1
|
Kazim M, Saqib Z, Syed JH, Odabasi M, Kurt-Karakus PB. Characterization and distribution of brominated flame retardants in soils from informal E-waste recycling facilities: insights from Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:134. [PMID: 39760909 DOI: 10.1007/s10661-024-13551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021. The mean concentrations (ng/g) of ∑27PBDEs (polybrominated diphenyl ethers), ∑2PBB (polybrominated biphenyls), HBB (hexabromobiphenyl), and ∑HBCDD (hexabromocyclododecane) were 176 ( 0.76-11141), 31.0 (0.65-58.0), 1.39 (0.01-42.8), and 12.0 (0.22-461), respectively. These levels were significantly higher (6 to tenfold) than those at background sites. Karachi, Faisalabad, Gujranwala, and Lahore exhibited high levels of all BFRs. Notably, BDE-209 (mean = 45.5 ng/g) ranged (0.13-1152 ng/g) exhibited higher level in soil samples. Seasonally, total ΣBFR concentrations (ng/g) ranked higher in winter (11,620), followed by spring (3874), autumn (3139), and summer (1207) indicating a seasonal impact of recycling activities. The average daily dose for soil ingestion (ng/kg/day) was estimated for BDE-209 (0.10973) in Faisalabad, followed by BDE-47 (0.08616) and BDE-99 (0.06788) in Karachi. Our findings showed that these values were lower than RfD values, suggesting no ingestion risk from studied BFRs. However, the growing prevalence of such informal e-waste recycling facilities could lead to increased exposure to toxic chemicals in near future.
Collapse
Affiliation(s)
- Mureed Kazim
- Department of Environmental Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Zafeer Saqib
- Department of Environmental Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad, Tarlai Kalan Park Road 45550, Islamabad, Pakistan.
| | - Mustafa Odabasi
- Environmental Engineering Department, Faculty of Engineering, Dokuz Eylul University, İzmir, Turkey
| | - Perihan Binnur Kurt-Karakus
- Environmental Engineering Department, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
2
|
Tan J, Gao Y, Xia Y, Sun P, Qin W. Investigating the impact of dioxins, furans, and coplanar polychlorinated biphenyls on mortality, inflammatory states, and chronic diseases: An integrative epidemiological analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117463. [PMID: 39644569 DOI: 10.1016/j.ecoenv.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Several organic pollutants, including dioxins, furans, and coplanar polychlorinated biphenyls (PCBs), have become a growing concern due to their significant capacity for accumulation and migration across regions, as well as their extended half-lives and relatively high toxicity. Our study aimed to assess the impact of these pollutants on mortality, inflammatory states, and chronic diseases. Exposure was quantified in serum through high-resolution gas chromatography and isotope-dilution high-resolution mass spectrometry. Statistical analyses employed multivariate Cox regression, multivariate logistic regression, restricted cubic splines and subgroup analysis. The results indicated a significant increase in mortality (p < 0.05) associated with the seven substances classified as dioxins, furans, and PCBs. Moreover, these pollutants were linked to a higher incidence of chronic diseases, including hematological disorders, chronic kidney disease, hypertension, and diabetes (p < 0.05). Additionally, a robust correlation was observed between serum C-reactive protein (CRP) and neutrophil-to-lymphocyte ratio (NLR) concentrations and these substances, revealing their proinflammatory effects at specific concentrations. Consequently, our research unmasked that exposure to dioxins, furans, and coplanar PCBs could be associated with an elevated mortality rate, increased inflammatory conditions, and a higher incidence of chronic diseases. We proposed that exposure to these pollutants may initiate various afflictions by activating the inflammatory system, ultimately resulting in increased mortality. However, this hypothesis requires further empirical investigation to validate its assertions.
Collapse
Affiliation(s)
- Jiaxing Tan
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ying Gao
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yuanlin Xia
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, China.
| | - Peiyan Sun
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Frimpong SK, Gbeddy G, Dampare S, Sarfo MK, Gyamfi ET, Akyea-Larbi KO, Glover ET. Source identification and human health risk to polychlorinated biphenyls in public parks and playground surface soils, southern zone of Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1158. [PMID: 39496828 DOI: 10.1007/s10661-024-13320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024]
Abstract
Polychlorinated biphenyls (PCBs) constitute a typical example of persistent organic pollutants (POPs) that have been detected globally in most environmental media. Soil serves as a critical reservoir for PCBs. This research is aimed at evaluating the potential exposure and associated health risks posed by soil-laden PCBs to humans during outdoor activities on public playgrounds and parks within the southern zone of Ghana where limited studies have been undertaken. Surface soils collected from 56 sites were processed and analyzed for seven indicator PCBs in soil particle sizes less than 63 µm. A multi-residual analytical approach for the simultaneous analysis of PCBs and polycyclic aromatic hydrocarbons (PAHs) via gas chromatography tandem mass spectrometry was utilized. The results indicated that the concentration of PCBs ranged from 0.26 to 24.00 µg/kg with an average total concentration of 1.86 ± 3.23 µg/kg which is below the environment guideline threshold of 1.3 mg/kg stipulated by the Canadian Council of Ministers for residential playgrounds/parkland soils. Multivariate analysis showed that the sources of the PCBs could be attributed predominantly to historical release, atmospheric transfer, and deposition. The excess lifetime cancer risks posed to children and adults are less than 10-6 thereby implying the existence of low carcinogenic health risk to the human populace within the southern zone of Ghana. Thus, the conduct of outdoor activities at the public playgrounds/parks within these highly populated areas poses no significant risk to human health.
Collapse
Affiliation(s)
- Samuel Kofi Frimpong
- Regional Operations Directorate, Ghana Standards Authority, P. O. Box 245, Accra, Ghana
| | - Gustav Gbeddy
- Graduate School of Nuclear and Allied Science, University of Ghana, Atomic Energy, Kwabenya, P.O. Box AE 1, Accra, Ghana.
- Radiation Protection Institute, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana.
| | - Samuel Dampare
- Graduate School of Nuclear and Allied Science, University of Ghana, Atomic Energy, Kwabenya, P.O. Box AE 1, Accra, Ghana
- National Nuclear Research Institute, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | - Mark Kwasi Sarfo
- National Nuclear Research Institute, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | - Eva Tabua Gyamfi
- National Nuclear Research Institute, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| | | | - Eric Tetteh Glover
- Graduate School of Nuclear and Allied Science, University of Ghana, Atomic Energy, Kwabenya, P.O. Box AE 1, Accra, Ghana
- Radiation Protection Institute, Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
| |
Collapse
|
4
|
Quansah JK, Saalia FK, Chen J. Pesticides residues in leafy green vegetables and irrigation waters in Accra, Ghana. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:129-136. [PMID: 38390717 DOI: 10.1080/19393210.2024.2317407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Pesticides are used in vegetable farming to control pests and diseases, reduce crop losses and improve yield. The study examined pesticide residues in irrigation waters and leafy green vegetables grown in some farming areas in Accra, Ghana. Three types of irrigation water sources (n = 23) and two exotic and four indigenous Ghanaian leafy vegetables (n = 34) from 10 farming areas in Accra, Ghana were collected and examined for 15 organochlorines, 13 organophosphorus and 9 synthetic pyrethroids pesticide residues using the modified QuEChERS procedure. Pesticide residues were detected on 50% (17/34) of the leafy vegetable and 52% (12/23) of the irrigation water samples analysed. Chlorpyrifos and deltamethrin were the most detected pesticide residues in the vegetables and irrigation water. About 26.5% of the vegetables contained pesticide residues exceeding the EU maximum residue limits, so vegetable farmers should be encouraged to comply with appropriate measures on pesticide use to enhance food safety.
Collapse
Affiliation(s)
- Joycelyn K Quansah
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia, USA
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Firibu K Saalia
- Department of Nutrition and Food Science, University of Ghana, Legon, Ghana
| | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia, USA
| |
Collapse
|
5
|
Zhang LN, Peng PA, Li HR, Liu MY, Hu JF. Halogenated aromatic pollutants in routine animal-derived food of south China: Occurrence, sources, and dietary intake risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124002. [PMID: 38636834 DOI: 10.1016/j.envpol.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.
Collapse
Affiliation(s)
- Li-Na Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping-An Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou, 510640, China
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Ming-Yang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Fang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
6
|
Devendrapandi G, Liu X, Balu R, Ayyamperumal R, Valan Arasu M, Lavanya M, Minnam Reddy VR, Kim WK, Karthika PC. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 249:118404. [PMID: 38341071 DOI: 10.1016/j.envres.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Xinghui Liu
- Key Laboratory of Western China's Environmental System, College of Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
7
|
Abdulai PM, Sam K, Onyena AP, Ezejiofor AN, Frazzoli C, Ekhator OC, Udom GJ, Frimpong CK, Nriagu J, Orisakwe OE. Persistent organic pollutants and heavy metals in Ghanaian environment: a systematic review of food safety implications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:376. [PMID: 38492071 DOI: 10.1007/s10661-024-12500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/24/2024] [Indexed: 03/18/2024]
Abstract
Advances in industrial and technological innovations have led to significant socio-economic benefits, but with overwhelming negative impacts on the environment. These impacts include the infiltration of organic contaminants into soil, water, and air, posing a threat to the environment and public health. Polybrominated diphenyl ethers (PBDEs), heavy metals, and polycyclic aromatic hydrocarbons (PAHs) are increasingly released as waste, endangering the environment. In countries like Ghana, where regulations are weakly enforced, industrial waste is released uncontrollably, posing threats to public health, environmental integrity, and food systems. This study systematically evaluated existing literature on PBDEs, heavy metals, PAHs, and organic contaminant exposure in Ghana and proposes a roadmap for achieving food safety and protecting the environment and human health. The research identified high mobility of specific heavy metals and risks associated with PBDEs and PAHs in sediments, dumpsites, and various food items. Unregulated dumping of electronic waste with PBDEs raised environmental concerns. An integrated approach is needed to address the multifaceted impact of organic pollutants on public health and ecosystems. Urgent implementation of effective environmental management strategies and regulatory measures is crucial. The study proposed short- to mid-term priorities emphasising the need to foster collaboration and implementing global measures. The mid- to long-term strategy includes a national information surveillance system, local monitoring capacity development, and integrating land contamination controls with food safety legislation. These measures would mitigate risks, ensure sustainable practices, and improve overall food safety management in Ghana, serving as a model for regions facing similar challenges with diverse pollutants.
Collapse
Affiliation(s)
- Prosper Manu Abdulai
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Kabari Sam
- Department of Marine Environment and Pollution Control, Nigeria Maritime University, Okerenkoko, Nigeria
- School of the Environment, Geography and Geoscience, University of Portsmouth, University House, Winston Churchill Ave, Portsmouth, PO1 2UP, UK
| | - Amarachi Paschaline Onyena
- Department of Marine Environment and Pollution Control, Nigeria Maritime University, Okerenkoko, Nigeria
| | - Anthoneth Ndidi Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome, Italy
| | - Osazuwa Clinton Ekhator
- Department of Science Laboratory Technology, Faculty of Science, University of Benin, Benin City, Nigeria
| | - Godswill J Udom
- Department of Pharmacology and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Caleb Kesse Frimpong
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Orish Ebere Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10 Mersin, Turkey.
| |
Collapse
|
8
|
Xu K, Li Z, Qiao J, Wang S, Xie P, Zong Z, Hu C. Persistent organic pollutants exposure and risk of autism spectrum disorders: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122439. [PMID: 37619697 DOI: 10.1016/j.envpol.2023.122439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Accumulating number of epidemiological studies has recently proposed that improvement in the risk of autism spectrum disorders (ASD) is associated with persistent organic pollutants (POPs) exposure. However, evidence from current researches is limited and inconsistent. Thus, we conducted a systematic review and meta-analysis to investigate the potential associations comprehensively. We systematically and extensively searched two electronic databases (PubMed and EMBASE) from inception to July 3, 2022 and an updated search was performed before submission. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were derived from stratified random-effects meta-analyses by type of exposure and outcome. We also tested the potential heterogeneity across studies, conducted sensitivity analysis and evaluated publication bias. A total of 20 studies were finally included in our study. Meta-analytical effect estimates indicated a positive association between prenatal exposure to PCB-138, PCB-153 and PCB-170 and an increased risk of ASD, with OR of 1.89 (95% CI = 1.21-2.95, I2 = 0%), 1.61 (95% CI = 1.05-2.47, I2 = 0%) and 1.46 (95% CI = 1.03-2.06, I2 = 0%) respectively. In contrast, PFDA was found inversely associated with the risk of ASD (OR = 0.70, 95% CI = 0.52-0.94, I2 = 0%). The level of evidence supporting a link between ASD risk and exposure to PCB-138, PCB-153, PCB-170, and PFDA was respectively categorized as low, low, moderate, and low. In summary, this systematic review and meta-analysis suggest that exposure to PCB-138, PCB-153, and PCB-170 correlates with a heightened risk of ASD, with evidence levels rated as "low", "low", and "moderate", respectively. In contrast, PFDA exposure appears to be inversely associated with ASD risk, with a "low" level of supporting evidence. However, due to the limited number of studies available for each exposure and outcome pairing, these results should be interpreted with caution. Sufficiently powered studies are needed to validate our findings.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhuoyan Li
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jianchao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Senzheng Wang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Pinpeng Xie
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhiqiang Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
9
|
Hu J, Zhang N, Srinivasan B, Yang J, Tang K, Zhang L, Liu X, Zhang X. Photosynthetic response mechanism to polybrominated diphenyl ether exposure in Chlorella pyrenoidosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115245. [PMID: 37451097 DOI: 10.1016/j.ecoenv.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Polybrominated diphenyl ether (PBDE) contamination is common in aquatic environments and can severely damage aquatic organisms. However, there is a lack of information on the response and self-adaptation mechanisms of these organisms. Chlorella pyrenoidosa was treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), causing significant growth inhibition, pigment reduction, oxidative stress, and chloroplast atrophy. Photosynthetic damage contributed to inhibition, as indicated by Fv/Fm, Chl a fluorescence induction, photosynthetic oxygen evolution activity, and photosystem subunit stoichiometry. Here, Chl a fluorescence induction and quinone electron acceptor (QA-) reoxidation kinetics showed that the PSII donor and acceptor sides were insensitive to BDE47. Quantitative analyses of D1 and PsaD proteins illustrated that PSII and PSI complexes were the main primary targets of photosynthesis inhibition by BDE47. Significant modulation of PSII complex might have been caused by the potential binding of BDE47 on D1 protein, and molecular docking was performed to investigate this. Increased activation of antioxidant defense systems and photosystem repair as a function of exposure time indicated a positive resistance to BDE47. After a 5-day exposure, 23 % of BDE47 was metabolized. Our findings suggest that C. pyrenoidosa has potential as a bioremediator for wastewater-borne PBDEs and can improve our understanding of ecological risks to microalgae.
Collapse
Affiliation(s)
- Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Ning Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | | | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kaixin Tang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lifei Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xueli Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xin Zhang
- College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| |
Collapse
|
10
|
Parizek O, Gramblicka T, Parizkova D, Polachova A, Bechynska K, Dvorakova D, Stupak M, Dusek J, Pavlikova J, Topinka J, Sram RJ, Pulkrabova J. Assessment of organohalogenated pollutants in breast milk from the Czech Republic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161938. [PMID: 36740074 DOI: 10.1016/j.scitotenv.2023.161938] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
This biomonitoring survey brings new information on the occurrence of a total of 94 organohalogenated pollutants in 231 human breast milk samples collected in 2019 and 2021 from women living in two regions of the Czech Republic (Karvina and Ceske Budejovice). This study aimed to evaluate the concentrations of 6 indicator polychlorinated biphenyls (PCBs), 10 organochlorine pesticides (OCPs), 34 halogenated flame retardants (HFRs), 29 perfluoroalkyl and polyfluoroalkyl substances (PFAS) and 15 polychlorinated naphthalenes (PCNs). PCBs, OCPs, most of HFRs and PCNs were identified/quantified by gas chromatography coupled to (tandem) mass spectrometry (GC-MS(/MS)), while PFAS, hexabromocyclododecane isomers (HBCD), brominated phenols, and tetrabromobisphenol A (TBBPA) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The mean value of the sum of the 6 indicator PCBs was 123.12 nanogram per gram of lipid weight (ng g-1 lw). Hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and p,p'-dichlorodiphenyl-dichloroethylene (p,p'-DDE) were the most abundant OCPs, detected in 100 % (mean 11.8 ng g-1 lw), 94.8 % (mean 6.1 ng g-1 lw) and 100 % (mean 101.5 ng g-1 lw) of samples, respectively. PCN congeners 20, 52 and 66 were detected in <1 % of the samples. The HFRs concentrations were relatively low compared to the levels of OCP; The detection rate of polybrominated diphenyl ethers (PBDEs, # 47, 99 and 153) ranged 21-68 % with a mean concentrations of 0.34 ng g-1 lw - 0.42 ng g-1 lw. PFAS concentrations were also low, with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) dominant in this group (means of 22 pg ml-1 and 21 pg ml-1, respectively). Our results confirmed the long-term trend of declining levels of banned POPs in Czech mothers. The amounts of PCBs and OCPs were higher in older breastfeeding primiparous women.
Collapse
Affiliation(s)
- Ondrej Parizek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Denisa Parizkova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Andrea Polachova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Kamila Bechynska
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Michal Stupak
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jiri Dusek
- Hospital Ceske Budejovice, a.s., 370 01 Ceske Budejovice, Czech Republic
| | - Jitka Pavlikova
- Institute of Experimental Medicine AS CR, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine AS CR, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radim J Sram
- Institute of Experimental Medicine AS CR, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
11
|
Naha A, Antony S, Nath S, Sharma D, Mishra A, Biju DT, Madhavan A, Binod P, Varjani S, Sindhu R. A hypothetical model of multi-layered cost-effective wastewater treatment plant integrating microbial fuel cell and nanofiltration technology: A comprehensive review on wastewater treatment and sustainable remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121274. [PMID: 36804140 DOI: 10.1016/j.envpol.2023.121274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wastewater management has emerged as an uprising concern that demands immediate attention from environmentalists worldwide. Indiscriminate and irrational release of industrial and poultry wastes, sewage, pharmaceuticals, mining, pesticides, fertilizers, dyes and radioactive wastes, contribute immensely to water pollution. This has led to the aggravation of critical health concerns as evident from the uprising trends of antimicrobial resistance, and the presence of xenobiotics and pollutant traces in humans and animals due to the process of biomagnification. Therefore, the development of reliable, affordable and sustainable technologies for the supply of fresh water is the need of the hour. Conventional wastewater treatment often involves physical, chemical, and biological processes to remove solids from the effluent, including colloids, organic matter, nutrients, and soluble pollutants (metals, organics). Synthetic biology has been explored in recent years, incorporating both biological and engineering concepts to refine existing wastewater treatment technologies. In addition to outlining the benefits and drawbacks of the current technologies, this review addresses novel wastewater treatment techniques, especially those using dedicated rational design and engineering of organisms and their constituent parts. Furthermore, the review hypothesizes designing a multi-bedded wastewater treatment plant that is highly cost-efficient, sustainable and requires easy installation and handling. The novel setup envisages removing all the major wastewater pollutants, providing water fit for household, irrigation and storage purposes.
Collapse
Affiliation(s)
- Aniket Naha
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla-689 101, Kerala, India
| | - Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla-689 101, Kerala, India
| | - Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar-788004, India
| | - Dhrubjyoti Sharma
- Biological Engineering, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar, 382 355 India
| | - Anamika Mishra
- Department of Biotechnology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Devika T Biju
- Department of Biomedical Science, University of Salford, England, M5 4WT, United Kingdom
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam-690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691 505, Kerala, India.
| |
Collapse
|
12
|
Liu M, Li H, Chen P, Song A, Peng P, Hu J, Sheng G, Ying G. PCDD/Fs and PBDD/Fs in sediments from the river encompassing Guiyu, a typical e-waste recycling zone of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113730. [PMID: 35691194 DOI: 10.1016/j.ecoenv.2022.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Severe pollution of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and their brominated analogues (PBDD/Fs) was frequently reported for the waters located near unregulated e-waste recycling areas. However, the migrations of these high-level dioxins via waterways and their potential threats to the lower reaches were seldom investigated. In this study, we analyzed PCDD/Fs and PBDD/Fs in 27 surficial sediments collected from the Lian River encompassing the Guiyu, China e-waste recycling zone, and investigated their distributions, sources, migration behaviors and risks. Both PCDD/Fs and PBDD/Fs in these sediments exhibited a spatial trend of Guiyu > Guiyu downriver > Guiyu upriver, illustrating that the Guiyu e-waste recycling activities were the uppermost dioxin contributors in this watershed. Sediments from different Guiyu villages demonstrated big gaps in PCDD/F concentrations and congener compositions, and the reason was attributed to the diverse e-waste recycling activities practiced in these villages. Sediments near the e-waste open-burning areas demonstrated extremely high PCDD/F concentrations and unique PCDD/F profiles featured by low-chlorinated PCDFs (tetra- to hexa-), which is quite different from the OCDD-dominant PCDD/F profile found in most of the Lian River sediments. The geographical distributions of PCDD/F concentrations and profiles illustrate that the substantial amount of PCDD/Fs in Guiyu sediments were mainly retained in local and vicinal water bodies. The principal component analysis (PCA) results further confirm that the high-level PCDD/Fs in Guiyu sediments exhibited quite limited translocations downstream and therefore exerted little influences on the lower reaches. Pentachlorophenol use in history, ceramic industry and vehicle exhaust were diagnosed as the major PCDD/F sources for most sediments of the Lian River. Total toxicity equivalent quantities (TEQs) of 70% of the Lian River sediments surpassed the high-risk limit specified for mammalian life by the U.S.EPA (25 pg TEQ g-1), and most of these sediments were from Guiyu and its near downstream, which merit continuous attention and necessary remediation measures.
Collapse
Affiliation(s)
- Mingyang Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiru Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Pei Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Aimin Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
13
|
Fernandes G, Roques O, Lassabatère L, Sarles L, Venisseau A, Marchand P, Bedell JP. Influence of edaphic conditions and persistent organic pollutants on earthworms in an infiltration basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119192. [PMID: 35318068 DOI: 10.1016/j.envpol.2022.119192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, stormwater management has developed to allow stormwater to infiltrate directly into the soils instead of being collected and routed to sewer systems. However, during infiltration, stormwater creates a sediment deposit at the soil surface as the result of high loads of suspended particles (including pollutants), leading to the settlement of sedimentary layers prone to colonization by plants and earthworms. This study aims to investigate the earthworm communities of a peculiar infiltration basin and investigate the influence of edaphic conditions (water content, organic matter content, pH, height of sediment) and of persistent organic pollutants (POPs: PCBs, PCDDs and PCDFs) on these earthworms. Attention was paid to their age (juveniles or adults) and their functional group (epigeic, endogeic, anecic). We found that the earthworm abundance was mostly driven by edaphic conditions, with only a slight impact of POPs, with a significant negative impact of PCBDLno for juveniles and endogeic, and PCDDs for epigeic. On the contrary, the height of the sediment and the water content are beneficial for their presence and reproduction. Furthermore, POPs contents are also linked to physicochemical parameters of the sediment. Bioaccumulation was clearly revealed in the studied site but does not differ between juveniles and adults, except for PCDDs. Conversely, BAF values seemed to vary between functional groups, except for PCBDL non-ortho. It strongly varies with the family types (PCBs versus PCCD/Fs) and between congeners within the same family, with specific strong bioaccumulation for a few congeners.
Collapse
Affiliation(s)
- G Fernandes
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - O Roques
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - L Lassabatère
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - L Sarles
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - A Venisseau
- Oniris, INRAE, LABERCA, 44300, Nantes, France
| | - P Marchand
- Oniris, INRAE, LABERCA, 44300, Nantes, France
| | - J-P Bedell
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France.
| |
Collapse
|
14
|
Akyeampong E, Bend JR, Luginaah I, Oscar Yawson D, Jerry Cobbina S, Ato Armah F, Osei Adu M, Kofi Essumang D, Iddi S, Botwe PK, Quansah R. Urinary Pesticide Residual Levels and Acute Respiratory Infections in Children Under 5 Years of Age: Findings From the Offinso North Farm Health Study. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221094418. [PMID: 35521362 PMCID: PMC9067049 DOI: 10.1177/11786302221094418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/23/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Several environmental factors are associated with the risk of acute lower respiratory infections (ALRIs) and upper respiratory infections (URIs) in children under 5 years of age (YOA). Evidence implicating chemical pesticides remains equivocal. There are also no data on this subject in these children in Ghana. This study investigated the association between urinary pesticide residual levels and the risk for ALRIs/URIs in children under 5 YOA. METHODS The participants for this study were from the Offinso North Farm Health Study, a population-based cross-sectional study. Two hundred and fifty four parents/guardians who had answered affirmatively to the question "Has your child ever accompanied you to the farm?" were interviewed on household socio-demographic and environmental factors, being breastfed, child education, age, gender, and respiratory infection. One hundred fifty children were randomly selected to provide the first void urine. RESULTS The proportion of children with ALRI was 22.1% and those with URI was 35.8%. We observed a statistically significant exposure-response relation of p,p'-DDE (tertile) with ALRI (1.7-3.2 µg/L urine: prevalence ratio [PR] = 1.22 [1.05-1.70], ⩾3.2 µg/L urine: 1.50 [1.07-3.53] [P-for trend = .0297]). This observation was in children older than two YOA (P-for trend = .0404). Delta-HCH and beta-HCH (2-levels) were significantly associated with ALRI but not URI. The risk of ALRI increased with deltamethrin levels in an exposure-response manner (2.5-9.5 µg/L urine: 2.10 [1.37-3.24], ⩾9.5 µg/L urine: 4.38 [1.87-10.32] [P-for trend = .0011]) and this was also observed in children older than two YOA. Similar observation was noted for URI. Bifenthrin (>0.5 µg/L urine) was positively associated with ALRI and URI whereas permethrin (⩾1.2 µg/L urine) was not associated only with URI. CONCLUSIONS The present study supports the hypothesis that exposure to chemical pesticides is associated with respiratory infections in children under 5 YOA.
Collapse
Affiliation(s)
- Enoch Akyeampong
- Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - John R Bend
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Isaac Luginaah
- Department of Geography, Western University, London, ON, Canada
| | - David Oscar Yawson
- Centre for Resource Management and Environmental Studies (CERMES), The University of the West Indies, Bridgetown, St. Michael, Barbados
| | - Samuel Jerry Cobbina
- Department of Ecotourism and Environmental Management, Faculty of Natural Resources and Environment, University for Development Studies, Nyankpala, Ghana
| | - Frederick Ato Armah
- Department of Environmental Science, School of Biological Sciences, College of Agriculture & Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael Osei Adu
- Department of Crop Science, School of Agriculture, College of Agriculture & Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Kofi Essumang
- Environmental Research Group, Department of Chemistry, School of Physical Sciences, University of Cape Coast, Ghana
| | - Samuel Iddi
- Department of Statistics and actuarial science, University of Ghana, Legon, Accra, Ghana
| | - Paul K Botwe
- Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Reginald Quansah
- Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
15
|
Steinhausen SL, Agyeman N, Turrero P, Ardura A, Garcia-Vazquez E. Heavy metals in fish nearby electronic waste may threaten consumer's health. Examples from Accra, Ghana. MARINE POLLUTION BULLETIN 2022; 175:113162. [PMID: 34839955 DOI: 10.1016/j.marpolbul.2021.113162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 05/14/2023]
Abstract
Electronic waste sites are rich in heavy metals contained in electronic and electric equipment waste and pose a risk of pollution if metals enter in the environment nearby. The Korle lagoon, located in the center of Accra, is receiving waste effluents from industries, households and the adjacent e-waste burning site Agbogbloshie which is the biggest in the country. Thus, the risk of heavy metal contamination of the water body and subsequent uptake in the aquatic food chain is particularly relevant. Small-scale fishing, not entering the commercial chain, occurs in the lagoon despite its consideration of biologically dead. We assessed if the exposure to heavy metals through these fish consumption is posing higher health risks than fish sold on Ghanaian markets. Using ICP-MS technology, we quantified concentrations of As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn in fish caught from the Korle Lagoon (Trachinotus ovatus, Mugil curema and Mugil cephalus) and compared them to fish from the Tema Newtown fishing market (Scomber colias, Pseudotolithus senegallus). Cobalt and lead concentrations, typical e-waste metals, were higher in fish from the Korle lagoon, even though they were of lower trophic level. Calculated risk indices revealed risk of elevated arsenic and mercury exposure, particularly through T. ovatus from the Korle lagoon, if consumed daily as it is common in the region. This study suggests the need of monitoring programs of Ghanaian catch, with a special focus in environmental risk areas like Korle lagoon to ensure human food safety.
Collapse
Affiliation(s)
- Sophie L Steinhausen
- University of Oviedo, Department of Functional Biology, Faculty of Medicine, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Narkie Agyeman
- University of Oviedo, Department of Functional Biology, Faculty of Medicine, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Pablo Turrero
- Spanish National Distance-Learning University (UNED), Gijón Campus, Avda. Jardin Botanico 1345, 33203 Gijón, Spain.
| | - Alba Ardura
- University of Oviedo, Department of Functional Biology, Faculty of Medicine, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Eva Garcia-Vazquez
- University of Oviedo, Department of Functional Biology, Faculty of Medicine, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| |
Collapse
|
16
|
Milićević T, Romanić SH, Popović A, Mustać B, Đinović-Stojanović J, Jovanović G, Relić D. Human health risks and benefits assessment based on OCPs, PCBs, toxic elements and fatty acids in the pelagic fish species from the Adriatic Sea. CHEMOSPHERE 2022; 287:132068. [PMID: 34481169 DOI: 10.1016/j.chemosphere.2021.132068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Benefits and risks of the fish consumption should be assessed to balance the ingestion of healthy omega-3 fatty acids and adverse chemicals. Persistent organic pollutants-POPs (organochlorine pesticides-OCPs and polychlorinated biphenyls-PCB), macro- and micro-elements and fatty acid contents were determined in six fish species from the Adriatic Sea to assess health risks for consumers (worst-case scenario, diseases development risks and benefit-risk). 16 element, 24 POPs and 14 fatty acid contents were determined in six pelagic species which can be used in human diet. Element concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS), POPs by high-resolution gas chromatography and fatty acid content by gas-liquid chromatography. Diet based on chub mackerel and round sardinella showed lower daily intake (DI) of POPs and highest DI of essential omega-3 fatty acids than other investigated species. Lower ingestion of toxic elements can be observed by consuming anchovy and round sardinella. Based on POP concentrations, there was not observed non-carcinogenic (HI) nor carcinogenic (CR) risks for consumers. Based on element concentrations, there was low HI (0.1 ≥ HI ≥ 1), while the maximum HIs and outlier values (horse mackerel and anchovy samples) implied the presence of HI (HI > 1). The most significant contributor to total non-carcinogenic and carcinogenic risks was inorganic arsenic (inorganic As). Acceptable CR for consumers was assessed, but maximum CR for consumers of horse mackerel and anchovy (CR ≥ 1 × 10-6) showed adverse effects on human health. There were low HIs for developing cardiovascular, nervous, and reproductive diseases, and maximum HIs were higher than 1. Acceptable (1 × 10-4≥CR ≥ 1 × 10-6) risks were observed for developing cancer of nervous system and reproductive organs. Among investigated fish samples, those with higher ƩBR (benefit-risks) and BR for arsenic (As) than median value have a higher risk than benefits in the human diet.
Collapse
Affiliation(s)
- Tijana Milićević
- Environmental Physics Laboratory, Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia.
| | - Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, PO Box 291, 10001, Zagreb, Croatia
| | - Aleksandar Popović
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Bosiljka Mustać
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg Kneza Višeslava 9, 23000, Zadar, Croatia
| | | | - Gordana Jovanović
- Environmental Physics Laboratory, Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia; Singidunum University, Danijelova 32, 11000, Belgrade, Serbia
| | - Dubravka Relić
- University of Belgrade - Faculty of Chemistry, Studentski Trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
17
|
Negrete-Bolagay D, Zamora-Ledezma C, Chuya-Sumba C, De Sousa FB, Whitehead D, Alexis F, Guerrero VH. Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113737. [PMID: 34536739 DOI: 10.1016/j.jenvman.2021.113737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Persistent Organic Pollutants (POPs) have become a very serious issue for the environment because of their toxicity, resistance to conventional degradation mechanisms, and capacity to bioconcentrate, bioaccumulate and biomagnify. In this review article, the safety, regulatory, and remediation aspects of POPs including aromatic, chlorinated, pesticides, brominated, and fluorinated compounds, are discussed. Industrial and agricultural activities are identified as the main sources of these harmful chemicals, which are released to air, soil and water, impacting on social and economic development of society at a global scale. The main types of POPs are presented, illustrating their effects on wildlife and human beings, as well as the ways in which they contaminate the food chain. Some of the most promising and innovative technologies developed for the removal of POPs from water are discussed, contrasting their advantages and disadvantages with those of more conventional treatment processes. The promising methods presented in this work include bioremediation, advanced oxidation, ionizing radiation, and nanotechnology. Finally, some alternatives to define more efficient approaches to overcome the impacts that POPs cause in the hydric sources are pointed out. These alternatives include the formulation of policies, regulations and custom-made legislation for controlling the use of these pollutants.
Collapse
Affiliation(s)
- Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Research Group, UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain.
| | - Cristina Chuya-Sumba
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares, Physics and Chemistry Institute, Federal University of Itajubá, 37500-903, Itajubá, Brazil.
| | - Daniel Whitehead
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, 100119, Urcuquí, Ecuador.
| | - Victor H Guerrero
- Department of Materials, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, 170525, Ecuador.
| |
Collapse
|
18
|
El-Nahhal I, El-Nahhal Y. Pesticide residues in drinking water, their potential risk to human health and removal options. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113611. [PMID: 34526283 DOI: 10.1016/j.jenvman.2021.113611] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The application of pesticides in agricultural and public health sectors has resulted in substantially contaminated water resources with residues in many countries. Almost no reviews have addressed pesticide residues in drinking water globally; calculated hazard indices for adults, children, and infants; or discussed the potential health risk of pesticides to the human population. The objectives of this article were to summarize advances in research related to pesticide residues in drinking water; conduct health risk assessments by estimating the daily intake of pesticide residues consumed only from drinking water by adults, children, and infants; and summarize options for pesticide removal from water systems. Approximately 113 pesticide residues were found in drinking water samples from 31 countries worldwide. There were 61, 31, and 21 insecticide, herbicide, and fungicide residues, respectively. Four residues were in toxicity class IA, 14 residues were in toxicity class IB, 55 residues were in toxicity class II, 17 residues were in toxicity class III, and 23 residues were in toxicity class IV. The calculated hazard indices (HIs) exceeded the value of one in many cases. The lowest HI value (0.0001) for children was found in Canada, and the highest HI value (30.97) was found in Egypt, suggesting a high potential health risk to adults, children, and infants. The application of advanced oxidation processes (AOPs) showed efficient removal of many pesticide classes. The combination of adsorption followed by biodegradation was shown to be an effective and efficient purification option. In conclusion, the consumption of water contaminated with pesticide residues may pose risks to human health in exposed populations.
Collapse
Affiliation(s)
| | - Yasser El-Nahhal
- Dept. of Earth and Environmental Science Faculty of Science, The Islamic University, Gaza, Palestine.
| |
Collapse
|
19
|
Lin N, Kwarteng L, Godwin C, Warner S, Robins T, Arko-Mensah J, Fobil JN, Batterman S. Airborne volatile organic compounds at an e-waste site in Ghana: Source apportionment, exposure and health risks. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126353. [PMID: 34175701 PMCID: PMC9925107 DOI: 10.1016/j.jhazmat.2021.126353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 06/01/2023]
Abstract
Informal e-waste recycling processes emit various air pollutants. While there are a number of pollutants of concern, little information exists on volatile organic compounds (VOCs) releases at e-waste sites. To assess occupational exposures and estimate health risks, we measured VOC levels at the Agbogbloshie e-waste site in Ghana, the largest e-waste site in Africa, by collecting both fixed-site and personal samples for analyzing a wide range of VOCs. A total of 54 VOCs were detected, dominated by aliphatic and aromatic compounds. Mean and median concentrations of the total target VOCs were 46 and 37 μg/m3 at the fixed sites, and 485 and 162 μg/m3 for the personal samples. Mean and median hazard ratios were 2.1 and 1.4, respectively, and cancer risks were 4.6 × 10-4 and 1.5 × 10-4. These risks were predominantly driven by naphthalene and benzene; chloroform and formaldehyde were also high in some samples. Based on the VOC composition, the major sources were industry, fuel evaporation and combustion. The concentration gradient across sites and the similarity of VOC profiles indicated that the e-waste site emissions reached neighboring communities. Our results suggest the need to protect e-waste workers from VOC exposure, and to limit emissions that can expose nearby populations.
Collapse
Affiliation(s)
- Nan Lin
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, PR China 200025
| | - Lawrencia Kwarteng
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, P.O. Box LG13, Accra, Ghana
| | - Christopher Godwin
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109
| | - Sydni Warner
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109
| | - Thomas Robins
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, P.O. Box LG13, Accra, Ghana
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, P.O. Box LG13, Accra, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 48109.
| |
Collapse
|
20
|
Shen MW, Chen HC, Chen ST. A Pest or Otherwise? Encounter of Oryctes rhinoceros (Coleoptera: Scarabaeidae) with Persistent Organic Pollutants. INSECTS 2021; 12:insects12090818. [PMID: 34564258 PMCID: PMC8467767 DOI: 10.3390/insects12090818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary A native, widely spread beetle, Oryctes rhinoceros, in Southeast Asia may clean up some of the persistent organic pollutants (POPs) for us if guarded in a controlled manner. Some xenobiotics persisting in our environment may cause harmful effects to the living creatures within their food web via a so-called “bioaccumulation effect”. The encounter of wild creatures with the POPs appears inevitable. Luckily, this study revealed that the proper breeding of the commonly seen beetle could degrade more than 95% of some studied POPs simply by ingestion. The beetle larvae tolerated different POPs at various extents, yet through an acclimation operation, the beetle’s mortality rate could be greatly reduced. Even though O. rhinoceros is considered a pest for some valuable corps, its removal of POPs in a natural, efficient and passive (i.e., fewer energy inputs) manner makes this alternative promising and deserving of further explorations. Abstract The potential use of invertebrates as bioreactors to treat environmental pollutants is promising and of great interest. Three types of the persistent organic pollutants (POPs), namely pentachlorophenol (PCP), PAHs (naphthalene and phenanthrene) and dieldrin (DLN), were spiked in soil and treated by using Oryctes rhinoceros larvae, a known pest of coconut trees in southeast Asia, and also the indicators of POP toxicity and the fate and degradability of the ingested POPs were assessed. The larvae were tested at various levels of the POPs and went through an acclimation process. Without acclimation, the tolerance limits of the larvae toward PCP, PAHs and DLN were 200, 100 and 0.1 mg/kg-soil, respectively, yet with acclimation, the tolerance levels increased to 800, 400 and 0.5 mg/kg-soil, respectively. Biodegradation rates of all the tested POPs were >90% by week 2, with <5% and nearly 0% remaining in the feces and body of the larvae, respectively. The results suggest that the use of the beetle larvae in soil POP decontamination is doable.
Collapse
Affiliation(s)
- Meng-Wei Shen
- Ph.D. Program in Engineering Science and Technology, College of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Hung-Chuan Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Shyi-Tien Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-601-1000 (ext. 32327); Fax: +886-7-601-1061
| |
Collapse
|
21
|
Research status and regulatory challenges of persistent organic pollutants in Sierra Leone. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Ruan F, Wu L, Yin H, Fang L, Tang C, Huang S, Fang L, Zuo Z, He C, Huang J. Long-term exposure to environmental level of phenanthrene causes adaptive immune response and fibrosis in mouse kidneys. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117028. [PMID: 33892371 DOI: 10.1016/j.envpol.2021.117028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
As ubiquitous, persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) have adverse impacts on human health. Phenanthrene (Phe) is one of the most abundant PAHs in the environment. However, the long-term effects of exposure to environmental level of Phe on the kidneys and the potential mechanisms are unclear. T helper (Th) cells, a subtype of CD4+ T cells that play a central role in the renal immune microenvironment. In this study, male mice were chronically exposed to 5, 50, and 500 ng/kg bw Phe every other day for total 210 days. Those results indicated that environmental Phe exposure caused kidney hypertrophy, injury and fibrosis in the mice. Chronic, long-term environmental level of Phe exposure did not significantly alter the innate immune response but induced adaptive immune response changes (Th1/Th2 related cytokines release), causing a type 1 immune response in the 5 ng/kg bw Phe group and a type 2 immune response in the high dose groups (50 and 500 ng/kg bw). This study provides novel insights into the roles of adaptive immune response in long-term PAH exposure-induced chronic kidney injury and fibrosis, which is beneficial for further understanding the potential health hazards of PAHs and providing new avenues for immune intervention strategies to alleviate PAHs toxicity.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Hanying Yin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Siyang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
23
|
White KB, Kalina J, Scheringer M, Přibylová P, Kukučka P, Kohoutek J, Prokeš R, Klánová J. Temporal Trends of Persistent Organic Pollutants across Africa after a Decade of MONET Passive Air Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9413-9424. [PMID: 33095578 DOI: 10.1021/acs.est.0c03575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After a decade of passive air monitoring (2008-2019), MONET is the first network to produce sufficient data for the analysis of long-term temporal trends of POPs in the African atmosphere. This study reports concentrations of 20 POPs (aldrin, chlordane, chlordecone, DDT, dieldrin, endrin, endosulfan, HBCDD, HCB, HCHs, heptachlor, hexabromobiphenyl, mirex, PBDEs, PCBs, PCDDs, PCDFs, PeCB, PFOA, and PFOS) monitored in 9 countries (Congo, Ghana, Ethiopia, Kenya, Mali, Mauritius, Morocco, Nigeria, and Sudan). As of January 1, 2019, concentrations were in the following ranges (pg/m3): 0.5-37.7 (∑6PCB), 0.006-0.724 (∑17PCDD/F), 0.05-5.5 (∑9PBDE), 0.6-11.3 (BDE 209), 0.1-1.8 (∑3HBCDD), 1.8-138 (∑6DDT), 0.1-24.3 (∑3endosulfan), 0.6-14.6 (∑4HCH), 9.1-26.4 (HCB), 13.8-18.2 (PeCB). Temporal trends indicate that concentrations of many POPs (PCBs, DDT, HCHs, endosulfan) have declined significantly over the past 10 years, though the rate was slow at some sites. Concentrations of other POPs such as PCDD/Fs and PBDEs have not changed significantly over the past decade and are in fact increasing at some sites, attributed to the prevalence of open burning of waste (particularly e-waste) across Africa. Modeled airflow back-trajectories suggest that the elevated concentrations at some sites are primarily due to sustained local emissions, while the low concentrations measured at Mt. Kenya represent the continental background level and are primarily influenced by long-range transport.
Collapse
Affiliation(s)
- Kevin B White
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Kalina
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Martin Scheringer
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Petra Přibylová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
24
|
Vera-Herrera L, Sadutto D, Picó Y. Non-Occupational Exposure to Pesticides: Experimental Approaches and Analytical Techniques (from 2019). Molecules 2021; 26:3688. [PMID: 34208757 PMCID: PMC8235395 DOI: 10.3390/molecules26123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pesticide residues are a threat to the health of the global population, not only to farmers, applicators, and other pesticide professionals. Humans are exposed through various routes such as food, skin, and inhalation. This study summarizes the different methods to assess and/or estimate human exposure to pesticide residues of the global population. METHODS A systematic search was carried out on Scopus and web of science databases of studies on human exposure to pesticide residues since 2019. RESULTS The methods to estimate human health risk can be categorized as direct (determining the exposure through specific biomarkers in human matrices) or indirect (determining the levels in the environment and food and estimating the occurrence). The role that analytical techniques play was analyzed. In both cases, the application of generic solvent extraction and solid-phase extraction (SPE) clean-up, followed by liquid or gas chromatography coupled to mass spectrometry, is decisive. Advances within the analytical techniques have played an unquestionable role. CONCLUSIONS All these studies have contributed to an important advance in the knowledge of analytical techniques for the detection of pesticide levels and the subsequent assessment of nonoccupational human exposure.
Collapse
Affiliation(s)
| | | | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-GV-UV, Moncada-Naquera Road km 4.5, Moncada, 46113 Valencia, Spain; (L.V.-H.); (D.S.)
| |
Collapse
|
25
|
Lebelo K, Malebo N, Mochane MJ, Masinde M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5795. [PMID: 34071295 PMCID: PMC8199310 DOI: 10.3390/ijerph18115795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Historically, chemicals exceeding maximum allowable exposure levels have been disastrous to underdeveloped countries. The global food industry is primarily affected by toxic chemical substances because of natural and anthropogenic factors. Food safety is therefore threatened due to contamination by chemicals throughout the various stages of food production. Persistent Organic Pollutants (POPs) in the form of pesticides and other chemical substances such as Polychlorinated Biphenyls (PCBs) have a widely documented negative impact due to their long-lasting effect on the environment. This present review focuses on the chemical contamination pathways along the various stages of food production until the food reaches the consumer. The contamination of food can stem from various sources such as the agricultural sector and pollution from industrialized regions through the air, water, and soil. Therefore, it is imperative to control the application of chemicals during food packaging, the application of pesticides, and antibiotics in the food industry to prevent undesired residues on foodstuffs. Ultimately, the protection of consumers from food-related chemical toxicity depends on stringent efforts from regulatory authorities both in developed and underdeveloped nations.
Collapse
Affiliation(s)
- Kgomotso Lebelo
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Ntsoaki Malebo
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Mokgaotsa Jonas Mochane
- Department of Life Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.M.); (M.J.M.)
| | - Muthoni Masinde
- Centre for Sustainable SMART Cities, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa;
| |
Collapse
|
26
|
Suzuki G, Matsukami H, Michinaka C, Hashimoto S, Nakayama K, Sakai SI. Emission of Dioxin-like Compounds and Flame Retardants from Commercial Facilities Handling Deca-BDE and Their Downstream Sewage Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2324-2335. [PMID: 33440927 DOI: 10.1021/acs.est.0c06359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Commercial mixtures of decabromodiphenyl ether (deca-BDE), a brominated flame retardant, contain not only polybrominated diphenyl ethers (PBDEs, mainly BDE-209) as the main component but also dioxin-like compounds (DLCs) such as polybrominated dibenzofurans (PBDFs). Deca-BDE handling facilities (DHFs) and sewage treatment plants receiving effluent from DHFs are point sources of DLC and flame retardant (FR) pollution. Here, we examined their emission in Japan. For DHF effluents, DLCs detected by the dioxin-responsive chemically activated luciferase expression (DR-CALUX) assay were 1.3-890 pg TCDD-EQ/L (median 46 pg TCDD-EQ/L), while PBDEs and other FRs were <2.0-110,000 ng/L (610 ng/L) and 150-4,800,000 ng/L (41,000 ng/L). Risk quotients based on predicted no-effect concentrations suggested that DLCs, decabromodiphenyl ethane (DBDPE), tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) present significant risks for aquatic organisms. The concentrations of PBDFs, which are impurities in deca-BDE, were expected to decrease with the inclusion of deca-BDE in the Stockholm Convention list of persistent organic pollutants (May 2017). However, DLCs other than PBDFs and alternative FRs such as DBDPE, TDBP-TAZTO, and BPA-BDPP are likely still discharged. Additional findings indicate that strong (e.g., DLCs, DBDPE, and BPA-BDPP), but not weak (e.g., TDBP-TAZTO), hydrophobic compounds are sufficiently removed by current wastewater treatment processes in Japan.
Collapse
Affiliation(s)
- Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Chieko Michinaka
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Shunji Hashimoto
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shin-Ichi Sakai
- Environment Preservation Research Center, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Alimi OS, Fadare OO, Okoffo ED. Microplastics in African ecosystems: Current knowledge, abundance, associated contaminants, techniques, and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142422. [PMID: 33011593 DOI: 10.1016/j.scitotenv.2020.142422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Despite Africa ranking top in mismanaged plastic waste, there is insufficient data on the extent of microplastics and its interaction with other contaminants in its ecosystems. Microplastics pollution has been documented globally, however, specific data from the continent is crucial for accurate risk assessment and to drive policies. We critically reviewed 56 articles from 1987 to 2020 and provide an overview of the current knowledge of the abundance and distribution of microplastics and associated contaminants in African aquatic systems and organisms. Most of the studies were carried out in the marine environment and there is currently no available data on the abundance of microplastic pollution in the African terrestrial environment. We show that across all studies, 5-100% of all sampled aquatic organisms contained microplastics. Concerning high levels of microplastics were reported in fish from Egypt compared to other parts of Africa and the world. Across all persistent organic pollutants sampled in microplastics, hopanes and phthalates were present at high concentrations while sodium and zinc were high relative to other trace metals reported. The most frequently occurring plastics were polyethylene followed by polypropylene and polystyrene. We found that most of the studies relied on visual inspection (52%) > FTIR (38%) > Raman spectroscopy (5%) > Scanning electron microscopy (3%) > Differential scanning calorimetry (2%) for identifying microplastics. Major gaps in sampling and identification techniques which may have overestimated or underestimated the current levels were identified. We discuss other research priorities and recommend solutions to address these issues associated with microplastic pollution in Africa.
Collapse
Affiliation(s)
- Olubukola S Alimi
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| | - Oluniyi O Fadare
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
28
|
Ngweme GN, Al Salah DMM, Laffite A, Sivalingam P, Grandjean D, Konde JN, Mulaji CK, Breider F, Poté J. Occurrence of organic micropollutants and human health risk assessment based on consumption of Amaranthus viridis, Kinshasa in the Democratic Republic of the Congo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142175. [PMID: 32920409 PMCID: PMC7467084 DOI: 10.1016/j.scitotenv.2020.142175] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
The contamination of water resource and food chain by persistent organic pollutants (POPs) constitutes a major environmental and human health concern worldwide. The aim of this study was to investigate the levels of POPs in irrigation water, soil and in Amaranthus viridis (A. viridis) from different gardening sites in Kinshasa to evaluate the potential environmental and human health risks. A survey study for the use of pesticides and fertilizers was carried out with 740 market gardeners. The levels of POPs (including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs)) were analyzed in irrigation water and 144 vegetable samples collected from different gardening sites. The assessment of potential human health risk was estimated by calculating daily intake and toxic equivalency to quantify the carcinogenicity. The results show highest PAH levels in A. viridis from all studied sites. The concentrations of the sum of seven PCBs (Σ7PCBS) congeners in analyzed plants ranged between 15.89 and 401.36 ng g-1. The distributions of OCPs in both water and A. viridis were congener specific, chlorpyrifos-ethyl and p,p'-DDE were predominantly detected. Among PBDEs, only BDE47 was quantified with noticeable concentration in A. viridis, while no PBDEs were detected in irrigation water. Higher estimated daily intake values indicate that consuming leafy vegetables might associate with increased human health risks. However, calculated incremental lifetime cancer risk values indicates no potential carcinogenic risk for the local population. The results of this study provide important information on A. viridis contamination by POPs and strongly recommend implementing the appropriate measures to control the use of chemicals used in studied gardening areas. Thus in Kinshasa, urban agriculture control programs for POPs and fertilizers is very important in order to protect the public health through direct and dietary exposure pathways.
Collapse
Affiliation(s)
- Georgette N Ngweme
- School of Public Health, Faculty of Medicine, University of Kinshasa, Po.Box 11850, Kinshasa XI, Democratic Republic of the Congo
| | - Dhafer Mohammed M Al Salah
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; King Abdulaziz City for Science and Technology, Joint Centers of Excellence Program, Prince Turki the 1st st, Riyadh 11442, Saudi Arabia
| | - Amandine Laffite
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland
| | - Periyasamy Sivalingam
- Postgraduate and Research Department of Microbiology, Jamal Mohamed College, Tiruchirappalli 620020, Tamil Nadu, India
| | - Dominique Grandjean
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joel N Konde
- School of Public Health, Faculty of Medicine, University of Kinshasa, Po.Box 11850, Kinshasa XI, Democratic Republic of the Congo
| | - Crispin K Mulaji
- Department of Chemistry, Faculty of Science, University of Kinshasa (UNIKIN), Po.Box 190, Kinshasa XI, Democratic Republic of the Congo
| | - Florian Breider
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - John Poté
- Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute of Environmental Sciences, Faculty of Science, University of Geneva, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; Department of Chemistry, Faculty of Science, University of Kinshasa (UNIKIN), Po.Box 190, Kinshasa XI, Democratic Republic of the Congo.
| |
Collapse
|
29
|
Zhang LJ, Qian L, Ding LY, Wang L, Wong MH, Tao HC. Ecological and toxicological assessments of anthropogenic contaminants based on environmental metabolomics. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100081. [PMID: 36158612 PMCID: PMC9488080 DOI: 10.1016/j.ese.2021.100081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 05/02/2023]
Abstract
There has long been a great concern with growing anthropogenic contaminants and their ecological and toxicological effects on living organisms and the surrounding environment for decades. Metabolomics, a functional readout of cellular activity, can capture organismal responses to various contaminant-related stressors, acquiring direct signatures to illustrate the environmental behaviours of anthropogenic contaminants better. This review entails the application of metabolomics to profile metabolic responses of environmental organisms, e.g. animals (rodents, fish, crustacean and earthworms) and microorganisms (bacteria, yeast and microalgae) to different anthropogenic contaminants, including heavy metals, nanomaterials, pesticides, pharmaceutical and personal products, persistent organic pollutants, and assesses their ecotoxicological impacts with regard to literature published in the recent five years. Contaminant-induced metabolism alteration and up/down-regulation of metabolic pathways are revealed in typical organisms. The obtained insights of variations in global metabolism provide a distinct understanding of how anthropogenic contaminants exert influences on specific metabolic pathways on living organisms. Thus with a novel ecotechnique of environmental metabolomics, risk assessments of anthropogenic contaminants are profoundly demonstrated.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lu Qian
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Ling-Yun Ding
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Corresponding author.
| |
Collapse
|
30
|
Bruce-Vanderpuije P, Megson D, Jones GR, Jobst K, Reiner E, Clarke E, Adu-Kumi S, Gardella JA. Infant dietary exposure to dioxin-like polychlorinated biphenyls (dlPCBs), polybrominated and mixed halogenated dibenzo-p-dioxins and furans (PBDD/Fs and PXDD/Fs) in milk samples of lactating mothers in Accra, Ghana. CHEMOSPHERE 2021; 263:128156. [PMID: 33297135 DOI: 10.1016/j.chemosphere.2020.128156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
In this study, polybrominated and mixed halogenated dibenzo-p-dioxins and furans (PBDD/Fs and PXDD/Fs), and dioxin-like polychlorinated biphenyls (dlPCBs) were quantified in 24 human milk samples of first-time lactating mothers from Greater Accra region in Ghana. The aims of the study were to determine the concentrations and toxic equivalent concentrations of PBDD/F, PXDD/F and dlPCBs in human milk, and to estimate an infant's daily intake. The samples were analysed for 12 dioxin-like PCBs, 7 congeners of 2,3,7,8-polybrominated dibenzo-p-dioxins and furans (PBDD/Fs), and 7 congeners of 2,3,7,8-mixed halogenated dioxins and furans (PXDD/Fs, where X = Br/Cl). The mean concentrations in human milk ranged from 0.15 to 212.9 pg/g lipid for dlPCB congeners (mean TEQ: 1.67 pg WHO2005-TEQ/g lipid). Lesser concentrations for 2,3,7,8-PXDD/Fs (and PBDD/Fs congeners) ranged between <0.01-1.67 pg/g lipid, with a total mean tentative TEQ of 0.56 pg WHO2005-TEQ/g lipid. For an infant of average weight 7 kg, consuming an estimated volume of 600 mL human milk, the estimated average daily intake of dlPCBs in 21 human milk samples was 4.95 pg TEQ/kg bw/day; contributions from dlPCBs, PXDD/Fs and PBDD/Fs resulted in an average estimated daily intake of 6.56 pg TEQ/kg bw/day. The results obtained in this study, although lower than infant dietary intake estimates in human milk from industrialized countries, exceeded the recommended safety standards of 1 pg TEQ/kg bw/day and 1-4 pg TEQ/kg bw/day from the Agency for Toxic Substances and Disease Registry (ATSDR) and the World Health Organization (WHO), respectively.
Collapse
Affiliation(s)
- Pennante Bruce-Vanderpuije
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - David Megson
- School of Science and the Environment, Manchester Metropolitan University, Manchester, UK; Chemistry Matters Inc., Suite 405, 104-1240 Kensington Road NW, Calgary, AB, T2N 3P7, Canada
| | | | - Karl Jobst
- Ontario Ministry of the Environment, Conservation and Parks, Laboratory Services Branch, Toronto, ON, M9P 3V6, Canada
| | - Eric Reiner
- Ontario Ministry of the Environment, Conservation and Parks, Laboratory Services Branch, Toronto, ON, M9P 3V6, Canada
| | - Edith Clarke
- Occupational and Environmental Health Unit, Ministry of Health/Ghana Health Service, Ghana
| | - Sam Adu-Kumi
- Environmental Protection Agency, P. O. Box MB 326, Ministries Post Office, Accra, Ghana
| | - Joseph A Gardella
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
31
|
Tiktak GP, Butcher D, Lawrence PJ, Norrey J, Bradley L, Shaw K, Preziosi R, Megson D. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. MARINE POLLUTION BULLETIN 2020; 160:111701. [PMID: 33181965 DOI: 10.1016/j.marpolbul.2020.111701] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
This review represents a comprehensive analysis on pollutants in elasmobranchs including meta-analysis on the most studied pollutants: mercury, cadmium, PCBs and DDTs, in muscle and liver tissue. Elasmobranchs are particularly vulnerable to pollutant exposure which may pose a risk to the organism as well as humans that consume elasmobranch products. The highest concentrations of pollutants were found in sharks occupying top trophic levels (Carcharhiniformes and Lamniformes). A human health risk assessment identified that children and adults consuming shark once a week are exposed to over three times more mercury than is recommended by the US EPA. This poses a risk to local fishing communities and international consumers of shark-based products, as well as those subject to the widespread mislabelling of elasmobranch products. Wider screening studies are recommended to determine the risk to elasmobranchs from emerging pollutants and more robust studies are recommended to assess the risks to human health.
Collapse
Affiliation(s)
- Guuske P Tiktak
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Demi Butcher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Peter J Lawrence
- Bangor University, School of Ocean Sciences, Askew St, Menai Bridge, Wales LL59 5AB, UK
| | - John Norrey
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lee Bradley
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kirsty Shaw
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Richard Preziosi
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - David Megson
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
32
|
Vaccher V, Ingenbleek L, Adegboye A, Hossou SE, Koné AZ, Oyedele AD, Kisito CSKJ, Dembélé YK, Hu R, Adbel Malak I, Cariou R, Vénisseau A, Veyrand B, Marchand P, Eyangoh S, Verger P, Dervilly-Pinel G, Leblanc JC, Le Bizec B. Levels of persistent organic pollutants (POPs) in foods from the first regional Sub-Saharan Africa Total Diet Study. ENVIRONMENT INTERNATIONAL 2020; 135:105413. [PMID: 31881431 DOI: 10.1016/j.envint.2019.105413] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
For the first time, a multi-centre Total Diet Study was carried out in Benin, Cameroon, Mali and Nigeria. We collected and prepared as consumed 528 typical fatty foods from those areas and pooled these subsamples into 44 composites samples. These core foods were tested for a wide spectrum of POPs, including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), brominated flame-retardants (BFRs), organochlorine compounds (OCs), perfluoro alkyl substances (PFAS) and chlorinated flame retardants (CFRs). The POPs contamination levels were similar or lower than those reported in total diet studies previously conducted worldwide. In most cases, core foods belonging to fish food group presented higher POPs concentrations than the other food groups. Interestingly, we observed a difference in both contamination profile and concentration for smoked fish compared to non-smoked fish. Such finding suggests that the smoking process itself might account for a large proportion of the contamination. Further investigation would require the assessment of combustion materials used to smoke fish as a potential vehicle, which may contribute to the dietary exposure of the studied populations to POPs.
Collapse
Affiliation(s)
| | - Luc Ingenbleek
- LABERCA, Oniris, INRA, F-44307 Nantes, France; Centre Pasteur du Cameroun (CPC), Yaoundé BP1274, Cameroon
| | - Abimobola Adegboye
- National Agency for Food and Drug Administration and Control (NAFDAC), Abuja 900288, Nigeria.
| | | | - Abdoulaye Zié Koné
- Agence Nationale de la Sécurité Sanitaire des Aliments (ANSSA), Bamako BP 2362, Mali
| | - Awoyinka Dada Oyedele
- National Agency for Food and Drug Administration and Control (NAFDAC), Abuja 900288, Nigeria.
| | - Chabi Sika K J Kisito
- Laboratoire Central de Sécurité Sanitaire des Aliments (LCSSA), Cotonou BP 6874, Benin
| | | | - Reinwei Hu
- Inovalys, Official Laboratory of Analysis, Le Mans, France.
| | | | | | | | | | | | - Sara Eyangoh
- Centre Pasteur du Cameroun (CPC), Yaoundé BP1274, Cameroon.
| | | | | | - Jean-Charles Leblanc
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy.
| | | |
Collapse
|
33
|
Zhang X, Cui S, Pan L, Dong W, Ma M, Liu W, Zhuang S. The molecular mechanism of the antagonistic activity of hydroxylated polybrominated biphenyl (OH-BB80) toward thyroid receptor β. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134040. [PMID: 31476509 DOI: 10.1016/j.scitotenv.2019.134040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated biphenyls (PBBs) were widely used as additive brominated flame retardants. Their hydroxylated products (OH-PBBs) have been detected frequently in various marine mammals, causing an increased health risk. Till now, there lacks information on the potential disruption of OH-PBBs toward thyroid hormone receptor (TR) and the molecular characteristics of their interactions remain largely unknown. We herein in vitro and in silico evaluated the disrupting effect of 3,3',5,5'-tetrabromobiphenyl (BB80) and its metabolite 2,2'-dihydroxy- 3,3',5,5'-tetrabromobiphenyl (OH-BB80) toward human TR. The recombinant human TRβ two-hybrid yeast assay reveals the moderate antagonistic activity of OH-BB80 with IC20 at 2 μmol/L, while BB80 shows no agonistic or antagonistic activity. OH-BB80 binds at the binding cavity of TRβ ligand binding domain (LBD) and forms one hydrogen bond with Phe272. Electrostatic interactions and hydrophobic interactions contribute much to their interactions. The binding of OH-BB80 quenches the intrinsic fluorescence of TRβ LBD at static quenching mode. Our study extends knowledge on the endocrine disrupting effect of OH-PBBs and suggests the full consideration of the biotransformation for further health risk assessment of PBBs and related structurally similar emerging contaminants.
Collapse
Affiliation(s)
- Xiaofang Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liumeng Pan
- Hubei Province Environmental Monitoring Center, Wuhan 430072, China
| | - Wenhua Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Mudge SM, Pfaffhuber KA, Fobil JN, Bouman EA, Uggerud HT, Thorne RJ. Using elemental analyses and multivariate statistics to identify the off-site dispersion from informal e-waste processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2042-2057. [PMID: 31693034 DOI: 10.1039/c9em00444k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Electronic waste (e-waste) is informally processed and recycled in Agbogbloshie in Accra (Ghana), which may be the largest such site in West Africa. This industry can lead to significant environmental contamination. In this study, surface dust samples were collected at a range of sites within Accra to establish the offsite consequences of such activities. Fifty-one samples were collected and analysed for 69 elements by ICP-mass spectrometry after nitric acid digestion. The data indicated a significant enrichment in metals associated with solder and copper wire at the site itself and a downwind dispersion of this source material to a distance of approximately 2.0 km. Chlorine and bromine were also elevated at this site as residues from polyvinyl chloride combustion and flame retardants respectively. The elemental composition indicated that only low technology electrical equipment was being treated this way. Multivariate statistical analyses by principal components analysis and polytopic vector analysis identified three sources contributing to the system; (i) burn site residue dispersing within 2 km from the source site, (ii) marine matter on the beaches alone and (iii) the baseline soil conditions of the city of Accra. Risk ratios and hazard quotients developed from the measured concentrations indicated that copper was providing the greatest risk to inhabitants in most cases although nickel, vanadium, chromium and zinc also contributed.
Collapse
Affiliation(s)
- Stephen M Mudge
- IMPACT, Norwegian Institute for Air Research (NILU), Instituttveien 18, 2007 Kjeller, Norway.
| | | | | | | | | | | |
Collapse
|
35
|
Quansah R, Bend JR, Armah FA, Bonney F, Aseidu J, Yawson DO, Adu MO, Luginaah I, Essumang DK, Abdul-Rahaman A, Cobbina S, Iddi S, Tersigni M, Afful S, Osei-Fosu P, Nketiah-Amponsah E. Respiratory and non-respiratory symptoms associated with pesticide management practices among farmers in Ghana's most important vegetable hub. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:716. [PMID: 31686222 DOI: 10.1007/s10661-019-7898-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The data presented here are from the Offinso North District Farm Health Study (ONFAHS), a population-based cross-sectional study among vegetable farmers in Ghana. The paper addresses knowledge, pesticide handling practices, and protective measures related to pesticide use by self-reported symptoms for 310 adult farmers who completed a comprehensive questionnaire on pesticide management practices and health. In addition, an inventory was prepared using information supplied by pesticide sellers/dealers in this district. We report that cough and wheezing (but not breathlessness) are positively associated with stirring pesticide preparations with bare hands/drinking water while mixing/applying pesticides, and stirring pesticide preparations with bare hands/drinking water/smoking cigarettes while mixing/applying pesticides. There is a significant exposure-response association between the number of precautionary measures practiced while handling pesticides and cough and wheezing but not with breathlessness. We also found unsafe practices to be associated with sexual dysfunction, nervousness, and lack of concentration. The results also suggest a negative association between practice of any precautionary measure when mixing/applying pesticides and sexual dysfunction, nervousness, and lack of concentration. We found that in spite of the fact that farmers have adequate knowledge about the environment and health effects of pesticides, several unhygienic practices are in widespread use, indicating that knowledge is not necessarily always translated in action. Further action is necessary to promote the safe use of pesticides and to replace existing poor management practices among these and other farmers in Ghana.
Collapse
Affiliation(s)
- Reginald Quansah
- Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, LG 30, Legon, Accra, Ghana.
| | - John R Bend
- Department of Pathology & Laboratory Medicine, Siebens Drake Medical Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Frederick Ato Armah
- Department of Environmental Science, School of Biological Sciences, College of Agriculture & Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Felix Bonney
- Kwame Nkrumah University of Science and Technology-Africa Institute of Sanitation and Waste Management, East Legon, Accra, Ghana
| | - Joshua Aseidu
- Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, LG 30, Legon, Accra, Ghana
| | - David Oscar Yawson
- Department of Pathology & Laboratory Medicine, Siebens Drake Medical Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Michael Osei Adu
- Department of Pathology & Laboratory Medicine, Siebens Drake Medical Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Isaac Luginaah
- Department of Geography, Western University, Ontario, Canada
| | - David Kofi Essumang
- Environmental Health Group, Department of Chemistry, University of Cape Coast, Cape Coast, Ghana
| | - Abukari Abdul-Rahaman
- Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, LG 30, Legon, Accra, Ghana
| | - Samuel Cobbina
- Department of Ecotourism and Environmental Management, Faculty of Renewable Natural Resources, University for Development Studies, Nyankpala, Ghana
| | - Samuel Iddi
- Department of Statistics, University of Ghana, Legon, Accra, Ghana
| | - Matthew Tersigni
- Schulich Interfaculty Program in Public Health, Western University, London, Ontario, Canada
| | - Samuel Afful
- Nuclear Chemistry and Envirionmental Research Centre, Ghana Atomic Energy Commission, Accra, Ghana
| | | | | |
Collapse
|
36
|
Concentrations of PCDD/Fs in Human Blood: A Review of Data from the Current Decade. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193566. [PMID: 31554236 PMCID: PMC6801747 DOI: 10.3390/ijerph16193566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022]
Abstract
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) are environmental pollutants with great persistence, the capacity of bioaccumulation, and well known important toxic effects in humans and animals. Incinerators of hazardous, municipal and medical waste, chlorine bleaching of paper pulp, cement plants, and the traffic of motor vehicles are the most frequent emission sources of these compounds. The diet, followed at a great distance by inhalation, is generally the main way of human exposure to PCDD/Fs. Human biomonitoring is of great importance to prevent potential adverse effects derived from exposure to chemicals such as PCDD/Fs. In relation to this, blood is among the most used biological monitors. In the current review, we have summarized the recent information (2000–2009) published in the scientific literature (databases: Scopus and PubMed) on the concentrations of PCDD/Fs in blood samples of non-occupationally exposed populations, as well as in some groups of occupationally exposed individuals. We have revised a number of studies conducted in various African, American, Asian and European countries, and Australia. Unfortunately, the information is quite limited. No data are available for most countries over the world. Based on the results here reviewed, where available, the current health risks for the general populations do not seem to be of concern. Moreover, taking into account the important reductions observed in the levels of PCDD/Fs in foodstuffs, new decreases in the concentrations of PCDD/Fs in blood—and other biological tissues—are very probable in the immediate years.
Collapse
|
37
|
Bruce-Vanderpuije P, Megson D, Jobst K, Jones GR, Reiner E, Sandau CD, Clarke E, Adu-Kumi S, Gardella JA. Background levels of dioxin-like polychlorinated biphenyls (dlPCBs), polychlorinated, polybrominated and mixed halogenated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs & PXDD/Fs) in sera of pregnant women in Accra, Ghana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:631-642. [PMID: 30999104 DOI: 10.1016/j.scitotenv.2019.04.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/11/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Human exposure data on dioxins and dioxin-like compounds (DLCs) in Ghana are limited. Based on health risks associated with dioxins and DLCs, the impact of maternal body burdens on foetal exposure is significant. This is the first study that assesses polychlorinated, polybrominated and mixed halogenated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, PBDD/Fs and PXDD/Fs), and dioxin-like polychlorinated biphenyls (dlPCBs) in sera of primiparous Ghanaians. Our sample selection includes 34 participants from two municipalities (Accra and Tema), and explores contributions from environmental and dietary exposures using questionnaire data. Sample preparation involved C18 solid phase extraction, purification with acidified silica and lipid removal cartridges, and detection with gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. The calculated average toxic equivalent concentration was 5.3 pg TEQ/g lw, with contributions from dlPCBs (1.25 pg TEQ/g lw), PCDD/Fs (3.10 pg TEQ/g lw), PBDD/Fs (0.49 pg TEQ/g lw) and PXDD/Fs (0.50 pg TEQ/g lw). The calculated total TEQ concentration was lower than background TEQ concentrations reported in sera of pregnant women globally. Positive correlations were obtained for total dioxins and DLC concentrations with age and Body Mass Index (BMI). Dietary intake of seafood and dairy products had a strong influence on PCDD/F and dlPCB concentrations. Statistically significant differences were observed for dioxins and DLCs in participants from Accra (in close proximity to Agbogbloshie e-waste site) and Tema. Given the significant TEQ contribution of PBDD/Fs and PXDD/Fs (~20%), it is essential to explore these classes of dioxins and DLCs in future biomonitoring studies as they may pose health risks, and add extra diagnostic information in source exposure investigations.
Collapse
Affiliation(s)
- Pennante Bruce-Vanderpuije
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - David Megson
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom; Chemistry Matters Inc., Suite 405, 104-1240 Kensington Road NW, Calgary, AB T2N 3P7, Canada
| | - Karl Jobst
- Ontario Ministry of the Environment, Conservation and Parks, Laboratory Services Branch, Toronto, ON M9P 3V6, Canada
| | | | - Eric Reiner
- Ontario Ministry of the Environment, Conservation and Parks, Laboratory Services Branch, Toronto, ON M9P 3V6, Canada
| | - Court D Sandau
- Chemistry Matters Inc., Suite 405, 104-1240 Kensington Road NW, Calgary, AB T2N 3P7, Canada; Mount Royal University, Department of Earth and Environmental Sciences, Faculty of Science and Technology, 4825 Mount Royal Gate SW, Calgary, AB T3E 6K6, Canada
| | - Edith Clarke
- Occupational and Environmental Health Unit, Ministry of Health/Ghana Health Service, Ghana
| | - Sam Adu-Kumi
- Environmental Protection Agency, P. O. Box MB 326, Ministries Post Office, Accra, Ghana
| | - Joseph A Gardella
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
38
|
Chen XP, Zhang F, Guo YL. Validating an ion mobility spectrometry-quadrupole time of flight mass spectrometry method for high-throughput pesticide screening. Analyst 2019; 144:4835-4840. [PMID: 31290495 DOI: 10.1039/c9an00873j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The utility of adding ion mobility (IM) to quadrupole time of flight mass spectrometry (IM-QTOF MS) for highly effective analysis of multiple pesticides in complex matrices was evaluated. Based on an in-house IM-MS database, the identification was performed through the match of the protonated ion ([M + H]+) and the CCS value. Moreover, the structural confirmation was achieved by using the accurate masses of [M + H]+ with its fragment ions, and the reference CCS value. The method did not require chromatographic separation and the analysis time of each measurement cycle is 1.6 min. The "cleaned" IM-MS spectra afforded by the drift time filtration improved the reliability of structural confirmation. As a result, the limit of detection (LOD) of 92% of test pesticides under the APCI mode and 58% of test pesticides under the ESI mode spiked in scallion was not more than 20 ng mL-1. In the analysis of practical samples, the identification of pyrimethanil was confirmed in celery, and benalaxyl and tebuconazole were identified as false positives in scallion. The time-saving, extended-scope and high-throughput method described in this work is capable of determining multiple pesticide residues in complex matrices with high sensitivity for monitoring applications.
Collapse
Affiliation(s)
- Xiu-Ping Chen
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | |
Collapse
|