1
|
Xiong H, Hu N, Liang Y, Wang Q, Jiang C, Yang Z, Huang L. Greenhouse gas emissions from rotating biological contactors combined with hybrid constructed wetlands treating polluted river. BIORESOURCE TECHNOLOGY 2024; 414:131550. [PMID: 39362344 DOI: 10.1016/j.biortech.2024.131550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
The rotating biological contactors combined with hybrid constructed wetlands (R-HCWs) has promising treatment performance, however, concerns persisted regarding greenhouse gases (GHGs) emissions. In this study, GHGs in the R-HCWs was evaluated, and results revealed that R-HCWs facilitated nitrogen conversion and provided alternating oxygen environments, thereby promoting the reduction of N2O and CH4 emissions. Therefore, the comprehensive global warming potential (8.7±2.7 g CO2-eq·m-3·d-1) for handling unit volume of river water was low, thus, greater ecological benefits were achieved. The relative abundance of functional microorganisms such as Bacillus, Acinetobacter, Nitrospira and norank_f__norank_o__SBR1031, increased due to warm season, which promoted the nitrogen cycle and N2O emission reduction. Anammox and denitrifying bacteria showed significantly correlated with N2O and CH4 emissions (p < 0.01). This study provides valuable insights for the potential adoption of biological and ecological integrated treatment approach optimized for improving water and mitigating GHGs emissions.
Collapse
Affiliation(s)
- Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Chunli Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Zhimin Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing 400716, PR China.
| |
Collapse
|
2
|
Zhang G, Hao Q, Xu S, Li Y, Zhang W, Liang Z, Jiang C. Optimizing nitrogen removal in constructed wetlands for low C/N ratio wastewater treatment: Insights from fermentation liquid utilization. WATER RESEARCH 2024; 262:122124. [PMID: 39053209 DOI: 10.1016/j.watres.2024.122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The inefficient nitrogen removal in constructed wetlands (CWs) can be attributed to insufficient carbon sources for low carbon-to-nitrogen (C/N) ratio wastewater. In this study, sugarcane bagasse fermentation liquid (SBFL) was used as a supplemental carbon source in intermittently aerated CWs to enhance nitrogen removal. The impact of different regulated influent C/N ratios on nitrogen removal and greenhouse gas (GHG) emissions was investigated. Results demonstrated that SBFL addition significantly enhanced the denitrification capacity, resulting in faster NO3--N removal compared to sucrose. Moreover, intermittently aerated CWs significantly improved NH4+-N removal efficiency compared to non-aerated CWs. The highest total nitrogen removal efficiency (98.3 %) was achieved at an influent C/N ratio of 5 in intermittently aerated CWs with SBFL addition. The addition of SBFL resulted in a reduction of N2O emissions by 17.8 %-43.7 % compared to sucrose. All CWs exhibited low CH4 emissions, with SBFL addition (0.035-0.066 mg·m-2h-1) resulting in lower emissions compared to sucrose. Additionally, higher abundance of denitrification (nirK, nirS and nosZ) genes as well as more abundant denitrifying bacteria were shown in CWs of SBFL inputs. The results of this study provide a feasible strategy for applying SBFL as a carbon source to improve nitrogen removal efficiency and mitigate GHG emissions in CWs.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shiwen Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yanxun Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wenxiao Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhang G, Hao Q, Gou Y, Wang X, Chen F, He Y, Liang Z, Jiang C. Changing the order and ratio of substrate filling reduced CH 4 and N 2O emissions from the aerated constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173740. [PMID: 38839002 DOI: 10.1016/j.scitotenv.2024.173740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Constructed wetlands (CWs) have been used to enhance pollutant removal by filling several types of material as substrates. However, research on substrate filling order remains still limited, particularly regarding the effects of greenhouse gas (GHG) emissions. In this study, six CWs were constructed using zeolite and ferric‑carbon micro-electrolysis (Fe-C) fillers to evaluate the effect of changing the filling order and ratio on pollutant removal, GHGs emissions, and associated microbial structure. The results showed that the order of substrate filling significantly impacted pollutant removal performance on CWs. Specifically, CWs filled with zeolite in the top layer exhibited superior NH4+-N removal compared to those filled in the lower layer. Moreover, the highest NH4+-N removal (95.0 % ± 1.9 %) was observed in CWs with a zeolite to Fe-C volume ratio of 8:2 (CWZe-1). Moreover, zeolite-filled at the top had lower GHGs emissions, with the lowest CH4 (0.22 ± 0.10 mg m-2 h-1) and N2O (167.03 ± 61.40 μg m-2 h-1) fluxes in the CWZe-1. In addition, it is worth noting that N2O is the major contributor to integrated global warming potential (GWP) in the six CWs, accounting for 81.7 %-90.8 %. The upper layer of CWs filled with zeolite exhibited higher abundances of nirK, nirS and nosZ genes. The order in which the substrate was filled affected the microbial community structure and the upper layer of CWs filled with zeolite had higher relative abundance of nitrifying genera (Nitrobacter, Nitrosomonas) and denitrifying genera (Zoogloea, Denitratisoma). Additionally, N2O emission was reduced by approximately 41.2 %-64.4 % when the location of the aeration of the CWs was changed from the bottom to the middle. This study showed that both the order of filling the substrate and the aeration position significantly affected the GHGs emissions from CWs, and that CWs had lower GHGs emissions when zeolites were filled in the upper layer and the aeration position was in the middle.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongxiang Gou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xunli Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Fanghui Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yangjian He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Wang S, Li X, Ji M, Zhang J, Tanveer M, Hu Z. Is constructed wetlands carbon source or carbon sink? Case analysis based on life cycle carbon emission accounting. BIORESOURCE TECHNOLOGY 2023; 388:129777. [PMID: 37722543 DOI: 10.1016/j.biortech.2023.129777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Constructed wetlands (CWs) are widely used to polish the effluent of wastewater treatment plants and micro-polluted river or lake water. However, the impact of large-scale applications of CWs on carbon emissions is unclear. In this study, the carbon footprints of two full-scale hybrid CWs were determined based on life cycle assessment (LCA). Results showed that the carbon emission of CW ranged from 0.10 to 0.14 kg CO2-eq/m3, and was significantly correlated with the influent chemical oxygen demand loads and electricity consumption. However, CW would approach carbon neutrality during the service period when taking plant carbon sequestration into consideration. Compared with other advanced wastewater treatment technologies, CWs showed significant low-carbon emission and cost-effective benefits. This study clarified the role of CWs in the carbon cycle and would provide guidance for the construction and management of CWs.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaokang Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Mingde Ji
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Muhammad Tanveer
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
5
|
Chen X, Deng S, Ji B, Wu S, Chang J. Seasonal purification efficiency, greenhouse gas emissions and microbial community characteristics of a field-scale surface-flow constructed wetland treating agricultural runoff. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118871. [PMID: 37657292 DOI: 10.1016/j.jenvman.2023.118871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Controlling nonpoint source pollution (NPSP) is very important for protecting the water environment, and surface-flow constructed wetlands (SFCWs) have been widely established to mitigate NPSP loads. In this study, the pollutant removal efficiencies, greenhouse gas (GHG) emissions, and chemical and microbial community properties of the sediment in a large-scale SFCW established beside a plateau lake (Qilu Lake) in southwestern China to treat agricultural runoff were evaluated over a year. The SFCW performed best in terms of nitrogen removal in autumn (average efficiency of 63.5% at influent concentrations of 9.3-35.4 mg L-1) and demonstrated comparable efficiency in other seasons (23.7-40.0%). The removal rates of total phosphorus (TP) and chemical oxygen demand (COD) were limited (18.6% and 12.4% at influent concentrations of 1.1 and 45.5 mg L-1 on average, respectively). The SFCW was a hotspot of CH4 emissions, with an average flux of 31.6 mg m-2·h-1; moreover, CH4 emissions contributed the most to the global warming potential (GWP) of the SFCW. Higher CH4 and N2O fluxes were detected in winter and in the front-end section of the SFCW with high pollutant concentrations, and plant presence increased CH4 emissions. Significant positive relationships between nutrient and heavy metal contents in the SFCW sediment were detected. The microbial community compositions were similar in autumn and winter, with Thiobacillus, Lysobacter, Acinetobacter and Pseudomonas dominating, and this distribution pattern was clearly distinct from those in spring and summer, with high proportions of Spirochaeta_2 and Denitratisoma. The microbial co-occurrence network in spring was more complex with stronger positive correlations than those in winter and autumn, while it was more stable in autumn with more keystone taxa. Optimization of the construction, operation and management of SFCWs treating NPSP in lake watersheds is necessary to promote their environmental benefits.
Collapse
Affiliation(s)
- Xiaowan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shengjiong Deng
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Bohua Ji
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, 999078, China
| | - Suqing Wu
- Jiangxi Academy of Environmental Sciences, Nanchang, 330029, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
6
|
Zhang G, Hao Q, Ma R, Luo S, Chen K, Liang Z, Jiang C. Biochar and hematite amendments suppress emission of CH 4 and NO 2 in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162451. [PMID: 36863587 DOI: 10.1016/j.scitotenv.2023.162451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Constructed wetlands (CWs) are considered a widely used cost-effective technology for pollutant removal. However, greenhouse gas emissions are a non-negligible problem in CWs. In this study, four laboratory-scale CWs were established to evaluate the effects of gravel (CWB), hematite (CWFe), biochar (CWC), and hematite + biochar (CWFe-C) as substrates on pollutants removal, greenhouse gas emissions, and associated microbial characteristics. The results showed that the biochar-amended CWs (CWC and CWFe-C) enhanced the removal efficiency of pollutants, with 92.53 % and 93.66 % of COD and 65.73 % and 64.41 % of TN removal, respectively. Both single and combined inputs of biochar and hematite significantly reduced CH4 and N2O fluxes, with the lowest average of CH4 flux obtained in CWC (5.99 ± 0.78 mg CH4 m-2 h-1) and the least N2O flux in CWFe-C (287.57 ± 44.84 μg N2O m-2 h-1). The substantial reduction of global warming potentials (GWP) was obtained in the applications of CWC (80.25 %) and CWFe-C (79.5 %) in biochar-amended CWs. The presence of biochar and hematite mitigated CH4 and N2O emissions by modifying microbial communities with higher ratios of pmoA/mcrA and nosZ genes abundances, as well as increasing the abundance of denitrifying bacteria (Dechloromona, Thauera and Azospira). This study demonstrated that biochar and the combined use of biochar and hematite could be the potential candidates as functional substrates for the efficient removal of pollutants and simultaneously reducing GWP emissions in the constructed wetlands.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rongzhen Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shixu Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Keqin Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Pu Y, Li Y, Zhu L, Cheng Y, Nuamah LA, Zhang H, Chen H, Du G, Wang L, Song C. Long-term assessment on performance and seasonal optimal operation of a full-scale integrated multiple constructed wetland-pond system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:161219. [PMID: 36584951 DOI: 10.1016/j.scitotenv.2022.161219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.
Collapse
Affiliation(s)
- Yashuai Pu
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiping Li
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, PR China
| | - Yu Cheng
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linda A Nuamah
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haikuo Zhang
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongwei Chen
- Water Conservancy Bureau of Jiangsu Province, Yancheng 224002, PR China
| | - Guanchao Du
- Yanlong Lake Drinking Water Source Management Office, Yancheng 224002, PR China
| | - Ling Wang
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| | - Congqing Song
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| |
Collapse
|
8
|
Jiang BN, Lu MB, Zhang ZY, Xie BL, Song HL. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158688. [PMID: 36108836 DOI: 10.1016/j.scitotenv.2022.158688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Zero-waste biochar is an emerging tool for carbon neutralization, but the role of biochar in reducing greenhouse gases (GHGs) emissions from CWs were controversy and uncertainty. Yet, no previous study has integrated multiple research systems to quantitatively examine biochar-mediated GHGs emission reduction potential in CWs. Here we synthesized 114 studies to quantify biochar-induced declines ability of GHGs in the CWs by using the multi-level meta-analysis, reveal the variation of GHGs emission effect in different biochar-CWs and its response relationship with biochar, and identify the moderating variables that had a strong explanatory effect on the emission reduction effect of biochar. We showed that biochar remarkably affect CO2 mitigation (p < 0.05), but has insignificant and heterogeneous effects on CH4 and N2O. Pyrolysis time, influent dissolved oxygen (DO), influent NO3--N concentration, hydraulic retention time (HRT) and wetland type can significantly affect the effect of biochar on CH4 emission reduction. Particularly, the importance of HRT and wetland type was 0.89 and 0.85, respectively. Specially, the surface batch CWs modified by biochar could significantly promote the emission of CH4 (p < 0.001), and the effect size was up to 89.59. For N2O, biochar diameter, biochar addition ratio, influent COD/TN ratio, plant name, and removal efficiency of NO3--N/TN/COD were significant moderators. Among them, influent COD/TN ratio and plant name showed a stronger explanation. Planting Cyperus alternifolius L. significantly enhanced the N2O emission reduction capacity by biochar (p < 0.001), and effect size was as low as -24.32. 700-900 °C biochar can promote CH4 flux but inhibit N2O flux. This study provides an important theoretical basis and valuable strategic guidance for more accurate estimation and improvement of synergistic emission reduction benefits between CH4 and N2O of biochar in CWs.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Min-Bo Lu
- CCDI(Suzhou) Exploration & Design Consultant Co., Ltd., Suzhou 215123, PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Bo-Lun Xie
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Huang L, Bao J, Zhao F, Liang Y, Chen Y. New insight for purifying polluted river water using the combination of large-scale rotating biological contactors and integrated constructed wetlands in the cold season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116433. [PMID: 36352732 DOI: 10.1016/j.jenvman.2022.116433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ecological treatment technologies, applied to deal with polluted river water in the low temperature season, remain limited. In this study, a new insight was put forward for purifying polluted river water using a combination system (CS) of large-scale rotating biological contactors (RBCs) and integrated constructed wetlands in autumn and winter. The treatment performance, average removal contribution (RC), nitrification and denitrification rates, microbial community structure, and ecosystem service value were considered to estimate the combination system. Results revealed that the average removal efficiencies of ammonium (NH4+-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) reached 93.9%, 20.8%, 36.5%, and 37.1%, respectively. The combination system showed excellent removal efficiency of NH4+-N regardless of the effect of low temperature. The maximum values of nitrification and denitrification rates were 59.57 g N/(m3·d) and 0.78 g N/(m2·d), respectively. Considerable differences in bacterial community diversity, richness and relative abundance of functional microbes were observed in the main treatment units, resulting in different average RC to pollutants. The unit capital cost of CS purifying polluted river water was 260 USD/m3 and the operation and maintenance cost was 0.144 million USD/yr. Meanwhile, the ecosystem service value of the CS was 0.334 million USD in autumn and winter. CS not only possessed excellent pollutant purifying efficiencies, but also achieved high ecological service value in the cold season.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
10
|
Chen J, Hai Y, Zhang W, Zhou X. Insights into deterioration and reactivation of a mainstream anammox biofilm reactor response to C/N ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115780. [PMID: 35944318 DOI: 10.1016/j.jenvman.2022.115780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In-depth knowledge of the deterioration and reactivation of the anaerobic ammonium oxidation (anammox) induced by carbon-to-nitrogen (C/N) is still lacking. Herein, the anammox performance was investigated in an anaerobic sequence biofilm batch reactor fed with low-strength partial nitration effluent in the range of C/N ratio from 0.5 to 3. The anammox was hardly deteriorated at C/N lower than 1.5, while became worsen if C/N was above 2.0. The specific anammox activity (SAA) experiments showed an 85% decrease of SAA at C/N of 3.0 compared with the maximum value (C/N:0). However, anammox capacity was rapidly recovered once influent C/N was adjusted back to zero. Moreover, C/N also highly affected the composition, structure and function of extracellular polymeric substance of the anammox biofilm. High-throughput sequencing revealed a close correlation between C/N change and microbial structure shift. Finally, the potential inhibition and restoration mechanism of the C/N-dependent anammox were proposed based on metagenomic analysis. This research provides some insights into the reinstatement of a mainstream anammox biofilm process after it is interrupted by high C/N influent.
Collapse
Affiliation(s)
- Jiabo Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China; Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yan Hai
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China.
| |
Collapse
|
11
|
Patyal V, Jaspal D, Khare K. Materials in constructed wetlands for wastewater remediation: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2853-2872. [PMID: 34595802 DOI: 10.1002/wer.1648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The wastewater treatment industry is constantly evolving to abate emerging contaminants and to meet stringent legislative requirements. The existing technologies need to be modified, or new innovative treatment techniques need to be developed to ensure environmental protection and secure sustainability in the future. Emphasis is mainly on nutrient recovery, energy-efficient systems, zero waste generation, and environmentally friendly techniques. Constructed wetlands (CWs) have evolved as natural, eco-friendly, economical, and low-maintenance alternatives for wastewater remediation. These wetlands employ several materials as adsorbents for the treatment, commonly known as media/substrate. This review paper presents an assessment of various materials that can be used as substrates in CWs for the efficient removal of organic and non-biodegradable pollutants in different types of wastewaters. The effect of pH, mineral composition, specific surface area, and porosity of various natural materials and agricultural and industrial wastes used as media in CWs for wastewater remediation was discussed. The study showed that different substrates like alum sludge, limestone, coal slags, rice husk, and sand had removal efficiency for chemical oxygen demand (COD): 71.8%-82%, total phosphorous (TP): 77%-80%, and total nitrogen (TN): 52%-82% for different types of wastewaters. It also highlights the challenges related to the long-term sustainability of these materials. PRACTITIONER POINTS: Physicochemical characteristics influence the removal efficiency of the materials Life of media is also important along with removal efficiency and cost The sustainability of materials is very crucial for the overall performance of the system.
Collapse
Affiliation(s)
- Vandana Patyal
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Dipika Jaspal
- Department of Applied Science, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Kanchan Khare
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| |
Collapse
|
12
|
Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 2021; 12:10269-10301. [PMID: 34709979 PMCID: PMC8809956 DOI: 10.1080/21655979.2021.1993536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, YanglingChina
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| |
Collapse
|
13
|
Jia L, Sun H, Zhou Q, Zhao L, Wu W. Pilot-scale two-stage constructed wetlands based on novel solid carbon for rural wastewater treatment in southern China: Enhanced nitrogen removal and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112750. [PMID: 33991828 DOI: 10.1016/j.jenvman.2021.112750] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) have been proved to be an alternative to the treatment of various wastewater. However, there are few studies focused on the removal performance and mechanisms of pollutants in pilot-scale CWs packed with novel solid carbon. In this study, we investigated the effect of poly-3-hydroxybutyrate-co-3-hydroxyvalerate/polyacetic acid (PHBV/PLA) blends as carbon source on pollutant's transformation, microbial communities and functional genes in pilot-scale aeration-anoxic two-stage CWs for polishing rural runoff in southern China. Results showed a striking improvement of TN removal in CWs with PHBV/PLA blends (64.5%) compared to that in CWs with ceramsite (52.9%). NH4+-N (61.3-64.6%), COD (40.4-53.8%) and TP (43.6-47.1%) were also removed effectively in both two CWs. In addition, the strains of Rhodocyclaceae and Bacteroidetes were the primary denitrifiers on the surface of PHBV/PLA blends. Further, the aerobic stage induced gathering of 16 S and amoA genes and the anoxic zone with PHBV/PLA blends increased the nirS genes, which fundamentally explained the better denitrification performance in CW based on PHBV/PLA blends. Consequently, this study will provide straightforward guidance for the operation of engineering CWs packed with polymers to govern the low-C/N rural wastewater.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liu Zhao
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
14
|
Zhu Y, Cui L, Li J, Wang R, Vymazal J, Li W, Lei Y, Zhang M, Hao T, Wei J. Long-term performance of nutrient removal in an integrated constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146268. [PMID: 33744583 DOI: 10.1016/j.scitotenv.2021.146268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) have been regarded as efficient technologies for both wastewater treatment and reuse of water resources. Most studies on CW treatment efficiency are limited to a short-term perspective, and there are still many unknowns about the long-term performance of CWs. Here we evaluated the performance of an integrated CW that has been in operation for more than ten years. The average removal rates of TN and TP were maintained at 53.6% and 67.3% over 10 years, respectively. The annual mass reductions in TN and TP reached 937.5 kg ha-1 yr-1 and 303.2 kg ha-1 yr-1, respectively. In addition, TN removal rate was significantly higher in summer and autumn than those in spring, yet there was no seasonal difference in TP removal. The bacterial richness and diversity in summer and autumn were higher than those in spring. TN and TOC not only determine the bacterial community structure, but also affect the removal efficiency of CW. Denitrification and dephosphorization microorganisms were enriched and accounted for a considerable proportion (21.14-52.85%) in the bacterial community. In addition, the relative abundance of Pseudomonas was significantly positively related with the rate of TN and TP removal.
Collapse
Affiliation(s)
- Yinuo Zhu
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China.
| | - Jing Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Rumiao Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Yinru Lei
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Manyin Zhang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Ting Hao
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China; Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing 100091, China; Beijing Hanshiqiao National Wetland Ecosystem Research Station, Beijing 101399, China
| | - Jiaming Wei
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd, National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| |
Collapse
|
15
|
Ji B, Chen J, Li W, Mei J, Yang Y, Chang J. Greenhouse gas emissions from constructed wetlands are mitigated by biochar substrates and distinctly affected by tidal flow and intermittent aeration modes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116328. [PMID: 33360581 DOI: 10.1016/j.envpol.2020.116328] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Biochar substrates and tidal flow (TF) and intermittent aeration (IA) operation modes have recently been applied to improve the treatment performance of constructed wetlands (CWs), but their roles in regulating greenhouse gas (GHG) emissions from CWs are still unclear. In this preliminary study, CO2, CH4 and N2O fluxes and associated microbial characteristics in four groups of subsurface-flow CWs, i.e., ceramsite CWs (C-CWs), biochar-amended CWs (B-CWs), intermittently aerated B-CWs (AB-CWs) and tide-flow B-CWs (TB-CWs), were comparatively investigated. The results showed that biochar amendment significantly mitigated CH4 and N2O fluxes from the CWs by supporting higher abundances of mcrA and nosZ genes and higher ratios of pmoA/mcrA and nosZ/(nirK + nirS), thus reducing global warming potential (GWP, a decrease of 55.8%), in addition to promoting total nitrogen (TN) removal by 41.3%, mainly by increasing the abundances and activities of nitrifiers and denitrifiers. The TF mode efficiently improved nitrogen removal, but it greatly increased GHG fluxes since large amounts of GHGs escaped from the empty CW matrix after water draining. IA abated GHG emissions from the CWs, mainly after aeration. TF and IA decreased the abundances of functional bacteria and archaea related to C and N transformation, except nitrifiers, and shaped the microbial community structures. The application of a biochar substrate and IA mode can facilitate the design and operation of CWs in a more ecologically sustainable way.
Collapse
Affiliation(s)
- Bohua Ji
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China
| | - Jinquan Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Wei Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Jian Mei
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Ying Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Junjun Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments (Yunnan University), Kunming, 650091, China.
| |
Collapse
|
16
|
Zhang M, Zhao D, Chen C, Yang J, Lu Q, Zhang N, Leng X, An S. The effect of re-startup strategies on the recovery of constructed wetlands after long-term resting operation. BIORESOURCE TECHNOLOGY 2020; 311:123583. [PMID: 32474375 DOI: 10.1016/j.biortech.2020.123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to identify the proper re-startup strategies (RSSs) for constructed wetlands (CWs) after long-term resting operation in terms of the recovery of pollutant removal efficiency (RE) and N-cycle gene abundance. The results suggested that backwashing increased the gene abundance without shortening the recovery time of gene abundance. The RSS involving excavation and washing performed better in terms of chemical oxygen demand (COD) RE, especially at the beginning, and performed slightly better or similarly in terms of N-cycle gene abundance and the REs of ammonia nitrogen (NH4+-N) and total nitrogen (TN). The abundance of the Amox gene was 66.1-92.8, 76.3-161.8 and 1550-2492 times larger than that of the napA, narG and amoA genes, respectively, and the anammox process was the dominant N removal pathway. Therefore, excavation and washing is recommended as the RSS for CWs with a long-term rest period.
Collapse
Affiliation(s)
- Miao Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China.
| | - Chen Chen
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jiqiang Yang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Qianqian Lu
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Nannan Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Xin Leng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Li Y, Zhang H, Zhu L, Chen H, Du G, Gao X, Pu Y. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland-pond system: A case study. BIORESOURCE TECHNOLOGY 2020; 309:123310. [PMID: 32325377 DOI: 10.1016/j.biortech.2020.123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haikuo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, China.
| | - Hongwei Chen
- Yancheng Water Conservancy Bureau of Jiangsu Province, Yancheng 224001, China
| | - Guanchao Du
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Xu Gao
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Yashuai Pu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
18
|
Wu Q, Xiao J, Fu L, Ma M, Peng S. Microporous intermittent aeration vertical flow constructed wetlands for eutrophic water improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16574-16583. [PMID: 32125639 DOI: 10.1007/s11356-020-08067-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
To enhance eutrophic water improvement effect, three parallel lab-scale oxidation pond-vertical subsurface flow constructed wetland-stable pond combined systems with different microporous intermittent aeration positions were constructed. The purification effect of each system was determined, and the contribution rate of each part of the system was also calculated. The characters of bacterial community under different aeration positions were also analyzed. Microporous intermittent aeration rate of 5 mg/L was chosen as the aeration rate for follow-up experiment. The result showed that the best CODCr, total nitrogen, and total phosphorus removal efficiencies were achieved by the combined system with bottom microporous intermittent aeration, and the efficiencies were 71.04%, 79.52%, and 95.10%, respectively. The best ammonium nitrogen removal efficiency was 92.62% and was achieved by the combined system with surface microporous intermittent aeration. After analyses, 14 strains of bacteria associated with the removal of N elements were found and 8 strains of bacteria associated with P element cycle were found.
Collapse
Affiliation(s)
- Qing Wu
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Jingjing Xiao
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Lijuan Fu
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Mengxing Ma
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
19
|
Li X, Li Y, Li Y, Wu J. Enhanced nitrogen removal and quantitative analysis of removal mechanism in multistage surface flow constructed wetlands for the large-scale treatment of swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:575-582. [PMID: 31202022 DOI: 10.1016/j.jenvman.2019.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Constructed wetlands have recently been studied as a form of green infrastructure for the enhanced removal of nitrogen (N). This study aimed to demonstrate the use of multistage surface flow constructed wetland (SFCW) for treatment of swine wastewater. The results showed chemical oxygen demand (COD), total nitrogen (TN), NH4+, and NO3- removal rates of 16.3 g m-2 d-1, 9.14 g m-2 d-1, 7.75 g m-2 d-1, and 45.49 mg m-2 d-1, respectively. The sediment and plant absorption N rates were 2.44 g m-2 d-1, and 1.24 g m-2 d-1, respectively. Moreover, the microbial process which is the primary process, by which N is removed, accounted for 56.75-65.35%. Quantitative polymerase chain reaction (qPCR) revealed the highest microbial abundance in the segment of the SFCW with high N concentration. Ammonia-oxidizing bacteria (AOB) and nirK could be primarily responsible for the high removal rate of N. Factors like pH, DO, COD, N, and OM play an important role in influencing microbial abundance. It is suggested that the multistage SFCW has a promising future for the large scale treatment of swine wastewater.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China.
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| |
Collapse
|
20
|
Huang J, Yan C, Liu J, Guan W, Singh RP, Cao C, Xiao J. Feasibility study of vertical flow constructed wetland for tertiary treatment of nanosilver wastewater and temporal-spatial distribution of pollutants and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:28-36. [PMID: 31136937 DOI: 10.1016/j.jenvman.2019.04.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) have the potential to cause negative effects on nutrient removal in constructed wetlands (CWs), further leading to the deterioration of the water. The current work aimed to investigate the feasibility of vertical flow CW (VFCW) for tertiary treatment of AgNPs wastewater, temporal-spatial distribution of pollutants, and microbial community after 450-day exposure. Results reveal that the effluent of VFCW could still meet the discharge limits except the slightly excessive concentration of phosphorus (>0.5 mg/L) from day 390, with the average removal efficiencies of 83%, 61%, 42%, 70%, and 66% for the chemical oxygen demand, total nitrogen, ammonia nitrogen, total phosphorus, and soluble orthophosphate during 450 days, respectively. Results show that AgNPs removal was relatively stable over time, up to 96%. The temporal-spatial analysis reveals that all contaminants were mainly retained in the soil layer. The Ag concentrations in the upper soil layer and plant roots were higher than that in the lower soil layer and plant stems and leaves, respectively. Microbial sequencing analysis reveals the significant differences in the microbial community at different depths on day 450, with the dominant phyla of Proteobacteria, Acidobacteria, Chloroflexi and Bacteroidetes, and dominant genera of Halomonas and Pseudomonas. These results provide much needed knowledge for the implementation of ecological technologies for AgNPs and nutrient removal simultaneously.
Collapse
Affiliation(s)
- Juan Huang
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Chunni Yan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jialiang Liu
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Wenzhu Guan
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Rajendra Prasad Singh
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Chong Cao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Jun Xiao
- Dept. of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
21
|
Chen D, Gu X, Zhu W, He S, Huang J, Zhou W. Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios. BIORESOURCE TECHNOLOGY 2019; 285:121313. [PMID: 30959388 DOI: 10.1016/j.biortech.2019.121313] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
A constructed wetland (CW) was established to explore the influence of carbon addition (glucose or sodium acetate) on nitrogen removal and greenhouse gas (GHG) emissions at chemical oxygen demand to nitrogen ratios (COD/Ns) of 0, 4, 7. Results showed that the type of carbon source and COD/N significantly influenced the CW performance, in which the electrons transfer determined the regulation of denitrification, methanogenesis and respiration. Higher N2O emissions were consistent with higher nitrite accumulation at low COD/N because of electrons competition. The residual carbon source after near-complete denitrification could be further utilized by methanogenesis. Sodium acetate was superior to glucose in promoting denitrification and reducing global warming potential (GWP). In addition, bacteria sequencing and functional genes confirmed the important role of the type of carbon source on controlling nitrogen removal, carbon consumption and GHG emissions in microbial communities.
Collapse
Affiliation(s)
- Danyue Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenying Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
22
|
Kumar S, Dutta V. Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11662-11673. [PMID: 30879235 DOI: 10.1007/s11356-019-04816-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Constructed wetland microcosms (CWMs) are artificially designed ecosystem which utilizes both complex and ordinary interactions between supporting media, macrophytes, and microorganisms to treat almost all types of wastewater. CWMs are considered as green and sustainable techniques which require lower energy input, less operational and maintenance cost and provide critical ecological benefits such as wildlife habitat, aquaculture, groundwater recharge, flood control, recreational uses, and add aesthetic value. They are good alternatives to conventional treatment systems particularly for smaller communities as well as distant and decentralized locations. The pH, dissolved oxygen (DO), and temperature are the key controlling factors while several other parameters such as hydraulic loading rates (HLR), hydraulic retention time (HRT), diversity of macrophytes, supporting media, and water depth are critical to achieving better performance. From the literature survey, it is evaluated that the removal performance of CWMs can be improved significantly through recirculation of effluent and artificial aeration (intermittent). This review paper presents an assessment of CWMs as a sustainable option for treatment of wastewater nutrients, organics, and heavy metals from domestic wastewater. Initially, a concise note on the CWMs and their components are presented, followed by a description of treatment mechanisms, major constituents involved in the treatment process, and overall efficiency. Finally, the effects of ecological factors and challenges for their long-term operations are highlighted.
Collapse
Affiliation(s)
- Saroj Kumar
- Department of Environmental Science (DES), School of Environmental Science (SES), Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, UP, 226025, India
| | - Venkatesh Dutta
- Department of Environmental Science (DES), School of Environmental Science (SES), Babasaheb Bhimrao Ambedkar (A Central) University, Lucknow, UP, 226025, India.
| |
Collapse
|
23
|
Luo P, Liu F, Zhang S, Li H, Chen X, Wu L, Jiang Q, Xiao R, Wu J. Evaluating organics removal performance from lagoon-pretreated swine wastewater in pilot-scale three-stage surface flow constructed wetlands. CHEMOSPHERE 2018; 211:286-293. [PMID: 30077108 DOI: 10.1016/j.chemosphere.2018.07.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Pilot-scale three-stage surface flow constructed wetlands (SFCWs) planted with Myriophyllum aquaticum were constructed to study the organics removal performance from lagoon-pretreated swine wastewater. The removal performance of organics in the SFCWs was evaluated using deterministic and probabilistic methods and the results were consistent. The SFCWs achieved a relatively high removal efficiency (79.0-82.7%) for a wide influent COD concentration range (456-1010 mg L-1). No significant difference (p > 0.05) of COD removal efficiency and first-order removal rate constant among the various strengths of influent suggested that the present loading rates (2.74-6.06 g m-2 d-1) have not yet reached the maximum removal capacity of the SFCWs. The mean emission fluxes of methane from the SFCW units fed with different strengths of wastewater were 25-1210 mg m-2 d-1. A significantly positive correlation (p < 0.01) between methane emission fluxes and COD loading rates indicated that the anaerobic digestion of organics was an important process for organics removal in the SFCWs. No significant organics accumulation in the sediment over time suggested that plant harvest could be in favor of reducing the organics accumulation in the substrate and should be considered important during management of constructed wetlands.
Collapse
Affiliation(s)
- Pei Luo
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Shunan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Hongfang Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianwen Jiang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Runlin Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
24
|
Nguyen XC, Chang SW, Nguyen TL, Ngo HH, Kumar G, Banu JR, Vu MC, Le HS, Nguyen DD. A hybrid constructed wetland for organic-material and nutrient removal from sewage: Process performance and multi-kinetic models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:378-384. [PMID: 29870966 DOI: 10.1016/j.jenvman.2018.05.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/22/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M2) model did not fit the data (P > 0.05, and R2 < 0.5), whereas the first-order-CSTR (M1) model for the chemical oxygen demand (CODCr) and Monod-CSTR (M3) model for the CODCr and ammonium nitrogen (NH4-N) showed a high correlation with the experimental data (R2 > 0.5). The pollutant removal rates in the case of M1 were 0.19 m/d (CODCr) and those for M3 were 25.2 g/m2∙d for CODCr and 2.63 g/m2∙d for NH4-N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD5) and NH4-N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models.
Collapse
Affiliation(s)
- X Cuong Nguyen
- Faculty of Environmental Sciences, Hanoi University of Science, Vietnam National University, Hanoi, Viet Nam; Faculty of Environmental Engineering Technology, Hue University, Quang Tri Campus, Viet Nam
| | - S Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 94 San, Iui-dong, Youngtong-gu, Suwon-si 442-760, Gyeonggi-do, Republic of Korea
| | - Thi Loan Nguyen
- Faculty of Environmental Sciences, Hanoi University of Science, Vietnam National University, Hanoi, Viet Nam
| | - H Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Australia
| | | | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus of Anna University, Tirunelveli, 627007, Tamil Nadu, India
| | - M Cuong Vu
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - H Sinh Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - D Duc Nguyen
- Department for Management of Science and Technology Development & Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea.
| |
Collapse
|
25
|
Liu X, Zhang K, Fan L, Luo H, Jiang M, Anderson BC, Li M, Huang B, Yu L, He G, Wang J, Pu A. Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24426-24444. [PMID: 29909533 DOI: 10.1007/s11356-018-2226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
It is very important to control methane emissions to mitigate global warming. An intermittent micro-aeration control system was used to control methane emissions from an integrated vertical-flow constructed wetland (IVCW) to treat agricultural domestic wastewater pollution in this study. The optimized intermittent micro-aeration conditions were a 20-min aeration time and 340-min non-aeration time, 3.9 m3 h-1 aeration intensity, evenly distributed micro-aeration diffusers at the tank bottom, and an aeration period of every 6 h. Methane flux emission by intermittent micro-aeration was decreased by 60.7% under the optimized conditions. The average oxygen transfer efficiency was 26.73%. The control of CH4 emission from IVCWs was most strongly influenced by the intermittent micro-aeration diffuser distribution, followed by aeration intensity, aeration time, and water depth. Scaling up of IVCWs is feasible in rural areas by using intermittent micro-aeration control as a mitigation measure for methane gas emissions for climate change.
Collapse
Affiliation(s)
- Xiaoling Liu
- Sichuan Water Conservancy Vocational College, Chengdu, 611231, China
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Liangqian Fan
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Mingshu Jiang
- Sichuan Company of China Post Insurance, Chengdu, 610016, China
| | - Bruce C Anderson
- Department of Civil Engineering, Queen's University, Kingston, K7L 3N6, Canada
| | - Mei Li
- School of Urban and Rural Construction, Chengdu University, Chengdu, 610106, China
| | - Bo Huang
- Campus of Dujiangyan, Sichuan Agricultural University, Chengdu, 611830, China
| | - Lijuan Yu
- Campus of Dujiangyan, Sichuan Agricultural University, Chengdu, 611830, China
| | - Guozhu He
- Campus of Dujiangyan, Sichuan Agricultural University, Chengdu, 611830, China
| | - Jingting Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Pu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|