1
|
Jia Z, Duan J, Yu S, Song Z, He F, Wang Z. Hydrogel Embedding Enables Enhanced Leaf Deposition and Bioavailability of Fe-Based Engineered Nanoparticles. ACS NANO 2024; 18:28712-28723. [PMID: 39380455 DOI: 10.1021/acsnano.4c07002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Nanofertilizers comprising engineered nanoparticles (ENPs) have great potential in sustainable agriculture due to their strong capabilities of improving crop yields. As an effective fertilization strategy, foliar spraying could lead to broken and splashed ENP droplets, resulting in inaccurate leaf targeting and potential environmental contamination. Herein, we propose embedding Fe-based ENPs into a supramolecular hydrogel to effectively enhance the deposition amount on leaves and thus the bioavailability. The proper rheological properties of the hydrogel droplets and their robust interaction with soybean leaf simultaneously reduce the droplet rebound and fragmentation, especially under elevated impact speeds, resulting in up to 168.9% more droplet deposition compared to the ENP suspension. Computational fluid dynamics simulation analysis suggests that the contact angle is a key sensitive factor influencing the dynamic deposition behavior of the hydrogel droplet. A 15% reduction in the contact angle results in a 14% reduction of the highest bouncing height. The incorporation of ENPs enhances the viscous dissipation rate by 7.4% in comparison with pure hydrogel droplets. The hydrogel embedding also causes a 1.5-fold increase in ENP uptake compared to that of the ENP suspension. The hydrogel embedding delivers a reduction of 80% in the ENP application amount, compared to ENP suspensions, while achieving a 28% increase in the fresh weight of soybean seedlings. This work provides an effective method to enhance the deposition of ENPs during foliar application.
Collapse
Affiliation(s)
- Zhemin Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Jinfu Duan
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Shikang Yu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhekai Song
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Du C, Wang C, Sui J, Zheng L. Antibacterial performance of nanosecond laser irradiated zirconium-based bulk metallic glass. Proc Inst Mech Eng H 2024; 238:973-984. [PMID: 39380296 DOI: 10.1177/09544119241285659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Bulk metallic glasses (BMGs) have garnered significant attention in recent decades due to the outstanding physical, chemical, and biomedical characteristics. The biomedical application of metallic glass also received extensive attention. This report investigates the interplay among antibacterial performance, crystallization and processing parameters of Zr-based bulk metallic glass (Zr-BMG) following nanosecond laser irradiation. We examined surface morphology, crystallization behavior, surface quality, binding energy, and ion release properties post-laser irradiation. Additionally, we evaluated the generation of reactive oxygen species upon immersion of Zr-BMG in phosphate-buffered saline using the 2',7'-dichlorofluorescin diacetate method. Staphylococcus aureus was chosen to assess Zr-BMG's antibacterial performance, while mouse osteoblasts were utilized to investigate in vitro cytotoxicity. Our findings revealed that at laser energy intensities below 0.08 J/mm2, the amorphous structure of Zr-BMG remained intact after irradiation. Moreover, laser irradiation significantly enhanced the antibacterial performance of Zr-BMG. The release rate of ion, concentration of reactive oxygen species, and antibacterial properties exhibited direct proportionality to laser energy intensity. However, surfaces exhibiting high antibacterial efficacy also displayed elevated cytotoxicity. The surface irradiated with a 7 μJ ablation pulse and 200 mm/s irradiation speed demonstrated a superior balance between antibacterial and cytotoxic properties while maintaining an amorphous state. We hope this research can provide theoretical reference and data support for the application of metallic glass in biomedical application.
Collapse
Affiliation(s)
- Cezhi Du
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
- Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
| | - Jianbo Sui
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
| | - Lijuan Zheng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China
- State Key Laboratory for High-Performance Tools, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Kumar K, Sarkar P, Paul T, Shukla SP, Kumar S. Ecotoxicological effects of triclosan on Lemna minor: bioconcentration, growth inhibition and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56550-56564. [PMID: 39271616 DOI: 10.1007/s11356-024-34944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Triclosan (TCS), an emerging pollutant, is a notable contributor to adverse impacts on aquatic organisms due to its widespread use during COVID-19 and hydrophobic properties. There is extensive documented literature on TCS toxicity in commercially important fish species; however, studies on aquatic plants remain limited. In this prelude, the present study aims to evaluate the effect of TCS on Lemna minor, a commercially important aquatic plant species for 7 days. The results showed dose-dependent significant alterations in growth, pigments and stress enzymes of L. minor at varied concentrations of TCS (1 to 8 mg L-1). Median inhibitory concentration (IC50) was found to be 4.813 mg L-1. Total chlorophyll and carotenoid levels decreased 73.11 and 81.83%, respectively after 7 days of TCS exposure. A significant increase in catalase and superoxide dismutase activity was observed in TCS exposed groups as compared to the control. Bioconcentration factor was found to be in the range of 5.855 to 37.129 signifying TCS ability to accumulate and transfer through the food chain. Scanning electron microscopy (SEM) analysis showed deformation in the cell surface and alteration of stroma morphology of TCS exposed groups. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study also revealed that higher concentrations of TCS could cause alteration in the functional groups in the plant. This study demonstrates that TCS negatively impacts the growth and metabolism of primary producers, offering crucial insights into its interactions with aquatic plants and establishing baseline information essential for crafting effective mitigation strategies for TCS contamination in aquatic environments.
Collapse
Affiliation(s)
- Kundan Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Pritam Sarkar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, 855107, Bihar, India
| | - Satya Prakash Shukla
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
4
|
Zhao X, Ma Y, Dai W, Song Z, Wang Y, Shen J, He X, Yang F, Zhang Z. Alginate and chitosan surface coating reduces the phytotoxicity of CeO 2 nanoparticles to duckweed (Lemna minor L.). CHEMOSPHERE 2024; 362:142649. [PMID: 38901699 DOI: 10.1016/j.chemosphere.2024.142649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Little is known about the effect of surface coatings on the fate and toxicity of CeO2 nanoparticles (NPs) to aquatic plants. In this study, we modified nCeO2 with chitosan (Cs) and alginate (Al) to obtain positively charged nCeO2@Cs and negatively charged nCeO2@Al, respectively, and exposed them to a representative aquatic plant, duckweed (Lemna minor L.). Uncoated nCeO2 could significantly inhibit the growth of duckweed, induce oxidative damage and lead to cell death, whereas nCeO2@Cs and nCeO2@Al exhibited lower toxicity to duckweed. ICP-MS analysis revealed that the Ce content in duckweed from the nCeO2 group was 1.74 and 2.85 times higher than that in the nCeO2@Cs and nCeO2@Al groups, respectively. Microscopic observations indicated that the positively charged nCeO2@Cs was more readily adsorbed on the root surface of duckweed than the negatively charged nCeO2@Al. The results of XANES and LCF demonstrated that a certain percentage of Ce(Ⅳ) was reduced to Ce(Ⅲ) after the interaction of the three NPs with duckweed, but the degree of biotransformation differed among the treatments. Specifically, the absolute contents of Ce(III) produced of nCeO2@Cs and nCeO2@Al through biotransformation were reduced by 55.5% and 83.5%, respectively, compared with that of the nCeO2 group, which might be the key factor for the diminished phytotoxicity of the coated nCeO2 to the duckweed. These findings were valuable for understanding the toxicity of metal-based NPs to aquatic plants and for the synthesis of environmentally friendly nanomaterials.
Collapse
Affiliation(s)
- Xuepeng Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Shen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Puglia D, Luzi F, Tolisano C, Rallini M, Priolo D, Brienza M, Costantino F, Torre L, Del Buono D. Cellulose Nanocrystals and Lignin Nanoparticles Extraction from Lemna minor L.: Acid Hydrolysis of Bleached and Ionic Liquid-Treated Biomass. Polymers (Basel) 2024; 16:1395. [PMID: 38794588 PMCID: PMC11125853 DOI: 10.3390/polym16101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Using biomass to develop and obtain environmentally friendly and industrially applicable biomaterials is increasingly attracting global interest. Herein, cellulose nanocrystals (CNCs) and lignin nanoparticles (LNPs) were extracted from Lemna minor L., a freshwater free-floating aquatic species commonly called duckweed. To obtain CNCs and LNPs, two different procedures and biomass treatment processes based on bleaching or on the use of an ionic liquid composed of triethylammonium and sulfuric acid ([TEA][HSO4]), followed by acid hydrolysis, were carried out. Then, the effects of these treatments in terms of the thermal, morphological, and chemical properties of the CNCs and LNPs were assessed. The resulting nanostructured materials were characterized by using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that the two methodologies applied resulted in both CNCs and LNPs. However, the bleaching-based treatment produced CNCs with a rod-like shape, length of 100-300 nm and width in the range of 10-30 nm, and higher purity than those obtained with ILs that were spherical in shape. In contrast, regarding lignin, IL made it possible to obtain spherical nanoparticles, as in the case of the other treatment, but they were characterized by higher purity and thermal stability. In conclusion, this research highlights the possibility of obtaining nanostructured biopolymers from an invasive aquatic species that is largely available in nature and how it is possible, by modifying experimental procedures, to obtain nanomaterials with different morphological, purity, and thermal resistance characteristics.
Collapse
Affiliation(s)
- Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy; (M.R.); (L.T.)
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche, UdR INSTM, 60131 Ancona, Italy;
| | - Ciro Tolisano
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (C.T.); (D.P.); (D.D.B.)
| | - Marco Rallini
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy; (M.R.); (L.T.)
| | - Dario Priolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (C.T.); (D.P.); (D.D.B.)
| | - Monica Brienza
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Ferdinando Costantino
- Dipartimento di Chimica, Biologia e Biotecnologia, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
| | - Luigi Torre
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy; (M.R.); (L.T.)
| | - Daniele Del Buono
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (C.T.); (D.P.); (D.D.B.)
| |
Collapse
|
6
|
Zhang L, Cui Y, Xu J, Qian J, Yang X, Chen X, Zhang C, Gao P. Ecotoxicity and trophic transfer of metallic nanomaterials in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171660. [PMID: 38490428 DOI: 10.1016/j.scitotenv.2024.171660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Metallic nanomaterials (MNMs) possess unique properties that have led to their widespread application in fields such as electronics and medicine. However, concerns about their interactions with environmental factors and potential toxicity to aquatic life have emerged. There is growing evidence suggesting MNMs can have detrimental effects on aquatic ecosystems, and are potential for bioaccumulation and biomagnification in the food chain, posing risks to higher trophic levels and potentially humans. While many studies have focused on the general ecotoxicity of MNMs, fewer have delved into their trophic transfer within aquatic food chains. This review highlights the ecotoxicological effects of MNMs on aquatic systems via waterborne exposure or dietary exposure, emphasizing their accumulation and transformation across the food web. Biomagnification factor (BMF), the ratio of the contaminant concentration in predator to that in prey, was used to evaluate the biomagnification due to the complex nature of aquatic food chains. However, most current studies have BMF values of less than 1 indicating no biomagnification. Factors influencing MNM toxicity in aquatic environments include nanomaterial properties, ion variations, light, dissolved oxygen, and pH. The multifaceted interactions of these variables with MNM toxicity remain to be fully elucidated. We conclude with recommendations for future research directions to mitigate the adverse effects of MNMs in aquatic ecosystems and advocate for a cautious approach to the production and application of MNMs.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jingran Qian
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
7
|
Guo Y, Li H, Hao Y, Shang H, Jia W, Liang A, Xu X, Li C, Ma C. Size Effects of Copper Oxide Nanoparticles on Boosting Soybean Growth via Differentially Modulating Nitrogen Assimilation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:746. [PMID: 38727340 PMCID: PMC11085672 DOI: 10.3390/nano14090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
Nanoscale agrochemicals have been widely used in sustainable agriculture and may potentially affect the nitrogen fixation process in legume crops. The present study investigated the size-effects of copper oxide nanoparticles (CuO NPs) on nitrogen assimilation in soybean (G. max (L.) Merrill) plants, which were treated with different sizes (20 and 50 nm) of CuO NPs at low use doses (1 and 10 mg/kg) for 21 days under greenhouse conditions. The results showed that 50 nm CuO NPs significantly increased the fresh biomass more than 20 nm CuO NPs achieved at 10 mg/kg. The activities of N assimilation-associated enzymes and the contents of nitrogenous compounds, including nitrates, proteins, and amino acids, in soybean tissues were greatly increased across all the CuO NP treatments. The use doses of two sizes of CuO NPs had no impact on the Cu contents in shoots and roots but indeed increased the Cu contents in soils in a dose-dependent fashion. Overall, our findings demonstrated that both 20 and 50 nm CuO NPs could positively alter soybean growth and boost N assimilation, furthering our understanding that the application of nanoscale micro-nutrient-related agrochemicals at an optimal size and dose will greatly contribute to increasing the yield and quality of crops.
Collapse
Affiliation(s)
- Yaozu Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Hao Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Heping Shang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Weili Jia
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Anqi Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Chunyang Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; (Y.G.); (H.L.); (Y.H.); (H.S.); (A.L.); (X.X.); (C.L.)
| |
Collapse
|
8
|
Trela-Makowej A, Orzechowska A, Szymańska R. Less is more: The hormetic effect of titanium dioxide nanoparticles on plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168669. [PMID: 37989395 DOI: 10.1016/j.scitotenv.2023.168669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Titanium dioxide nanoparticles have attracted considerable attention due to their extensive applications; however, their multifaceted influence on plant physiology and the broader environment remains a complex subject. This review systematically synthesizes recent studies on the hormetic effects of TiO2 nanoparticles on plants - a phenomenon characterized by dual dose-response behavior that impacts various plant functions. It provides crucial insights into the molecular mechanisms underlying these hormetic effects, encompassing their effects on photosynthesis, oxidative stress response and gene regulation. The significance of this article consists in its emphasis on the necessity to establish clear regulatory frameworks and promote international collaboration to standardize the responsible adoption of nano-TiO2 technology within the agricultural sector. The findings are presented with the intention of stimulating interdisciplinary research and serving as an inspiration for further exploration and investigation within this vital and continually evolving field.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
9
|
Liu Y, Zhao X, Ma Y, Dai W, Song Z, Wang Y, Shen J, He X, Yang F, Zhang Z. Interaction of Cerium Oxide Nanoparticles and Ionic Cerium with Duckweed ( Lemna minor L.): Uptake, Distribution, and Phytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2523. [PMID: 37764551 PMCID: PMC10535116 DOI: 10.3390/nano13182523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
As one of the most widely used nanomaterials, CeO2 nanoparticles (NPs) might be released into the aquatic environment. In this paper, the interaction of CeO2 NPs and Ce3+ ions (0~10 mg/L) with duckweed (Lemna minor L.) was investigated. CeO2 NPs significantly inhibited the root elongation of duckweed at concentrations higher than 0.1 mg/L, while the inhibition threshold of Ce3+ ions was 0.02 mg/L. At high doses, both reduced photosynthetic pigment contents led to cell death and induced stomatal deformation, but the toxicity of Ce3+ ions was greater than that of CeO2 NPs at the same concentration. According to the in situ distribution of Ce in plant tissues by μ-XRF, the intensity of Ce signal was in the order of root > old frond > new frond, suggesting that roots play a major role in the uptake of Ce. The result of XANES showed that 27.6% of Ce(IV) was reduced to Ce(III) in duckweed treated with CeO2 NPs. We speculated that the toxicity of CeO2 NPs to duckweed was mainly due to its high sensitivity to the released Ce3+ ions. To our knowledge, this is the first study on the toxicity of CeO2 NPs to an aquatic higher plant.
Collapse
Affiliation(s)
- Yang Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.L.); (X.Z.)
| | - Xuepeng Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.L.); (X.Z.)
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Yun Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Jiaqi Shen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Fang Yang
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.L.); (X.Z.)
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
- School of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Fu SF, Feng LJ, Zhu H, Zhang Y, Yuan XZ, Zou H, Guo RB. Core-Shell Au@Nanoplastics as a Quantitative Tracer to Investigate the Bioaccumulation of Nanoplastics in Freshwater Ecosystems. Anal Chem 2023; 95:12785-12793. [PMID: 37565453 DOI: 10.1021/acs.analchem.3c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Studies on the adverse effects of nanoplastics (NPs, particle diameter <1000 nm) including physical damage, oxidative stress, impaired cell signaling, altered metabolism, developmental defects, and possible genetic damage have intensified in recent years. However, the analytical detection of NPs is still a bottleneck. To overcome this bottleneck and obtain a reliable and quantitative distribution analysis in complex freshwater ecosystems, an easily applicable NP tracer to simulate their fate and behavior is needed. Here, size- and surface charge-tunable core-shell Au@Nanoplastics (Au@NPs) were synthesized to study the environmental fate of NPs in an artificial freshwater system. The Au core enables the quantitative detection of NPs, while the polystyrene shell exhibits NP properties. The Au@NPs showed excellent resistance to environmental factors (e.g., 1% hydrogen peroxide solution, simulating gastric fluid, acids, and alkalis) and high recovery rates (>80%) from seawater, lake water, sewage, waste sludge, soil, and sediment. Both positively and negatively charged NPs significantly inhibited the growth of duckweed (Lemna minor L.) but had little effect on the growth of cyanobacteria (Microcystis aeruginosa). In addition, the accumulation of positively and negatively charged NPs in cyanobacteria occurred in a concentration-dependent manner, with positively charged NPs more easily taken up by cyanobacteria. In contrast, negatively charged NPs were more readily internalized in duckweed. This study developed a model using a core-shell Au@NP tracer to study the environmental fate and behavior of NPs in various complex environmental systems.
Collapse
Affiliation(s)
- Shan-Fei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, P. R. China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, P. R. China
| | - Li-Juan Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province 266237, P. R. China
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong Province 250014, P. R. China
| | - Honglu Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, P. R. China
| | - Yun Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province 266237, P. R. China
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province 214122, P. R. China
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, P. R. China
| |
Collapse
|
11
|
Wang J, Zhu J, Zheng Q, Wang D, Wang H, He Y, Wang J, Zhan X. In vitro wheat protoplast cytotoxicity of polystyrene nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163560. [PMID: 37080310 DOI: 10.1016/j.scitotenv.2023.163560] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nanoplastics are an emerging environmental pollutant, having a potential risk to the terrestrial ecosystem. In the natural environment, almost all the micro-or nano-plastics will be aged by many factors and their characterizations of the surface will be modified. However, the toxicity and mechanism of the modified polystyrene nanoparticles (PS-NPs) to plant cells are not clear. In the study, the amino- and carboxyl-modified PS-NPs with different sizes (20 and 200 nm) were selected as the typical representatives to investigate their effects on protoplast cell viability, reactive oxygen species (ROS) production in the cell and the leakage of cell-inclusion and apoptosis. The results indicated that the 20 nm amino-modified PS-NPs (PS-20A) could significantly damage the structure of the cell, especially the cell membrane, chloroplast and mitochondrion. After being modified by amino group, smaller size nanoplastics had the potential to cause more severe damage. In addition, compared with carboxyl-modified PS-NPs, the amino-modified PS-NPs induced more ROS production and caused higher membrane permeability/lactate dehydrogenase (LDH) leakage. Apoptosis assay indicated that the proportion of viable cells in the PS-20A treatment decreased significantly, and the proportion of necrotic cells increased by four times. This study provides new insights into the toxicity and damage mechanism of PS-NPs to terrestrial vascular plants at the cellular level, and guides people to pay attention to the quality and safety of agricultural products caused by nanoplastics.
Collapse
Affiliation(s)
- Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
12
|
Çiçek S. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109559. [PMID: 36738901 DOI: 10.1016/j.cbpc.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
In parallel with the raising use of copper oxide nanoparticles (CuO NPs) in various industrial and commercial practices, scientific reports on their release to the environment and toxicity are increasing. The toxicity of CuO NPs is mostly based on their oxidative stress. Therefore, it is necessary to investigate the efficacy of well-known therapeutic agents as antioxidants against CuO NPs damage. This study aimed to investigate the mechanism of this damage and to display whether l-ascorbic acid could preserve against the cell toxicities induced by CuO NPs in the rainbow trout gonad cells-2 (RTG-2). While CuO NPs treatment significantly diminished cell viability, the l-ascorbic acid supplement reversed this. l-ascorbic acid treatment reversed the changes in expressions of sod1, sod2, gpx1a, and gpx4b genes while playing a supportive role in the changes in the expression of the cat gene induced by CuO NPs treatment. Moreover, CuO NPs treatment caused an upregulation in the expressions of growth-related genes (gh1, igf1, and igf2) and l-ascorbic acid treatment further increased these effects. CuO NPs treatment significantly up-regulated the expression of the gapdh gene (glycolytic enzyme gene) compared to the control group, and l-ascorbic acid treatment significantly down-regulated the expression of the gapdh gene compared to CuO NPs treatment. The genotoxicity test demonstrated that l-ascorbic acid treatment increased the genotoxic effect caused by CuO NPs by acting as a co-mutagen. Based on the findings, l-ascorbic acid has the potential to be sometimes inhibitory and sometimes supportive of cellular mechanisms caused by CuO NPs.
Collapse
Affiliation(s)
- Semra Çiçek
- Animal Biotechnology Department, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
13
|
ZnO nanoparticles as potential fertilizer and biostimulant for lettuce. Heliyon 2023; 9:e12787. [PMID: 36647345 PMCID: PMC9840361 DOI: 10.1016/j.heliyon.2022.e12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Zn is an indispensable nutrient for crops that usually presents low bioavailability. Different techniques have been proposed to improve the bioavailability of Zn, including the use of nanofertilizers. The objective of the study was to evaluate the applications of drench (D) and foliar (F) ZnO nanoparticles (NZnO) compared to those of ionic Zn2+ (ZnSO4) in lettuce. The plants cv. Great Lakes 407 was produced in pots of 4 L with perlite-peat moss (1:1) under greenhouse conditions. The treatments consisted of NZnO applications that replaced the total Zn provided with a Steiner solution, as follows: Zn2+ (100%D) (control); Zn2+ (50%D+50%F); NZnO (100%D); NZnO (50%D+50%F); NZnO (75%D); NZnO (50%D); NZnO (75%F) and NZnO (50%F). Four applications of Zn were made with a frequency of 15 days. 75 days after transplant (DAP), the fresh and dry biomass, chlorophyll a, b, and β-carotene, phenolics, flavonoids, antioxidant capacity, vitamin C, glutathione, H2O2, total protein, and enzymatic activity of PAL, CAT, APX, and GPX were evaluated. The mineral concentrations (N, P, K, Ca, Mg, S, Cu, Fe, Mn, Mo, Zn, Ni, and Si) in the leaves and roots of plants were also determined. The results showed that, compared to Zn2+, NZnO promoted increases in biomass (14-52%), chlorophylls (32-69%), and antioxidant compounds such as phenolics, flavonoids, and vitamin C. The activity of enzymes like CAT and APX, as well as the foliar concentration of Ca, Mg, S, Fe, Mn, Zn, and Si increased with NZnO. A better response was found in the plants for most variables with foliar applications of NZnO equivalent to 50-75% of the total Zn2+ applied conventionally. These results demonstrate that total replacement of Zn2+ with NZnO is possible, promoting fertilizer efficiency and the nutraceutical quality of lettuce.
Collapse
|
14
|
Oláh V, Irfan M, Szabó ZB, Sajtos Z, Ragyák ÁZ, Döncző B, Jansen MAK, Szabó S, Mészáros I. Species- and Metal-Specific Responses of the Ionome of Three Duckweed Species under Chromate and Nickel Treatments. PLANTS (BASEL, SWITZERLAND) 2023; 12:180. [PMID: 36616308 PMCID: PMC9824728 DOI: 10.3390/plants12010180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In this study, growth and ionomic responses of three duckweed species were analyzed, namely Lemna minor, Landoltia punctata, and Spirodela polyrhiza, were exposed for short-term periods to hexavalent chromium or nickel under laboratory conditions. It was found that different duckweed species had distinct ionomic patterns that can change considerably due to metal treatments. The results also show that, because of the stress-induced increase in leaf mass-to-area ratio, the studied species showed different order of metal uptake efficiency if plant area was used as unit of reference instead of the traditional dry weight-based approach. Furthermore, this study revealed that μXRF is applicable in mapping elemental distributions in duckweed fronds. By using this method, we found that within-frond and within-colony compartmentation of metallic ions were strongly metal- and in part species-specific. Analysis of duckweed ionomics is a valuable approach in exploring factors that affect bioaccumulation of trace pollutants by these plants. Apart from remediating industrial effluents, this aspect will gain relevance in food and feed safety when duckweed biomass is produced for nutritional purposes.
Collapse
Affiliation(s)
- Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Muhammad Irfan
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Zsuzsanna Barnáné Szabó
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Zsófi Sajtos
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Ágota Zsófia Ragyák
- Atomic Spectroscopy Partner Laboratory, Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| | - Boglárka Döncző
- Institute for Nuclear Research (ATOMKI), Bem tér 18/c, H-4026 Debrecen, Hungary
| | - Marcel A. K. Jansen
- School of Biological, Earth and Environmental Science, University College Cork, Distillery Fields, North Mall, T23N73K Cork, Ireland
| | - Sándor Szabó
- Department of Biology, University of Nyiregyhaza, H-4401 Nyiregyhaza, Hungary
| | - Ilona Mészáros
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary
| |
Collapse
|
15
|
OsCERK1 Contributes to Cupric Oxide Nanoparticles Induced Phytotoxicity and Basal Resistance against Blast by Regulating the Anti-Oxidant System in Rice. J Fungi (Basel) 2022; 9:jof9010036. [PMID: 36675857 PMCID: PMC9866703 DOI: 10.3390/jof9010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
CuO NPs (cupric oxide nanoparticles) are widely used in various fields due to their high electrical conductivity, electronic correlation effect, and special physical property. Notably, CuO NPs have good application prospects in agricultural production because of its antifungal activity to prevent crop diseases. However, the increasing release of CuO NPs into the environment has resulted in a serious threat to the ecosystem, including plants. Previous studies have reported the toxicity of CuO NPs on rice, but little is known about the underlying molecular mechanisms or specific genes involved in the response to CuO NPs. In this study, we found that the rice well-known receptor Chitin Elicitor Receptor Kinase 1 (OsCERK1), which is essential for basal resistance against pathogens, is involved in CuO NPs stress in rice. Knockout of OsCERK1 gene resulted in enhanced tolerance to CuO NPs stress. Furthermore, it was revealed that OsCERK1 reduces the tolerance to CuO NPs stress by regulating the anti-oxidant system and increasing the accumulation of H2O2 in rice. In addition, CuO NPs treatment significantly enhances the basal resistance against M. oryzae which is mediated by OsCERK1. In conclusion, this study demonstrated a dual role of OsCERK1 in response to CuO NPs stress and M. oryzae infection by modulating ROS accumulation, which expands our understanding about the crosstalk between abiotic and biotic stresses.
Collapse
|
16
|
Ergönül MB, Nassouhi D, Çelik M, Dilbaz D, Sazlı D, Atasağun S. Lemna trisulca L.: a novel phytoremediator for the removal of zinc oxide nanoparticles (ZnO NP) from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90852-90867. [PMID: 35879634 DOI: 10.1007/s11356-022-22112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Several aquatic plant species have been proposed for phytoremediation of waters polluted with heavy metals and pesticides According to the limited information available, aquatic macrophytes also have a promising potential to remove NPs from aqueous media. Although there is considerable information on the remediation potential of Lemna spp., the capacity of Lemna trisulca seems to be neglected, particularly for nanoparticle removal. Therefore, in the current study, we aimed to investigate the removal efficiency of L. trisulca exposed to 3 different ZnO NP concentrations (2.5, 5, and 10 ppm) for 1, 4, and 7 days in Hoagland solutions and the removal percentage were measured on each duration and compared among groups. The accumulated zinc levels were measured in whole plant material and bioconcentration factors were calculated for each group. In addition, the effect of ZnO NPs on the photosynthetic activity of the plant was evaluated via analyzing the photosynthetic pigment (chlorophyll a and b) concentration. The removal percentage ranged between 9.3 and 72.9% and showed a gradual increase in all experimental groups based both on dose and test duration. The statistical comparisons of the removal percentage among the groups with or without the plant indicate that L. trisulca had a significant effect on removal rates particularly between 1st and 4th days of exposure, however, did not show any progress at 7th days. The only significant difference for chl-a and chl-b levels was observed in 10 ppm ZnO NP-exposed plants at 7th days.
Collapse
Affiliation(s)
- Mehmet Borga Ergönül
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey.
| | - Danial Nassouhi
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Meltem Çelik
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey
| | - Dilara Dilbaz
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Duygu Sazlı
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Sibel Atasağun
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
17
|
Mesquita AF, Abrantes N, Campos I, Nunes C, Coimbra MA, Gonçalves FJM, Marques JC, Gonçalves AMM. Effects of wildfire ash on the growth and biochemical profiles of the aquatic macrophyte Lemna minor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106245. [PMID: 35907386 DOI: 10.1016/j.aquatox.2022.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Wildfires are a social and environmental concern to the world due to their many adverse effects, including risk to the public health and security, economic damages in prevention and fight, ecosystems pollution, land usage sustainability, and biodiversity. In the Mediterranean region, these events have increased in the last years. Although several studies evaluated the impacts of the wildfires on the structure and function of the ecosystems and their communities, there is a lack of information at the biochemical level beyond the toxicological effects to the organisms. So, aiming to evaluate the potential toxic and biochemical effects of pine and eucalypt ash from high and low severity burned areas in the aquatic environments, L. minor growth, fatty acid and carbohydrate profiles were studied. Data showed that the wildfires ash from high severity burned areas are more toxic, with a higher growth inhibition than when exposed to ash from low severity burned areas. Considering the ash from low severity burned areas, eucalypt ash revealed to be more noxious to the macrophyte than pine ash. Furthermore, it was observed a decrease in the diversity and abundance of fatty acids content, comparing with the control. An opposite trend was observed in carbohydrates which increased with the organisms' exposure to almost all ash types, except in case of the organisms exposed to eucalypt ash from high severity burned areas, where carbohydrate content decreased.
Collapse
Affiliation(s)
- Andreia F Mesquita
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cláudia Nunes
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João C Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, 3001-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; University of Coimbra, MARE-Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, 3001-456 Coimbra, Portugal.
| |
Collapse
|
18
|
Xiao F, Feng LJ, Sun XD, Wang Y, Wang ZW, Zhu FP, Yuan XZ. Do Polystyrene Nanoplastics Have Similar Effects on Duckweed ( Lemna minor L.) at Environmentally Relevant and Observed-Effect Concentrations? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4071-4079. [PMID: 35290020 DOI: 10.1021/acs.est.1c06595] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the biological effects of nanoplastics (<100 nm in size) in aquatic environments have been increasingly investigated, almost all such studies have been performed at observed-effect concentrations (higher than 1 μg/mL). The use of observed-effect concentrations of nanoplastics can provide essential data for evaluating the potential risks, but how these results apply to the effects of concentrations of nanoplastics observed in the environment remains unclear. Here, we show that exposure to both positively and negatively charged nanoplastics at the observed-effect concentration (ranging from 0 to 50 μg/mL) can result in physiological changes of Lemna minor L., a typical flowering aquatic plant species, inducing H2O2 and O2- accumulation and even cell death. However, the nanoplastics at environmentally relevant concentrations (lower than 0.1 μg/mL) had no obvious effects on phenotype of L. minor. Moreover, nanoplastics at both observed-effect and environmentally relevant concentrations were adsorbed onto the roots and fronds of the plants, whereas uptake by the roots and fronds occurred only at the observed-effect concentration. Although no phenotypic changes across 30 generations of cultivation were observed when the plants were exposed to 0.015 μg/mL nanoplastics, the expression of genes related to the response to stimuli and to oxidative and osmotic stress was upregulated under both observed-effect and environmentally relevant concentrations. Our findings suggest that the long-term presence of nanoplastics at environmentally relevant concentrations might induce some variations in the transcription level and have potential threat to floating microphytes and aquatic ecosystems.
Collapse
Affiliation(s)
- Fu Xiao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Li-Juan Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yue Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zhong-Wei Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Fan-Ping Zhu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
19
|
Roubeau Dumont E, Elger A, Azéma C, Castillo Michel H, Surble S, Larue C. Cutting-edge spectroscopy techniques highlight toxicity mechanisms of copper oxide nanoparticles in the aquatic plant Myriophyllum spicatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150001. [PMID: 34492493 DOI: 10.1016/j.scitotenv.2021.150001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Copper oxide nanoparticles (CuO-NPs) have been increasingly released in aquatic ecosystems over the past decades as they are used in many applications. Cu toxicity to different organisms has already been highlighted in the literature, however toxicity mechanisms of the nanoparticulate form remain unclear. Here, we investigated the effect, transfer and localization of CuO-NPs compared to Cu salt on the aquatic plant Myriophyllum spicatum, an ecotoxicological model species with a pivotal role in freshwater ecosystems, to establish a clear mode of action. Plants were exposed to 0.5 mg/L Cu salt, 5 and 70 mg/L CuO-NPs during 96 h and 10 days. Several morphological and physiological endpoints were measured. Cu salt was found more toxic than CuO-NPs to plants based on all the measured endpoints despite a similar internal Cu concentration demonstrated via Cu mapping by micro particle-induced X-ray emission (μPIXE) coupled to Rutherford backscattering spectroscopy (RBS). Biomacromolecule composition investigated by FTIR converged between 70 mg/L CuO-NPs and Cu salt treatments after 10 days. This demonstrates that the difference of toxicity comes from a sudden massive Cu2+ addition from Cu salt similar to an acute exposure, versus a progressive leaching of Cu2+ from CuO-NPs representing a chronic exposure. Understanding NP toxicity mechanisms can help in the future conception of safer by design NPs and thus diminishing their impact on both the environment and humans.
Collapse
Affiliation(s)
- Eva Roubeau Dumont
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Arnaud Elger
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Céline Azéma
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Hiram Castillo Michel
- Beamline ID21, ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Suzy Surble
- Université Paris-Saclay, UMR 3685 CEA/CNRS NIMBE, CEA Saclay 91191, Gif-sur-Yvette, France
| | - Camille Larue
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
20
|
Wang X, Wang WX. Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118296. [PMID: 34627961 DOI: 10.1016/j.envpol.2021.118296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
21
|
Wang C, Sun Y, Ruan H, Yang J. Toxic effects of 2,4,4'- trichlorobiphenyl (PCB-28) on growth, photosynthesis characteristics and antioxidant defense system of Lemna minor L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:505-511. [PMID: 34166977 DOI: 10.1016/j.plaphy.2021.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a common category of persistent man-made organic pollutants that are widespread in the ambient environment. Although Lemna minor L. is an extensively applied plant for aquatic remediation in ecotoxicology research worldwide, little is known regarding its responses to the potentially toxic effects of PCBs. For this study, a 14-day dissolved exposure was conducted to explore the effects of 2,4,4'- trichlorobiphenyl (PCB-28) on the growth, photosynthesis characteristics and antioxidant defense system of L. minor plants. We found that 100 and 200 μg/L of PCB-28 decreased the fresh weight, chlorophyll and protein content, and activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, whereas plasma membrane permeability, and the malondialdehyde and reactive oxygen species concentrations were increased. However, it was observed that 5 and 20 μg/L of PCB-28 had no significant effects on these physiological indices. The ultra-structure of chloroplast demonstrated that 100 and 200 μg/L PCB-28 severely damaged the chloroplast structures. Moreover, correlation analysis revealed that the content of reactive oxygen species had negative correlations with the fresh weight, chlorophyll and protein content, as well as the activities of superoxide dismutase, peroxidase, glutathione S-transferase, and nitroreductase, but had positive correlations with the malondialdehyde content and plasma membrane permeability. This work provides valuable data toward elucidating the physiology and biochemistry of PCBs induced phytotoxicity.
Collapse
Affiliation(s)
- Cuiting Wang
- Department of Ecology, Nanjing Forestry University, Nanjing, China
| | - Yuan Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng Teachers University, Yancheng City, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| | - Honghua Ruan
- Department of Ecology, Nanjing Forestry University, Nanjing, China
| | - Jing Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China; Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
22
|
Bai Q, Wang Y, Duan L, Xu X, Hu Y, Yang Y, Zhang L, Liu Z, Bao H, Liu T. Cu-Doped-ZnO Nanocrystals Induce Hepatocyte Autophagy by Oxidative Stress Pathway. NANOMATERIALS 2021; 11:nano11082081. [PMID: 34443912 PMCID: PMC8399041 DOI: 10.3390/nano11082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
As a novel nanomaterial for cancer therapy and antibacterial agent, Cu-doped-ZnO nanocrystals (CZON) has aroused concern recently, but the toxicity of CZON has received little attention. Results of hematology analysis and blood biochemical assay showed that a 50 mg/kg dosage induced the increase in white blood cells count and that the concentration of alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT), and Malonaldehyde (MDA) in the serum, liver, and lungs of the CZON group varied significantly from the control mice. Histopathological examinations results showed inflammation and congestion in the liver and lung after a single injection of CZON at 50 mg/kg. A transmission electron microscope (TEM) result manifested the autolysosome of hepatocyte of mice which received CZON at 50 mg/kg. The significant increase in LC3-II and decrease in p62 of hepatocyte in vivo could be seen in Western blot. These results indicated that CZON had the ability to induce autophagy of hepatocyte. The further researches of mechanism of autophagy revealed that CZON could produce hydroxyl radicals measured by erythrocyte sedimentation rate (ESR). The result of bio-distribution of CZON in vivo, investigated by ICP-OES, indicated that CZON mainly accumulated in the liver and two spleen organs. These results suggested that CZON can induce dose-dependent toxicity and autophagy by inducing oxidative stress in major organs. In summary, we investigated the acute toxicity and biological distribution after the intravenous administration of CZON. The results of body weight, histomorphology, hematology, and blood biochemical tests showed that CZON had a dose-dependent effect on the health of mice after a single injection. These results indicated that CZON could induce oxidative damage of the liver and lung by producing hydroxyl radicals at the higher dose.
Collapse
Affiliation(s)
- Qianyu Bai
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yeru Wang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Luoyan Duan
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Xiaomu Xu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yusheng Hu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Huihui Bao
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| |
Collapse
|
23
|
Xiao Z, Yue L, Wang C, Chen F, Ding Y, Liu Y, Cao X, Chen Z, Rasmann S, Wang Z. Downregulation of the photosynthetic machinery and carbon storage signaling pathways mediate La 2O 3 nanoparticle toxicity on radish taproot formation. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124971. [PMID: 33429308 DOI: 10.1016/j.jhazmat.2020.124971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The molecular and physiological mechanisms of how rare earth oxide nanoparticles (NPs) alter radish (Raphanus sativus L.) taproot formation and cracking were investigated in the present study. We compared plants that received suspensions of 10, 50, 100, 300 mg L-1 of La2O3 NPs, 300 m L-1 La2O3 bulk-particles (BPs), 0.8 m L-1 La3+, or only water for six days during their tuber formation period. 100 and 300 mg L-1 La2O3 NPs exposure decreased storage root biomass by 38% and 60%, respectively, and they both induced visible root cracking. Physiological analyses showed that La2O3 NPs exposure (>100 mg L-1) significantly inhibited leaf net photosynthetic rate, cell wall pectin synthesis of both storage root epidermis and xylem parenchyma tissues, but increased the contents of cellulose and hemicellulose 1 in root epidermis cell walls. Moreover, transcriptome analysis further found that La2O3 NPs changed root cell wall structure by down-regulating core genes involved in cell wall pectin and IAA biosynthesis, which coincided with the observed La2O3 NPs-induced root cracking. Our results revealed the molecular mechanisms related to cell wall carbohydrate metabolism in response to NPs stress, providing a step forward for understanding the causes of NPs phytotoxicity on edible plant taproot formation and cracking.
Collapse
Affiliation(s)
- Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ying Ding
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhe Chen
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue-Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Xiong T, Zhang S, Kang Z, Zhang T, Li S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce ( Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms. Int J Mol Sci 2021; 22:3688. [PMID: 33916236 PMCID: PMC8036535 DOI: 10.3390/ijms22073688] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex mechanisms involved in plant response to nanoparticles (NPs) is indispensable in assessing the environmental impact of nano-pollutants. Plant leaves can directly intercept or absorb NPs deposited on their surface; however, the toxicity mechanisms of NPs to plant leaves are unclear. In this study, lettuce leaves were exposed to copper oxide nanoparticles (CuO-NPs, 0, 100, and 1000 mg/L) for 15 days, then physiological tests and transcriptomic analyses were conducted to evaluate the negative impacts of CuO-NPs. Both physiological and transcriptomic results demonstrated that CuO-NPs adversely affected plant growth, photosynthesis, and enhanced reactive oxygen species (ROS) accumulation and antioxidant system activity. The comparative transcriptome analysis showed that 2270 and 4264 genes were differentially expressed upon exposure to 100 and 1000 mg/L CuO-NPs. Gene expression analysis suggested the ATP-binding cassette (ABC) transporter family, heavy metal-associated isoprenylated plant proteins (HIPPs), endocytosis, and other metal ion binding proteins or channels play significant roles in CuO-NP accumulation by plant leaves. Furthermore, the variation in antioxidant enzyme transcript levels (POD1, MDAR4, APX2, FSDs), flavonoid content, cell wall structure and components, and hormone (auxin) could be essential in regulating CuO-NPs-induced stress. These findings could help understand the toxicity mechanisms of metal NPs on crops, especially NPs resulting from foliar exposure.
Collapse
Affiliation(s)
| | | | | | | | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; (T.X.); (S.Z.); (Z.K.); (T.Z.)
| |
Collapse
|
25
|
Bodnar IS, Cheban EV. Combined action of gamma radiation and exposure to copper ions on Lemna minor L. Int J Radiat Biol 2021; 98:1120-1129. [PMID: 33635160 DOI: 10.1080/09553002.2021.1894655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Under natural conditions, the reaction of living organisms to the action of acute gamma radiation depends on other stressors, including heavy metals. The aim of this work was to study changes in morphometric parameters, the content of photoassimilation pigments and the level of oxidative stress in irradiated duckweed at various copper concentrations in the culture medium. MATERIALS AND METHODS As a model organism, we used Lemna minor L. Duckweed was exposed to acute γ-radiation at doses of 18, 42, 63 Gy. After irradiation, the plants were transferred into a medium containing 3, 5, 6.3 μmol/L Cu. On the 4th day of exposure, the levels of chlorophyll, carotenoids, malondialdehyde (MDA) were measured; after 7 days, the specific growth rate, the level of damage, the change in the frond area, copper concentration in plant tissues were determined. RESULTS The action of γ-radiation (18, 42, 63 Gy) and copper ions (3, 5, 6.3 μmol/L) reduced the growth rate, increased the membrane lipid peroxidation, reduced the area of the fronds more significantly than under the separate action of the factors. The factors acted antagonistically on the specific growth rate. The content of copper in the tissues of irradiated plants (42, 63 Gy) increased. CONCLUSION Irradiation of duckweed with acute doses of gamma radiation reduced the resistance of plants to excess copper in the environment.
Collapse
Affiliation(s)
- Irina S Bodnar
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Evgenia V Cheban
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
26
|
Andreani T, Nogueira V, Gavina A, Fernandes S, Rodrigues JL, Pinto VV, Ferreira MJ, Silva AM, Pereira CM, Pereira R. Ecotoxicity to Freshwater Organisms and Cytotoxicity of Nanomaterials: Are We Generating Sufficient Data for Their Risk Assessment? NANOMATERIALS 2020; 11:nano11010066. [PMID: 33396620 PMCID: PMC7824120 DOI: 10.3390/nano11010066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023]
Abstract
The aim of the present study was to investigate the eco-cytotoxicity of several forms of nanomaterials (NM), such as nano-CuO, nano-TiO2, nano-SiO2 and nano-ZnO, on different aquatic species (Raphidocelis subcapitata, Daphnia magna and Lemna minor) following standard protocols and on human cell lines (Caco-2, SV-80, HepG2 and HaCaT). Predicted no-effect concentrations (PNEC) or hazard concentrations for 5% of the species (HC5) were also estimated based on the compilation of data available in the literature. Most of the NM agglomerated strongly in the selected culture media. For the ecotoxicity assays, nano-CuO and nano-ZnO even in particle agglomeration state were the most toxic NM to the freshwater organisms compared to nano-TiO2 and nano-SiO2. Nano-ZnO was the most toxic NM to R. subcapitata and D. magna, while nano-CuO was found to be very toxic to L. minor. Nano-CuO was very toxic to Caco-2 and HepG2 cells, particularly at the highest tested concentrations, while the other NM showed no toxicity to the different cell lines. The HC5 and PNEC values are still highly protective, due to data limitations. However, the present study provides consistent evidence of the potential risks of both nano-CuO and nano-ZnO against aquatic organisms and also their effects on public health.
Collapse
Affiliation(s)
- Tatiana Andreani
- Centro de Investigação em Química da Universidade do Porto, CIQUP & Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- CITAB—Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
- Correspondence: (T.A.); (R.P.); Tel.: +351-220-402-000 (T.A. & R.P.)
| | - Verónica Nogueira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - Ana Gavina
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
| | - Saul Fernandes
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
| | - José Luís Rodrigues
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões—Devesa Velha, 3700-121 São João Madeira, Portugal; (J.L.R.); (V.V.P.); (M.J.F.)
| | - Vera V. Pinto
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões—Devesa Velha, 3700-121 São João Madeira, Portugal; (J.L.R.); (V.V.P.); (M.J.F.)
| | - Maria José Ferreira
- Centro Tecnológico do Calçado de Portugal, Rua de Fundões—Devesa Velha, 3700-121 São João Madeira, Portugal; (J.L.R.); (V.V.P.); (M.J.F.)
| | - Amélia M. Silva
- CITAB—Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal;
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5000-801 Vila Real, Portugal
| | - Carlos M. Pereira
- Centro de Investigação em Química da Universidade do Porto, CIQUP & Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Ruth Pereira
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.G.); (S.F.)
- Correspondence: (T.A.); (R.P.); Tel.: +351-220-402-000 (T.A. & R.P.)
| |
Collapse
|
27
|
Gomes MP, Moreira Brito JC, Cristina Rocha D, Navarro-Silva MA, Juneau P. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111025. [PMID: 32888593 DOI: 10.1016/j.ecoenv.2020.111025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 μg l-1), enrofloxacin (ENR; 2 μg l-1), and oxytetracycline (OXY; 1 μg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil.
| | - Júlio César Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Minas Gerais, Brazil
| | - Daiane Cristina Rocha
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Mário Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chronomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal, Succ. Centre-Ville, H3C 3P8, Montréal, QC, Canada.
| |
Collapse
|
28
|
Alho LDOG, Souza JP, Rocha GS, Mansano ADS, Lombardi AT, Sarmento H, Melão MGG. Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114856. [PMID: 32540563 DOI: 10.1016/j.envpol.2020.114856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/26/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Copper oxide nanoparticles (CuO NP) have been produced on a large scale due to their economically interesting thermophysical properties. This heightens the concern about risks they may pose on their release into the environment, possibly affecting non-target organisms. Microalga are important organisms in ecotoxicological studies as they are at the base of the aquatic food chain, but information about their biochemical and photosynthetic changes in response CuO NP are still scarce. We studied the effects of CuO NP in Raphidocelis subcapitata using morphological, photosynthetic and biochemical biomarkers. Our results showed that the NP affected microalgal population growth with 0.70 mg Cu L-1 IC50-96 h (inhibition concentration). Based on predicted environmental concentrations of Cu NPs in aquatic environments, our results indicate potential risks of the NP to microalgae. Algal cell size, granularity and photosynthetic efficiencies were affected by the CuO NP at 0.97 and 11.74 mg Cu L-1. Furthermore, lipid metabolism was affected mostly at the highest NP concentration, but at environmentally relevant values (0.012 and 0.065 mg Cu L-1) the production of sterols (structural lipids) and triacylglycerols (reserve lipid) increased. Moreover, we found evidence of cell membrane impairment at the highest CuO NP concentration, and, as a photosynthetic response, the oxygen evolving complex was its main site of action. To the best of our knowledge, this is the first study to date to investigate microalgal lipid composition during CuO NP exposure, showing that it is a sensitive diagnostic tool. This research demonstrated that CuO NP may affect the physiology of R. subcapitata, and because they were observed in a primary producer, we foresee consequences to higher trophic levels in aquatic communities.
Collapse
Affiliation(s)
- Lays de Oliveira Gonçalves Alho
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Jaqueline Pérola Souza
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos - Universidade de São Paulo (USP), Avenida Trabalhador São-carlense, 400, Parque Arnold Schimidt, 13566-590, São Carlos, SP, Brazil.
| | - Giseli Swerts Rocha
- NEEA/CRHEA/SHS, São Carlos School of Engineering, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, 13560-970, São Carlos, SP, Brazil.
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Ana Teresa Lombardi
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Department of Botany. Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Mariada Graça Gama Melão
- Department of Hydrobiology, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
29
|
Wu J, Liu Y, Zhang J, Zhou J, Liu Z, Zhang X, Qian G. A density functional theory calculation for revealing environmentally persistent free radicals generated on PbO particulate. CHEMOSPHERE 2020; 255:126910. [PMID: 32402874 DOI: 10.1016/j.chemosphere.2020.126910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 05/16/2023]
Abstract
In particulate matter, organic precursors generate environmentally persistent free radicals (EPFRs) on metal oxides and attract worldwide attentions in health risk assessment and environmental protection. For the first time, we determined characteristics and formation processes of EPFRs evolved from different organic precursors on PbO particulate. As a result, phenol resulted in phenoxyl radical at 230 °C by releasing one H atom. One Cl atom was eliminated from monochlorobenzene and 1,2-dichlorobenzene, producing phenyl and chlorobenzene radicals, respectively. The decays of these radicals had an order of chlorobenzene radical (4 d) > phenyl radical (3 d) > phenoxyl radical (2 d). Density functional theory calculations indicated that the long decay of chlorobenzene radical was contributed to the high adsorption energy of 1,2-dichlorobenzene on PbO particulate. Furthermore, chlorobenzene radical produced more reactive oxygen species than the other two radicals in oxidative-stress investigations. Therefore, 1,2-dichlorobenzene creates more persistent EPFR, which will cause more dangerous health impact. The main results of this article provide a new insight into the health risk assessment of organic and oxide-containing particulate matter.
Collapse
Affiliation(s)
- Jianzhong Wu
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| | - Yun Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, PR China
| | - Jia Zhang
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China; SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, PR China.
| | - Jizhi Zhou
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China
| | - Zixing Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, PR China
| | - Xing Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, PR China
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, PR China; SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, PR China
| |
Collapse
|
30
|
Wang Y, Deng C, Cota-Ruiz K, Peralta-Videa JR, Sun Y, Rawat S, Tan W, Reyes A, Hernandez-Viezcas JA, Niu G, Li C, Gardea-Torresdey JL. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138387. [PMID: 32298898 DOI: 10.1016/j.scitotenv.2020.138387] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/04/2023]
Abstract
With the exponential growth of nanomaterial production in the last years, nano copper (Cu)-based compounds are gaining more consideration in agriculture since they can work as pesticides or fertilizers. Chinese scallions (Allium fistulosum), which are characterized by their high content of the antioxidant allicin, were the chosen plants for this study. Spectroscopic and microscopic techniques were used to evaluate the nutrient element, allicin content, and enzyme antioxidant properties of scallion plants. Plants were harvested after growing for 80 days at greenhouse conditions in soil amended with CuO particles [nano (nCuO) and bulk (bCuO)] and CuSO4 at 75-600 mg/kg]. Two-photon microscopy images demonstrated the particulate Cu uptake in nCuO and bCuO treated roots. In plants exposed to 150 mg/kg of the Cu-based compounds, root Cu content was higher in plants treated with nCuO compared with bCuO, CuSO4, and control (p ≤ 0.05). At 150 mg/kg, nCuO increased root Ca (86%), root Fe (71%), bulb Ca (74%), and bulb Mg (108%) content, compared with control (p ≤ 0.05). At the same concentration, bCuO reduced root Ca (67%) and root Mg (33%), compared with control (p ≤ 0.05). At all concentrations, nCuO and CuSO4 increased leaf allicin (56-187% and 42-90%, respectively), compared with control (p ≤ 0.05). The antioxidant enzymes were differentially affected by the Cu-based treatments. Overall, the data showed that nCuO enhances nutrient and allicin contents in scallion, which suggests they might be used as a nanofertilizer for onion production.
Collapse
Affiliation(s)
- Yi Wang
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Chaoyi Deng
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Keni Cota-Ruiz
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Jose R Peralta-Videa
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Youping Sun
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Swati Rawat
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Wenjuan Tan
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Andres Reyes
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jose A Hernandez-Viezcas
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Genhua Niu
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Chunqiang Li
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jorge L Gardea-Torresdey
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA.
| |
Collapse
|
31
|
Boros BV, Ostafe V. Evaluation of Ecotoxicology Assessment Methods of Nanomaterials and Their Effects. NANOMATERIALS 2020; 10:nano10040610. [PMID: 32224954 PMCID: PMC7221575 DOI: 10.3390/nano10040610] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
This paper describes the ecotoxicological effects of nanomaterials (NMs) as well as their testing methods. Standard ecotoxicity testing methods are applicable to nanomaterials as well but require some adaptation. We have taken into account methods that meet several conditions. They must be properly researched by a minimum of ten scientific articles where adaptation of the method to the NMs is also presented; use organisms suitable for simple and rapid ecotoxicity testing (SSRET); have a test period shorter than 30 days; require no special equipment; have low costs and have the possibility of optimization for high-throughput screening. From the standard assays described in guidelines developed by organizations such as Organization for Economic Cooperation and Development and United States Environmental Protection Agency, which meet the required conditions, we selected as methods adaptable for NMs, some methods based on algae, duckweed, amphipods, daphnids, chironomids, terrestrial plants, nematodes and earthworms. By analyzing the effects of NMs on a wide range of organisms, it has been observed that these effects can be of several categories, such as behavioral, morphological, cellular, molecular or genetic effects. By comparing the EC50 values of some NMs it has been observed that such values are available mainly for aquatic ecotoxicity, with the most sensitive test being the algae assay. The most toxic NMs overall were the silver NMs.
Collapse
|
32
|
Enzyme-free electrochemical sensor based on ZIF-67 for the detection of superoxide anion radical released from SK-BR-3 cells. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Mateos-Cárdenas A, Scott DT, Seitmaganbetova G, Frank N A M VP, John O, Marcel A K J. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:413-421. [PMID: 31279188 DOI: 10.1016/j.scitotenv.2019.06.359] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 05/20/2023]
Abstract
Microplastics (1-1000 μm) are ubiquitous in the marine, freshwater and terrestrial environments. These microsized plastics are considered freshwater pollutants of emerging concern, although the impacts on organisms and ecosystems are not yet clear. In particular, effects of microplastics on freshwater aquatic plants and the fate of microplastics in the freshwater trophic chain remain largely unexplored. Here we demonstrate that 10-45 μm polyethylene (PE) microplastics can strongly adsorb to all surfaces of the duckweed species Lemna minor. Despite adsorbance of up to 7 PE microplastics per mm2, seven day exposure experiments showed that photosynthetic efficiency and plant growth are not affected by microplastics. Rather, dense surface coverage suggests L. minor as a potential vector for the trophic transfer of microplastics. Here we show that the freshwater amphipod Gammarus duebeni can ingest 10-45 μm PE microplastics by feeding on contaminated L. minor. In this study, ingestion of microplastics had no apparent impact on amphipod mortality or mobility after 24 or 48 h exposure. Yet, the feeding study showed that the fate of microplastics in the environment may be complex, involving both plant adsorbance and trophic transfer.
Collapse
Affiliation(s)
- Alicia Mateos-Cárdenas
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland.
| | - David T Scott
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - Gulzara Seitmaganbetova
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - van Pelt Frank N A M
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Western Road, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - O'Halloran John
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| | - Jansen Marcel A K
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, Lee Road, Cork City, Ireland
| |
Collapse
|
34
|
Li M, Yang Y, Xie J, Xu G, Yu Y. In-vivo and in-vitro tests to assess toxic mechanisms of nano ZnO to earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:71-76. [PMID: 31203009 DOI: 10.1016/j.scitotenv.2019.05.476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Increasing applications of engineered nanomaterials lead to the release of nanoparticles into various environmental media, especially soil. However, the environmental behavior of nano ZnO in soil and the toxic mechanism to terrestrial invertebrates were not fully understood. In this study, the concentrations of nano ZnO in earthworms (Eisenia fetida) were measured to assess its bioaccumulation. The ratio of nano ZnO in earthworms to soil in 250 mg/kg treatment group was lower than that in 10 mg/kg treatment group as the earthworms would not take up too much nano ZnO to protect themselves from the damage. Combination of in-vivo and in-vitro tests was adapted to investigate the toxic mechanism of nano ZnO to earthworms. In in-vivo test, biomarkers including ROS, SOD, and MDA suggested that the toxic effects of nano ZnO to earthworms were caused by the oxidative stress. To further elucidate its toxic mechanism, in-vitro toxicity test was carried out by employing earthworm coelomocytes. The biomarkers, intracellular ROS, extracellular LDH, and cell viability showed concentration-dependent manner with nano ZnO in the culture media, demonstrating that in-vitro toxicity test could be utilized to reveal the toxic mechanism of nano ZnO to earthworms or other organisms.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Department of Architectural Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Jiawei Xie
- School of Food and Environmental Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
35
|
Spectroscopic approach for the interaction of carbon nanoparticles with cytochrome c and BY-2 cells: Protein structure and mitochondrial function. Int J Biol Macromol 2019; 138:29-36. [PMID: 31302123 DOI: 10.1016/j.ijbiomac.2019.07.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022]
Abstract
In this study, we employed multiple spectroscopic methods to analyze the effects of carbon nanoparticles (CNPs) on structure of cytochrome c (Cyt c) and mitochondrial function in plant cells. The tertiary structures of aromatic amino acid in Cyt c were not changed after addition of CNPs. Cyt c was found to be absorbed on the surfaces of CNPs in a non-linear manner and only bound Cyt c can be reduced. In addition, the binding of Cyt c was found to increase the diameter of CNPs at lower concentrations. The redox potential of Cyt c was almost not affected after treatment with CNPs. There were no obvious differences in cellular ATP after exposure to CNPs, and the mitochondrial membrane potential (MMP) was significantly decreased once the CNPs concentration exceeded 31.25 μg/mL. The levels of reactive oxygen species (ROS) also were increased in BY-2 cells. Taken together, these findings provide basis for the interactions between CNPs and Cyt c, as well as the effect of CNPs treatment on the mitochondria function in plant cells.
Collapse
|
36
|
He X, Xie C, Ma Y, Wang L, He X, Shi W, Liu X, Liu Y, Zhang Z. Size-dependent toxicity of ThO 2 nanoparticles to green algae Chlorella pyrenoidosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:113-120. [PMID: 30769157 DOI: 10.1016/j.aquatox.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/14/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Thorium (Th) is a natural radioactive element present in the environment and has the potential to be used as a clean nuclear fuel. Relatively little is known about the aquatic toxicity of Th, especially in nanoparticulate form, which may be the main chemical species of Th in the natural waters. In this study, impacts of ThO2 nanoparticles (NPs) with two different sizes (52 ± 5 nm, s-ThO2vs. 141 ± 6 nm, b-ThO2) on a green alga Chlorella pyrenoidosa (C. pyrenoidosa) were evaluated. Results indicated that C. pyrenoidosa was more sensitive to s-ThO2 (96-h EC30 = 64.1 μM) than b-ThO2 (96-h EC30 = 100.2 μM). Exposure to 200 μM of ThO2 NPs reduced the chlorophyll-a and chlorophyll-b contents of the algal cells. At 96 h, SEM and TEM showed that more agglomerates of s-ThO2 than those of b-ThO2 were attached onto the surface of algal cells. Reactive oxygen species (ROS) generation and membrane damage were induced after the attachment of high concentrations of ThO2 NPs. The heteroagglomeration between ThO2 NPs and algal cells and increased oxidative stress might play important roles in the toxicity of ThO2 NPs. To the best of our knowledge, this is the first report on aquatic toxicity of ThO2 NPs.
Collapse
Affiliation(s)
- Xingxing He
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lin Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqun Shi
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|