1
|
Rosas-Ramírez M, Tovar-Sánchez E, Rodríguez-Solís A, Flores-Trujillo K, Castrejón-Godínez ML, Mussali-Galante P. Assisted Phytoremediation between Biochar and Crotalaria pumila to Phytostabilize Heavy Metals in Mine Tailings. PLANTS (BASEL, SWITZERLAND) 2024; 13:2516. [PMID: 39274000 PMCID: PMC11397008 DOI: 10.3390/plants13172516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
The increasing demand for mineral resources has generated mine tailings with heavy metals (HM) that negatively impact human and ecosystem health. Therefore, it is necessary to implement strategies that promote the immobilization or elimination of HM, like phytoremediation. However, the toxic effect of metals may affect plant establishment, growth, and fitness, reducing phytoremediation efficiency. Therefore, adding organic amendments to mine tailings, such as biochar, can favor the establishment of plants, reducing the bioavailability of HM and its subsequent incorporation into the food chain. Here, we evaluated HM bioaccumulation, biomass, morphological characters, chlorophyll content, and genotoxic damage in the herbaceous Crotalaria pumila to assess its potential for phytostabilization of HM in mine tailings. The study was carried out for 100 days on plants developed under greenhouse conditions under two treatments (tailing substrate and 75% tailing/25% coconut fiber biochar substrate); every 25 days, 12 plants were selected per treatment. C. pumila registered the following bioaccumulation patterns: Pb > Zn > Cu > Cd in root and in leaf tissues. Furthermore, the results showed that individuals that grew on mine tailing substrate bioaccumulated many times more metals (Zn: 2.1, Cu: 1.8, Cd: 5.0, Pb: 3.0) and showed higher genetic damage levels (1.5 times higher) compared to individuals grown on mine tailing substrate with biochar. In contrast, individuals grown on mine tailing substrate with biochar documented higher chlorophyll a and b content (1.1 times more, for both), as well as higher biomass (1.5 times more). Therefore, adding coconut fiber biochar to mine tailing has a positive effect on the establishment and development of C. pumila individuals with the potential to phytoextract and phytostabilize HM from polluted soils. Our results suggest that the binomial hyperaccumulator plant in combination with this particular biochar is an excellent system to phytostabilize soils contaminated with HM.
Collapse
Affiliation(s)
- Marcos Rosas-Ramírez
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Alexis Rodríguez-Solís
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Karen Flores-Trujillo
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
2
|
Jiang Z, Wang J, Cao K, Liu Y, Wang B, Wang X, Wang Y, Jiang D, Cao B, Zhang Y. Foliar application of selenium and gibberellins reduce cadmium accumulation in soybean by regulating interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134868. [PMID: 38897119 DOI: 10.1016/j.jhazmat.2024.134868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Both selenium (Se) and gibberellins (GA3) can alleviate cadmium (Cd) toxicity in plants. However, the application of Se and GA3 as foliar spray to against Cd stress on soybean and its related mechanisms have been poorly explored. Herein, this experiment evaluated the effects of Se and GA3 alone and combined application on soybean rhizosphere microenvironment, Cd accumulation and growth of soybean seedlings. The results revealed that both Se and GA3 can effectively decrease the accumulation of Cd in soybean seedlings. Foliar application of Se, GA3 and their combination reduced Cd contents in soybean seedlings respectively by 21.70 %, 27.53 % and 45.07 % when compared with the control treatment, suggest a synergistic effect of Se and GA3 in decreasing Cd accumulation. Se and GA3 also significantly increased diversity and abundance of the metabolites in rhizosphere, which consequently played an important role in shaping rhizosphere bacteria community and improve rhizosphere soil physicochemical properties of Cd contaminated soil, as well as decreased the Cd available forms contents but enhance the immobilized form levels. Overall, this study affords a novel approach on mitigating Cd accumulation in soybean seedlings which is attributed to Se and GA3 regulated interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation.
Collapse
Affiliation(s)
- Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianmin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiqin Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yiyan Liu
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoxin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuying Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Jahantigh M, Jahromi MG, Sefidkon F, Diyanat M, Weisany W. Co-application of biochar and selenium nanoparticles improves yield and modifies fatty acid profile and essential oil composition of fennel (Foeniculum vulgare Mill.) under cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31331-31342. [PMID: 38630399 DOI: 10.1007/s11356-024-33270-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 10/27/2024]
Abstract
Fatty acids and essential oils (EOs) are the primary variables that influence the quality of fennel (Foeniculum vulgare Mill.). Soil toxicity to cadmium (Cd) is the main environmental issue facing fennel, and priming methods like soil amendments and nanoparticles (NPs) are commonly utilized to deal with it. The goal of the current study was to examine the effects of biochar (BC) and selenium nanoparticles (Se NPs) on fennel plants in Cd-contaminated soils. The pot experiment was conducted with Cd stress at 0, 10, and 20 mg kg-1 soil, BC at 5% (v/v), and foliar-spraying Se NPs at 40 mg L-1 as a factorial completely randomized design (CRD) at a greenhouse condition in 2022. The findings demonstrated that Cd toxicity significantly decreased plant performance, while BC and Se NPs enhanced it. Without BC and Se NPs, Cd toxicity at 20 mg kg-1 soil decreased biological yield (39%), seed yield (37%), EO yield (32%), and monounsaturated fatty acids (14%), while increased saturated fatty acid (26%) and polyunsaturated fatty acids (40%) of fennel. The main EO profile was anethole (65.32-73.25%), followed by limonene (16.12-22.07%), fenchone (5.57-6.83%), and estragole (2.25-3.65%), which mainly were oxygenated monoterpenes. The combined application of BC and Se NPs improved the yield, EO production, and fatty acid profile of fennel plants under Cd stress, increasing the plants' resistance to Cd toxicity.
Collapse
Affiliation(s)
- Masoumeh Jahantigh
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Sefidkon
- Department of Medicinal Plants, Agricultural Research Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands, Tehran, Iran
| | - Marjan Diyanat
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Gao G, Yan L, Tong K, Yu H, Lu M, Wang L, Niu Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169618. [PMID: 38157902 DOI: 10.1016/j.scitotenv.2023.169618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Soil salinization has become a global problem that threatens farmland health and restricts crop production. Salt-affected soils seriously restrict the development of agricultural, mainly because of sodium ion (Na+) toxicity, nutrient deficiency, and structural changes in the soil. Biochar is a carbon (C)-based substance produced by heating typical biomass waste at high temperatures in anaerobic circumstances. It has high cation exchange capacity (CEC), adsorption capacity, and C content, which is often used as a soil amendment. Biochar generally reduces the concentration of Na+ in soil colloids through its strong adsorption, or uses the calcium (Ca) or magnesium (Mg) rich on its surface to exchange sodium ions (Ex-Na) from soil colloids through cation exchange to accelerate salt leaching during irrigation. Nowadays, biochar is widely used for acidic soils improvement due to its alkaline properties. Although the fact that biochar has gained increasing attention for its significant role in saline alkali soil remediation, there is currently a lack of systematic research on biochar improvers and their potential mechanisms for identifying physical, chemical, and biological indicators of soil eco-environment assessment and plant growth conditions affected by salt stress. This paper reviews the preparation, modification, and activation of biochar, the effects of biochar and its combination with beneficial salt-tolerant strains on salt-affected soils and plant growth. Finally, the limitations, benefits, and future needs of biochar-based soil health assessment technology in salt-affected soils and plant were discussed. This article elaborates on the future opportunities and challenges of biochar in the treatment of saline land, and a green method was provided for the integrate control to salt-affected soils.
Collapse
Affiliation(s)
- Guang Gao
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Chen F, Li Y, Irshad MA, Hussain A, Nawaz R, Qayyum MF, Ma J, Zia-Ur-Rehman M, Rizwan M, Ali S. Effect of titanium dioxide nanoparticles and co-composted biochar on growth and Cd uptake by wheat plants: A field study. ENVIRONMENTAL RESEARCH 2023; 231:116057. [PMID: 37149025 DOI: 10.1016/j.envres.2023.116057] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) is a common toxic trace element found in agricultural soils which is due to anthropogenic activities. Cadmium posed a significant risk to humans all around the world due to its cancer-causing ability. The current study demonstrated the effects of soil-applied biochar (BC) and foliar-applied titanium dioxide nanoparticles (TiO2 NPs) (at a rate of 0.5% and 75 mg/L respectively) alone or in combination on growth and Cd accumulation in wheat plants under field experiment. Soil applied BC and foliar TiO2 NPs, as well as BC coupled with TiO2 NPs, reduced Cd contents in grains by 32%, 47%, and 79%, than control respectively. The usage of NPs and BC boosted the plant height as well as chlorophyll contents by lowering oxidative injury and changing antioxidant enzyme activities than control plants. The combined use of NPs and BC prevented excess Cd accumulation in grains over the critical level (0.2 mg/kg) for cereals. The health risk index (HRI) due to Cd was reduced by 79% by co-composted BC + TiO2 NPs treatment than control. Although, HRI was lower than one for all treatments but this may exceed the limit if grains obtained from such field consumed over long periods. In conclusion, TiO2 NPs and BC amendments can be implemented in fields across the globe where excess Cd is present soils. Additional studies on the use of such approaches in more precise experimental settings are needed in order to address this environmental problem at larger scale.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan; Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Afzal Hussain
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Rab Nawaz
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
6
|
Li H, Xiao J, Zhao Z, Zhong D, Chen J, Xiao B, Xiao W, Wang W, Crittenden JC, Wang L. Reduction of cadmium bioavailability in paddy soil and its accumulation in brown rice by FeCl 3 washing combined with biochar: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158186. [PMID: 36007639 DOI: 10.1016/j.scitotenv.2022.158186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) removal from paddy soil to reduce Cd accumulation in brown rice is essential for agroecology, food safety, and human health. In this study, we demonstrate that ferric chloride (FeCl3) washing combined with biochar treatment efficiently remediates Cd-contaminated paddy soil in field trials. Our results showed that 30.9 % of total Cd and 41.6 % of bioavailable Cd were removed by the addition of 0.03 M FeCl3 at a liquid/soil ratio of 1.5:1. The subsequent addition of 1 % biochar further reduced bioavailable Cd by 36.5 and 41.5 %, compared with FeCl3 washing or biochar treatment alone. The principal component regression analysis showed that the Cd content in brown rice was primarily affected by the bioavailable Cd in soil. The combined remediation contributed to the decreased Cd contents in brown rice by 45.5-62.5 %, as well as a 2.7-11.8 % increase in rice yield. The Cd contents in brown rice decreased to 0.12 and 0.04 mg kg-1 in two cultivars of rice (Zhuliangyou189 and Zhuliangyou929), lower than the national food safety standard limit value of China (0.2 mg kg-1). Meanwhile, the combined remediation promoted the restoration of soil pH and organic matter as well as the improvement of available nutrients. This finding suggests that the combination of FeCl3 washing and biochar is an effective remediation strategy to minimize Cd bioavailability in paddy soil, and improves soil quality, thus contributing to food safety.
Collapse
Affiliation(s)
- Hongbo Li
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinguang Xiao
- PowerChina Environmental Engineering Corporation Limited, Changsha, 410000, China
| | - Zezhou Zhao
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Delai Zhong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jing Chen
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Xiao
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wu Xiao
- PowerChina Zhongnan Engineering Corporation Limited, Changsha, 410000, China
| | - Wei Wang
- PowerChina Environmental Engineering Corporation Limited, Changsha, 410000, China
| | - John C Crittenden
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China; Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Linling Wang
- School of Environmental Science and Engineering Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
7
|
Ghorbani M, Konvalina P, Walkiewicz A, Neugschwandtner RW, Kopecký M, Zamanian K, Chen WH, Bucur D. Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12983. [PMID: 36232283 PMCID: PMC9564516 DOI: 10.3390/ijerph191912983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Sewage sludge (SS) has been connected to a variety of global environmental problems. Assessing the risk of various disposal techniques can be quite useful in recommending appropriate management. The preparation of sewage sludge biochar (SSB) and its impacts on soil characteristics, plant health, nutrient leaching, and greenhouse gas emissions (GHGs) are critically reviewed in this study. Comparing the features of SSB obtained at various pyrolysis temperatures revealed changes in its elemental content. Lower hydrogen/carbon ratios in SSB generated at higher pyrolysis temperatures point to the existence of more aromatic carbon molecules. Additionally, the preparation of SSB has an increased ash content, a lower yield, and a higher surface area as a result of the rise in pyrolysis temperature. The worldwide potential of SS output and CO2-equivalent emissions in 2050 were predicted as factors of global population and common disposal management in order to create a futuristic strategy and cope with the quantity of abundant global SS. According to estimations, the worldwide SS output and associated CO2-eq emissions were around 115 million tons dry solid (Mt DS) and 14,139 teragrams (Tg), respectively, in 2020. This quantity will rise to about 138 Mt DS sewage sludge and 16985 Tg CO2-eq emissions in 2050, a 20% increase. In this regard, developing and populous countries may support economic growth by utilizing low-cost methods for producing biochar and employing it in local agriculture. To completely comprehend the benefits and drawbacks of SSB as a soil supplement, further study on long-term field applications of SSB is required.
Collapse
Affiliation(s)
- Mohammad Ghorbani
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05 Ceske Budejovice, Czech Republic
| | - Anna Walkiewicz
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Reinhard W. Neugschwandtner
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Marek Kopecký
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 370 05 Ceske Budejovice, Czech Republic
| | - Kazem Zamanian
- Department of Soil Science of Temperate Ecosystems, Georg August University of Goettingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, University Road/70101, Tainan 70101, Taiwan or
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Daniel Bucur
- Department of Pedotechnics, Faculty of Agriculture, Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
8
|
López JE, Arroyave C, Aristizábal A, Almeida B, Builes S, Chavez E. Reducing cadmium bioaccumulation in Theobroma cacao using biochar: basis for scaling-up to field. Heliyon 2022; 8:e09790. [PMID: 35785240 PMCID: PMC9241039 DOI: 10.1016/j.heliyon.2022.e09790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/12/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
The intake of Cd-enriched food is the main Cd pathway for the nonsmoking population. In some cases, Cd bioaccumulates in edible plant parts which comprise risk to consumers, because of Cd is a harmful heavy metal that can cause potent environmental and health hazards. For instance, Cd enrichment of cacao seeds have led to Cd enrichment of cacao-based products. In Latin America and the Caribbean, Cd bioaccumulation in cacao seeds occurs in different regions with diverse edaphoclimatic conditions, which makes it difficult to select soil remediation alternatives. Limited resources require that potential amendments must be carefully investigated through laboratory and/or greenhouse conditions before scaling up to field experiments. In this study, we evaluated the effectiveness of four biochars: coffee-, quinoa-, and inoculated- and palm-biochar, derived from three feedstocks: coffee husk, quinoa straw, and oil palm residues, respectively. Biochars were applied in two rates (1 and 2% w/w) in two soils, one moderately acidic and one slightly alkaline (Cd-spiked and non-spiked). CCN-51 cacao plants were used for the greenhouse experiment. After 130 days, biometric parameters, the bioavailability of Cd in the soil, and the concentration of Cd and mineral nutrients in the plants were measured. Quinoa biochar at the 2% significantly decreased (P < 0.01), by ∼71%, bioavailable Cd in moderately acidic and slightly alkaline soils, and leaf-Cd by ∼48%. Soil pH, electrical conductivity, and effective cation exchange capacity were significantly (P < 0.01) correlated with bioavailable soil and leaf-Cd. Biochar characteristics, such as ash contents, basic cations content, and surface functional groups could be used as indicators for the selection of biochars to reduce Cd uptake by cacao. Additionally, application of quinoa derived biochar provided P and K, which could increase productivity to offset mitigation costs. Overall, incorporation of quinoa biochar at 2% rate is effective for lowering bioavailable Cd in different soil types which reduces leaf-Cd in cacao plants. Biochar ash content helps to increase soil pH and reduce Cd bioavailability. Quinoa biochar at 2% reduced up to 80% bioavailable Cd in moderately acidic and slightly alkaline soils. Quinoa biochar at 2% lowered, up to 48%, Cd concentration in cacao plants. Soil pH, CECe, and EC were significant and negative related to bioavailable and plant-Cd. Ash content could be used as a guide for selecting biochars for Cd remediation.
Collapse
|
9
|
Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14095309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent decades, minimization and recycling/reuse policies were introduced to reduce the quantities of generated waste and for alternative waste recovery. Organic wastes represent 46% of total global solid waste. Possible uses of organic wastes include using it as fertilizer and amendment for soil, for energy recovery and for the production of chemical substances. Sewage sludge disposal and reuse are identified as future problems concerning waste. The total amount of sludge generated in the entire world has increased dramatically, and this tendency is expected to increase significantly in the years to come. In most developed countries, special attention is given to sewage sludge treatment in order to improve the quality and safety of using it on the ground surface. Sewage sludge pyrolysis is considered an acceptable method, from an economic and ecological perspective, for the beneficial reuse of sewage sludge. This method has many advantages because, during the pyrolysis process, the sludge volume is reduced by 80%, pathogenic agents and hazardous compounds from sewage sludge are eliminated, metals are immobilized in solid residue and organic and inorganic fractions are immobilized in a stabilized form of pyrolytic residues (biochar). The biochar generated by sewage sludge pyrolysis does not contain pathogenic agents and is rich in carbon and nutrients.
Collapse
|
10
|
Jatav SS, Singh SK, Parihar M, Alsuhaibani AM, Gaber A, Hossain A. Application of Sewage Sludge in a Rice (Oryza sativa L.)-Wheat (Triticum aestivum L.) System Influences the Growth, Yield, Quality and Heavy Metals Accumulation of Rice and Wheat in the Northern Gangetic Alluvial Plain. Life (Basel) 2022; 12:life12040484. [PMID: 35454975 PMCID: PMC9025396 DOI: 10.3390/life12040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
For a sustainable and profitable agriculture production system, balanced and integrated use of nutrients is a key strategy. In addition, partial replacement of chemical fertilizers with organics ones reduces both environmental concerns and economic costs and provides greater soil health benefits. With this hypothesis, an experiment was conducted to assess the yield and economic benefits of a rice-wheat cropping system (RWCS) as influenced by the joint application of sewage sludge (SSL) and fertilizer. The treatments comprised: without fertilizer or SSL; 100% recommended dose of fertilizers (RDF); 100% RDF + 20 Mg ha−1 SSL; 100% RDF + 30 Mg ha−1 SSL; 50% RDF + 20 Mg ha−1 SSL; 60% RDF + 20 Mg ha−1 SSL; 70% RDF + 20 Mg ha−1 SSL; 50% RDF + 30 Mg ha−1 SSL; 60% RDF + 30 Mg ha−1 SSL and 70% RDF + 30 Mg ha−1 SSL. The experiment was laid out in a randomized block design with three replications. The result of our study indicate that the highest percent increase in mean plant height i.e., ~14.85 and ~13.90, and grain yield i.e., ~8.10 and ~18.90 for rice and wheat, respectively, were recorded under 100% RDF + 30 Mg SSL ha−1 treatment compared to 100% RDF, while 70% RDF + 20 Mg ha−1 SSL produced a statistically equivalent grain yield of 100% RDF in RWCS. The application of 20 and 30 Mg SSL ha−1 along with recommended or reduced fertilizer dose, significantly increased the heavy metal content in plant and soil systems above that of 100% RDF, but this enhancement was found within permissible limits. Moreover, the reduced use of SSL i.e., 20 Mg SSL ha−1, resulted in lower heavy metal content in grain and soil than did the 30 Mg ha−1 SSL treatment, but significantly higher than in the absolute control or 100% RDF treatment. In summary, the use of 20 Mg ha−1 SSL along with 70% RDF provided a safer, profitable and sustainable option in a rice-wheat cropping system in the middle Ganegatic alluvial plain.
Collapse
Affiliation(s)
- Surendra Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Satish Kumar Singh
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
- Correspondence: (S.K.S.); (A.H.)
| | - Manoj Parihar
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora 263601, Uttarakhand, India;
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: (S.K.S.); (A.H.)
| |
Collapse
|
11
|
Elkhlifi Z, Sellaoui L, Zhao M, Ifthikar J, Jawad A, Shahib II, Sijilmassi B, Lahori AH, Selvasembian R, Meili L, Gendy EA, Chen Z. Lanthanum hydroxide engineered sewage sludge biochar for efficient phosphate elimination: Mechanism interpretation using physical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149888. [PMID: 34482146 DOI: 10.1016/j.scitotenv.2021.149888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 05/12/2023]
Abstract
In the present study, lanthanum hydroxide (La OH)-engineered sewage sludge biochar (La-SSBC) was utilized for efficient phosphate elimination from an aqueous medium. A high adsorption capacity of 312.55 mg P/g was achieved using La-SSBC at 20 °C, which was an excellent adsorbent performance in comparison to other biochar-based adsorbents. Additionally, the performance of La-SSBC was stable even at wider range of pH level, the existence of abundant active anions, and recycling experiments. Statistical physics modeling with the fitting method based on the Levenberg-Marquardt iterating algorithm, as well as various chemical characterizations, suggested the unique double-layered mechanism of phosphate capturing: one functional group of La-SSBC adsorbent describing a prone direction of the PO4 ions on the stabilize surface in a multi-ionic process, forming the first layer adsorption. Additionally, SSBC played an important role by releasing positively charged cations in solution, overcoming the electronic repulsion to form a second layer, and achieving excellent adsorption capacity. The calculation of multiple physicochemical parameters including adsorption energy further evidenced the process. This two-layered mechanism sheds light on the complex interaction between phosphate and biochar. Moreover, the management of sewage sludge associated with the requirement of cost-effectively and environmentally acceptable mode. Therefore, the present investigation demonstrated an efficient approach of the simultaneous sewage sludge utilization and phosphate removal.
Collapse
Affiliation(s)
- Zouhair Elkhlifi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lotfi Sellaoui
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mengmeng Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ali Jawad
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Irshad Ibran Shahib
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Badreddine Sijilmassi
- Rhizobium Laboratory, Genetic Resources Section, ICARDA (International Center for Agricultural Research in the Dry Area), Agdal, Rabat 10080, Morocco
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi 74000, Pakistan
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Eman Abdelnasser Gendy
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
12
|
Shentu J, Li X, Han R, Chen Q, Shen D, Qi S. Effect of site hydrological conditions and soil aggregate sizes on the stabilization of heavy metals (Cu, Ni, Pb, Zn) by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149949. [PMID: 34525744 DOI: 10.1016/j.scitotenv.2021.149949] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Biochar is a popular material that would effectively immobilize heavy metals in soil, which can greatly decrease the health risk of heavy metals. Although many previous studies have studied the immobilization of heavy metals by biochar, the influence of hydrological conditions on the immobilization effect is still not clear. This paper carried out column experiments to study the effect of fluctuating groundwater table on Cu, Ni, Pb, Zn distribution and speciation with the addition of biochar from pyrolysis of swine manure. Experimental results showed that biochar could significantly decrease the leaching toxicity of Cu and Ni by 24.4% and 44.7% respectively, while the immobilization effect of Pb and Zn was relatively insignificant. The average reduction percentage of bioavailable Cu was 14.5%, 39.5% and 33.3% in the unsaturated zone, fluctuating zone and saturated zone respectively, showing the better immobilization effect in the fluctuating zone and saturated zone. The residual fraction of heavy metals increased significantly after the addition of biochar, and the increase of residual fraction was larger in small soil aggregates. This study helped illustrate the influence of hydrological conditions and soil aggregate sizes on the stabilization effect of heavy metals by biochar, which could be used to guide the remediation process of sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Xiaoxiao Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Ruifang Han
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Qianqian Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
13
|
Muhammad N, Ge L, Khan MH, Chan WP, Bilal M, Lisak G, Nafees M. Effects of different biochars on physicochemical properties and immobilization of potentially toxic elements in soil - A geostatistical approach. CHEMOSPHERE 2021; 277:130350. [PMID: 33794433 DOI: 10.1016/j.chemosphere.2021.130350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The impact of different biochars (BCs) on the physicochemical properties and immobilization of potentially toxic elements (PTEs) in contaminated soil irrigated with industrial wastewater for the last three decades was studied. Furthermore, the efficacy of applied BCs in reducing geostatistical risks was also evaluated. For this purpose, BCs were prepared from green waste (Cynodon dactylon L.) for the first time at different pyrolysis temperature (400 °C, 600 °C and 800 °C), and amended the contaminated soil in pots with two different ratios of 2% and 5% (w/w) under controlled conditions. The BCs amended soil samples were analyzed after five months (equivalent to the life span of a wheat crop). The physicochemical impacts of applied BCs on the soil showed that the acidic soil was changed to basic. A tremendous increase in water holding capacity, cation exchange capacity, dissolved organic carbon, carbon, phosphorus and potassium contents was observed. The PTEs concentrations and geostatistical risks were significantly (p ≤ 0.05) decreased by all the BCs. Among them, BC prepared at 800 °C and applied at a ratio of 5% was showed the best effects by reducing the bioavailable concentrations of Cd, Pb, Cr, Ni, Cu, Mn, Fe, As, Co and Zn in 88%, 87%, 78%, 76%, 69%, 65%, 64%, 63%, 46% and 21%, respectively. Similarly, significant (p ≤ 0.05) reductions in geoaccumulation index, enrichment factor, contamination factor, and ecological risk were recorded. Therefore, BC prepared at 800 °C and applied at a ratio of 5% is recommended for soil remediation.
Collapse
Affiliation(s)
- Nisar Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; Department of Environmental Science, Gomal University, Dera Ismail Khan, 29050, Pakistan.
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Muhammad Haya Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wei Ping Chan
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Muhammad Bilal
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 637141, Singapore.
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| |
Collapse
|
14
|
Yao P, Zhou H, Li X, Wei L, Wang J, Zhang S, Ye X. Effect of biochar on the accumulation and distribution of cadmium in tobacco (Yunyan 87) at different developmental stages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111295. [PMID: 32949930 DOI: 10.1016/j.ecoenv.2020.111295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) easily accumulates in tobacco, which endangers public health through Cd exposure from smoking. However, its uptake, translocation, and distribution in tobacco plants during plant development or its response to biochar application are poorly understood. A pot experiment was conducted with tobacco (Yunyan 87) grown in soil severely contaminated with Cd (30 mg kg-1) amended with 0, 1, and 2% (w/w) tobacco stem-derived biochar (BC). The absorption and accumulation of Cd in all parts of the tobacco plants were most active from the rosette stage to the fast growing stage, during which approximately 90% of the Cd deposited in the tobacco leaves occurred, especially in the lower leaves. The Cd concentrations in most plant parts without added biochar decreased significantly by 52.61-78.30% due to the rapid increase in biomass (dilution effect), although the Cd concentration in the lower leaves increased by 48.89% (P < 0.05). However, with the slowdown of the growth rate of tobacco at the maturity stage, the proportion of Cd accumulation in roots and stems without biochar addition increased by 29.01%, resulting in an increased Cd concentration in roots and stems by 63.29-86.80% (P < 0.05). In the different growth stages, the application of biochar reduced the contents of DTPA-extractable and exchangeable Cd in the soil by 5.11-35.14% and 9.20-54.05%, respectively, thus reducing the absorption, accumulation and concentration of Cd in all parts of the tobacco plant. In addition, the inhibitive effect of biochar on the Cd concentration in the leaves was weak at the rosette stage (22.17-53.72%) compared with the other stages (46.14-78.88%), and the degree of inhibition of biochar on the Cd concentration in the middle leaves (37.94-59.24%) was lower than that in the upper and lower leaves (49.04-73.54%) at all developmental stages. However, the long-term remediation effect of biochar on soil Cd contamination needs to be further verified, and the combination of biochar and other technologies should receive additional attention.
Collapse
Affiliation(s)
- Pengwei Yao
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Hanjun Zhou
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Xueli Li
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou, 450002, China
| | - Lin Wei
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jing Wang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Sheng Zhang
- Xiangxi Autonomous Prefecture Tobacco Company, Jishou, 416000, Hunan, China
| | - Xiefeng Ye
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China.
| |
Collapse
|
15
|
Wang J, Shi L, Zhai L, Zhang H, Wang S, Zou J, Shen Z, Lian C, Chen Y. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111261. [PMID: 32950873 DOI: 10.1016/j.ecoenv.2020.111261] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Currently, the research and application of biochar in the remediation of heavy metal contaminated soil has become a hotspot, especially regarding the remediation of agricultural land. Biochar has been proved to be effective in reducing the content of available heavy metals in the soil as well as the heavy metals in plants. However, the long-term effectiveness of biochar immobilization has not been widely studied. In this review, retrospective search was carried out on the published literature results concerning remediation effects of biochar on different areas of heavy metal contaminated soil in the recent years, its application in field remediation (several years), and some potential abiotic and biotic factors that may weaken the immobilization effects of biochar. This results indicate that: (1) biochar is widely used in the remediation of heavy metal contaminated soil in different areas and has excellent immobilization effect. (2) Most of the research demonstrate that the immobilization effect of biochar is effective for 2-3 years or according to few results even for 5 years. However, there have been various reports claiming that the immobilization effect of biochar decreases with time. (3) Abiotic factors such as acid rain, flooded environment, changes in soil condition (pH, redox and dissolved organic matter) and changes in biochar (Cl- and alkali leaching) can significantly weaken the immobilization effect of biochar. (4) Biotic factors such as plant roots, earthworms and soil microorganisms can also significantly reduce the immobilization effect of biochar. Therefore, field experiments having longer time span with biochar need to be further carried out, and the developmental research of modified biochar with a more stable immobilization effect also needs further attention.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lulu Zhai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haowen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengxiao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Xie S, Yu G, Ma J, Wang G, Wang Q, You F, Li J, Wang Y, Li C. Chemical speciation and distribution of potentially toxic elements in soilless cultivation of cucumber with sewage sludge biochar addition. ENVIRONMENTAL RESEARCH 2020; 191:110188. [PMID: 32919962 DOI: 10.1016/j.envres.2020.110188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Potentially toxic elements in municipal sewage sludge can be effectively immobilized during biochar production via pyrolysis. However, the bioavailability of these elements when biochar is applied in soilless cultivation to improve substrate quality has yet to be sufficiently established. In this study, we investigated the chemical speciation and cucumber plant uptake of potentially toxic elements in soilless cultivation when the growth substrate was amended with sewage sludge biochar (0, 5, 10, 15, and 20 wt%). It was found that the addition of 10 wt% biochar was optimal with respect to obtaining a high cucumber biomass and achieving low environmental risk considering the occurrence of hormesis. When the substrate was amended with 10 wt% biochar, cucumber fruit contained lower concentrations of As, Cr, and Zn and smaller bioavailable fractions of As, Cd, Cr, Ni, Cu, and Zn compared with the fruit of control plants, thereby meeting national safety requirements (standard GB 2762-2012, China). Most of the As and Cd taken up by cucumbers accumulated in the leaves and fruit, whereas Cr was found primarily in the roots, and most Ni, Cu, and Zn was detected in the fruit. Importantly, only small proportions of the potentially toxic elements in biochar were taken up by cucumber plants (As: 0.0075%; Cd: 0.038%; Ni: 0.0064%; Cu: 0.0016%; and Zn: 0.0015%). Given that the As, Cd, Ni, and Zn speciation in sewage sludge biochar was effectively immobilized after cultivation, the findings of this study indicate that sewage sludge biochar is a suitable substrate amendment in terms of the risk posed by potentially toxic elements.
Collapse
Affiliation(s)
- Shengyu Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Guangwei Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Jianli Ma
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Gang Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qichuan Wang
- Chaimihe Agriculture Science and Technology Development Co., Ltd., Huai'an, 223002, China
| | - Futian You
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
17
|
Chen H, Tang L, Wang Z, Su M, Tian D, Zhang L, Li Z. Evaluating the protection of bacteria from extreme Cd (II) stress by P-enriched biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114483. [PMID: 32283462 DOI: 10.1016/j.envpol.2020.114483] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Cadmium cations (Cd2+) are extremely toxic to organisms, which limits the remediation of Cd by microorganisms. This study investigated the feasibility of applying biochar to protect bacteria from extreme Cd2+ stress (1000 mg/L). An alkaline biochar (RB) and a slightly acidic biochar (SB) were selected. SB revealed a higher Cd2+ removal than RB (15.5% vs. 4.8%) due to its high surface area. Addition of Enterobacter sp. induced formation of Cd phosphate and carbonate on both SB and RB surface. However, Cd2+ removal by RB enhanced more evidently than SB (78.9% vs. 30.2%) due to the substantial microbial regulation and surficial alkalinity. Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and geochemical modeling (GWB) all confirmed that the formation of stable Cd phosphate on RB was superior to that in SB. These biomineralization, together with biochar pore structure, protect bacterial cells from Cd stress. Moreover, the alkalinity of biochar promoted the formation of carbonate, which strengthened the decline of Cd2+ toxicity. The protection by RB was also confirmed by the intense microbial respiration and biomass (PLFA). Furthermore, this protection induced a positive feedback between P-abundant biochar and Enterobacter sp.: biochar provides P source (the most common limiting nutrient) to support microbial growth; bacteria secrete more organic acids to drive P release. This study therefore elucidated the protection of bacteria by P-enriched biochar based on both physic-chemical and microbial insights.
Collapse
Affiliation(s)
- Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Da Tian
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Feng W, Guo Z, Xiao X, Peng C, Shi L, Ran H, Xu W. A dynamic model to evaluate the critical loads of heavy metals in agricultural soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110607. [PMID: 32304922 DOI: 10.1016/j.ecoenv.2020.110607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Estimation of critical load (CL) is important for soil environmental management and pollution prevention. We developed a mass balance-based dynamic critical load (DCL) model, which improved the model performance, applicability and functionality compared with the traditional one. Paddy soils in two typical fields in central south China and two scenarios were chosen as case studies. The result of case study showed that atmospheric deposition was the main source of Cd, Cu, Pb, and Zn in the soils, with percentage contributions ranging from 59.9 to 79.8%. Crop uptake, particularly the rice straw harvest, was the primary output pathway, accounting for 35.1-71.2% of the total output flux. The critical loads also known as annual input limits (Imax) of heavy metals in the paddy soils were calculated by the developed DCL model. For example, the Imax of Cd was recommended as 0.05 kg ha-1 in the paddy soils under the default scenario for a protection period of 40 years, and that became 0.12 kg ha-1 and 0.17 kg ha-1 under the straw removal scenario in the two typical fields, respectively. The scenario simulation suggested that the straw removal strategy reduced the total concentrations of heavy metals (Ct) in the soils and notably increased the Imax. Meanwhile, the sensitivity analysis indicated that the changes of Ct and Imax can be controlled by adjusting the partition coefficient (Kd), plant uptake factor (PUF) and input flux. The mass balance-based DCL model provides a reference method to establish the standard for controlling heavy metal inputs to agricultural soil, this will be helpful to develop strategies for the prevention of soil contamination.
Collapse
Affiliation(s)
- Wenli Feng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Lei Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Hongzhen Ran
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Wenxuan Xu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
19
|
Muhammad N, Nafees M, Khan MH, Ge L, Lisak G. Effect of biochars on bioaccumulation and human health risks of potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113887. [PMID: 31982801 DOI: 10.1016/j.envpol.2019.113887] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
In the present study, biochars (BCs) derived from naturally grown green waste (Cynodon dactylon L.) were investigated regarding their impacts on bioaccumulation of potentially toxic elements (PTEs), agronomic properties and human health risks of wheat crop cultivated on long-term industrially contaminated soil. Typically, three types of BCs were pyrolyzed at different highest temperature of treatment (HTT), i.e. 400 °C, 600 °C and 800 °C, in a horizontal reactor and applied to the contaminated soil with 2% and 5% (w/w) ratio. The characterization results of the BCs showed that significant positive changes in fundamental characteristics such as porosity, surface area, cation exchange capacity, dissolved organic carbon, phosphorus and potassium have occurred with increased HTT. The analytical results of wheat crop indicated that the BCs applications significantly (p ≤ 0.05) reduced concentration of PTEs in roots (48-95%), shoots (38-91%), leaves (30-91%) and grains (38-93%) of wheat plants. After the BCs application, the agronomic properties were enhanced up to 6-18%, 18-38%, 17-46%, 13-45%, 15-42%, 22-55% and 34-57% for germination rate, shoot length, shoot biomass, spike length, spike biomass, grain biomass and root biomass respectively. The human health risks of PTEs were significantly (p ≤ 0.05) decreased (31-93%) from toxicity level to safe level (except for Mn and Cu), after the BCs application. Based on the current study, the BCs (especially 800BC5) were recommended for reducing bioaccumulation of PTEs in different parts of the wheat plant, increasing growth and yield of wheat crop and decreasing human health risks via consumption of wheat grains.
Collapse
Affiliation(s)
- Nisar Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Mohammad Nafees
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Haya Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
20
|
Rehman RA, Qayyum MF. Co-composts of sewage sludge, farm manure and rock phosphate can substitute phosphorus fertilizers in rice-wheat cropping system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:109700. [PMID: 32072947 DOI: 10.1016/j.jenvman.2019.109700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
In the present study, various co-composts of sewage sludge (SS), farm manure (FM) and rock phosphate (RP) were prepared and their influence on phosphorus (P) uptake, soil P restoration and growth of rice crop and residual effect on wheat crop were investigated. The treatments comprised of T1 (control, no amendment), T2 (452 kg Nitrophos ha-1, T3 (724 kg SS50:FM50 ha-1), T4 (594 kg SS100:FM0 ha-1), T5 (728 kg SS25:FM25:RP50 ha-1), T6 (726 kg SS5O:FM25:RP25 ha-1), T7 (508 kg SS75:FM0:RP25 ha-1), and T8 (546 kg SS50:FM0:RP50 ha-1). The post-experimental soil samples were analyzed for pH, EC, OM, Olsen's P. The plant samples (grains and straw of both crops) were analyzed for concentrations of P, and heavy metals. The P adsorption by post-wheat composts-amended soil was tested through Langmuir, and Freundlich adsorption isotherms. The investigated parameters (biomass, grain and straw yield, plant height and P concentrations in plant parts) were significantly increased in all composts as compared to the control treatment. The P uptake by the plants was higher in compost treatments as compared to the control and NP that shows long-term residual effect of applied composts. The maximum grain yield (1.63 Mg ha-1) was obtained in T5 followed by T6 (1.52 Mg ha-1). The P concentration in rice grains were recorded in the trend as T8 (2.55%) > T6 (2.24%) > T4 (1.92%) = T3 (1.88%) > T7 (1.62%). It is evident that the combined application of FM (25%) and RP (50%) enhanced the effect of SS (25%) in terms of P bioavailability and yield parameters and can be effectively used as P fertilizer.
Collapse
Affiliation(s)
- Rabia Abdur Rehman
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
21
|
Lu D, Wu D, Qian T, Jiang J, Cao S, Zhou Y. Liquid and solids separation for target resource recovery from thermal hydrolyzed sludge. WATER RESEARCH 2020; 171:115476. [PMID: 31927095 DOI: 10.1016/j.watres.2020.115476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/18/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
This study proposed an integrated process for biogas generation and biochar production from thermal hydrolysis pretreated sludge (THP sludge). In this study, the liquid and solids fractions of THP sludge were separately processed for the first time. The liquid fraction of THP sludge (THP-L) reached the biodegradability (262.6 ± 5.1 mL CH4/g tCODfeed) on the 15th day during anaerobic treatment, while the solids fraction of THP sludge (THP-S) only contributed 31.0% to the total methane production and required more than 30 days digestion time. We investigated the feasibility to convert THP-S into biochar to realize the higher value of the solids fraction. The results prove the produced biochar can be used as slow-release fertilizer. Preliminary energy analysis was performed to evaluate the energy efficiency of the integrated approach, namely, methane generation from THP-L coupled with biochar production from THP-S. The process realized energy surplus of 0.81 MWh/tonne dry sludge. In addition, THP-L digested sludge showed better dewaterability, lower yield stress and reduced viscosity during digestion. The proposed new sludge treatment process therefore has lower operating cost and higher value returns.
Collapse
Affiliation(s)
- Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Dan Wu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Tingting Qian
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Jiankai Jiang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
22
|
Tang X, Shen H, Chen M, Yang X, Yang D, Wang F, Chen Z, Liu X, Wang H, Xu J. Achieving the safe use of Cd- and As-contaminated agricultural land with an Fe-based biochar: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135898. [PMID: 31864997 DOI: 10.1016/j.scitotenv.2019.135898] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
A field study was conducted to investigate the effect of Fe-based biochar application on the extractability and availability of Cd and As, as well as its impact on crop growth and yield under a two-years wheat-rice rotation system. The Fe-based biochar was applied to the soil at 1.5 and 3.0 t ha-1, manure compost was also applied as a comparison, as well as a non-treated control. The application of the Fe-based biochar significantly (p < 0.05) increased the crop yields for the rice season in the first year, but the both treatments had no significant effect on the crop yields in the others cultivation seasons, compared to the control. The concentrations of available Cd and As significantly (p < 0.05) decreased after either higher or lower dose of Fe-based biochar addition, especially with lower rate in the second year. In the second year, the soil extractable Cd and As reduced by 57% and 18%, respectively, in the wheat season and 63% and 14%, respectively, in the rice season, after the lower dose of Fe-based biochar was applied. The lower dose of the Fe-based biochar treatment showed higher efficiency for decreasing Cd and As availability in soil than the higher one, the control and manure compost treatment. Additionally, both the higher and lower doses of the Fe-based biochar treatments significantly decreased Cd and As uptake by wheat and rice plants. Overall, the Fe-based biochar showed effective immobilization at an application of 1.5 t ha-1, making the use of the Fe-based biochar feasible as an amendment for the safe use of agricultural land contaminated by Cd and As.
Collapse
Affiliation(s)
- Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Haoran Shen
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xing Yang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Dong Yang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fan Wang
- College of Life & Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhengzheng Chen
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xingmei Liu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
23
|
Zhuo F, Zhang XF, Lei LL, Yan TX, Lu RR, Hu ZH, Jing YX. The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1009-1018. [PMID: 32064907 DOI: 10.1080/15226514.2020.1725867] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A greenhouse pot experiment was conducted to assess the effects of biochar (BC) and arbuscular mycorrhizal fungus (AMF)-Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the plant growth and Cd/Pb accumulation by corn grown in the soils artificially contaminated with 5 mg Cd and 300 mg Pb kg-1 soil. The single AMF inoculation and combined usage of AMF and BC evidently improved the P contents of maize. Furthermore, the combined use of AMF and BC produced pronounced positive effect on corn growth, and the shoot biomass in Gv + BC group was 9.85-fold higher than that of the control. Meanwhile, the single BC addition and combined utilization of AMF and BC significantly reduced Cd and Pb concentrations in maize, and the greater reduces were found in the combined utilization, and the lowest Cd concentration of shoot was appeared in Gv + BC group. The single BC addition and combined application of AMF and BC significantly increased soil pH, and reduced soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd/Pb. This study demonstrated a synergistic effect between AMF (Gv, Fm, Ri) and BC on improving maize growth and decreasing Cd/Pb accumulation in maize, and the combined use of Gv and BC brought the most pronounced effect, which could provide a feasible strategy for safe production of maize from Cd/Pb-polluted soils.
Collapse
Affiliation(s)
- Feng Zhuo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Xiao-Feng Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Li-Li Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Ting-Xiu Yan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Rui-Rui Lu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Zun-He Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Yuan-Xiao Jing
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
24
|
Samsuri AW, Fahmi AH, Jol H, Daljit S. Particle size and rate of biochar affected the phytoavailability of Cd and Pb by mustard plants grown in contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:567-577. [PMID: 31744301 DOI: 10.1080/15226514.2019.1687423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various amendments are used to reduce the phytoavailability of heavy metals in contaminated soils, but recently the use of biochar is receiving serious attention. In this study, two particle sizes of an oil palm empty fruit bunch biochar (EFBB); <50 µm (F-EFBB) and >2 mm (C-EFBB) were applied at either 0, 0.5, or 1% (w/w) to soils contaminated with either Cd or Pb and the phytoavailability of these metals by mustard plants grown on the soils was evaluated. Results revealed that the application of EFBB at 1% significantly increased plant growth parameters as compared with the control in Cd-soil. However, there was no significant effect of EFBB application rate on plant growth parameters in Pb-soil. There was a significant difference in the concentrations of Cd and Pb in the plant root and shoot between soils receiving different particle sizes of EFBB. The treatment of 1% F-EFBB gave the lowest concentration of the Cd concentration in the shoot (115.200 mgkg-1) and Pb concentration in the root and shoot (4196.000 and 78.467 mgkg-1, respectively) as compared with the other treatments. Therefore, F-EFBB application at high rates can be recommended for reducing the phytoavailability of Cd and Pb in contaminated soils.
Collapse
Affiliation(s)
- Abd Wahid Samsuri
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Alaa Hasan Fahmi
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Soil Science and Water Resources, College of Agriculture, University of Diyala, Diyala, Iraq
| | - Hamdan Jol
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Singh Daljit
- Department of Land Management, Malaysia Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
25
|
He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:846-855. [PMID: 31202137 DOI: 10.1016/j.envpol.2019.05.151] [Citation(s) in RCA: 266] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 05/21/2023]
Abstract
There are global concerns about heavy metal (HM) contamination in soils, which in turn has produced an increased demand for soil remediation. Biochar has been widely documented to effectively immobilize metals in contaminated soils and has received increasing attention for use in soil remediation. Here, we review recent progresses in understanding metal-biochar interactions in soils, potential risks associated with biochar amendment, and application of biochar in soil remediation in China. These recent studies indicate that: (1) the remediation effect depends on the characteristics of both biochar and soil and their interactions; (2) biochar applications could decrease the mobility/bioavailability of HMs in soils and HM accumulation in plants; and (3) despite its advantages, biochar applications could pose ecological and health risks, e.g., by releasing toxic substances into soils or by inhalation of biochar dust. Research gaps still exist in the development of practical methods for preparing and applying different biochars that target specific HMs. In the future, the long term effects and security of biochar applications on soil remediation, soil organisms and plant growth need to be considered.
Collapse
Affiliation(s)
- Lizhi He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Guangxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Zhang Y, Wang X, Ji X, Liu Y, Lin Z, Lin Z, Xiao S, Peng B, Tan C, Zhang X. Effect of a novel Ca-Si composite mineral on Cd bioavailability, transport and accumulation in paddy soil-rice system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:802-811. [PMID: 30446285 DOI: 10.1016/j.jenvman.2018.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/16/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Ubiquitous cadmium (Cd) contamination in mine impacted paddy soil has been jeopardizing regional rice quality, which represents a dominant pathway of Cd exposure in populations depending on a rice diet. Two major aspects of mitigation, soil liming and Si fertilization, were integrated and investigated with a Ca-Si-rich composite mineral (CS) derived from feldspar and carbonate. With the CS amendment, bioavailable Cd in rice rhizosphere was reduced by 92-100% from tillering to maturation stage, paralleled by a marked increase in Cd bound to Fe/Mn oxides and carbonate. As indicated by XRD analysis, the much reduced labile pool of Cd in the CS-amended soil could be mainly attributed to Cd (co)precipitation (Cd(OH)2, Cd2(OH)3Cl, CH6Br3CdN) and surface complexation on more negatively charged oxides at elevated soil pH with CS addition. EDX line scan illustrated much more intensified Si deposition along root cross-section in the CS treatment, which resulted in 1.5-2.1-fold higher Cd sequestration in the CS-amended root than control. As a direct result, the root-to-shoots Cd translocation was reduced significantly by 42-51%, while a slightly less significant decrease in brown rice Cd was obtained with the CS treatment relative to control. The CS amendment showed differing effects on brown rice mineral accumulation, with 1.2-1.5-fold increase in brown rice Zn and simultaneously reduced Fe, Mn, Mg and Cu in brown rice. Our results call the readers' attention to the potential impact of soil ameliorator on grain mineral uptake, and we suggest that proper fortification with mineral fertilizers should be supplemented to assist sustainable rice production with improved mineral nutrition.
Collapse
Affiliation(s)
- Yue Zhang
- College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xin Wang
- College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China; Stockbridge School of Agriculture, University of Massachusetts, Amberst, MA 01003, United States.
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Changsha, Hunan, 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha, Hunan, 410125, China; Ministry of Agriculture Key Lab of Agro-Environment Institute in the Midstream of Yangtze River Plain, Changsha, Hunan, 410125, China.
| | - Yaochi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhijia Lin
- Hunan Institute of Geological Survey, Changsha, Hunan, 410116, China
| | - Zhaojun Lin
- College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Sha Xiao
- College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Bo Peng
- College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Changyin Tan
- College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xinping Zhang
- College of Resources and Environmental Science, Hunan Normal University, Changsha, Hunan, 410081, China
| |
Collapse
|
27
|
Shao Q, Ju Y, Guo W, Xia X, Bian R, Li L, Li W, Liu X, Zheng J, Pan G. Pyrolyzed municipal sewage sludge ensured safe grain production while reduced C emissions in a paddy soil under rice and wheat rotation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9244-9256. [PMID: 30721435 DOI: 10.1007/s11356-019-04417-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/28/2019] [Indexed: 05/20/2023]
Abstract
Safe recycling of the growing amounts of municipal sewage sludge containing toxic metals had been critically challenged with the fast urbanization. In this study, we investigated soil amendment of municipal wastewater treatment (MSS) converted biochar for its recycling in agricultural soils. In a field experiment, unpyrolyzed (USS) and pyrolyzed municipal sewage sludge (PSS) was amended at 20 t ha-1 on dry base to a rice paddy before rice plantation, with a control without amendment. Grain yield and emission of non-CO2 potent greenhouse gases were examined as well as topsoil metal mobility and plant uptake determined throughout a rice-wheat rotation year. Compared to USS treatment, addition of PSS caused a significantly increased grain yield of rice by 35% but no change in grain yield of wheat following the rice season. No distinct difference was observed in grain concentration of major nutrients of N, P, and K between USS and PSS treatments. Compared to USS treatment, PSS treatment reduced CH4 emissions by 91.6% from soil and by 78.5% from ecosystem during rice-growing season. Whereas, PSS treatment led to a reduction of ecosystem N2O emissions by 70.8% relative to USS treatment during wheat-growing season. While both USS and PSS treatments slightly but insignificantly increased soil total content of heavy metals, PSS treatment reduced CaCl2-extractable Cd pool by 33~40% over USS treatment. Grain contents of Cd and Pb and Cd/Zn were markedly reduced under PSS over USS, without exceeding the Chinese state guideline limit. Carbon emission intensity was considerably (by over 20%) reduced for soil and ecosystem but unchanged for wheat soil, under PSS over USS. Thus, soil amendment of pyrolyzed sewage sludge could be a measure for climate smart soil and for safe grain production in rice agriculture. It deserves further study if repeated amendment could exert sustainable impacts on soil health and food security in the paddy.
Collapse
Affiliation(s)
- Qianqian Shao
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jinhua Biomass Technology Institute, Jinhua Municipality, Zhejiang, 321000, China
| | - Yanyan Ju
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Wenjie Guo
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jinhua Biomass Technology Institute, Jinhua Municipality, Zhejiang, 321000, China
| | - Xin Xia
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Wenjian Li
- Jinhua Biomass Technology Institute, Jinhua Municipality, Zhejiang, 321000, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China.
- Jinhua Biomass Technology Institute, Jinhua Municipality, Zhejiang, 321000, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
28
|
Gong Y, Zhao D, Wang Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. WATER RESEARCH 2018; 147:440-460. [PMID: 30343201 DOI: 10.1016/j.watres.2018.10.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination by heavy metals and metalloids has been a major concern to human health and environmental quality. While many remediation technologies have been tested at the bench scale, there have been only limited reports at the field scale. This paper aimed to provide a comprehensive overview on the field applications of various soil remediation technologies performed over the last decade or so. Under the general categories of physical, chemical, and biological approaches, ten remediation techniques were critically reviewed. The technical feasibility and economic effectiveness were evaluated, and the pros and cons were appraised. In addition, attention was placed to the environmental impacts of the remediation practices and long-term stability of the contaminants, which should be taken into account in the establishment of remediation goals and environmental criteria. Moreover, key knowledge gaps and practical challenges are identified.
Collapse
Affiliation(s)
- Yanyan Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, United States; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
29
|
Fahmi AH, Samsuri AW, Jol H, Singh D. Bioavailability and leaching of Cd and Pb from contaminated soil amended with different sizes of biochar. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181328. [PMID: 30564418 PMCID: PMC6281937 DOI: 10.1098/rsos.181328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 05/23/2023]
Abstract
Biochars have been successfully used to reduce bioavailability and leaching of heavy metals in contaminated soils. The efficiency of biochar to immobilize heavy metals can be increased by reducing the particle size, which can increase the surface area and the cation exchange capacity (CEC). In this study, the empty fruit bunch biochar (EFBB) of oil palm was separated into two particle sizes, namely, fine (F-EFBB < 50 µm) and coarse (C-EFBB > 2 mm), to treat the contaminated soil with Cd and Pb. Results revealed that the addition of C-EFBB and F-EFBB increased the pH, electrical conductivity and CEC of the contaminated soil. The amounts of synthetic rainwater extractable and leachable Cd and Pb significantly decreased with the EFBB application. The lowest extractable and leachable Cd and Pb were observed from 1% F-EFBB-treated soil. The amount of extractable and leachable Cd and Pb decreased with increasing incubation times and leaching cycles. The application of F-EFBB to Cd and Pb-contaminated soil can immobilize the heavy metals more than that of C-EFBB. Therefore, the EFBB can be recommended for the remediation of heavy metal-contaminated soils, and a finer particle size can be applied at a lower application rate than the coarser biochar to achieve these goals.
Collapse
Affiliation(s)
- Alaa Hasan Fahmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Soil Science and Water Resources, College of Agriculture, University of Diyala, Diyala, Iraq
| | - Abd Wahid Samsuri
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hamdan Jol
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Daljit Singh
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Guo F, Ding C, Zhou Z, Huang G, Wang X. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:164-172. [PMID: 29879577 DOI: 10.1016/j.ecoenv.2018.05.088] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl2-extractable Cd: pH (△CaCl2-Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation zones.
Collapse
Affiliation(s)
- Fuyu Guo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Zhigao Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Gaoxiang Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
31
|
Feng W, Guo Z, Peng C, Xiao X, Shi L, Han X, Ran H. Modelling mass balance of cadmium in paddy soils under long term control scenarios. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1158-1166. [PMID: 30014062 DOI: 10.1039/c8em00153g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple mathematical model on the basis of the mass balance principle was developed to simulate the long-term changes of Cd in paddy soils. The model predicted the dynamics of cadmium concentration in soils under six alternative control scenarios, including rice straw incorporation into fields (A), removing straw from fields (B), irrigating paddies with groundwater (C), reducing atmospheric Cd deposition (D), liming (E), and integrating measures (F), which were used for Cd contaminated paddy fields in the central subtropical areas of China. The uncertainty of parameters was analyzed using Monte Carlo methods. Scenario simulation results showed that atmospheric deposition was the main external source of Cd, contributing 70% of the total inputs, and plant uptake was an important output pathway, responsible for 92% of the total outputs. Removing straw from fields was more effective than other single control scenarios, and integrating measures were more effective in lowering Cd concentration in contaminated paddy soils. The Cd concentration in soils can meet the critical value (0.3 mg kg-1) in a low-level Cd contaminated paddy field (0.68 mg kg-1) with integrating measures through 40 years of cultivation. In the same case, a high-level Cd contaminated field (1.48 mg kg-1) was converted to a low-level Cd contaminated field (0.54 mg kg-1). However, long term use of lime can increase the Cd concentration in paddy soils. Controllable factors that affected Cd accumulation in paddy soils were plant uptake factors, and the atmospheric deposition flux and irrigation water flux of Cd. Therefore, integrating measures including removing rice straw and preventing the emission of Cd into the atmosphere and irrigation water was the optimal approach to lower Cd concentration in contaminated paddy soils.
Collapse
Affiliation(s)
- Wenli Feng
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan Province, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1100-1108. [PMID: 29727936 DOI: 10.1016/j.scitotenv.2018.03.047] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 05/03/2023]
Abstract
Foliar spraying with silicon (Si) and selenium (Se) can regulate the accumulation of cadmium (Cd) in rice (Oryza sativa L.), but the effects on different cultivars and the main determining factors remain unknown. Field experiments were conducted to investigate the ability of foliar spraying with Si, Se, and mixture of Si and Se to decrease Cd accumulation and translocation in rice cultivars WYHZ, NJ5055, and ZF1Y. All three spray treatments significantly decreased the Cd concentration in WYHZ brown rice, but had no such effect in NJ5055 or ZF1Y, relative to controls. WYHZ had a higher ability to translocate Cd than the other two cultivars. Foliar spraying changed this pattern by decreasing Cd translocation from roots to stems and from stems to brown rice, and increasing Cd translocation from stems to leaves. Foliar spraying also increased the photosynthetic rate, stomatal conductance, and transpiration efficiency in WYHZ. Structural equation modelling revealed the negative effects of photosynthetic rate, transpiration efficiency, and leaf Cd concentration, and the positive effects of stem and root Cd concentration on brown rice Cd concentration. Structural equation modelling further highlighted the significant role of stem Cd concentration in determining brown rice Cd concentration, which had the highest standardized total effects (direct plus indirect effects). These findings demonstrate that foliar spraying with Si and Se is effective in reducing Cd accumulation in rice cultivars with high Cd translocation ability, mainly by reducing stem Cd concentrations and ameliorating plant photosynthetic processes.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China
| | - Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China
| | - Wantong Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China
| | - Yuanmei Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China; Jiangxi Engineering Research Center of Eco-Remediation of Heavy Metal Pollution, Jiangxi Academy of Science, Nanchang 330096, China.
| |
Collapse
|
33
|
Li Z, Deng H, Yang L, Zhang G, Li Y, Ren Y. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge. BIORESOURCE TECHNOLOGY 2018; 256:216-223. [PMID: 29453047 DOI: 10.1016/j.biortech.2018.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 05/14/2023]
Abstract
To investigate the influence of KOH activation on characteristics and environmental risk of heavy metals in chars, sludge was pyrolyzed with varying amount of KOH. The analyzation of characteristics and potential ecological risk evaluation of heavy metals were conducted by surface area analyzer, FTIR, XRD and BCR sequential extraction. The activated chars have higher surface area and lower content of silica compared to those without being activated. The activation of KOH promoted residual fraction of Cd, meanwhile, Zinc, Cr, Ni and Mn were converted to relatively unstable fractions (F2 and F3). The results of risk assessment indicated that the potential ecological risk level of Cd was reduced in activated chars, while risk level of Zn, Cr, Ni and Mn were increased after pyrolysis with KOH activation. The potential ecological risk of heavy metals in activated chars was further declined, and the risk level transformed from moderate to low.
Collapse
Affiliation(s)
- Zhengjia Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Hui Deng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Le Yang
- Agricultural School, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Genlin Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuqi Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yansen Ren
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
34
|
Li C, Wang X, Zhang G, Li J, Li Z, Yu G, Wang Y. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification. BIORESOURCE TECHNOLOGY 2018; 254:187-193. [PMID: 29413922 DOI: 10.1016/j.biortech.2018.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 05/09/2023]
Abstract
To fully dispose of/utilize sewage sludge, a process combing hydrothermal pretreatment (HTPT), anaerobic digestion (AD) and pyrolysis was developed and tested at the pilot scale. First, the improvement in sludge dewaterability by HTPT at 180 °C for 30 min was verified, and the water content decreased from 85 to 33 wt% after filter pressing. Then, the resulting filtrate underwent continuous mesophilic (37 ± 2 °C) AD in an up-flow anaerobic sludge bed (UASB) reactor for producing biogas to compensate for the energy required for HTPT. Meanwhile, the filter cake was pyrolyzed in a rotary furnace (600 ± 50 °C) to generate biochar, and heavy metals were well immobilized in the biochar. Finally, the material/energy balance made according to the pilot data showed that the proposed process was effective for full resource reuse of sewage sludge.
Collapse
Affiliation(s)
- Chunxing Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 36102, China
| | - Xingdong Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 36102, China
| | - Guangyi Zhang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 36102, China
| | - Zhiwei Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 36102, China
| | - Guangwei Yu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 36102, China
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, Xiamen 36102, China.
| |
Collapse
|
35
|
O'Connor D, Peng T, Zhang J, Tsang DCW, Alessi DS, Shen Z, Bolan NS, Hou D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:815-826. [PMID: 29166628 DOI: 10.1016/j.scitotenv.2017.11.132] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 11/12/2017] [Indexed: 05/12/2023]
Abstract
Polluted land is a global issue, especially for developing countries. It has been reported that soil amendment with biochar may reduce the bioavailability of a wide range of contaminants, including heavy metal(loids), potentially reclaiming contaminated soils for agricultural use. However, there have been only limited reports on the in situ application of biochar at the field scale. This review was devoted to providing preliminary scientific evidence from these field trials, based on a review of 29 publications involving field applications of biochar in 8 different countries. The data show that biochar's effectiveness in reducing the impacts of pollution depends on a myriad of factors in the field, including the application time period, site-specific factors (e.g. climate, biochar dosage rate, and mixing depth), biochar feedstock type, and biochar properties. The results of this review indicate that biochar application can potentially reduce contaminant bioavailability in the field; for instance, a significant decrease (control normalized mean value=0.55) in the Cd enrichment of rice crops was observed. It was found that the use of biochar may help increase crop yields on polluted land, and thus reduce the amount of mineral fertilizer used in the field. However, in order to maximize the benefits of biochar addition, farmers need to accept that the dosage rates of mineral fertilizers should be reduced. This review also revealed that the effectiveness of biochar in mitigating pollution may decrease with time due to ageing factors, such as leaching of biochar alkalinity.
Collapse
Affiliation(s)
- David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianyue Peng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Junli Zhang
- Solid Waste and Chemical Management Center, Ministry of Environmental Protection, Beijing 100029, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Zhengtao Shen
- School of Environment, Tsinghua University, Beijing 100084, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, Callaghan NSW2308, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Yousaf B, Liu G, Abbas Q, Ullah H, Wang R, Zia-Ur-Rehman M, Niu Z. Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil. CHEMOSPHERE 2018; 192:161-170. [PMID: 29101855 DOI: 10.1016/j.chemosphere.2017.10.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Potentially toxic elements (PTEs) discharge to the soil environment through increased anthropogenic activities is a global threat. These PTEs can have harmful and chronic-persistent health effects on exposed populations through food consumption grown on contaminated soils. Efforts to investigate the transformation mechanism and accumulation behavior of PTEs in soil-plant system and their adverse health-effects have focused extensively in previous studies. However, limited studies address biochar nanosheets (BCNs) as a potential soil amendment to reduced humans health risks through dietary intake of food-crop grown on PTE-contaminated soil. Here, we showed how BCNs cutback health hazards of PTEs through impacts on bioavailability and phytoaccumulation of PTEs, and their daily intake via consumption of wheat. When BCNs amendment was compared with both conventional organic amendments (COAs) and control, it significantly (P ≤ 0.05) reduced bioavailability and uptake of PTEs by wheat plants. Based on risk assessment results, the hazard indices (HIs) for PTEs in all treatments were <1, however, BCNs addition significantly (P ≤ 0.05) reduced risk level, when compared to control. Furthermore, the cancer risks for Cd, Cr and Ni over a lifetime of exposure were higher in all treatments than the tolerable limit (1.00E-4 to 1.00E-6), however BCNs addition significantly suppressed cancer risk compared to control. Conclusively, our results suggest that BCNs can be used as soil amendment to reduce potential risks of PTEs through consumption of food grown in PTE-contaminated soils.
Collapse
Affiliation(s)
- Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, PR China.
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ruwei Wang
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Zia-Ur-Rehman
- Soil, Water and Environmental Chemistry Laboratory, Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zhiyuan Niu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
37
|
Abbas T, Rizwan M, Ali S, Zia-Ur-Rehman M, Farooq Qayyum M, Abbas F, Hannan F, Rinklebe J, Sik Ok Y. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:37-47. [PMID: 28231504 DOI: 10.1016/j.ecoenv.2017.02.028] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is a well-known and widespread toxic heavy metal while the effects of biochar (BC) on Cd bioavailability and toxicity in wheat, especially in soils with aged contamination are largely unknown. In the present study, the effect of rice straw BC on Cd immobilization in soil and uptake by wheat in an agricultural contaminated-soil was investigated. Different levels of rice straw BC (0%, 1.5%, 3.0% and 5% w/w) were incorporated into the soil and incubated for two weeks. After this, wheat plants were grown in the amended soil until maturity. The results show that the BC treatments increased the soil and soil solution pH and silicon contents in the plant tissues and in the soil solution while decreased the bioavailable Cd in soil. The BC application increased the plant-height, spike-length, shoot and root dry mass and grain yield in a dose additive manner when compared with control treatment. As compared to control, BC application increased the photosynthetic pigments and gas exchange parameters in leaves. Biochar treatments decreased the oxidative stress while increased the activities of antioxidant enzymes in shoots compared to the control. The BC treatments decreased the Cd and Ni while increased Zn and Mn concentrations in shoots, roots, and grains of wheat compared to the control. As compared to the control, Cd concentration in wheat grains decreased by 26%, 42%, and 57% after the application of 1.5%, 3.0%, and 5.0% BC respectively. Overall, the application of rice straw BC might be effective in immobilization of metal in the soil and reducing its uptake and translocation to grains.
Collapse
Affiliation(s)
- Tahir Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Fakhir Hannan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management School of Architecture and Civil Engineering, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Yong Sik Ok
- Korea Biochar Research Centre and Department of Biological Environment, Kangwon National University, Chuncheon 200-701, South Korea
| |
Collapse
|