1
|
Lee CC, Chen WL, Chen CS, Tien CJ. Assessing the fate, toxicity, and ecological risk of mixtures of di(2-ethylhexyl)phthalate and di-n-butylphthalate using aquatic and terrestrial microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176070. [PMID: 39244051 DOI: 10.1016/j.scitotenv.2024.176070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) and di-n-butylphthalate (DBP) frequently coexist in different environmental compartments. Thus, in this study, model aquatic and terrestrial microcosms were prepared to analyze the combined effect of DEHP and DBP on their fate, toxicity, and ecological risk. In the aquatic microcosms, with the addition of the same amount of DEHP and DBP, a higher total amount of DEHP was detected in water, suspended particles, and sediment than DBP due to the higher Kow and half-life of DEHP than DBP. Sediment was the major sink of both phthalates, as the highest percentages of DEHP (90.0 % ∼ 95.6 %) and DBP (68.7 % ∼ 78.1 %) were found in the sediment. The results of the whole sediment toxicity test showed that DBP (LC50/LC10: 6.75/1.171 μg/g dw) was more toxic than DEHP (LC50/LC10: 158.75/27.25 μg/g dw) to the tubificid oligochaete Monopylephorus limosus, with a synergistic toxic effect of the mixture of DEHP and DBP (LC50/LC10: 100.3/4.6 μg/g dw). The mobility of DEHP and DBP in soil was low during irrigation, with the release of 0.054 % ∼ 2.29 % DEHP and 0.097 % ∼ 1.86 % DBP. The bioconcentration factors/biota-sediment accumulation factors for DEHP (70.8-145 L/kg/0.093-0.359) in the muscle of the fish Carassius auratus were lower than those for DBP (82.2-300 L/kg/0.514-1.625). The bioaccumulation factors of DEHP and DBP for earthworms were 0.373 and 0.682, respectively. The levels of DEHP and DBP in the water and sediment of aquatic systems and in the soil of terrestrial systems might pose high ecological risks to some fish species, M. limosus and earthworms, according to the risk quotient values. These data provide valuable insights for the development of government control strategies to minimize the ecological risks of DEHP and DBP.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, 138 Sheng Li Road, Tainan 704, Taiwan; Research Center of Environmental Trace Toxic substances, National Cheng Kung University, 138 Sheng Li Road, Tainan 704, Taiwan
| | - Wei-Ling Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung 824, Taiwan
| | - Colin S Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung 824, Taiwan
| | - Chien-Jung Tien
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung 824, Taiwan.
| |
Collapse
|
2
|
Wang X, Wang X, Ai S, Yi J, Wu F, Li J, Liu Z, Zhang J. Response of aquatic ecosystems multi-trophic biological communities under multiple pollutants stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177001. [PMID: 39427900 DOI: 10.1016/j.scitotenv.2024.177001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Industrialization has significantly polluted the Yangtze River Basin, posing phenolic compounds and heavy metals that threaten ecological and human health. This study comprehensively evaluated the impact of these pollutants on the Yangtze River's aquatic ecosystems across multiple trophic levels. Sampling from 84 sites during both dry and wet seasons, water chemistry and biological data were analyzed by advanced molecular and statistical techniques. All organisms are divided into three ecological functional groups with a multitrophic level structure based on their co-occurrence. Our results demonstrate pronounced spatial and seasonal variations in pollutant concentrations, with notable sensitivity in ecological structures to phenolic compounds and heavy metals. The ecological impacts of pollutants are more readily observable (up to 43.1 % maximum) when assessing ecological communities based on functional groups with multi-trophic biological community as opposed to traditional taxonomic classifications. All the data used to develop a predictive model for ecological functional groups, achieving an accuracy rate of 86.1 %. This research provides critical insights into the multi-trophic effects of composite pollution, advocates for the adoption of comprehensive multi-trophic evaluation methods in large-scale ecological monitoring and sustainable watershed management globally.
Collapse
Affiliation(s)
- Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Jiawei Yi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
3
|
Zaghloul GY, Mohamedein LI, Kelany MS, El-Moselhy KM, Ezz El-Din HM. Impact of total phenolic compounds on ecological and health risks of water and sediments from Timsah Lake, Suez Canal, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45667-45682. [PMID: 38970632 DOI: 10.1007/s11356-024-34047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
This study aimed to measure spatial and temporal distributions of total phenolic compounds and their ecological and health hazards using UV-vis spectrophotometers as a low-cost, fast, simple method in water and sediments collected from Timsah Lake, Suez Canal, Egypt, 2022. Also, assessing highly adaptive fungal species associated with contamination is designed. Due to human and environmental activities and industrial waste discharges, Timsah Lake is increasingly threatened by all kinds of pollutants. The results indicated that the seasonal concentration means of the phenolic compounds were winter (0.229) > spring (0.161) > summer (0.124) > autumn (0.131) mg/l and winter (3.08) > summer (2.66) mg/g in water and sediment samples, respectively. The result has shown that the phenol concentrations in all stations were more than 0.005 and 0.1 mg/l for Egyptian National Standards and World Health Organization (WHO) for drinking water but less than the limits of 1 mg/l for wastewater. Notably, the fungi recorded the highest counts during spring, totaling 397 colonies/100 ml of water and 842 colonies/gram of sediment. Four isolates of fungi were identified and deposited in the GenBank database by Aspergillus terreus, Aspergillus terreus, Penicillium roqueforti, and Penicillium rubens under accession numbers OR401933, OR402837, OR402878, and OR424729, respectively. Moreover, ecological risk (RQ) for the total phenolic compounds was > 1 in all investigated stations for water and sediments. The hazard quotient is HQ < 1 in all seasons in water and sediments except winter. The hazard index (HI) in water and sediments for children is higher than for adults. It can be concluded that the low-cost, fast, simple method for determining phenolic content in water and sediment samples, using UV-vis spectrophotometry, was useful for predicting the reactivates of a wide variety of phenol and their derivatives. Furthermore, it can be concluded that Periodic assessments of water quality and strict regulations are necessary to safeguard this vital resource from pollution and ensure the well-being of future generations. Finally, policymakers and water treatment specialists might use the information from this research to reduce these chemical pollutants in Egypt.
Collapse
Affiliation(s)
- Ghada Y Zaghloul
- Marine Chemistry Lab., National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Lamiaa I Mohamedein
- Marine Pollution Lab., National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Mahmoud S Kelany
- Marine Microbiology Lab., National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Khalid M El-Moselhy
- Marine Pollution Lab., National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Heba M Ezz El-Din
- Marine Chemistry Lab., National Institute of Oceanography and Fisheries, Cairo, Egypt.
| |
Collapse
|
4
|
Gholaminejad A, Mehdizadeh G, Dolatimehr A, Arfaeinia H, Farjadfard S, Dobaradaran S, Bonyadi Z, Ramavandi B. Phthalate esters pollution in the leachate, soil, and water around a landfill near the sea, Iran. ENVIRONMENTAL RESEARCH 2024; 248:118234. [PMID: 38272296 DOI: 10.1016/j.envres.2024.118234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 μg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 μg/L) and wet (114 μg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.
Collapse
Affiliation(s)
- Ali Gholaminejad
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ghazal Mehdizadeh
- Division of Atmospheric Science, University of Nevada, Reno, United States
| | - Armin Dolatimehr
- Civil and Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Hosein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Xu Y, Sun Y, Lei M, Hou J. Phthalates contamination in sediments: A review of sources, influencing factors, benthic toxicity, and removal strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123389. [PMID: 38246215 DOI: 10.1016/j.envpol.2024.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sediments provide habitat and food for benthos, and phthalates (PAEs) have been detected in numerous river and marine sediments as a widely used plastic additive. PAEs in sediments is not only toxic to benthos, but also poses a threat to pelagic fish and human health through the food chain, so it is essential to comprehensively assess the contamination of sediments with PAEs. This paper presents a critical evaluation of PAEs in sediments, which is embodied in the analysis of the sources of PAEs in sediments from multiple perspectives. Biological production is indispensable, while artificial synthesis is the most dominant, thus the focus was on analyzing the industrial and commercial sources of synthetic PAEs. In addition, since the content of PAEs in sediments varies, some factors affecting the content of PAEs in sediments are summarized, such as the properties of PAEs, the properties of plastics, and environmental factors (sediments properties and hydrodynamic conditions). As endocrine disruptors, PAEs can produce toxicity to its direct contacts. Therefore, the effects of PAEs on benthos immunity, endocrinology, reproduction, development, and metabolism were comprehensively analyzed. In addition, we found that reciprocal inhibition and activation of the systems lead to genotoxicity and apoptosis. Finally, the paper discusses the feasible measures to control PAEs in wastewater and leachate from the perspective of source control, and summarizes the in-situ treatment measures for PAEs contamination in sediments. This paper provides a comprehensive review of PAEs contamination in sediments, toxic effects and removal strategies, and provides an important reference for reducing the contamination and toxicity of PAEs to benthos.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ming Lei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
6
|
Fang S, Geng Y, Wang L, Zeng J, Zhang S, Wu Y, Lin X. Coupling between 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) debromination and methanogenesis in anaerobic soil microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169831. [PMID: 38185166 DOI: 10.1016/j.scitotenv.2023.169831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent pollutants that may undergo microbial-mediated debromination in anoxic environments, where diverse anaerobic microbes such as methanogenic archaea co-exist. However, current understanding of the relations between PBDE pollution and methanogenic process is far from complete. To address this knowledge gap, a series of anaerobic soil microcosms were established. BDE-47 (2, 2', 4, 4'-tetrabromodiphenyl ether) was selected as a model pollutant, and electron donors were supplied to stimulate the activity of anaerobes. Debromination and methane production were monitored during the 12 weeks incubation, while obligate organohalide-respiring bacteria (OHRBs), methanogenic, and the total bacterial communities were examined at week 7 and 12. The results demonstrated slow debromination of BDE-47 in all microcosms, with considerable growth of Dehalococcoides and Dehalogenimonas over the incubation observed in most BDE-47 spiked treatments. In addition, the accumulation of intermediate metabolites positively correlated with the abundance of Dehalogenimonas at week 7, suggesting potential role of these OHRBs in debromination. Methanosarcinaceae were identified as the primary methanogenic archaea, and their abundance were correlated with the production of debrominated metabolites at week 7. Furthermore, it was observed for the first time that BDE-47 considerably enhanced methane production and increased the abundance of mcrA genes, highlighting the potential effects of PBDE pollution on climate change. This might be related to the inhibition of reductive N- and S-transforming microbes, as revealed by the quantitative microbial element cycling (QMEC) analysis. Overall, our findings shed light on the intricate interactions between PBDE and methanogenic processes, and contribute to a better understanding of the environmental fate and ecological implication of PBDE under anaerobic settings.
Collapse
Affiliation(s)
- Shasha Fang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yue Geng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jun Zeng
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shimin Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yucheng Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiangui Lin
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
7
|
Kim DH, Choi S, Park J, Kim K, Oh JE. Phenolic compounds in the freshwater environment in South Korea: Occurrence and tissue-specific distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166914. [PMID: 37689198 DOI: 10.1016/j.scitotenv.2023.166914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
In this study, we investigated the occurrence and distribution of phenolic compounds, including phenol, cresols, chlorophenols, nitrophenol, and bromophenols, in freshwater environments. We also focused on phenolic compounds in crucian carp (Carassius auratus) tissues, specifically the muscle, gills, brain, blood, liver, and gonads, to assess their potential bioaccumulation in fish and human health risks. Phenolic compounds were found to be widespread in various freshwater environments throughout South Korea. Phenol was predominant in all matrices, with median concentrations of 57.0 ng/L in freshwater, 54.3 ng/g dry weight (dw) in sediment, and ranging from 71 ng/g wet weight (ww) to 621 ng/g ww in crucian carp tissues. Cresols were the second most dominant compound, with m-cresol exhibiting the highest prevalence. Most of the compounds detected in crucian carp samples were also detected in freshwater and sediment, whereas pentachlorophenol and 2,4,6-tribromophenol were exclusively detected in crucian carp tissues. A high bioaccumulation potential in the liver was observed for most phenolic compounds [median log bioconcentration factor (BCF): 3.2-3.7]. Interestingly, only m-cresol showed high bioaccumulation potential in the gills (median log BCF: 3.1). The estimated daily intake of phenolic compounds suggested that it does not pose an immediate concern for human exposure owing to crucian carp consumption. These findings enhance our understanding of the exposure status, distribution, and bioaccumulation potency of phenolic compounds in aquatic ecosystems and emphasize the importance of ongoing monitoring and risk assessment efforts.
Collapse
Affiliation(s)
- Da-Hye Kim
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sol Choi
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeyeon Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyungtae Kim
- Risk Assessment Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
8
|
Wang H, Li C, Yan G, Zhang Y, Wang H, Dong W, Chu Z, Chang Y, Ling Y. Seasonal distribution characteristics and ecological risk assessment of phthalate esters in surface sediment of Songhua River basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122567. [PMID: 37717898 DOI: 10.1016/j.envpol.2023.122567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Phthalic acid esters (PAEs) are typical industrial chemicals used in China. PAEs have received considerable attention because of their ubiquity and potential hazard to humans and the ecology. The spatiotemporal distributions of six PAEs in the surface sediments of the Songhua River in the spring (March), summer (July), and autumn (September) are investigated in this study. The total concentration of phthalic acid esters (∑6PAEs) ranges from 1.62 × 102 ng g-1 dry weight (dw) to 3.63 × 104 ng g-1·dw, where the amount in the spring is substantially higher (p < 0.01) than those in the autumn and summer. Seasonal variations in PAEs may be due to rainfall and temperature. The ∑6PAEs in the Songhua River's upper reaches are significantly higher than those in the middle and lower reaches (p < 0.05). Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the two most abundant PAEs. The ecological hazard of five PAEs is assessed using the hazard quotient method. DBP and DEHP pose moderate or high ecological risks to aquatic organisms at various trophic levels. PAEs originate primarily from industrial, agricultural, and domestic sources. Absolute principal components-multiple linear regression results indicate that agricultural sources are the most dominant contributor to the ∑6PAEs (53.7%). Guidelines for controlling PAEs pollution in the Songhua River are proposed.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Congyu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yanjie Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| |
Collapse
|
9
|
Desai A, Pathan F, Yadav R, Yogi D, Nanajkar MR. Phthalate induced hormetic effect reveals susceptibility of gill compared to muscle tissue after depuration in commercially important fish (Etroplus suratensis). MARINE POLLUTION BULLETIN 2023; 194:115238. [PMID: 37437518 DOI: 10.1016/j.marpolbul.2023.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Effect of Bis-2ethylhexyl phthalate (DEHP) on commercially important tropical fish pearl spot has not been demonstrated at environmental concentrations along with depuration. The species is estuarine, juvenile and difficult to maintain but widely consumed and well distributed in tropical estuaries. Antioxidant activity of SOD, CAT and GPx was enhanced on all exposure days for gill and muscle suggesting high oxidative stress, except on day 5. Detoxifying enzyme-GST behaved differentially in gill and muscle tissue after depuration, depicting inhibited activity of GST in gill leading to lipid peroxidation. However, the muscle tissue was able to recover from stress after 7 days of depuration with the help of detoxifying enzymes. Overcompensation of antioxidant activity was observed over disruption of homeostasis defining hormesis effect. Integrated biomarker (IBR) index depicted high toxicity during entire exposure time, but after depuration, gill could not mediate LPO at lowest concentration (10 μg/l) while muscle tissue recovered, suggesting persistence of stress in gill.
Collapse
Affiliation(s)
- Aniket Desai
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - F Pathan
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - R Yadav
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - D Yogi
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - M R Nanajkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Long Y, Song L, Shu Y, Li B, Peijnenburg W, Zheng C. Evaluating the spatial and temporal distribution of emerging contaminants in the Pearl River Basin for regulating purposes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114918. [PMID: 37086620 DOI: 10.1016/j.ecoenv.2023.114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Little information is available on how the types, concentrations, and distribution of chemicals have evolved over the years. The objective of the present study is therefore to review the spatial and temporal distribution profile of emerging contaminants with limited toxicology data in the pearl river basin over the years to build up the emerging contaminants database in this region for risk assessment and regulatory purposes. The result revealed that seven groups of emerging contaminants were abundant in this region, and many emerging contaminants had been detected at much higher concentrations before 2011. Specifically, antibiotics, phenolic compounds, and acidic pharmaceuticals were the most abundant emerging contaminants detected in the aquatic compartment, while phenolic compounds were of the most profound concern in soil. Flame retardants and plastics were the most frequently studied chemicals in organisms. The abundance of the field concentrations and frequencies varied considerably over the years, and currently available data can hardly be used for regulation purposes. It is suggested that watershed management should establish a regular monitoring scheme and comprehensive database to monitor the distribution of emerging contaminants considering the highly condensed population in this region. The priority monitoring list should be formed in consideration of historical abundance, potential toxic effects of emerging contaminants as well as the distribution of heavily polluting industries in the region.
Collapse
Affiliation(s)
- Ying Long
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lan Song
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yaqing Shu
- School of Navigation, Wuhan University of Technology, Wuhan 430063, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden RA 2300, the Netherlands
| | - Chunmiao Zheng
- Shenzhen Institute of Sustainable Development, Southern University of Science and Technology, Shenzhen 518055, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Hou Y, Tu M, Li C, Liu X, Wang J, Wei C, Zheng X, Wu Y. Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China. TOXICS 2023; 11:180. [PMID: 36851055 PMCID: PMC9962510 DOI: 10.3390/toxics11020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) are frequently tracked in water environments worldwide. As a typical class of endocrine disruptor chemicals (EDCs), PAEs posed adverse effects on aquatic organisms at low concentration. Thus, they have attracted wide attention in recent years. In the present study, the concentrations of seven typical PAEs from 30 sampling sites in Baiyangdian Lake were measured, and the environmental exposure data of PAEs were gathered in typical rivers in China. Then, based on the aquatic life criteria (ALCs) derived from the reproductive toxicity data of aquatic organisms, two risk assessment methods, including hazard quotient (HQ) and probabilistic ecological risk assessment (PERA), were adopted to evaluate the ecological risks of PAEs in water. The sediment quality criteria (SQCs) of DEHP, DBP, BBP, DIBP and DEP were deduced based on the equilibrium partitioning method. Combined with the gathered environmental exposure data of seven PAEs in sediments from typical rivers in China, the ecological risk assessments of five PAEs in sediment were conducted only by the HQ method. The results of ecological risk assessment showed that in terms of water, DBP and DIBP posed low risk, while the risk of DEHP in Baiyangdian Lake cannot be ignored and should receive attention. In typical rivers in China, BBP and DEP posed no risk, while DIBP and DBP posed potential risk. Meanwhile, DEHP posed a high ecological risk. As far as sediment is concerned, DBP posed a high risk in some typical rivers in China, and the other rivers had medium risk. DEHP posed a high risk only in a few rivers and low to medium risk in others. This study provides an important reference for the protection of aquatic organisms and the risk management of PAEs in China.
Collapse
Affiliation(s)
- Yin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Mengchen Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cheng Li
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| | - Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yihong Wu
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| |
Collapse
|
12
|
Wang C, Li J, Qiu C, Wang L, Su X, Huang P, He N, Sun L, Bai Y, Li C, Wang Y. Multimedia fates and ecological risk control strategies of phthalic acid esters in a lake recharged by reclaimed water using the QWASI fugacity model. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
He W, Yang H, Pu Q, Li Y. Novel control strategies for the endocrine-disrupting effect of PAEs to pregnant women in traffic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158269. [PMID: 36029816 DOI: 10.1016/j.scitotenv.2022.158269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollution has become a global issue, and scientific regulation measures are urgently needed to reduce traffic pollution. Phthalates (PAEs) have been widely detected in the traffic environment; thus, they were chosen as target pollutants because of their endocrine-disrupting effects. The pathways of action and mechanisms of PAEs' endocrine-disrupting effects in pregnant women through inhalation were deduced. A novel whole-process 1C + 3D + 5R regulation system was developed to control the endocrine-disrupting effect of PAEs on pregnant women based on the cleaning production concept. (1) For source reduction, the 2D-QSAR model of endocrine-disrupting effects of PAEs in pregnant women was constructed to screen out the key influencing factors as hydrogen bond interaction and hydrophobic interaction. Based on this, a designed PAE substitute molecule with low volatility and endocrine-disrupting effects and no developmental toxicity was screened. The substitute molecule could reduce the volatilization amount of PAEs at the source by 41.76 %; (2) For process interception, selecting C-band UV light to eliminate PAEs molecules in the traffic environment can slow down 19.99 % of the endocrine-disrupting effect of PAEs molecules. The homology modeling method was used to design four kinds of green belt plant proteins with high PAEs absorption efficiency to absorb PAEs molecules in the traffic environment. Compared with the original green belt plant proteins, the absorption amount of PAEs increased by up to 96.08 %, and (3) For terminal prevention, dietary food schemes were designed to regulate PAEs' endocrine-disrupting effect on pregnant women. The optimal dietary food scheme was the simultaneous intake of glutamate, catechin and folic acid, which could reduce the adverse effect of PAEs on maternal and infants by 32.51 %. This study presents theoretical support for regulating PAE exposure to specific populations in the traffic environment and treating other pollutants in the future.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
14
|
Mohammadi A, Malakootian M, Dobaradaran S, Hashemi M, Jaafarzadeh N. Occurrence, seasonal distribution, and ecological risk assessment of microplastics and phthalate esters in leachates of a landfill site located near the marine environment: Bushehr port, Iran as a case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156838. [PMID: 35750192 DOI: 10.1016/j.scitotenv.2022.156838] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Plastic wastes are produced in a large amount everywhere, and are commonly disposed in landfills. So landfill leachate seems an obvious source of microplastics (MPs) and phthalate esters (PAEs) due to a huge usage as plastic additives and plasticizers. But this issue still lacks attention and the present study provides the first information on the levels of MPs and PAEs in the fresh landfill leachate of Bushehr port during different seasons. The mean levels of MPs and PAEs in the fresh leachate in all seasons were 79.16 items/L and 3.27 mg/L, respectively. Also, the mean levels of PAEs in MPs were 48.33 μg/g. A statistically significant difference was detected in the levels of MPs and PAEs among different seasons with the highest values in summer and fall. MPs with a size of >1000 μm had the highest abundance in all seasons. The most prominent shape, color, and type of MPs in the leachate were fibers black, and nylon, respectively. Dibutyl phthalate (DBP) and Di(2-ethylhexyl) phthalate (DEHP) were the most dominant PAEs present in the leachate samples. The results of this study revealed high hazard index (HI) and pollution load index (PLI) of MPs in all seasons. Dioctyl phthalate (DOP), DEHP, DBP, diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP) represented a high risk to the sensitive organisms. The results of this study showed that significant levels of MPs and PAEs may release into the surrounding environment from the landfill sites without sufficient protection. This issue is more critical when the landfill sites in particular are located near the marine environments like the Bushehr landfill that is located near the Persian Gulf, which can lead to serious environmental problems. Thus permanent control and monitor of landfills, especially in the coastal areas are highly needed to prevent further pollution.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Xiao X, Tong Y, Wang D, Gong Y, Zhou Z, Liu Y, Huang H, Zhang B, Li H, You J. Spatial distribution of benthic toxicity and sediment-bound metals and arsenic in Guangzhou urban waterways: Influence of land use. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129634. [PMID: 36104897 DOI: 10.1016/j.jhazmat.2022.129634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The effects of land use on pollutant loads in sediments have been well documented; however, its influence on spatial variations in sediment toxicity remains largely unknown. In the present study, the toxicological effects of 17 sediments collected from Guangzhou waterways were evaluated using two benthic invertebrates (Chironomus dilutus and Hyalella azteca), along with quantification of heavy metals and arsenic in the sediments. The impacts of land-use configuration on sediment toxicity and occurrence of heavy metals and arsenic were analyzed. The sediments presented moderate lethality (<40 %) in the two test species and significantly altered their enzymatic activity, including the activities of oxidative stress biomarkers and acetylcholine esterase. Metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and arsenic were detected in all the sediments, with total concentrations ranging from 238 to 1019 mg/kg of dry weight. Both the toxicity and chemical results displayed spatially dependent patterns but were related to different land use types. Toxicity was most influenced by agricultural and aquacultural activities, while metal and arsenic pollution was most influenced by urban land areas. The present findings are expected to provide essential knowledge for developing strategies that reduce the chemical pollution and ecotoxicological risk in sediments.
Collapse
Affiliation(s)
- Xiangxiang Xiao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Yujun Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China.
| | - Yongting Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Zhimin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Yuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Hongjie Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Baixin Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510443, China
| |
Collapse
|
16
|
Chen S, Yan M, Chen Y, Zhou Y, Li Z, Pang Y. Perfluoroalkyl substances in the surface water and fishes in Chaohu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75907-75920. [PMID: 35665454 DOI: 10.1007/s11356-022-20753-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The concentration and composition of 13 perfluoroalkyl substances (PFASs) in surface water and fishes in Chaohu Lake, China, were systematically studied in October 2019. Results showed that the PFASs composition has changed greatly. The concentration levels of perfluorooctane sulfonate (PFOS) in the surface water of Chaohu Lake have decreased significantly compared with past years. Perfluorobutanoic acid (PFBA) has become the dominant component, and it was mainly come from industrial wastewater. The highest concentration of perfluorooctanoic acid (PFOA) was measured in the lake inlet of the Baishitian River (southwest part), which mainly received domestic sewage. Different types of wastewater lead to varying compositions of PFASs in the lake water. PFOA and PFBS were homologous in some areas of Chaohu Lake, which reflected the unbalanced promotion of prohibition and substitution of long-chain PFASs around Chaohu Lake. On the basis of the risk quotient and tolerable daily intake assessment, drinking water and eating fish from Chaohu Lake do not lead to apparent PFAS risk, but PFOS in fish has evident bioaccumulation and biomagnification effects. PFOS-based human daily intake of Channa argus accounts for 22.4% of the tolerable daily intake. Thus, the risk caused by PFOS needs close attention. This study is useful for enhancing people's understanding of the environmental behavior and the risk of PFASs in Chaohu Lake.
Collapse
Affiliation(s)
- Shuqin Chen
- College of Resources and Environment, Anqing Normal University, Anhui, 246133, China.
- Chinese Research Academy of Environmental and Sciences, Beijing, 100083, China.
| | - Miao Yan
- College of Resources and Environment, Anqing Normal University, Anhui, 246133, China
- Chinese Research Academy of Environmental and Sciences, Beijing, 100083, China
| | - Yue Chen
- Chinese Research Academy of Environmental and Sciences, Beijing, 100083, China
- School of Environmental Science and Engineering, Chang'An University, Xi'an 710064, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zechan Li
- College of Resources and Environment, Anqing Normal University, Anhui, 246133, China
- Chinese Research Academy of Environmental and Sciences, Beijing, 100083, China
| | - Yan Pang
- School of Environmental Science and Engineering, Chang'An University, Xi'an 710064, China
| |
Collapse
|
17
|
El Zokm GM, El-Said GF, El Ashmawy AA. A comparative study, distribution, predicted no-effect concentration (PNEC) and contamination assessment of phenol with heavy metal contents in two coastal areas on the Egyptian Mediterranean Sea coast. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105687. [PMID: 35752034 DOI: 10.1016/j.marenvres.2022.105687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study comparing the expected pollution status of phenol along with heavy metals in sediments of two economic regions on the Mediterranean Sea coast using equilibrium partitioning method (EPM) as well as exposure of fishermen and populations to these sediments through ingestion and skin contact while swimming. El-Dekhila (ED) and Abu Talat (AT) regions were different in sediment texture and pollution sources. The expected ecological hazards of phenol in the studied areas were carried out using the equilibrium partitioning method (EPM) by which the partition coefficient of organic carbon-water, KOC (logKOC> 0.95-3.49), octanol-water coefficient, KOW (logKOW> 1.46-1.48) and sediment/liquid partition coefficient, Kd (log Kd < 3) detected high availability amounts of phenol in seawater. Risk quotient (RQ) for phenol in ED region ranged from high to moderate risk, while for AT region was low risk (<0.1); whereas, RQ values of heavy metals in sediments of two studied areas reflected the overall low risk without human hazards (HQ & HI < 1). RQAcute and RQChronic values were above 1 for phenol and heavy metals (Cu and Zn) reflecting that fish were the most sensitive to them in the two regions. Interestingly, this current investigation predicts future contamination of the studied areas especially phenol contamination and its relationship to heavy metals using some reasonable information and allowing the managers to manage how they decide on and protect these two areas. Thus, there is a constant need to use relatively simple tools capable of ensuring protection objectives with a quantity of information with realistic feasibility.
Collapse
Affiliation(s)
- Gehan M El Zokm
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Ghada F El-Said
- National Institute of Oceanography and Fisheries, NIOF, Egypt.
| | | |
Collapse
|
18
|
Le TM, Thi Pham CL, Nu Nguyen HM, Duong TT, Quynh Le TP, Nguyen DT, Vu ND, Minh TB, Tran TM. Distribution and ecological risk assessment of phthalic acid esters in surface sediments of three rivers in Northern Vietnam. ENVIRONMENTAL RESEARCH 2022; 209:112843. [PMID: 35101399 DOI: 10.1016/j.envres.2022.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Pollution status and distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 36 sediment samples collected from three rivers in Northern Vietnam from June to October 2020. The total concentrations of PAEs in sediment samples collected from the To Lich River (n = 9), the Nhue River (n = 12), and the Day River (n = 15) were in ranges of 11,000-125,000 ng/g-dwt (mean/median: 50,000/42,200 ng/g-dwt), 2140-89,900 ng/g-dwt (mean/median: 29,300/20,700 ng/g-dwt), and 1140-43,100 ng/g-dwt (mean/median: 13,800/10,400 ng/g-dwt), respectively. Among ten PAEs studied, di-(2-ethylhexyl) phthalate (DEHP) was found at the highest levels in all samples meanwhile dimethyl phthalate (DMP), diethyl phthalate (DEP), and dipropyl phthalate (DPP) were detected at low frequency and concentration. Significant correlations have existed between the median-chain (C4-C7) PAE pairs in sediment samples. Due to the high accumulation in the sediments, the median-chain PAEs had a higher ecological risk than the short-chain (C1-C3) PAEs. These contaminants may present a longstanding influence on organisms and ecosystems.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Chi Linh Thi Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Ha Tinh University, Cam Vinh commune, Cam Xuyen District, Ha Tinh, Viet Nam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dong Thanh Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| |
Collapse
|
19
|
Cao Y, Li J, Wu R, Lin H, Lao JY, Ruan Y, Zhang K, Wu J, Leung KMY, Lam PKS. Phthalate esters in seawater and sediment of the northern South China Sea: Occurrence, distribution, and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151412. [PMID: 34742950 DOI: 10.1016/j.scitotenv.2021.151412] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence and distribution of 15 phthalate esters (PAEs) in seawater and sediment from the northern South China Sea (NSCS) were investigated for the first time to improve understanding on the contamination status of PAEs in this region. The concentrations of total PAEs (∑15 PAEs) were found to range from 68.8 to 1500 ng/L, 46.0 to 7800 ng/L, and 49.2 to 440 ng/g dry weight in surface seawater, bottom seawater, and sediment, respectively. Among the 15 PAEs, dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the predominant PAE congeners, with mean contributions of 44.7% and 24.0% in surface water, and 42.7% and 25.8% in bottom water, respectively. Moreover, diisobutyl phthalate (DiBP) constituted the majority of ∑15 PAEs in the sediment (61.3%). Comparatively high concentrations of Σ15 PAEs were observed in seawater at the sites within the western NSCS, whereas relatively higher concentrations of Σ15 PAEs were detected in sediments at the eastern NSCS. River input and atmospheric deposition could be the main sources of PAEs in the NSCS. Preliminary risk assessment implied that DBP, DiBP, and DEHP posed low to high potential risks for marine organisms at different trophic levels. These results would be valuable for implementing effective control measures and remediation strategies for PAEs contamination in the region.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Jiaxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Office of the President, Hong Kong Metropolitan University, Hong Kong, SAR, China.
| |
Collapse
|
20
|
Chen CF, Ju YR, Lim YC, Wang MH, Patel AK, Singhania RR, Chen CW, Dong CD. The effect of heavy rainfall on the exposure risks of sedimentary phthalate esters to aquatic organisms. CHEMOSPHERE 2022; 290:133204. [PMID: 34914947 DOI: 10.1016/j.chemosphere.2021.133204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) have known widely being used in plastic products leading to being ubiquitous in the environment by easy to release from those products. This study aims to understand the impact of heavy rainfall on the concentration of PAEs in surface sediments of the Salt River in Kaohsiung, Taiwan, and its potential ecological risks on aquatic organisms. The potential ecological risk assessment of sediment PAEs is based on the total risk quotient (TRQ) method. The total concentration of 10 PAEs (∑PAE10) in sediments of the Salt River is 333-13,615 ng/g dw, with an average of 4212 ± 3753 ng/g dw. Before the rainy season, the ∑PAE10 concentration in sediments at the outlets of domestic sewage in upstream was 9768-13,615 ng/g dw, which were relatively higher than other sites (542-3721 ng/g dw). During the rainy season, the ∑PAE10 concentration was 2820-12,041 ng/g dw, which was 1-11 times higher than that determined before the rainy season. After the rainy season, the ∑PAE10 concentration recorded was 530-6652 ng/g dw, which is 1-11 times lower than the value obtained during the rainy season. PAEs in sediments of the Salt River may have low to moderate potential risks to algae, crustaceans, and fish. Bis(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) are the main PAE that poses a potential risk to algae and crustaceans, and to fish respectively, whose values of risk quotient accounts for 40-69% of the TRQ value. The distribution of TRQ values for these aquatic organisms show a decreasing trend of PAEs level with respect to the rainy season: during the rainy season > after the rainy season > before the rainy season. Heavy rainfall may cause more serious pollution in sediments and increase the exposure risk of PAEs to aquatic organisms.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
21
|
Wang P, Ding Y, Zhu L, Zhang Y, Zhou S, Xie L, Li A. Oxidative degradation/mineralization of dimethyl phthalate (DMP) from plastic industrial wastewater using ferrate(VI)/TiO 2 under ultraviolet irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15159-15171. [PMID: 34628611 DOI: 10.1007/s11356-021-16636-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
A novel ferrate(VI)/titanium dioxide/ultraviolet [Fe(VI)/TiO2/UV] system was successfully established for the photocatalytic oxidation of dimethyl phthalate (DMP). This system demonstrated a higher removal efficiency of DMP (95.2%) than the conventional TiO2/UV and Fe(VI) alone systems (51.8% and 23.5%, respectively) and produced obvious synergistic effects. Response surface methodology (RSM), based on a three level, three independent variables design, was conducted through Design Expert 8.0.6 program, and a second-order polynomial model (R2 = 0.998) was developed to quantitatively describe the photocatalysis of TiO2 combined with Fe(VI) oxidation under ultraviolet irradiation. The fresh TiO2 and photochemical reacted Fe(VI)/TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and element dispersive spectrum (EDS), which indicated that Fe(VI) was imprinted into the TiO2, and the surface adsorbed Fe-O-(organic) materials inhibited DMP degradation. This photocatalytic oxidant showed high activity and stability after nine cycles without loss of its effectiveness (counting from the second cycle). The intermediates/products of DMP were analyzed by gas chromatography-mass spectrometry. The proposed pathway for DMP degradation involved one electron transfer of hydroxyl radical and breaking of the ester bond and benzene ring. The mineralization efficiencies of DMP in actual industrial wastewater and simulated water were 87.1% and 95.2%, respectively, suggesting practical field applications. A ecotoxicity test (17.3% inhibition on bioluminescence) in treating actual industrial wastewater containing DMP implied that the proposed Fe(VI)/TiO2/UV had a potential for industrial water treatment.
Collapse
Affiliation(s)
- Ping Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.
| | - Yi Ding
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Liting Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Yunhao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Sijie Zhou
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Linbei Xie
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Ao Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Liu LH, Yuan T, Zhang JY, Tang GX, Lü H, Zhao HM, Li H, Li YW, Mo CH, Tan ZY, Cai QY. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150310. [PMID: 34583082 DOI: 10.1016/j.scitotenv.2021.150310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phthalates (PAEs) accumulated in agricultural soils and rice have increased human exposure risks. Microbial degradation could efficiently reduce the residue of organic pollutants in soil and crop plants. Here, we hypothesized that endophytic bacteria from wild rice have the potential for degradation of PAEs and plant growth promoting. The endophytic bacterial community and functional diversity in wild rice (Oryza meridionalis) were analyzed for the first time, and the potential for PAE degradation and plant growth promoting by endophytes were investigated. The results of Illumina high-throughput sequencing revealed that abundant endophytes inhabited in wild rice with Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria being the dominant phyla. Endophytic bacterial diversity and complexity were confirmed by isolation and clustering of isolates. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that endophytes exerted diverse functions such as plant growth promoting, xenobiotics biodegradation, pollution remediation and bacterial chemotaxis. Pure culture experiment showed that 30 isolated endophytic strains exhibited in vitro plant growth promoting activities, and rice plants inoculated with these strains confirmed their growth promoting abilities. Some endophytic strains were capable of efficiently degrading PAEs, with the highest removal percentage of di-n-butyl phthalate (DBP) up to 96.1% by Bacillus amyloliquefaciens strain L381 within 5 days. Synthetic community F and strain L381 rapidly removed DBP from soil (removing 91.0%-99.2% within 10 d and from rice plant slurry (removing 93.4%-99.2% within 5 d). These results confirmed the hypothesis and demonstrated the diversity of endophytic bacteria in wild rice with diverse functions, especially for plant growth promoting and removing PAEs. These multifunctional endophytic bacteria provided good alternatives to reduce PAE accumulation in crops and increase yield.
Collapse
Affiliation(s)
- Li-Hui Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Yuan
- Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Jia-Yan Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Xuan Tang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhi-Yuan Tan
- Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
23
|
Hajiouni S, Mohammadi A, Ramavandi B, Arfaeinia H, De-la-Torre GE, Tekle-Röttering A, Dobaradaran S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150559. [PMID: 34582879 DOI: 10.1016/j.scitotenv.2021.150559] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
Urban runoff seems an obvious pathway for the transfer of microplastics (MPs) and phthalate acid esters (PAEs) from land-based sources to the marine environment; an issue that still lacks attention. This study presents the first results on MP and PAE levels in the urban runoff into the northern part of the Persian Gulf during the dry season. Average concentrations of MPs and PAEs in the urban runoff of eight selected sampling sites (N = 72) along the Bushehr coast were 1.86 items/L and 53.57 μg/L, respectively. MPs with a size range of 500-1000 μm had the highest abundance, and the mean levels of PAEs in MPs were 99.77 μg/g. The results of this study show that urban runoff is a main source of MP and PAE contaminants that are discharged into the Persian Gulf. Therefore, to decrease these pollutants from entering the aquatic environment, decision-makers in the area should consider this problem and stop the direct discharging of urban runoff into water bodies.
Collapse
Affiliation(s)
- Shamim Hajiouni
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, Gelsenkirchen 45877, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
24
|
Zhang D, Liu W, Wang S, Zhao J, Xu S, Yao H, Wang H, Bai L, Wang Y, Gu H, Tao J, Shi P. Risk assessments of emerging contaminants in various waters and changes of microbial diversity in sediments from Yangtze River chemical contiguous zone, Eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149982. [PMID: 34487908 DOI: 10.1016/j.scitotenv.2021.149982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, increasing chemical contamination has greatly affected aquatic life and human health, even though most contaminants are present at low concentrations. The large-scale chemical industrial parks (CIPs) concentrated in the Yangtze River Delta account for over half of the total in China, and Jiangsu Province occupies one fifth of the Yangtze River Delta. Inevitably, the ecosystems could be affected by these CIPs. In this study, we collected 35 water and 12 sediment samples from the Yangtze River (Taizhou section) surrounding waters adjacent to concentrated CIPs and determined their cumulative chemical levels to be 0.2 to 28.4 μg/L and cumulative detections to be 11 to 39 contaminants with a median of 20 contaminants. 61 out of 153 screened chemicals were detected from at least one sampling site, and 6 contaminants, mostly semi-volatile organic compounds, appeared at all sites. Among these detected chemicals, di-n-octyl phthalate and dibutyl phthalate were at the highest levels. Ecological assessment revealed that 4-chloroaniline, phenol and dibutyl phthalate possibly would induce adverse effects on Yangtze River (Taizhou) ecosystems. Further aided with an evaluation of integrated biomarker response (IBR) index, it was found that site W06 (downstream of Binjiang CIP wastewater inlet) was the location in greatest need of urgent action. As a result, the microbial diversity of sediments in the Yangtze River mainstream was significantly higher than that of tributaries, where CIPs wastewater entered.
Collapse
Affiliation(s)
- Dan Zhang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Wei Liu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China.
| | - Shui Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Jing Zhao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Shuhui Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongye Yao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Lisen Bai
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Ying Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Huanglin Gu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Jingzhong Tao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Li X, Han X, Vogt RD, Zhou J, Zheng B, Zhang Y, Tu J, Song Y, Lu X. Polyethylene terephthalate and di-(2-ethylhexyl) phthalate in surface and core sediments of Bohai Bay, China: Occurrence and ecological risk. CHEMOSPHERE 2022; 286:131904. [PMID: 34418653 DOI: 10.1016/j.chemosphere.2021.131904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Bohai Bay, a typical semi-enclosed bay, is close to the Beijing-Tianjin-Hebei Region, the economic center of north China. The release of emerging contaminants was considerably increasing with the fast urbanization and industrialization along the coastline. However, such data, e.g. plastic polymers, are still limited. Here, polyethylene terephthalate (PET) and di-(2-ethylhexyl) phthalate (DEHP) in surface sediments and sediment cores from the coastal area of Bohai Bay were investigated. The ranges of PET and DEHP concentrations in surface sediments are 1.49-13.90 mg/kg and 0.23-19.26 mg/kg, respectively. The relatively high contents of PET and DEHP were found near the Haihe River estuary, indicating the importance of riverine input. The PET and DEHP profiles in the cores dated by the 210Pb method showed increasing trends with time. The PET in Bohai Bay was low risk evaluated by the potential ecological risk assessment. Low ecological risks of DEHP to the benthic organisms were found in the sediments, using the environmental risk limits, risk quotient, threshold effect level and probable effect level methods. The pollution levels of PET and DEHP in Bohai Bay obtained in this study may provide important data for making pollution control strategies.
Collapse
Affiliation(s)
- Xue Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Department of Chemistry, University of Oslo, Oslo, Norway
| | - Xiaoxin Han
- Changchun Bureau of Ecology and Environment, Changchun, 130022, China; Department of Chemistry, University of Oslo, Oslo, Norway
| | - Rolf D Vogt
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Department of Chemistry, University of Oslo, Oslo, Norway
| | - Jiaying Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Boyang Zheng
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Zhang
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Jianbo Tu
- Tianjin Marine Environmental Monitoring Central Station of State Oceanic Administration of China, Tianjin 300457, China
| | - Yutong Song
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1958, Denmark
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
26
|
Seasonal Variation of Phthalate Esters in Urban River Sediments: A Case Study of Fengshan River System in Taiwan. SUSTAINABILITY 2021. [DOI: 10.3390/su14010347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Fengshan River system is one of the major rivers in Kaohsiung City, Taiwan. This study investigated the concentration of eight phthalate esters (PAEs) in sediments of the river and the impact of potential ecological risks during the dry and wet seasons. The potential risk assessment of sediment PAEs was evaluated by adopting the total risk quotient (TRQ) method. The total PAEs concentrations (∑PAEs) in the sediments of the Fengshan River system are between 490–40,190 ng/g dw, with an average of 8418 ± 11,812 ng/g dw. Diisononyl phthalate (38.1%), bis(2-ethylhexyl) phthalate (36.9%) and di-isodecyl phthalate (24.3%) accounted for more than 99.3% of ∑PAEs. The concentration of ∑PAEs in sediments at the river channel stations is higher during the wet season (616–15,281 ng/g dw) than that during the dry season (490–1535 ng/g dw). However, in the downstream and estuary stations, the wet season (3975–6768 ng/g dw) is lower than the dry season (20,216–40,190 ng/g dw). The PAEs in sediments of the Fengshan River may have low to moderate potential risks to aquatic organisms. The TQR of PAEs in sediments at the downstream and estuary (TQR = 0.13) is higher than that in the upstream (TQR = 0.04). In addition, during the wet season, rainfall transported a large amount of land-sourced PAEs to rivers, leading to increased PAEs concentration and potential ecological risks in the upper reaches of the river.
Collapse
|
27
|
Removal of Emerging Pollutants in Horizontal Subsurface Flow and Vertical Flow Pilot-Scale Constructed Wetlands. Processes (Basel) 2021. [DOI: 10.3390/pr9122200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We assessed constructed wetland (CW) performance in the removal of six emerging pollutants (EPs) from university campus wastewater. The EPs considered were: diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP), bis(2-ehtylxexyl) phthalate (DEHP), tris(1-chloro-2-propyl) phosphate (TCPP) and caffeine (CAF). Six pilot-scale CWs, i.e., three horizontal subsurface flow (HSF) and three vertical flow (VF), with different design configurations were used: two types of plants and one unplanted for both the HSF and the VF, two hydraulic retention times (HRT) for the HSF, and two wastewater feeding strategies for the VF units. The results showed that the median removals in the three HSF-CWs ranged between 84.3 and 99.9%, 79.0 and 95.7%, 91.4 and 99.7%, 72.2 and 81.0%, 99.1 and 99.6%, and 99.3 and 99.6% for DEP, DIBP, DNOP, DEHP, TCPP, and CAF, respectively. In the three VF-CWs, the median removal efficiencies range was 98.6–99.4%, 63.6–98.0%, 96.6–97.8%, 73.6–94.5%, 99.3–99.5% and 94.4–96.3% for DEP, DIBP, DNOP, DEHP, TCPP and CAF, respectively. The study indicates that biodegradation and adsorption onto substrate were the most prevalent removal routes of the target EPs in CWs.
Collapse
|
28
|
Fan D, Yin W, Gu W, Liu M, Liu J, Wang Z, Shi L. Occurrence, spatial distribution and risk assessment of high concern endocrine-disrupting chemicals in Jiangsu Province, China. CHEMOSPHERE 2021; 285:131396. [PMID: 34237498 DOI: 10.1016/j.chemosphere.2021.131396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) have attracted much concern because of the environmental and health risks they pose. Here we used liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry to quantify 10 types of EDCs at 118 sampling sites in Jiangsu Province, China, and then evaluated their respective environmental risk using a conservative risk quotient method. The results show that, in surface water, the targeted nonylphenol (NP), 4-tert-octylphenol (4-t-OP), and (2-ethylhexyl)phthalate (DEHP) were ranked highest, having mean concentrations above 300 ng/L. In comparison, both 4-t-OP and DEHP were also ranked highest, with mean concentrations above 100 ng/g, in the sediment samples. Moreover, the ∑10EDCs concentration in the Huai River Basin was similar to that in the Yangtze River Basin. Notably, Huai'an city had the maximum mean concentration for EDCs in the Huai River Basin, followed by Xuzhou city and Suqian city, while Yangzhou city ranked highest in the Yangtze River Basin. Furthermore, the corresponding risk distribution revealed that (1) NP, bisphenol A (BPA), and 4-t-OP are of medium to high risk in 70%, 100% and 95% of the surface water samples, and likewise in 45%, 88% and 100% of the sediment samples, respectively; the maximum RQ value for NP in surface water samples reached 74.9; (2) DEHP belongs to the high-risk category in all samples (100%), whose maximum RQ reached 54.7. To our best knowledge, this is the first study to report on the occurrence, spatial distribution, and risk assessment of EDCs of high concern in Jiangsu Province, China.
Collapse
Affiliation(s)
- Deling Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Wei Yin
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Wen Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Mingqing Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jining Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Zhen Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Lili Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
29
|
Liu YE, Luo XJ, Huang CC, Zeng YH, Lu Q, Wang S, Mai BX. Legacy and alternative plasticizers in surface sediment of black-odorous urban rivers across China: Occurrence, spatial distribution, and ecological risk assessment. CHEMOSPHERE 2021; 283:131206. [PMID: 34146876 DOI: 10.1016/j.chemosphere.2021.131206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, surface sediment samples from 173 black-odorous urban rivers in 74 cities of China were investigated regarding the occurrence, spatial distribution, and ecological risk of legacy phthalates (LPs) and alternative plasticizers (APs). The total concentrations of Σ7LPs and Σ6APs ranged from 0.0035 to 522 μg/g dw (median: 33 μg/g dw; mean: 60 μg/g dw) and from 0.0015 to 16 μg/g dw (median: 16 μg/g dw; mean: 2.2 μg/g dw), respectively. Di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and di-iso-butyl phthalate (DiBP) were the dominant LPs, and di-iso-decyl phthalate and di-iso-nonylcyclohexane-1,2-dicarboxylate were the dominant APs. The concentrations and compositions of the LPs and APs varied among different sites and regions, implying location-specific use or production of LPs and APs. The pollutant concentrations in southern and central China were higher than those in northern China. Among the seven regions, Northwest China had the lowest concentrations of LPs and APs. This could be related to industry development level, municipal facilities, and population density. Total organic carbon (TOC) was significantly and positively correlated with the pollutant concentrations, implying that TOC could be an important influencing factor for the distribution of LPs and APs in sediments. The risk quotients of DiBP and DnBP in almost all sediment samples were above 1, indicating the high ecological risks to aquatic organisms. Nevertheless, DEHP, di-methyl phthalate, di-ethyl phthalate, and di-n-octyl phthalate showed low or moderate ecological risks for most sampling sites.
Collapse
Affiliation(s)
- Yin-E Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China.
| | - Chen-Chen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| |
Collapse
|
30
|
Liu B, Jiang T, Li Z, Ge W, Wu J, Song N, Chai C. Phthalate esters in surface sediments from fishing ports in Circum-Bohai-Sea region, China. MARINE POLLUTION BULLETIN 2021; 171:112782. [PMID: 34358790 DOI: 10.1016/j.marpolbul.2021.112782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The concentration, composition, distribution, and possible sources of phthalate esters (PAEs) in surface sediments from fishing ports in the Circum-Bohai-Sea region were investigated. The potential ecological risks of PAEs on three sensitive aquatic organisms (algae, crustacean, and fish) were assessed based on the risk quotient. The concentrations of 16 PAEs were in the range of 8.53-86.13 μg/g. Six PAEs, which were considered as priority pollutants by the United States Environmental Protection Agency, were main congeners. Fishing ports with high PAE concentration were located near the eastern area of the Shandong Peninsula, the southern area of the Liaodong Peninsula, and the estuary of the Yellow River. Wastewater, atmospheric deposition, plastic, and rubber products were possible sources of PAEs. The PAEs showed medium to high ecological risks on the three aquatic organisms, and the ecological risks were attributed to four PAEs, including dimethyl phthalate, diethyl phthalate, dibutyl phthalate, and benzylbutyl phthalate.
Collapse
Affiliation(s)
- Binxu Liu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Jiang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Zhiying Li
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- Shandong Province Key Laboratory of Applied Mycology, Qingdao 266109, China
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Mincarelli LF, Rotchell JM, Chapman EC, Turner AP, Wollenberg Valero KC. Consequences of combined exposure to thermal stress and the plasticiser DEHP in Mytilus spp. differ by sex. MARINE POLLUTION BULLETIN 2021; 170:112624. [PMID: 34146859 DOI: 10.1016/j.marpolbul.2021.112624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the combined effect of environmental factors and contaminants on commercially important marine species, and whether this effect differs by sex. In this study, blue mussels were exposed for seven days to both single and combined stressors (i.e., +3 °C elevated temperature and two environmentally relevant concentrations of the plastic softener DEHP, 0.5 and 50 μg/l) in a factorial design. Males were observed to be more sensitive to high temperature, demonstrated by the significant increase in out-of-season spawning gonads and higher gene expression of the antioxidant catalase and the estrogen receptor genes. On the other hand, while the gametogenesis cycle in females was more resilient than in males, DEHP exposure altered the estrogen-related receptor gene expression. We show that the combined stressors DEHP and increased temperature, in environmentally relevant magnitudes, have different consequences in male and female mussels, with the potential to impact the timing and breeding season success in Mytilus spp.
Collapse
Affiliation(s)
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, NG8 1BB, United Kingdom
| | | |
Collapse
|
32
|
Zhu X, Liu H, Wang Z, Tian R, Li S. Dimethyl phthalate damages Staphylococcus aureus by changing the cell structure, inducing oxidative stress and inhibiting energy metabolism. J Environ Sci (China) 2021; 107:171-183. [PMID: 34412780 DOI: 10.1016/j.jes.2021.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
Dimethyl phthalate (DMP), used as a plasticizer in industrial products, exists widely in air, water and soil. Staphylococcus aureus is a typical model organism representing Gram-positive bacteria. The molecular mechanisms of DMP toxicology in S. aureus were researched by proteomic and transcriptomic analyses. The results showed that the cell wall, membrane and cell surface characteristics were damaged and the growth was inhibited in S. aureus by DMP. Oxidative stress was induced by DMP in S. aureus. The activities of succinic dehydrogenase (SDH) and ATPase were changed by DMP, which could impact energy metabolism. Based on proteomic and transcriptomic analyses, the oxidative phosphorylation pathway was enhanced and the glycolysis/gluconeogenesis and pentose phosphate pathways were inhibited in S. aureus exposed to DMP. The results of real-time reverse transcription quantitative PCR (RT-qPCR) further confirmed the results of the proteomic and transcriptomic analyses. Lactic acid, pyruvic acid and glucose were reduced by DMP in S. aureus, which suggested that DMP could inhibit energy metabolism. The results indicated that DMP damaged the cell wall and membrane, induced oxidative stress, and inhibited energy metabolism and activation in S. aureus.
Collapse
Affiliation(s)
- Xiaohui Zhu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Hong Liu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhigang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China.
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60501, USA
| | - Shenglin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
33
|
Li X, Zhang R, Tian T, Shang X, Du X, He Y, Matsuura N, Luo T, Wang Y, Chen J, Kadokami K. Screening and ecological risk of 1200 organic micropollutants in Yangtze Estuary water. WATER RESEARCH 2021; 201:117341. [PMID: 34171645 DOI: 10.1016/j.watres.2021.117341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
The Yangtze River, the third largest river in the world, has been polluted by various organic chemicals. In 2018, China decided to implement ecological restoration of the Yangtze River to protect the river. However, except for some conventional pollution indices such as COD (Chemical Oxygen Demand) and NH4+-N, the overall levels and risks of a wide variety of organic micropollutants (OMPs) in the Yangtze Estuary is not clear. Herein, results from a wide-range screening on levels and risks of OMPs in the Yangtze Estuary water were reported. 36 water samples were collected at 9 sites in the Yangtze Estuary in 2012 and 2013. Approximately 1200 OMPs were screened. A total of 131 OMPs were detected with total concentrations ranging from 1.8×103 to 9.7×103 ng/L. A tiered strategy was proposed to simplify the assessment of multi-substance ecological risks. Results showed that risk quotient (RQ) for 77% of the OMPs was less than 0.1. For 20 OMPs with RQ ≥ 0.1, joint probabilistic risks were assessed by species sensitivity distribution models. The joint risks as expressed by multi-substance potentially affected fractions are > 5%, and are not insignificant. The results may serve as a benchmark for protecting biodiversity in the Yangtze Estuary, as China motivated to have a fundamental improvement on the environmental quality by 2035.
Collapse
Affiliation(s)
- Xuehua Li
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ruohan Zhang
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xiaochen Shang
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xu Du
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yingying He
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Naoki Matsuura
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Tianlie Luo
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ya Wang
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecological and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
34
|
Zhou B, Zhao L, Sun Y, Li X, Weng L, Li Y. Contamination and human health risks of phthalate esters in vegetable and crop soils from the Huang-Huai-Hai region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146281. [PMID: 33721639 DOI: 10.1016/j.scitotenv.2021.146281] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/17/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The widespread presence of phthalate esters (PAEs) in a variety of agricultural inputs has led to PAE contamination in soils and farm products. The endocrine disruption and carcinogenicity of PAEs have attracted much attention. Our research investigated the characteristics of PAE pollution in the soils of vegetable fields and adjacent stable crop fields in four provinces/municipalities across a major agricultural production area in China. We found that the concentrations of PAEs in vegetable soils were not significantly higher than those in stable crop soils. The noncarcinogenic and carcinogenic risks from bis (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) to humans were calculated to represent the risk posed by PAEs. The results showed that diet was the main route for noncarcinogenic risks from PAEs in crop soil and vegetable soils. Because of the combined effect of the population dietary structure and the concentration of PAEs in soils, the noncarcinogenic risks from PAEs in crop soils were similar to or higher than those in vegetable soils. The same pattern was also applicable to the carcinogenic risk from DEHP. Low noncarcinogenic and carcinogenic risks posed by DEHP and DBP indicated that the current level of PAEs in soils did not decrease the safety of agricultural products in the Huang-Huai-Hai region. Stable crop soil, as a non-negligibly phthalate-polluted area, is worthy of as much attention as vegetable soil. This study provides scientific support for food safety risk assessment and control of PAE pollution in the main agricultural production areas in China.
Collapse
Affiliation(s)
- Bin Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Postbus 47, NL-6700, AA, Wageningen, Netherlands
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Mukhopadhyay M, Chakraborty P. Plasticizers and bisphenol A: Emerging organic pollutants along the lower stretch of River Ganga, north-east coast of the Bay of Bengal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116697. [PMID: 33611200 DOI: 10.1016/j.envpol.2021.116697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Hooghly River (HR), the other name used for the lower stretch of River Ganga, is a prime freshwater source in the eastern part of India. However HR has been evidenced with a variety of emerging organic pollutants (EOPs) in the recent past. Given the extensive use of plasticizers and additive in plastic products, we have investigated seven plasticizers and bisphenol A (BPA) in the surface and storm-water of HR up to the tip of the Bay of Bengal. Further using a previously published sediment data we have estimated the fluxes for the aforementioned EOPs. Surface water and storm-water concentrations of seven plasticizers varied between 92.62 and 770 ng/L (176.1 ± 104.8; Avg ± SD) and 120.9-781.5 ng/L (355.2 ± 232.5), respectively. BPA varied between 43 and 8800 ng/L (658.3 ng/L ± 1760) and 117.9-2147 ng/L (459.3 ± 620.2) in surface and storm-water, respectively. With the increase in salinity, a decreasing trend for bis-(2-ethylhexyl) phthalate (DEHP) was evidenced. However, concentration of BPA increased with the increase in salinity. Significant and strong correlation between DEHP and BPA (R2 = 0.6; p < 0.01) in the suburban corridor might have resulted from sludge disposal of the scrap recycling activities. Using site-specific principal component analysis, unregulated disposal of plastic waste, particularly from such industrial belts and tourist spots were identified as the possible point sources for plasticizers and BPA in this region. Net diffusive flux based on fugacity fraction showed a trend depending on the pollutant's aqueous solubility and partition coefficient. However, transfer tendency from water to sediment was noticed in the sites having point source. Estimated ecotoxicological risk posed by BPA was higher for edible fishes and for lower order organisms, PAEs was the major contributor.
Collapse
Affiliation(s)
- Moitraiyee Mukhopadhyay
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kancheepuram District, Tamil Nadu, 603203, India
| | - Paromita Chakraborty
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kancheepuram District, Tamil Nadu, 603203, India.
| |
Collapse
|
36
|
Li X, Han X, Vogt RD, Zhou J, Zheng B, Song Y, Lu X. Distributions, temporal trends and ecological risks of polyethylene terephthalate (PET) and di-(2-ethylhexyl) phthalate (DEHP) in sediments of Jiaozhou Bay, China. MARINE POLLUTION BULLETIN 2021; 165:112176. [PMID: 33621904 DOI: 10.1016/j.marpolbul.2021.112176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Spatiotemporal distribution and ecological risk of the polyethylene terephthalate (PET) plastic polymer and plasticizer di-(2-ethylhexyl) phthalate (DEHP) were investigated using both surface and core sediments in Jiaozhou Bay, China. The concentrations of PET and DEHP ranged 210.6-1929.7 μg/kg and 0-591.2 μg/kg, respectively. The depth profiles of PET and DEHP in the sediment cores indicated that PET and DEHP pollution increased since the 1970s, which is in accord with the regional PET and DEHP consumption history. The levels of PET in Jiaozhou Bay was found to represent low ecological risk based on the assessment models for Potential Ecological Risk factor and Potential Ecological Risk. The amounts of DEHP also posed a low risk to the aquatic organisms in the sediment phase as indicated by the Risk Quotient method.
Collapse
Affiliation(s)
- Xue Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Xiaoxin Han
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway; Chuangchun Bureau of Ecology and Environment, Chuangchun 130022, China
| | - Rolf D Vogt
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway; Centre for Biogeochemistry in the Anthropocene, University of Oslo, 0316 Oslo, Norway
| | - Jiaying Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China
| | - Boyang Zheng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China
| | - Yutong Song
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1958, Denmark
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China.
| |
Collapse
|
37
|
Lin L, Dong L, Wang Z, Li C, Liu M, Li Q, Crittenden JC. Hydrochemical composition, distribution, and sources of typical organic pollutants and metals in Lake Bangong Co, Tibet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9877-9888. [PMID: 33155115 DOI: 10.1007/s11356-020-11449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Lake Bangong Co is a special lake in western Tibet, with characteristics of increased salinity from the eastern area to the western area. Due to its remote location and poor environmental conditions, there are few background data on the water environment of this lake. In this study, the water chemical composition of Lake Bangong Co was studied, and the concentration levels, distribution characteristics, and pollution sources of polycyclic aromatic hydrocarbons (PAHs), phthalic acid esters (PAEs), and metals (As, Pb, Cr, Mn, Cu, Cd, Ni, and Zn) were investigated. The hydrochemical characteristics of the lake showed significant spatial differences. Conductivity, salinity, degree of mineralization, total hardness, Cl-, and SO42- generally increased from the eastern part to the western part. Most water quality parameters met the class III standards of the Chinese surface water standards; however, the Cl- and SO42- concentrations in the western part exceeded the surface water standard limits. ΣPAH and ΣPAE concentrations in lake water have no significant relationship with hydrochemical parameters. Among the 16 target PAHs, 4 PAH monomers with a (5 + 6)-ring were not detected in the lake water. The main sources of PAHs included emissions from biomass combustion, petroleum volatilization, and automobile exhaust. Six PAE monomers were detected at all sampling sites with relatively low concentrations, and di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DBP) were the main pollutants. The main source of PAEs was domestic waste, which might be related to increasing human activities in this area recently. In general, the concentrations of metals in the water of Lake Bangong Co were lower than those in the regions affected by anthropogenic activities except As. The results of PCA showed that As, Cu, and Cr mainly originated from natural sources; Pb, Mn, and Cr came from both natural and anthropogenic sources; and Cd was highly likely from anthropogenic sources.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, People's Republic of China.
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, People's Republic of China.
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, People's Republic of China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, People's Republic of China
| | - Zhen Wang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, People's Republic of China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, People's Republic of China
| | - Chao Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, People's Republic of China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, People's Republic of China
| | - Min Liu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, People's Republic of China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, People's Republic of China
| | - Qingyun Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, People's Republic of China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, People's Republic of China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
38
|
Tao H, Wang Y, Liang H, Zhang X, Liu X, Li J. Pollution characteristics of phthalate acid esters in agricultural soil of Yinchuan, northwest China, and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4313-4326. [PMID: 31900822 DOI: 10.1007/s10653-019-00502-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Eighty-nine agricultural surface soil samples from different types of land of Yinchuan were collected and detected for sixteen phthalate acid ester (PAE) compounds; the pollution characteristics and pollution distribution were analyzed. In addition, the potential health risk exposures to local resident of six priority control phthalates by the US EPA were assessed. All soil samples were contaminated with PAEs, the total concentrations of Σ16PAEs were between 0.391 and 11.924 mg kg-1, and the mean concentrations were 4.427 mg kg-1 in soil. Among the sixteen PAE congeners, DMP was the most abundant component, which accounted for average 44.64% of the total PAEs, then DnBP and DEHP, which accounted for the average contribution rate, were 21.25% and 23.34%, respectively, and DpHP was not detected in all soil samples. Risk assessment indicated that the risk of non-carcinogenesis in this study was within the acceptable range; however, the carcinogenic risk of DEHP through intake dietary significantly exceeded the carcinogenic level recommended by the US EPA (1 × 10-6) and therefore presented a potential carcinogenic risk. More considerable attention should be given to the PAEs contamination status in soils and potential effects on local resident health.
Collapse
Affiliation(s)
- Hong Tao
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Yajuan Wang
- School of Economics and Management, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China.
| | - Haohua Liang
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Xiaohong Zhang
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Xiaopeng Liu
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Jiaoling Li
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| |
Collapse
|
39
|
Zhang Y, Wang F, Hudson-Edwards KA, Blake R, Zhao F, Yuan Z, Gao W. Characterization of Mining-Related Aromatic Contaminants in Active and Abandoned Metal(loid) Tailings Ponds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15097-15107. [PMID: 33167623 DOI: 10.1021/acs.est.0c03368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports on the compositional diversity of organic compounds in metal(loid)-bearing tailings samples from both active and abandoned tailings ponds. Tailings samples were qualitatively analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). In addition, the priority PAHs (16), PAEs (6), and phenols (2) were quantitatively analyzed using gas chromatography-mass spectrometry (GC-MS). We attribute the presence of some of aromatic organics in studied tailings ponds to particular sources. Mineral floatation reagents are likely the major sources of small-ring aromatics in tailings ponds, and products from metallurgical processing and burning of fossil fuels in the mining area or further afield are also possible contributors and might be the main source of large-ring aromatics. We found that tailings ponds abandoned for decades can still have organics concentrations at levels of concern. Large-ring aromatics are generally more toxic than other contaminants, and these were more abundant in abandoned tailings ponds. This suggests that these large-ring organics do not readily decompose or biodegrade into less toxic byproducts, as do volatiles and many other organic compounds. Our aromatic contaminants database provides an important starting point for researchers to investigate and compare similar contaminants that might be also present in other tailings ponds and emphasizes the necessity of considering their transformations over time.
Collapse
Affiliation(s)
- Yiyue Zhang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Karen A Hudson-Edwards
- Environment and Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9FE, U.K
| | - Ruth Blake
- The Department of Earth & Planetary Sciences, Yale University, 210 Whitney Avenue, 06511 New Haven, Connecticut United States
| | - Furong Zhao
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Zhimin Yuan
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Wei Gao
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| |
Collapse
|
40
|
Zhao X, Jin H, Li D, Kaw HY, Cui M, Ji Z. Simple and rapid analysis of phthalate esters in marine sediment using ultrasound-assisted extraction combined with gas purge microsyringe extraction followed by GC-MS. MARINE POLLUTION BULLETIN 2020; 160:111667. [PMID: 33181942 DOI: 10.1016/j.marpolbul.2020.111667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Phthalate esters (PAEs) are a class of the emerging pollutants that pose a potential environmental threat to marine ecosystems. In this study, a simple analytical method using ultrasound-assisted extraction combined with gas purges microsyringe extraction (GP-MSE) coupled with GC-MS was utilized for the reliable and rapid determination of PAEs in different types of marine sediment. The analytical results showed that the method exhibited excellent reproducibility, linear responses, and detection limits, which verified the suitability of the method for the determination of PAEs in marine sediment. This approach requires minimal reagents, solvents, and sample pretreatment procedures as well as a short analysis time; thus, procedural blanks can be kept to a minimum. This method was demonstrated to be a highly efficient and sensitive quantitative analytical method for the simple detection of PAEs in marine sediment.
Collapse
Affiliation(s)
- Xiangai Zhao
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, China
| | - Haiyan Jin
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China.
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Meiyu Cui
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, China
| | - Zhongqiang Ji
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, China
| |
Collapse
|
41
|
Wang X, Chen A, Chen B, Wang L. Adsorption of phenol and bisphenol A on river sediments: Effects of particle size, humic acid, pH and temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111093. [PMID: 32805502 DOI: 10.1016/j.ecoenv.2020.111093] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 05/17/2023]
Abstract
Phenolic Endocrine Disrupting Chemicals (EDCs) have drawn more and more interest due to their prevalence and persistence in aquatic environment. To study the adsorption of various phenolic EDCs on river sediments under natural conditions, we first sought to analyze the distribution characteristics of phenol and bisphenol A (BPA) in sediment from the Bahe River. The static adsorption experiments contained either single- or dual-contaminant of phenol and/or BPA in the system; they were conducted to characterize the adsorption of these two pollutants in the surface sediments and the main factors affecting the adsorption processes of the dual-contaminant system, including particle size, humic acid (HA) concentration, pH, and temperature. Results showed that in certain seasons, there was a significant correlation between the levels of phenol and BPA in Bahe sediments. When comparing the adsorption behaviors of phenol and BPA on sediments in single- and dual-contaminant systems, we found that the phenol adsorption behavior varied, while that of BPA remained consistent across the different systems. Moreover, different effects were observed with regards to a single factor and the interaction of multiple factors on the adsorption of pollutants. Of the four single factors, only HA concentration had a significant effect on the phenol adsorption in sediment. When considering the interaction of multiple factors, the interaction between HA concentration and temperature significantly promoted the adsorption of phenol. The influence of factors on the adsorption of BPA was in the following order: particle size > HA concentration > pH > temperature. Particle size significantly inhibited BPA adsorption in the sediment, while the interaction between particle size and pH increased BPA adsorption.
Collapse
Affiliation(s)
- Xueping Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an, 710054, China.
| | - Bei Chen
- Haiwei Environmental Technology Company, Chang'an University, Xi'an, 710054, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Kingsley O, Witthayawirasak B. Deterministic Assessment of the Risk of Phthalate Esters in Sediments of U-Tapao Canal, Southern Thailand. TOXICS 2020; 8:E93. [PMID: 33114562 PMCID: PMC7712367 DOI: 10.3390/toxics8040093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
This baseline study evaluated the ecological risk associated with the concentration of six common Phthalate esters (PAEs) in sediment samples collected from the U-Tapao canal in Southern Thailand. Deterministic approaches consisting of standard sediment quality guidelines (SQGs) and Risk quotient (RQ) were used to evaluate the potential ecological risk of individuals and a mixture of Phthalate esters (PAEs) detected in sediment samples. Of the 6 PAEs measured, only three, including di-n-butyl phthalate (DBP), di-2-ethyl hexyl phthalate (DEHP) and di-isononyl phthalate (DiNP), were identified and quantified. The total concentration of the 3 PAEs congeners found in the sediment samples ranged from 190 to 2010 ng/g dw. The results from the SQGs and RQ were not consistent with each other. The SQGs results for individual PAEs showed that DEHP and DBP found in sediment was estimated to cause moderate risk on benthic organisms, DiNP was not estimated due to lack of SQGs data. However, the RQ method indicated a low risk of DEHP and DBP on algae, crustacean and fish, whereas DiNP poses no risk on crustacean. Furthermore, based on the result obtained in this study, the consensus SQGs for mixture effects prove to be a more protective tool than the RQ concentration addition approach in predicting mixture effects. Despite inevitable uncertainties, the integration of several screening approaches of ecological risk assessment (ERA) can help get a more inclusive and credible result of the first tier of individuals and a mixture of these pollutants.
Collapse
Affiliation(s)
- Okpara Kingsley
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Research Program of Municipal Solid Waste and Hazardous Waste Management, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Banchong Witthayawirasak
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Research Program of Municipal Solid Waste and Hazardous Waste Management, Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| |
Collapse
|
43
|
Zhang BT, Gao Y, Lin C, Yang W, Liu T, Liu X, Wang Y. Spatial distribution of phthalate acid esters in sediments of the Laizhou Bay and its relationship with anthropogenic activities and geochemical variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137912. [PMID: 32208266 DOI: 10.1016/j.scitotenv.2020.137912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Spatial distribution and ecological risks of phthalate acid esters (PAEs) in sediments of the Laizhou Bay were investigated, and the relationships of PAEs with human activities and geochemical variables were studied in this work. Thirteen detectable PAEs were widespread occurrence, and the total PAE concentrations ranged from 813.1 to 11,975.6 μg/kg dry weight in sediments of the Laizhou Bay. Di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) were predominant and accounted for 51.9% of ΣPAEs. The major sources of PAEs with their characteristic PAE congeners or composition could be classified as riverine runoff from catchments of the Yellow River and the rivers Xiaoqing & Zhimai, and direct discharge from the west coast and Binhai Zone, according to continuous PAE spatial distribution patterns generated by GIS techniques. The concentrations of most PAEs gradually decreased from west inshore to east offshore in inverted S shapes, which was consistent with the tide field of the Laizhou Bay. There are negative correlations between sediment depth and all PAEs, and nine PAEs exhibited negative correlations with salinity using Pearson correlation analysis. Depth and salinity exerted negative influence on PAEs (contributions of 55.8% and 32.0%, respectively) according to redundancy analysis. The DBP concentrations of 15.1% sites exceeded the ERLs and only one site had the DEHP concentration exceeded environmental risk limits. The DBP risk quotient values of 11.3% (for algae), 3.8% (for crustaceans) and 43.4% (for fish) sites exceeded 1, and most of these sites are near to four major sources. These results might benefit the implementation of effective environmental management and remediation practices.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Yiman Gao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wen Yang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tong Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
44
|
Lin CH, Yap YS, Lee KH, Im SA, Naito Y, Yeo W, Ueno T, Kwong A, Li H, Huang SM, Leung R, Han W, Tan B, Hu FC, Huang CS, Cheng AL, Lu YS. Contrasting Epidemiology and Clinicopathology of Female Breast Cancer in Asians vs the US Population. J Natl Cancer Inst 2020; 111:1298-1306. [PMID: 31093668 DOI: 10.1093/jnci/djz090] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The incidence of breast cancer among younger East Asian women has been increasing rapidly over recent decades. This international collaborative study systemically compared the differences in age-specific incidences and pathological characteristics of breast cancer in East Asian women and women of predominantly European ancestry. METHODS We excerpted analytic data from six national cancer registries (979 675 cases) and eight hospitals (18 008 cases) in East Asian countries and/or regions and, for comparisons, from the US Surveillance, Epidemiology, and End Results program database. Linear regression analyses of age-specific incidences of female breast cancer and logistic regression analyses of age-specific pathological characteristics of breast cancer were performed. All statistical tests were two-sided. RESULTS Unlike female colorectal cancer, the age-specific incidences of breast cancer among East Asian women aged 59 years and younger increased disproportionally over recent decades relative to rates in US contemporaries. For years 2010-2014, the estimated age-specific probability of estrogen receptor positivity increased with age in American patients, whereas that of triple-negative breast cancer (TNBC) declined with age. No similar trends were evident in East Asian patients; their probability of estrogen receptor positivity at age 40-49 years was statistically significantly higher (odd ratio [OR] = 1.50, 95% confidence interval [CI] = 1.36 to 1.67, P < .001) and of TNBC was statistically significantly lower (OR = 0.79, 95% CI = 0.71 to 0.88, P < .001), whereas the probability of ER positivity at age 50-59 years was statistically significantly lower (OR = 0.88, 95% CI = 0.828 to 0.95, P < .001). Subgroup analyses of US Surveillance, Epidemiology, and End Results data showed similarly distinct patterns between East Asian American and white American patients. CONCLUSIONS Contrasting age-specific incidences and pathological characteristics of breast cancer between East Asian and American women, as well as between East Asian Americans and white Americans, suggests racial differences in the biology.
Collapse
|
45
|
Zhao X, Shen JM, Zhang H, Li X, Chen ZL, Wang XC. The occurrence and spatial distribution of phthalate esters (PAEs) in the Lanzhou section of the Yellow River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19724-19735. [PMID: 32222919 DOI: 10.1007/s11356-020-08443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
The occurrence and spatial distribution of 22 congener phthalate esters (PAEs) in the Lanzhou section of the Yellow River were investigated using water and sediment samples collected from 12 stations along the river in August 2016 to March 2017. PAEs were determined by liquid-liquid extraction and gas chromatography-mass spectrometry. The average concentrations of PAE in the water samples during the dry and wet periods were 3236.0 ng/L and 2300.0 ng/L, and the average dry and wet periods of the PAEs in the sediments were 4238.9 ng/g and 3959.9 ng/g, respectively. PAEs were detected in all sampling sites. The six PAEs controlled by the United States Environmental Protection Agency (U.S. EPA), namely dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DNOP), and butyl benzyl phthalate(BBP), were detected. DMP, DEP, DBP, and DEHP accounted for more than 70% of all PAEs. In view of time distribution, PAEs concentration in the water samples of the dry season were greater than those of the wet season, but the sediments did not differ remarkably across the different periods. As for spatial distribution, the PAEs initially exhibited low concentrations in the upper reaches, high concentrations in the middle part, and low concentrations in the downstream; a health risk assessment of the six PAEs controlled by the U.S. EPA was carried out according to priority. Results showed that the carcinogenic risk value was less than 10-6, and the values of the non-carcinogenic compound risk index were less than 1, indicating the absence of carcinogenic damage to organisms or humans.
Collapse
Affiliation(s)
- Xia Zhao
- College of Petrochemical Technolog, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Ji-Min Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Zhang
- College of Petrochemical Technolog, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiang Li
- College of Petrochemical Technolog, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Zhong-Lin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiao-Chun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
46
|
Wang X, Li C, Yuan X, Yang S. Contamination Level, Distribution Characteristics, and Ecotoxicity of Tetrabromobisphenol A in Water and Sediment from Weihe River Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3750. [PMID: 32466414 PMCID: PMC7312569 DOI: 10.3390/ijerph17113750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/03/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant, which is widely present in the various environmental and biological media. The knowledge on the contamination of TBBPA in Weihe River Basin is still limited. In order to know the pollution level and distribution of tetrabromobisphenol A (TBBPA) in the Weihe River Basin, a total of 34 sediment samples and 36 water samples were collected from the main stream and tributaries of the WeiHe River Basin, and the concentration of TBBPA in the samples was analyzed by high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). The detection frequency of TBBPA in sediments and water samples was 61.8% and 27.8%, respectively; the TBBPA concentrations in sediments and water samples were in the range of not detected (N.D.)-3.889 ng/g (mean value of 0.283 ng/g) and N.D-12.279 ng/L (mean value of 0.937 ng/L), respectively. Compared with other areas in China, the residues of TBBPA in the Weihe River Basin were at a relatively low level. The spatial distributions of TBBPA in surface sediments and water indicated that the local point-input was their major source. This is related to the proximity of some sampling sites to industrial areas and domestic sewage discharge areas. The insignificant correlation between TBBPA and total organic carbon (TOC) indicated that TBBPA in sediments is not only influenced by TOC but also affected by atmosphere and land input, wet deposition, and long-distance transmission. The potential risks posed by TBBPA in water and sediment were characterized using the risk quotient (RQ) method. The calculated RQ for TBBPA was less than 0.01, showing that the ecological risk due to TBBPA was quite low for aquatic organisms.
Collapse
Affiliation(s)
- Xueli Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710054, China; (C.L.); (X.Y.); (S.Y.)
- School of Water and Environment, Chang’an University, Xi’an 710054, China
| | - Chenyang Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710054, China; (C.L.); (X.Y.); (S.Y.)
| | - Xiaoyu Yuan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710054, China; (C.L.); (X.Y.); (S.Y.)
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an 710054, China; (C.L.); (X.Y.); (S.Y.)
- School of Water and Environment, Chang’an University, Xi’an 710054, China
| |
Collapse
|
47
|
Lee CC, Hsieh CY, Chen CS, Tien CJ. Emergent contaminants in sediments and fishes from the Tamsui River (Taiwan): Their spatial-temporal distribution and risk to aquatic ecosystems and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113733. [PMID: 31838387 DOI: 10.1016/j.envpol.2019.113733] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 05/20/2023]
Abstract
The occurrence of emergent contaminants, 24 polybrominated diphenyl ethers (PBDEs), di(2-ethylhexyl)phthalate (DEHP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), di-n-octyl phthalate (DnOP), bisphenol A (BPA) and nonylphenol (NP), was investigated in sediments and fishes collected from the Tamsui River system to determine the factors that influence their distribution and their risk to aquatic ecosystems and human health. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in sediments were 1-955, ND-23570, <50-411, <50-430, ND-80, ND-<50, ND-<50, 1-144, 3-19624 μg/kg dw, respectively. The spatial-temporal distribution trends of these compounds in sediments could be attributed to urbanization, industrial discharge and effluents from wastewater treatment plants. The PBDE congener distribution patterns (BDE-209 was the dominant congener) in sediments reflected the occurrence of debromination of BDE-209 and the elution of penta-BDE from the treated products. The concentrations of total PBDEs, DEHP, DBP, BBP, DEP, DMP, DnOP, BPA and NP in fish muscles were 2-66, 17-1046, <10-231, <10-66, <30, ND-<30, ND-<30, 0.4-7 and 3-440 μg/kg ww, respectively. The species-specific bioaccumulation of these compounds by fish was found and four species particularly showed high bioaccumulation potential. BDE-47 was the predominant BDE congener in fish muscles, suggesting high bioavailability and bioaccumulation of this compound. The results of biota-sediment accumulation factors showed that BDE-47, 99, 100, 153 and 154 had relatively high bioavailability and bioaccumulation potential for some fish species. The ecological risk assessment showed that the concentrations of BPA and NP in sediments were likely to have adverse effects on aquatic organisms (risk quotients > 1). The human health risk assessment according to hazard quotients (HQs) and carcinogenic risks (CRs) revealed no remarkable risk to human health through consumption of fish contaminated with BDE-47, 99, 100, 154, 209, DEHP, BPA and NP.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, 138 Sheng Li Road, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, 138 Sheng Li Road, Tainan, 704, Taiwan
| | - Chia-Yi Hsieh
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, 138 Sheng Li Road, Tainan, 704, Taiwan
| | - Colin S Chen
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung, 824, Taiwan
| | - Chien-Jung Tien
- Department of Biotechnology, National Kaohsiung Normal University, 62, Shen-Chung Road, Yanchao, Kaohsiung, 824, Taiwan.
| |
Collapse
|
48
|
Yang Y, Wang H, Chang Y, Yan G, Chu Z, Zhao Z, Li L, Li Z, Wu T. Distributions, compositions, and ecological risk assessment of polycyclic aromatic hydrocarbons and phthalic acid esters in surface sediment of Songhua river, China. MARINE POLLUTION BULLETIN 2020; 152:110923. [PMID: 32479296 DOI: 10.1016/j.marpolbul.2020.110923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 06/11/2023]
Abstract
The distribution, composition, and ecological risk of 16 types of polycyclic aromatic hydrocarbons (PAHs) and 6 types of phthalic acid esters (PAEs) in the surface sediment of Songhua river, northeast China, were investigated. The total weight of the PAHs (∑16PAHs) varied from 226.70 to 7086.62 ng/g dry weight (dw), whereas that of the PAEs (∑6PAEs) ranged from 819.44 to 24,035.39 ng/g dw. The dominant PAHs were four-membered ring PAHs, which varied from 18.65% to 78.10% of the total PAHs. The most abundant PAEs was di-2-ethylhexyl phthalate ester (DEHP), which accounted for 65.02-99.07% of the total PAEs, followed by di-n-butyl phthalate ranging from 1.50 to 55.43%. Pyrolytic origin was the dominant PAH source. Approximately 12.70% target PAHs in the Songhua river sediment exhibited moderate ecological risk with 23.49-1404.09 ng/g carcinogenic toxicity equivalent. DEHP in 80.95% of the sediment samples exceeded the effects range low, indicating its potential harmfulness to the aquatic environment.
Collapse
Affiliation(s)
- Yanyan Yang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Lanzhou University, Lanzhou 730000, PR China; Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yang Chang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Zhuanjun Zhao
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Lanzhou University, Lanzhou 730000, PR China
| | - Li Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zewen Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tong Wu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, PR China; Research Center for Environmental Pollution Control Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
49
|
Zhao X, Jin H, Ji Z, Li D, Kaw HY, Chen J, Xie Z, Zhang T. PAES and PAHs in the surface sediments of the East China Sea: Occurrence, distribution and influence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134763. [PMID: 31757545 DOI: 10.1016/j.scitotenv.2019.134763] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
A total of 29 sediment samples were collected from the East China Sea (ECS), with the Yangtze River estuary and the Zhejiang costal area. These sediment samples were analyzed for 6 phthalate esters (PAEs) and 16 polycyclic aromatic hydrocarbons (PAHs): the ΣPAEs and ΣPAHs concentrations ranged between 1649.5 and 8451.5 ng g-1 (mean = 3446.3 ng g-1) and 57.5-364.5 ng g-1 (mean = 166.2 ng g-1), respectively. Overall, the PAEs and PAHs concentrations gradually decreasing in the offshore and southward directions: their compositions and distributions suggest they could have mainly derived from the Yangtze River. In particular, their distribution was influenced by the sources' proximity, hydrodynamics, and sediment geochemistry (i.e., TOC content and grain size). A classical two-end member model was utilized to estimate the fraction of terrestrial organic carbon in the sediments of the ECS. When the sediment was dominated by terrestrial-derived organic matter (OM), the concentrations of PAEs and PAHs were significantly correlated to the TOC content and gran size of the sediments. In contrast, the poor correlation of TOC content and grain size with PAEs in those sediments dominated by marine-derived OM, implied that the distribution of PAEs in the ECS was mainly related to land-based inputs, (especially to that of the Yangtze River). Regardless of the origin of most of the OM contained in the sediments, we observed positive correlations between the TOC content, and grain size of those containing PAHs. These results suggest that the distribution of PAHs in the ECS was not only related to the Yangtze River input, but also to the geochemical characteristics of the sediments.
Collapse
Affiliation(s)
- Xiangai Zhao
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, PR China
| | - Haiyan Jin
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, PR China.
| | - Zhongqiang Ji
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, PR China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, PR China
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Max-Planck-Strasse 1, Geesthacht 21502, Germany
| | - Tianzhen Zhang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Baochubei Road 36, Hangzhou 310012, PR China
| |
Collapse
|
50
|
Paluselli A, Kim SK. Horizontal and vertical distribution of phthalates acid ester (PAEs) in seawater and sediment of East China Sea and Korean South Sea: Traces of plastic debris? MARINE POLLUTION BULLETIN 2020; 151:110831. [PMID: 32056624 DOI: 10.1016/j.marpolbul.2019.110831] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Phthalate acid esters (PAEs) are commonly used as plasticizers in numerous plastic applications. Owing to their high leachability, the occurrence of PAEs can be used to trace plastic pollution. The northwest Pacific marginal seas, including the East China Sea, are suspected not only to be the area that receives the most plastic waste globally but also transit the waste to the ocean worldwide. To identify the potential sources of PAEs in this area, seawater at different water depths and sediment were investigated. The highest level of di(2-ethylhexyl) phthalate (DEHP), which is primarily used in plastic polymers, was observed in the accumulation zone of plastic debris. Moreover, DEHP exhibited not only the highest levels in the bottom layer of water column but also a significant correlation between bottom water layer and bed sediment, which strongly suggests a continuous flow of PAEs from the seafloor to the seawater column in this area.
Collapse
Affiliation(s)
- Andrea Paluselli
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Seung-Kyu Kim
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea; Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|