration on ET0, higher PM2.5 concentration decreasing ET0. However, CCM analysis suggests that PM2.5 concentration has a relatively weak causal influence on ET0 while the correlation analysis gives the near zero correlation coefficient in Zhangjiakou city, indicating that the causative influence of PM2.5 concentration on ET0 is better revealed with CCM method than the correlation analysis. Considering that ET0 is strongly associated with crop water requirement, the amount of water for agricultural irrigation could be reduced at high PM2.5 concentrations. These findings can be utilized to improve the efficiency of water resources utilization, and reduce the exploiting amount of groundwater in the Jing-Jin-Ji region, although PM2.5 is detrimental to human health.
Collapse
Affiliation(s)
- Ling Yao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
42
|
Matyssek R, Kozovits AR, Wieser G, King J, Rennenberg H. Woody-plant ecosystems under climate change and air pollution-response consistencies across zonobiomes? TREE PHYSIOLOGY 2017; 37:706-732. [PMID: 28338970 DOI: 10.1093/treephys/tpx009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Forests store the largest terrestrial pools of carbon (C), helping to stabilize the global climate system, yet are threatened by climate change (CC) and associated air pollution (AP, highlighting ozone (O3) and nitrogen oxides (NOx)). We adopt the perspective that CC-AP drivers and physiological impacts are universal, resulting in consistent stress responses of forest ecosystems across zonobiomes. Evidence supporting this viewpoint is presented from the literature on ecosystem gross/net primary productivity and water cycling. Responses to CC-AP are compared across evergreen/deciduous foliage types, discussing implications of nutrition and resource turnover at tree and ecosystem scales. The availability of data is extremely uneven across zonobiomes, yet unifying patterns of ecosystem response are discernable. Ecosystem warming results in trade-offs between respiration and biomass production, affecting high elevation forests more than in the lowland tropics and low-elevation temperate zone. Resilience to drought is modulated by tree size and species richness. Elevated O3 tends to counteract stimulation by elevated carbon dioxide (CO2). Biotic stress and genomic structure ultimately determine ecosystem responsiveness. Aggrading early- rather than mature late-successional communities respond to CO2 enhancement, whereas O3 affects North American and Eurasian tree species consistently under free-air fumigation. Insect herbivory is exacerbated by CC-AP in biome-specific ways. Rhizosphere responses reflect similar stand-level nutritional dynamics across zonobiomes, but are modulated by differences in tree-soil nutrient cycling between deciduous and evergreen systems, and natural versus anthropogenic nitrogen (N) oversupply. The hypothesis of consistency of forest responses to interacting CC-AP is supported by currently available data, establishing the precedent for a global network of long-term coordinated research sites across zonobiomes to simultaneously advance both bottom-up (e.g., mechanistic) and top-down (systems-level) understanding. This global, synthetic approach is needed because high biological plasticity and physiographic variation across individual ecosystems currently limit development of predictive models of forest responses to CC-AP. Integrated research on C and nutrient cycling, O3-vegetation interactions and water relations must target mechanisms' ecosystem responsiveness. Worldwide case studies must be subject to biostatistical exploration to elucidate overarching response patterns and synthesize the resulting empirical data through advanced modelling, in order to provide regionally coherent, yet globally integrated information in support of internationally coordinated decision-making and policy development.
Collapse
Affiliation(s)
- R Matyssek
- Technische Universität München, TUM School of Life Sciences Weihenstephan, Chair of Ecophysiology of Plants, Hans-Carl-von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - A R Kozovits
- Universidade Federal de Ouro Preto, Department of Biodiversity, Evolution and Environment, Campus Morro do Cruzeiro, Bauxita, 35.400-000 Ouro Preto, MG, Brazil
| | - G Wieser
- Department of Alpine Timberline Ecophysiology, Federal Office and Research Centre for Forests, Innsbruck, Austria
| | - J King
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - H Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Georges-Koehler-Allee 53/54, D79110 Freiburg, Germany
- King Saud University, PO Box 2454, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Stewart DR, Saunders E, Perea RA, Fitzgerald R, Campbell DE, Stockwell WR. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin. ENVIRONMENTAL HEALTH INSIGHTS 2017; 11:1178630217737551. [PMID: 29162976 PMCID: PMC5692127 DOI: 10.1177/1178630217737551] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/18/2017] [Indexed: 05/03/2023]
Abstract
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.
Collapse
Affiliation(s)
- Devoun R Stewart
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA, USA
| | - Emily Saunders
- Department of Chemistry, Howard University, Washington, DC, USA
| | - Roberto A Perea
- Department of Physics, The University of Texas at El Paso, El Paso, TX, USA
| | - Rosa Fitzgerald
- Department of Physics, The University of Texas at El Paso, El Paso, TX, USA
| | - David E Campbell
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
| | - William R Stockwell
- Department of Chemistry, Howard University, Washington, DC, USA
- Department of Physics, The University of Texas at El Paso, El Paso, TX, USA
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA
- William R Stockwell, Division of Atmospheric Science, Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, USA.
| |
Collapse
|
44
|
Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Sugai T, Koike T. Impacts of ethylenediurea (EDU) soil drench and foliar spray in Salix sachalinensis protection against O 3-induced injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1053-1062. [PMID: 27607908 DOI: 10.1016/j.scitotenv.2016.08.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/27/2016] [Accepted: 08/27/2016] [Indexed: 05/22/2023]
Abstract
It is widely accepted that elevated levels of surface ozone (O3) negatively affect plants. Ethylenediurea (EDU) is a synthetic substance which effectively protects plants against O3-caused phytotoxicity. Among other questions, the one still open is: which EDU application method is more appropriate for treating fast-growing tree species. The main aims of this study were: (i) to test if chronic exposure of Salix sachalinensis plants to 200-400mgEDUL-1, the usually applied range for protection against O3 phytotoxicity, is beneficial to plants; (ii) to evaluate the effects of chronic exposure to elevated O3 on S. sachalinensis; (iii) to assess the efficacy of two methods (i.e. soil drench and foliar spray) of EDU application to plants; (iv) to investigate the appropriate concentration of EDU to protect against elevated O3-induced damage in S. sachalinensis; and (v) to compare the two methods of EDU application in terms of effectiveness and EDU consumption. Current-year cuttings grown in infertile soil free from organic matter were exposed either to low ambient O3 (AOZ, 10-h≈28.3nmolmol-1) or to elevated O3 (EOZ, 10-h≈65.8nmolmol-1) levels during daylight hours. Over the growing season, plants were treated every nine days with 200mL soil drench of 0, 200 or 400mgEDUL-1 or with foliar spray of 0, 200 or 400mgEDUL-1 (in two separate experiments). We found that EDU per se had no effects on plants exposed to AOZ. EOZ practically significantly injured S. sachalinensis plants, and the impact was indifferent between the experiments. EDU did not protect plants against EOZ impact when applied as soil drench but it did protect them when applied as 200-400mgL-1 foliar spray. We conclude that EDU may be more effective against O3 phytotoxicity to fast-growing species when applied as a spray than when applied as a drench. Keymessage: Soil-drenched EDU was ineffective in protecting willow plants against O3-induced injury, whereas foliar-sprayed EDU was effective even at the concentration of 200mgL-1.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Elena Paoletti
- National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA
| | - Tetsuto Sugai
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takayoshi Koike
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
45
|
Responses of tree and insect herbivores to elevated nitrogen inputs: A meta-analysis. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2016.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Shi C, Koike T. High doses of ethylene diurea (EDU) are not toxic to willow and act as nitrogen fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:841-850. [PMID: 27259037 DOI: 10.1016/j.scitotenv.2016.05.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
UNLABELLED Ethylene diurea (EDU) is synthetic chemical which protects plants against damage caused by ground level O3 and is used experimentally as a biomonitoring tool at doses usually ranging from 200 to 400mgL(-1) a.i. Although several studies have investigated the protective action of EDU, this mechanism remains unclear. Important uncertainties in EDU action are whether EDU acts as a source of nitrogen (N) to plants and whether high doses are phytotoxic. In order to answer these questions, we conducted an open-field experiment where potted willow (Salix sachalinensis Fr. Schm) plants were exposed to ambient O3 conditions and treated with 0, 800 or 1600mgL(-1) EDU as a soil drench, every nine days, for about 2.5months. We examined approximately 50 response variables. Based on N content in different plant organs, we found that (a) all EDU was transferred to the leaves and (b) high doses of EDU increased the leaf N content. However, EDU did not affect the C content and distribution within the plant body. Still, even at the highest dose, EDU was not toxic to this fast-growing species (however such a high dose should not be applied in uncontrolled environments); and there was no EDU persistence in the soil, as indicated by soil N content. Notably, our soil was free from organic matter and N-poor. KEY MESSAGE EDU per se does not cause toxicity to willow plants when applied as drench to a soil with no organic matter, rather, high EDU doses may act as nitrogen fertilizer in a nitrogen-poor soil.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Council of Research, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy.
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - William J Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Cong Shi
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takayoshi Koike
- Silviculture & Forest Ecological Studies, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
47
|
Sicard P, Serra R, Rossello P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012. ENVIRONMENTAL RESEARCH 2016; 149:122-144. [PMID: 27200478 DOI: 10.1016/j.envres.2016.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 05/19/2023]
Abstract
The hourly ozone (O3) data from 332 background monitoring stations, spread in France, were analyzed over the period 1999-2012 and short-term trends were calculated. In the current climate change context, the calculation of human health- and vegetation-relevant metrics, and of associated trends, provides a consistent method to establish proper and effective policies to reduce the adverse O3 effects. The generation of optimal O3 maps, for risk and exposure assessment, is challenging. To overcome this issue, starting from a set of stations, a hybrid regression-interpolation approach was proposed. Annual surface O3 metrics, O3 human health metrics (number of exceedances of daily maximum 8-h values greater than 60 ppb and SOMO35) and O3 vegetation impact metrics (AOT40 for vegetation and forests) were investigated at individual sites. Citizens are more exposed to high O3 levels in rural areas than people living in the cities. The annual mean concentrations decreased by -0.12ppbyear(-1) at rural stations, and the significant reduction at 67% of stations, particularly during the warm season, in the number of episodic high O3 concentrations (e.g. 98th percentile, -0.19ppbyear(-1)) can be associated with the substantial reductions in NOx and VOCs emissions in the EU-28 countries since the early 1990s Inversely, the O3 background level is rising at 76% of urban sites (+0.14ppbyear(-1)), particularly during the cold period. This rise can be attributed to increases in imported O3 by long-range transport and to a low O3 titration by NO due to the reduction in local NOx emissions. The decrease in health-related and vegetation-relevant O3 metrics, at almost all stations, is driven by decreases in regional photochemical O3 formation and in peak O3 concentrations. The short-term trends highlight that the threat to population and vegetation declined between 1999 and 2012 in France, demonstrating the success of European control strategies over the last 20 years. However, for all exposure metrics, the issue of non-attainment of the target value for O3 persists in comparison with the objectives of air quality directives. The region at highest O3 risk is the South-eastern France. This study contains new information on the i) spatial distribution of surface O3 concentration, ii) exceedances and iii) trends to define more suitable standards for human health and environmental protection in France.
Collapse
Affiliation(s)
- Pierre Sicard
- ACRI-HE, 260 Route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex, France.
| | - Romain Serra
- ACRI-HE, 260 Route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex, France
| | | |
Collapse
|
48
|
Paoletti E, Sicard P. Preface to the IUFRO RG7.01 special section "Global Challenges of Air Pollution and Climate Change to Forests". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:975-976. [PMID: 26878977 DOI: 10.1016/j.envpol.2016.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Elena Paoletti
- IPSP-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze, Italy.
| | - Pierre Sicard
- ACRI-HE, 260 route du Pin Montard BP234, 06904, Sophia-Antipolis Cedex, France.
| |
Collapse
|