1
|
de Abreu CB, Gebara RC, Rocha GS, da Silva Mansano A, Assis M, Pereira TM, Virtuoso LS, Moreira AJ, Santos MA, Melão MDGG, Longo E. The effects of nickel tungstate nanoparticles (NiWO 4 NPs) on freshwater microalga Raphidocelis subcapitata (Chlorophyceae). Int Microbiol 2025:10.1007/s10123-024-00628-1. [PMID: 39779638 DOI: 10.1007/s10123-024-00628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO4) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO4 (NPs) on multiple endpoints (e.g., growth, photosynthetic activity, and morphological and biochemical levels) of the freshwater microalga Raphidocelis subcapitata (Chlorophyceae). Quantification data revealed that the fraction of dissolved Ni and free Ni2+ increased proportionally with NiWO4 NP concentrations, although these levels remained relatively low. Biological results indicated that NiWO4 NPs did not inhibit the growth of algal cells, except at 7.9 mg L-1, resulting in a 9% decrease. Morphological changes were observed in cell size and complexity, accompanied by physiological alterations, such as a reduction in chlorophyll a fluorescence (FL3-H) and signs of impaired photosynthetic activity, indicated by the effective quantum yield, quenchings, and chlorophyll a (Chl a) content. Furthermore, the rapid light curves showed that the NPs in high concentrations affected microalga ability to tolerate high light intensities, as corroborated by the significant decrease in the relative electron transport rate (rETRmax) and saturation irradiance (Ek). Based on the present study results, we emphasize the importance of applying integrative approaches in ecotoxicological studies, since each endpoint evaluated showed different sensitivity.
Collapse
Affiliation(s)
- Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil.
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Giseli Swerts Rocha
- Departament Enginyeria Química, Escola Tècnica Superior d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans, 26. 43007, Tarragona, Spain
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), 46001, Valencia, Spain
| | - Thalles Maranesi Pereira
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, Alfenas, MG, 70037130-000, Brazil
| | - Luciano Sindra Virtuoso
- Chemistry Institute, Universidade Federal de Alfenas (UNIFAL-MG), Gabriel Monteiro da Silva, Alfenas, MG, 70037130-000, Brazil
| | - Ailton José Moreira
- Chemistry Institute, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Mykaelli Andrade Santos
- Department of Chemistry, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Pan R, Zhang Z, Li Y, Zhu S, Anwar S, Huang J, Zhang C, Yin L. Stage-Specific Effects of Silver Nanoparticles on Physiology During the Early Growth Stages of Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3454. [PMID: 39683247 DOI: 10.3390/plants13233454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Silver nanoparticles (AgNPs), widely utilized nanomaterials, can negatively affect crop growth and development. However, it remains unclear whether crops exhibit similar responses to AgNPs stress at seed germination and seedling stages. In this study, rice seeds and seedlings were exposed to AgNPs, and their growth, photosynthetic efficiency, and antioxidant systems were recorded. demonstrated significant AgNPs accumulation in rice tissues, with notable higher accumulation in seedlings exposed to AgNPs after germination compared to AgNPs exposure during germination. The roots exhibited greater AgNPs accumulation than shoots across both stages. Exposure to AgNPs during the seed germination stage, even at concentrations up to 2 mg/L, did not significantly affect growth, physiological indices, or oxidative stress. In contrast, seedlings exposed to 1 and 2 mg/L AgNPs showed significant reductions in shoot length, biomass, nutrient content, and photosynthetic efficiency. At low AgNPs concentrations, the maximum relative electron transport rate (rETRmax) was significantly reduced, while the higher concentrations caused pronounced declines in the chlorophyll a fluorescence transient curves (OJIP) compared to the control group. Antioxidant enzyme activities increased in both leaves and roots in a dose-dependent manner, with roots exhibiting significantly higher activity, suggesting that roots are the primary site of AgNPs stress responses. In conclusion, rice responds differently to AgNPs exposure at distinct developmental stages, with the seedling stage being more susceptible to AgNPs-induced stress than the seed germination stage. These findings underscore the importance of considering growth stages when assessing the food safety and environmental risks associated with AgNPs exposure.
Collapse
Affiliation(s)
- Ruxue Pan
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Zailin Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ya Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sihong Zhu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
| | - Jiaquan Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572022, China
| | - Chuanling Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Liyan Yin
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Wu Y, Wang Y, Liu X, Zhang C. Unveiling key mechanisms: Transcriptomic meta-analysis of diverse nanomaterial applications addressing biotic and abiotic stresses in Arabidopsis Thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172476. [PMID: 38621536 DOI: 10.1016/j.scitotenv.2024.172476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The potential applications of nanomaterials in agriculture for alleviating diverse biotic and abiotic stresses have garnered significant attention. The reported mechanisms encompass promoting plant growth and development, alleviating oxidative stress, inducing defense responses, modulating plant-microbe interactions, and more. However, individual studies may not fully uncover the common pathways or distinguish the effects of different nanostructures. We examined Arabidopsis thaliana transcriptomes exposed to biotic, abiotic, and metal or carbon-based nanomaterials, utilizing 24 microarray chipsets and 17 RNA-seq sets. The results showed that: 1) from the perspective of different nanostructures, all metal nanomaterials relieved biotic/abiotic stresses via boosting metal homeostasis, particularly zinc and iron. Carbon nanomaterials induce hormone-related immune responses in the presence of both biotic and abiotic stressors. 2) Considering the distinct features of various nanostructures, metal nanomaterials displayed unique characteristics in seed priming for combating abiotic stresses. In contrast, carbon nanomaterials exhibited attractive features in alleviating water deprivation and acting as signaling amplifiers during biotic stress. 3) For shared pathway analysis, response to hypoxia emerges as the predominant and widely shared regulatory mechanism governing diverse stress responses, including those induced by nanomaterials. By deciphering shared and specific pathways and responses, this research opens new avenues for precision nano-agriculture, offering innovative strategies to optimize plant resilience, improve stress management, and advance sustainable crop production practices.
Collapse
Affiliation(s)
- Yining Wu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yvjie Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xian Liu
- Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Santhoshkumar R, Hima Parvathy A, Soniya EV. Biocompatible silver nanoparticles as nanopriming mediators for improved rice germination and root growth: A transcriptomic perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108645. [PMID: 38663266 DOI: 10.1016/j.plaphy.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Silver nanoparticles (AgNPs) have an important role in agriculture since they have several applications that are essential for the enhanced yield of crops. Furthermore, they act as nano-pesticides, delivering a proper dose to the target plants without releasing unwanted pesticides into the environment. Upholding the sustainable nano agriculture, biocompatible silver nanoparticles were synthesised utilising Piper colubrinum Link. leaf extract. Different characterization methods (TEM, EDX and XRD) revealed that AgNPs were successfully formed and coated with phytochemicals that constituted the plant extract. Enhanced root development during the early post-germination phase is crucial for the success of direct seeding in rice cultivation. The effects of AgNPs on the growth of plant roots are poorly understood. In this work, Piper colubrinum mediated AgNPs-primed Oryza sativa L. seeds, at various concentrations (0, 50, 80, 100, and 150 mg/L), exceeded typical hydro-primed controls in terms of germination and seedling growth. Oryza sativa L. treated with AgNPs at a concentration of 80 mg/L enhanced root elongation. Additionally, exposure to AgNPs significantly enhanced the content of chlorophyll. The Kyoto Encyclopedia of Genes and Genomes (KEGG) study revealed that the identified pathways like Aromatic amino acid biosynthesis genes, Fatty acid biosynthesis genes, and Carotenoid biosynthesis genes were the most enriched. Some of the genes associated with root growth and development like glucosyltransferases, Glutathione pathway genes, Calcium-ion binding pathway genes, Peroxidase precursor and Nitrilase-associated protein were up regulated. Overall, AgNPs treatments promoted seed germination, growth, chlorophyll content and gene expression patterns, which might be attributable to the beneficial effects of AgNPs on rice.
Collapse
Affiliation(s)
- R Santhoshkumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - A Hima Parvathy
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - E V Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
5
|
Naozuka J, Oliveira AP, Nomura CS. Evaluation of the effect of nanoparticles on the cultivation of edible plants by ICP-MS: a review. Anal Bioanal Chem 2024; 416:2605-2623. [PMID: 38099967 DOI: 10.1007/s00216-023-05076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 04/13/2024]
Abstract
Nanoparticle (NP) applications aiming to boost plant biomass production and enhance the nutritional quality of crops hae proven to be a valuable ally in enhancing agricultural output. They contribute to greater food accessibility for a growing and vulnerable population. These nanoscale particles are commonly used in agriculture as fertilizers, pesticides, plant growth promoters, seed treatments, opportune plant disease detection, monitoring soil and water quality, identification and detection of toxic agrochemicals, and soil and water remediation. In addition to the countless NP applications in food and agriculture, it is possible to highlight many others, such as medicine and electronics. However, it is crucial to emphasize the imperative need for thorough NP characterization beyond these applications. Therefore, analytical methods are proposed to determine NPs' physicochemical properties, such as composition, crystal structure, size, shape, surface charge, morphology, and specific surface area, detaching the inductively coupled plasma mass spectrometry (ICP-MS) that allows the reliable elemental composition quantification mainly in metallic NPs. As a result, this review highlights studies involving NPs in agriculture and their consequential effects on plants, with a specific focus on analyses conducted through ICP-MS. Given the numerous applications of NPs in this field, it is essential to address their presence and increase in the environment and humans since biomagnification and biotransformation effects are studies that should be further developed. In light of this, the demand for rapid, innovative, and sensitive analytical methods for the characterization of NPs remains paramount.
Collapse
Affiliation(s)
- Juliana Naozuka
- Departamento de Química, Universidade Federal de São Paulo, Diadema, 09972-270, Brazil.
| | - Aline P Oliveira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, 05513-970, Brazil
| | - Cassiana S Nomura
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, 05513-970, Brazil
| |
Collapse
|
6
|
Huang Y, Cai S, Ying W, Niu T, Yan J, Hu H, Ruan S. Exogenous titanium dioxide nanoparticles alleviate cadmium toxicity by enhancing the antioxidative capacity of Tetrastigma hemsleyanum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116166. [PMID: 38430577 DOI: 10.1016/j.ecoenv.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Nanotechnology is one of the most recent approaches employed to defend plants against both biotic and abiotic stress including heavy metals such as Cadmium (Cd). In this study, we evaluated the effects of titanium dioxide (TiO2) nanoparticles (TiO2 NPs) in alleviating Cd stress in Tetrastigma hemsleyanum Diels et Gilg. Compared with Cd treatment, TiO2 NPs decreased leaf Cd concentration, restored Cd exposure-related reduction in the biomass to about 69% of control and decreased activities of antioxidative enzymes. Integrative analysis of transcriptome and metabolome revealed 325 differentially expressed genes associated with TiO2 NP treatment, most of which were enriched in biosynthesis of secondary metabolites. Among them, the flavonoid and phenylpropanoid biosynthetic pathways were significantly regulated to improve the growth of T. hemsleyanum when treated with Cd. In the KEGG Markup Language (KGML) network analysis, we found some commonly regulated pathways between Cd and Cd+TiO2 NP treatment, including phenylpropanoid biosynthesis, ABC transporters, and isoflavonoid biosynthesis, indicating their potential core network positions in controlling T. hemsleyanum response to Cd stress. Overall, our findings revealed a complex response system for tolerating Cd, encompassing the transportation, reactive oxygen species scavenging, regulation of gene expression, and metabolite accumulation in T. hemsleyanum. Our results indicate that TiO2 NP can be used to reduce Cd toxicity in T. hemsleyanum.
Collapse
Affiliation(s)
- Yuqing Huang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | - Shengguan Cai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wu Ying
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Tianxin Niu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jianli Yan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Hongliang Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| |
Collapse
|
7
|
Sukul U, Das K, Chen JS, Sharma RK, Dey G, Banerjee P, Taharia M, Lee CI, Maity JP, Lin PY, Chen CY. Insight interactions of engineered nanoparticles with aquatic higher plants for phytoaccumulation, phytotoxicity, and phytoremediation applications: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106713. [PMID: 37866164 DOI: 10.1016/j.aquatox.2023.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
With the growing age of human civilization, industrialization has paced up equally which is followed by the innovation of newer concepts of science and technology. One such example is the invention of engineered nanoparticles and their flagrant use in widespread applications. While ENPs serve their intended purposes, they also disrupt the ecological balance by contaminating pristine aquatic ecosystems. This review encompasses a comprehensive discussion about the potent toxicity of ENPs on aquatic ecosystems, with a particular focus on their impact on aquatic higher plants. The discussion extends to elucidating the fate of ENPs upon release into aquatic environments, covering aspects ranging from morphological and physiological effects to molecular-level phytotoxicity. Furthermore, this level of toxicity has been correlated with the determination of competent plants for the phytoremediation process towards the mitigation of this ecological stress. However, this review further illustrates the path of future research which is yet to be explored. Determination of the genotoxicity level of aquatic higher plants could explain the entire process comprehensively. Moreover, to make it suitable to be used in natural ecosystems phytoremediation potential of co-existing plant species along with the presence of different ENPs need to be evaluated. This literature will undoubtedly offer readers a comprehensive understanding of the stress induced by the irresponsible release of engineered nanoparticles (ENP) into aquatic environments, along with insights into the resilience characteristics of these pristine ecosystems.
Collapse
Affiliation(s)
- Uttara Sukul
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Raju Kumar Sharma
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Md Taharia
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Cheng-I Lee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Environmental Science Laboratory, Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pin-Yun Lin
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Doctoral Progam in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
8
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Nayeri S, Dolatyari M, Mouladoost N, Nayeri S, Zarghami A, Mirtagioglu H, Rostami A. Ag/ZnO core-shell NPs boost photosynthesis and growth rate in wheat seedlings under simulated full sun spectrum. Sci Rep 2023; 13:14385. [PMID: 37658127 PMCID: PMC10474060 DOI: 10.1038/s41598-023-41575-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Breeding programs rely on light wavelength, intensity, and photoperiod for rapid success. In this study, we investigated the ability of Ag/ZnO nanoparticles (NPs) to improve the photosynthesis and growth of wheat under simulated full solar spectrum conditions. The world population is increasing rapidly, it is necessary to increase the number of crops in order to ensure the world's food security. Conventional breeding is time-consuming and expensive, so new techniques such as rapid breeding are needed. Rapid breeding shows promise in increasing crop yields by controlling photoperiod and environmental factors in growth regulators. However, achieving optimum growth and photosynthesis rates is still a challenge. Here, we used various methods to evaluate the effects of Ag/ZnO NPs on rice seeds. Using bioinformatics simulations, we evaluated the light-harvesting efficiency of chlorophyll a in the presence of Ag/ZnO NPs. Chemically synthesized Ag/ZnO nanoparticles were applied to rice grains at different concentrations (0-50 mg/L) and subjected to a 12-h preparation time. Evaluation of seed germination rate and growth response in different light conditions using a Light Emitting Diode (LED) growth chamber that simulates a rapid growth system. The analysis showed that the surface plasmon resonance of Ag/ZnO NPs increased 38-fold, resulting in a 160-fold increase in the light absorption capacity of chlorophyll. These estimates are supported by experimental results showing an 18% increase in the yield of rice seeds treated with 15 mg/L Ag/ZnO NPs. More importantly, the treated crops showed a 2.5-fold increase in growth and a 1.4-fold increase in chlorophyll content under the simulated full sun spectrum (4500 lx) and a 16-h light/8-h dark photoperiod. More importantly, these effects are achieved without oxidative or lipid peroxidative damage. Our findings offer a good idea to increase crop growth by improving photosynthesis using Ag/ZnO nanoparticle mixture. To develop this approach, future research should go towards optimizing nanoparticles, investigating the long-term effects, and exploring the applicability of this process in many products. The inclusion of Ag/ZnO NPs in rapid breeding programs has the potential to transform crops by reducing production and increasing agricultural productivity.
Collapse
Affiliation(s)
- Shahnoush Nayeri
- SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran
| | - Mahboubeh Dolatyari
- SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran
| | - Neda Mouladoost
- Photonics and Nanocrystal Research Lab. (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 51666, Iran
| | - Saeed Nayeri
- Photonics and Nanocrystal Research Lab. (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 51666, Iran
| | - Armin Zarghami
- Photonics and Nanocrystal Research Lab. (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 51666, Iran
| | - Hamit Mirtagioglu
- Department of Statistics, Faculty of Science and Literature, University of Bitlis Eren, Bitlis, Turkey
| | - Ali Rostami
- SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran.
- Photonics and Nanocrystal Research Lab. (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, 51666, Iran.
| |
Collapse
|
10
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
11
|
Khan I, Awan SA, Rizwan M, Akram MA, Zia-Ur-Rehman M, Wang X, Zhang X, Huang L. Physiological and transcriptome analyses demonstrate the silver nanoparticles mediated alleviation of salt stress in pearl millet (Pennisetum glaucum L). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120863. [PMID: 36526056 DOI: 10.1016/j.envpol.2022.120863] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Pearl millet (Pennisetum glaucum L.) is a highly nutritive-value summer-annual forage crop used for hay, silage, grazing, and green chop. However, abiotic stresses including salinity negatively affect its growth and productivity. Furthermore, the nanotechnology is attaining greater consideration to reduce the impact of environmental stresses in plants. In the present study, transcriptome responses of silver nanoparticles (AgNPs) in pearl millet under salinity were investigated. The treatments were given as Control, NaCl (250 mM), AgNPs (20 mg/L), and NaCl + AgNPs to pearl millet seedlings after thirteen days of seed sowing. After 1 h of given treatments, leaf samples were collected and subjected to physio-chemical examination and transcriptome analyses. Salt stress increased the hydrogen peroxide (H2O2), malondialdehyde (MDA) content, and proline as compared to other treatments. In addition, the combined applications of NaCl + AgNPs ameliorated the oxidative damage by increasing antioxidant enzymes activities including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, RNA sequencing data showed 6016 commonly annotated Differentially Expressed Transcripts (DETs) among various treated combinations. Among them, 427 transcripts were upregulated, and 136 transcripts were downregulated at nanoparticles vs control, 1469 upregulated and 1182 downregulated at salt vs control, 494 upregulated and 231 downregulated at salt + nanoparticles vs control, 783 upregulated and 523 downregulated at nanoparticles vs salt. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that Mitogen-activated protein kinase (MAPK) signaling pathway, biosynthesis of secondary metabolites, and plant hormonal signal transduction pathway were the enriched among all identified pathways. In addition, Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) showed that salinity up regulated the relative expression of DETs in pearl millet while, AgNPs optimized their expression that are associated with various molecular and metabolic functions. Overall, AgNPs treatments effectively improved the morphology, physiology, biochemistry, and gene expression pattern under salinity which could be attributed to positive impacts of AgNPs on pearl millet.
Collapse
Affiliation(s)
- Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Samrah Afzal Awan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Xiaosan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Zhou J, Liu X, Jiang H, Li X, Li W, Cao Y. Antidote or Trojan horse for submerged macrophytes: Role of microplastics in copper toxicity in aquatic environments. WATER RESEARCH 2022; 216:118354. [PMID: 35358874 DOI: 10.1016/j.watres.2022.118354] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 05/23/2023]
Abstract
Due to their unique surface structures and physicochemical properties, microplastics (MPs) can adsorb other contaminants, thus impacting their toxicity and fate in aquatic ecosystems. In the present study, the adsorption and transportation of copper ions (Cu2+) in polyethylene (PE, 5 and 150 μm) and their combined effects on four submerged macrophyte species were assessed. Results demonstrated that the addition of PE reduced the Cu2+ concentration in copper sulfate (CuSO4) solution and the adsorption of Cu2+ in PE (10 mg/L) increased with CuSO4 concentration (100-600 μmol/L). PE alone exhibited no inhibitory effects on macrophytes, while Cu2+ showed fatal toxicity toward the macrophytes. However, the combination of PE and Cu2+ showed lower inhibitory effects on macrophytes and the toxicity attenuation varied among species. Additionally, PE may act as a carrier (like a Trojan horse) for the environmental transfer of Cu2+, thereby hosting Cu2+ toxicity against macrophytes in the imported environment. Our findings indicate that PE acts as both an antidote to and carrier of Cu2+ toxicity in macrophytes. This study should help in clarifying the combined effects and risk assessments of MPs and heavy metals in future studies.
Collapse
Affiliation(s)
- Jingzhe Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| | - Hongsheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xingjian Li
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Cao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
13
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
14
|
Yang Y, Du P, Lai W, Yin L, Ding Y, Li Z, Hu H. Changes in primary metabolites and volatile organic compounds in cotton seedling leaves exposed to silver ions and silver nanoparticles revealed by metabolomic analysis. PeerJ 2022; 10:e13336. [PMID: 35474690 PMCID: PMC9035277 DOI: 10.7717/peerj.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
In the area of climate change, nanotechnology provides handy tools for improving crop production and assuring sustainability in global agricultural system. Due to excellent physiological and biochemical properties, silver nanoparticles (AgNPs) have been widely studied for potential use in agriculture. However, there are concerns about the mechanism of the toxic effects of the accumulation of AgNPs on crop growth and development. In this study, the impacts of AgNPs on cotton (Gossypium hirsutum) seedlings were evaluated by integrating physiological and comprehensive metabolomic analyses. Potting-soil-grown, two-week-old cotton seedlings were foliar-exposed to 5 mg/plant AgNP or 0.02 mg/plant Ag+ (equivalent to the free Ag+ released from AgNPs). Primary metabolites and volatile organic compounds (VOCs) were identified by gas chromatography-mass spectrometry (GC-MS) and solid-phase microextraction (SPME) GC-MS, respectively. AgNPs inhibited the photosynthetic capacity of the cotton leaves. The metabolic spectrum analysis identified and quantified 73 primary metabolites and 45 VOCs in cotton leaves. Both treatments significantly changed the metabolite profiles of plant leaves. Among the primary metabolites, AgNPs induced marked changes in amino acids, sugars and sugar alcohols. Among the VOCs, 13 volatiles, mainly aldehydes, alkanes and terpenoids, were specifically altered only in response to AgNPs. In summary, our study showed that the comprehensive influence of AgNPs on primary metabolites and VOCs was not merely attributed to the released Ag+ but was caused by AgNP-specific effects on cotton leaves. These results provide important knowledge about the physiological and chemical changes in cotton leaves upon exposure to AgNPs and offer a new insight for supporting the sustainable use of AgNPs in agriculture.
Collapse
|
15
|
Li S, Chen S, Zhang Z, Huang Y, Li G, Li Y, Deng X, Li J. Short-term exposure to silver nano-particles alters the physiology and induces stress-related gene expression in Nelumbo nucifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:38-45. [PMID: 35245773 DOI: 10.1016/j.plaphy.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Lotus (Nelumbo nucifera) was used as model plant in this study to explore its physiology and molecular response upon short-term exposure to silver nano-particles (AgNPs). Accumulation patterns demonstrated a potential uptake of AgNPs by roots and transport to the leaves as a likely key translocation route in lotus. AgNPs exposure was negatively correlated with lotus growth, including germination rate and petiole length in a concentration-dependent manner. Synthesis of chloroplast pigments in lotus leaves was enhanced by low AgNPs concentration, but were inhibited at high concentration. Hydrogen peroxide (H2O2) was detected in lotus leaves after AgNPs treatment. Proline accumulation in lotus leaves was induced with the increase in AgNPs concentration and exposure time. Antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD) as well as catalase (CAT) were enhanced after the first day of AgNPs exposure, but declined with increased exposure time, indicating a time-dependent toxicity of AgNPs. In addition, real-time PCR revealed that two detoxification-related genes, GSH1 and GST, could be activated on the first day of AgNPs exposure, but down-regulated with prolonged AgNPs treatment. Photosynthesis-related RbcS gene was up-regulated, however, no obvious difference in the expression of RbcL was observed after the first day of AgNPs exposure. Moreover, WRKY70a and WRKY70b transcription factors exhibited similar expression patterns, with the highest induction after a 5 mg/L AgNPs exposure on the first day, which decreased with prolonged exposure time. This study provides useful references for further evaluation of the toxic mechanism of AgNPs and their bio-effects on aquatic plants and ecosystems.
Collapse
Affiliation(s)
- Shang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Simeng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zeyu Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufei Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Guoqian Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
16
|
Kusiak M, Oleszczuk P, Jośko I. Cross-examination of engineered nanomaterials in crop production: Application and related implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127374. [PMID: 34879568 DOI: 10.1016/j.jhazmat.2021.127374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The review presents the current knowledge on the development and implementation of nanotechnology in crop production, giving particular attention to potential opportunities and challenges of the use of nano-sensors, nano-pesticides, and nano-fertilizers. Due to the size-dependent properties, e.g. high reactivity, targeted and controlled delivery of active ingredients, engineered nanomaterials (ENMs) are expected to be more efficient agrochemicals than conventional agents. Growing production and usage of ENMs result in the spread of ENMs in the environment. Because plants constitute an important component of the agri-ecosystem, they are subjected to the ENMs activity. A number of studies have confirmed the uptake and translocation of ENMs by plants as well as their positive/negative effects on plants. Here, these endpoints are briefly summarized to show the diversity of plant responses to ENMs. The review includes a detailed molecular analysis of ENMs-plant interactions. The transcriptomics, proteomics and metabolomics tools have been very recently employed to explore ENMs-induced effects in planta. The omics approach allows a comprehensive understanding of the specific machinery of ENMs occurring at the molecular level. The summary of data will be valuable in defining future studies on the ENMs-plant system, which is crucial for developing a suitable strategy for the ENMs usage.
Collapse
Affiliation(s)
- Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
17
|
Hong M, Gong JL, Cao WC, Fang R, Cai Z, Ye J, Chen ZP, Tang WW. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano zinc oxide toward the cabbage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3540-3554. [PMID: 34389955 DOI: 10.1007/s11356-021-15857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The natural environment is a complex system, and there is never only one kind of nanomaterial entering the environment. However, many studies only considered the plant toxicity of one kind of nanomaterial and do not consider the influence of two or more kinds of nanomaterials on plant toxicity. Multi-walled carbon nanotubes (MWCNTs) and zinc oxide nanoparticles (ZnO NPs) are two common and widely used nanomaterials in water environment, so these two kinds of nanomaterials were chosen to explore the effects of their combined toxicity on cabbage. This study investigated the toxicity of MWCNTs combined with ZnO NPs on cabbage by measuring the length of roots and stems, chlorophyll content, oxidative stress, antioxidant enzyme activity, metal element content, and root scanning electron microscopy. The toxicity of single MWCNTs toward cabbage was attributed to direct oxidative damage, while the toxicity of single ZnO NPs toward cabbage was due to the high level of zinc concentration. Moreover, ZnO NPs (10 mg/L) ameliorated MWCNTs toxicity toward cabbage by improving the activity of antioxidant enzymes. ZnO NPs (50 and 100 mg/L) because of the high content of zinc disrupted the balance of other metals in the plant and increased the toxicity of MWCNTs. In conclusion, the combined toxicity of different concentrations and types of nanomaterials should be considered for a more accurate assessment of environmental risks.
Collapse
Affiliation(s)
- Mo Hong
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Ji-Lai Gong
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Wei-Cheng Cao
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Rong Fang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Zhe Cai
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, People's Republic of China
| | - Jun Ye
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd, Changsha, 410082, People's Republic of China
| | - Zeng-Ping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Wang-Wang Tang
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
18
|
Biba R, Košpić K, Komazec B, Markulin D, Cvjetko P, Pavoković D, Peharec Štefanić P, Tkalec M, Balen B. Surface Coating-Modulated Phytotoxic Responses of Silver Nanoparticles in Plants and Freshwater Green Algae. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:24. [PMID: 35009971 PMCID: PMC8746378 DOI: 10.3390/nano12010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity. In order to increase AgNP stability, different stabilizing coatings are applied during their synthesis. However, coating agents determine particle size and shape and influence their solubility, reactivity, and overall stability as well as their behavior and transformations in the biological medium. In this review, we attempt to give an overview on how the employment of different stabilizing coatings can modulate AgNP-induced phytotoxicity with respect to growth, physiology, and gene and protein expression in terrestrial and aquatic plants and freshwater algae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (R.B.); (K.K.); (B.K.); (D.M.); (P.C.); (D.P.); (P.P.Š.); (M.T.)
| |
Collapse
|
19
|
Ferrari E, Barbero F, Busquets-Fité M, Franz-Wachtel M, Köhler HR, Puntes V, Kemmerling B. Growth-Promoting Gold Nanoparticles Decrease Stress Responses in Arabidopsis Seedlings. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3161. [PMID: 34947510 PMCID: PMC8707008 DOI: 10.3390/nano11123161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
The global economic success of man-made nanoscale materials has led to a higher production rate and diversification of emission sources in the environment. For these reasons, novel nanosafety approaches to assess the environmental impact of engineered nanomaterials are required. While studying the potential toxicity of metal nanoparticles (NPs), we realized that gold nanoparticles (AuNPs) have a growth-promoting rather than a stress-inducing effect. In this study we established stable short- and long-term exposition systems for testing plant responses to NPs. Exposure of plants to moderate concentrations of AuNPs resulted in enhanced growth of the plants with longer primary roots, more and longer lateral roots and increased rosette diameter, and reduced oxidative stress responses elicited by the immune-stimulatory PAMP flg22. Our data did not reveal any detrimental effects of AuNPs on plants but clearly showed positive effects on growth, presumably by their protective influence on oxidative stress responses. Differential transcriptomics and proteomics analyses revealed that oxidative stress responses are downregulated whereas growth-promoting genes/proteins are upregulated. These omics datasets after AuNP exposure can now be exploited to study the underlying molecular mechanisms of AuNP-induced growth-promotion.
Collapse
Affiliation(s)
| | - Francesco Barbero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (F.B.); (V.P.)
- Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | | | | | - Heinz-R. Köhler
- Animal Physiological Ecology, University of Tübingen, 72076 Tübingen, Germany;
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (F.B.); (V.P.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Vall d’Hebron Institut de Recerca (VHIR), 08032 Barcelona, Spain
| | | |
Collapse
|
20
|
Yang Z, Deng C, Wu Y, Dai Z, Tang Q, Cheng C, Xu Y, Hu R, Liu C, Chen X, Zhang X, Li A, Xiong X, Su J, Yan A. Insights into the mechanism of multi-walled carbon nanotubes phytotoxicity in Arabidopsis through transcriptome and m6A methylome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147510. [PMID: 33991908 DOI: 10.1016/j.scitotenv.2021.147510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
With the increasing production and wide application of carbon nanotubes (CNTs), they are inevitably released into the natural environment and ecosystems, where plants are the main primary producers. Hence, it is imperative to understand the toxic effects of CNTs on plants. The molecular mechanisms underlying the toxic effects of CNTs on plants are still unclear. Therefore, in the present study, we investigated the effects of high concentrations of multi-walled CNTs (MWCNTs) on Arabidopsis. Root elongation and leaf development were severely inhibited after MWCNT exposure. Excess production of H2O2, O2-, and malondialdehyde was observed, indicating that MWCNTs induced oxidative stress. The antioxidant system was activated to counter MWCNTs-induced oxidative stress. Combinatorial transcriptome and m6A methylome analysis revealed that MWCNTs suppressed auxin signaling and photosynthesis. Reactive oxygen species metabolism, toxin metabolism, and plant responses to pathogens were enhanced to cope with the phytotoxicity of MWCNTs. Our results provide new insights into the molecular mechanisms of CNT phytotoxicity and plant defense responses to CNTs.
Collapse
Affiliation(s)
- Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yupeng Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Rong Hu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaojun Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Alei Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China.
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - An Yan
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
21
|
Anwar N, Mehmood A, Ahmad KS, Hussain K. Biosynthesized silver nanoparticles induce phytotoxicity in Vigna radiata L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2115-2126. [PMID: 34629782 PMCID: PMC8484397 DOI: 10.1007/s12298-021-01073-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED With the recent developments in the field of nanotechnology, the biosynthesis of nanoparticles has increased tremendously. Silver nanoparticles (SNPs) are among the most synthesized nanoparticles and this extensive synthesis can elevate the amounts of SNPs in the environment, which, consequently, pose a serious threat to the ecosystem and can bring unwanted environmental effects. As plants are an important part of ecosystem, investigation of toxic effects of SNPs on plants is particularly interesting. This study evaluates the potential risk of SNPs interaction with plants. For this, seeds of Vigna radiata L. were screened in presence of SNPs (20 mgL-1) using the germination, growth, and biochemical parameters as a phototoxicity criterion. The 19.57 nm average-sized SNPs were synthesized via the biosynthesis method. These biosynthesized SNPs were then applied on two varieties of V. radiata (Azri and High cross 404) and found to have variety dependent toxic effects on seed germination, growth, and biochemical parameters. Seed germination, root length, shoot length, fresh weight, chlorophyll, carotenoid, sugar content, and total proteins were reduced by 20, 46, 50, 18, 55, 62, 82, and 67%, respectively, in High cross 404, when compared with control (distilled water). The variety Azri was less sensitive than the variety High cross 404. In conclusion, the results demonstrated that SNPs affect seed germination and seedling growth when internalized and accumulated in plants, revealing that SNPs were responsible for the side effects. More in-depth research is required, in the form of different concentrations of SNPs or different plant species, to draw a logical conclusion and develop legislation about the safe use of biosynthesized SNPs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01073-4.
Collapse
Affiliation(s)
- Najma Anwar
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, 12350 Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, 12350 Pakistan
| | | | - Karamit Hussain
- Department of Botany, The University of Azad Jammu And Kashmir (UAJK), Muzaffarabad, 13100 Pakistan
| |
Collapse
|
22
|
Galúcio JMP, de Souza SGB, Vasconcelos AA, Lima AKO, da Costa KS, de Campos Braga H, Taube PS. Synthesis, Characterization, Applications, and Toxicity of Green Synthesized Nanoparticles. Curr Pharm Biotechnol 2021; 23:420-443. [PMID: 34355680 DOI: 10.2174/1389201022666210521102307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1-100 nm which exhibit significantly different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment; and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.
Collapse
Affiliation(s)
| | | | | | - Alan Kelbis Oliveira Lima
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Kauê Santana da Costa
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Paulo Sérgio Taube
- Institute of Biodiversity, Federal University of Western Pará, Santarém, Pará, Brazil
| |
Collapse
|
23
|
Noori A, Bharath LP, White JC. Type-specific impacts of silver on the protein profile of tomato ( Lycopersicon esculentum L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:12-24. [PMID: 34000928 DOI: 10.1080/15226514.2021.1919052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are particularly among the widely used nanomaterials in medicine, industry, and agriculture. The small size and large surface area of AgNPs and other nanomaterials result in their high reactivity in biological systems. To better understand the effects of AgNPs on plants at the molecular level, tomato (Lycopersicon esculentum L.) seedlings were exposed to 30 mg/L silver in the form of nanoparticle (AgNPs), ionic (AgNO3), or bulk (Ag0) in 50% Hoagland media for 7 days. The effects of silver on the expression of plant membrane transporters H+-ATPase, vacuolar type H+-ATPase (V-ATPase), and enzymes isocitrate dehydrogenase (IDH), and catalase in roots was assessed using RT-qPCR and immunofluorescence-confocal microscopy. We observed significantly higher expression of catalase in plants exposed to AgNPs (Fold of expression 1.1) and AgNO3 (Fold of expression 1.2) than the control group. The immunofluorescence imaging of the proteins confirmed the gene expression data; the expression of the enzyme catalase was upregulated 41, 216, and 770% higher than the control group in plants exposed to AgNPs, Ag0, and AgNO3, respectively. Exposure to AgnO3 resulted in the upregulation (fold of expression 1.2) of H+-ATPase and downregulation (fold of expression 0.7) of V-ATPase. A significant reduction in the expression of the redox-sensitive tricarboxylic cycle (TCA) enzyme mitochondrial IDH was observed in plants exposed to AgNPs (38%), AgNO3 (48%), or Ag0 (77%) compared to the control. This study shows that exposure to silver affects the expression of genes and protein involved in membrane transportation and oxidative response. The ionic form of silver had the most significant effect on the expression of genes and proteins compared to other forms of silver. The results from this study improve our understanding about the molecular effects of different forms of silver on important crop species. Novelty statementSilver nanoparticles released into the environment can be oxidized and be transformed into ionic form. Both the particulate and ionic forms of silver can be taken by plants and affect plants physiological and molecular responses. Despite the extensive research in this area, there is a scarce of information about the effects of silver nanoparticles on the expression of membrane transporters especially H+-ATPase involved in regulating cells' electrochemical charge, and the activity of enzymes involved in oxidative stress responses. This is a unique study that evaluates the expression of cellular proton transporters and enzymes of redox balance and energy metabolisms such as membrane transporters, H+-ATPase, and V-ATPases, and enzymes catalase and IDH. The results provide us valuable information about the impact of silver on plants at the molecular level by evaluating the expression of genes and proteins. Key MessageThe exposure of plants to silver as an environmental stressor affects the expression of genes and proteins involved in maintaining cell's electrochemical gradient (H+-ATPase, V-ATPase) and redox potential (IDH, catalase).
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
24
|
García-Sánchez S, Gala M, Žoldák G. Nanoimpact in Plants: Lessons from the Transcriptome. PLANTS 2021; 10:plants10040751. [PMID: 33921390 PMCID: PMC8068866 DOI: 10.3390/plants10040751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Transcriptomics studies are available to evaluate the potential toxicity of nanomaterials in plants, and many highlight their effect on stress-responsive genes. However, a comparative analysis of overall expression changes suggests a low impact on the transcriptome. Environmental challenges like pathogens, saline, or drought stress induce stronger transcriptional responses than nanoparticles. Clearly, plants did not have the chance to evolve specific gene regulation in response to novel nanomaterials; but they use common regulatory circuits with other stress responses. A shared effect with abiotic stress is the inhibition of genes for root development and pathogen response. Other works are reviewed here, which also converge on these results.
Collapse
Affiliation(s)
- Susana García-Sánchez
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park P.J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
- Correspondence: (S.G.-S.); (G.Ž.)
| | - Michal Gala
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenna 5, 040 01 Košice, Slovakia;
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park P.J. Šafárik University, Trieda SNP 1, 040 11 Košice, Slovakia
- Correspondence: (S.G.-S.); (G.Ž.)
| |
Collapse
|
25
|
Xiong T, Zhang S, Kang Z, Zhang T, Li S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce ( Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms. Int J Mol Sci 2021; 22:3688. [PMID: 33916236 PMCID: PMC8036535 DOI: 10.3390/ijms22073688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex mechanisms involved in plant response to nanoparticles (NPs) is indispensable in assessing the environmental impact of nano-pollutants. Plant leaves can directly intercept or absorb NPs deposited on their surface; however, the toxicity mechanisms of NPs to plant leaves are unclear. In this study, lettuce leaves were exposed to copper oxide nanoparticles (CuO-NPs, 0, 100, and 1000 mg/L) for 15 days, then physiological tests and transcriptomic analyses were conducted to evaluate the negative impacts of CuO-NPs. Both physiological and transcriptomic results demonstrated that CuO-NPs adversely affected plant growth, photosynthesis, and enhanced reactive oxygen species (ROS) accumulation and antioxidant system activity. The comparative transcriptome analysis showed that 2270 and 4264 genes were differentially expressed upon exposure to 100 and 1000 mg/L CuO-NPs. Gene expression analysis suggested the ATP-binding cassette (ABC) transporter family, heavy metal-associated isoprenylated plant proteins (HIPPs), endocytosis, and other metal ion binding proteins or channels play significant roles in CuO-NP accumulation by plant leaves. Furthermore, the variation in antioxidant enzyme transcript levels (POD1, MDAR4, APX2, FSDs), flavonoid content, cell wall structure and components, and hormone (auxin) could be essential in regulating CuO-NPs-induced stress. These findings could help understand the toxicity mechanisms of metal NPs on crops, especially NPs resulting from foliar exposure.
Collapse
Affiliation(s)
| | | | | | | | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; (T.X.); (S.Z.); (Z.K.); (T.Z.)
| |
Collapse
|
26
|
Zhao Z, Xu L, Wang Y, Li B, Zhang W, Li X. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15032-15042. [PMID: 33222069 DOI: 10.1007/s11356-020-11714-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag-NPs) are widely used in daily life and inevitably discharged into the aquatic environment, causing increasingly serious pollution. Research on the toxicity of Ag-NPs is still in infancy, little information is available on the relationships between oxidative stress and antioxidant, as well as damaging degrees of Ag-NPs to cellular structural components of Chlamydomonas reinhardtii (C. reinhardtiii). In the present study, we revealed the toxicity mechanism of C. reinhardtii under Ag-NPs stress using flow cytometry (FCM), metabolic methods, and transmission electron microscopy. The results showed that the chloroplasts were damaged and the synthesis of photosynthetic pigments was inhibited under Ag-NPs stress, which inhibited the growth of C. reinhardtii. Meanwhile, Ag-NPs also caused C. reinhardtii to produce excessive reactive oxygen species (ROS), increased malondialdehyde content and changed the permeability of cell membrane, resulting in the acceleration of internalization of Ag-NPs. The decrease of cell size and intracellular chlorophyll autofluorescence was observed with FCM. To deal with the induced excessive ROS that could lead to lethal and irreversible structure damage, C. reinhardtii activated antioxidant enzymes including superoxide dismutase and peroxidase. This study provides new information for better understanding the potential toxicity risks of Ag-NPs in the aquatic environment.
Collapse
Affiliation(s)
- Zhilin Zhao
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Limei Xu
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bihan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Xiaochen Li
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
27
|
Ziotti ABS, Ottoni CA, Correa CN, de Almeida OJG, de Souza AO, Neto MCL. Differential physiological responses of a biogenic silver nanoparticle and its production matrix silver nitrate in Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13069-4. [PMID: 33625697 DOI: 10.1007/s11356-021-13069-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNP) have been extensively applied in different industrial areas, mainly due to their antibiotic properties. One of the environmental concerns with AgNP is its incorrect disposal, which might lead to severe environmental pollution. The interplay between AgNP and plants is receiving increasing attention. However, little is known regarding the phytotoxic effects of biogenic AgNP on terrestrial plants. This study aimed to compare the effects of a biogenic AgNP and AgNO3 in Sorghum bicolor seedlings. Seeds were germinated in increasing concentrations of a biogenic AgNP and AgNO3 (0, 10, 100, 500, and 1000 μM) in a growth chamber with controlled conditions. The establishment and development of the seedlings were evaluated for 15 days. Physiological and morpho-anatomical indicators of stress, enzymatic, and non-enzymatic antioxidants and photosynthetic yields were assessed. The results showed that both AgNP and AgNO3 disturbed germination and the establishment of sorghum seedlings. AgNO3 released more free Ag+ spontaneously compared to AgNP, promoting increased Ag+ toxicity. Furthermore, plants exposed to AgNP triggered more efficient protective mechanisms compared with plants exposed to AgNO3. Also, the topology and connectivity of the correlation-based networks were more impacted by the exposure of AgNO3 than AgNP. In conclusion, it is plausible to say that the biogenic AgNP is less toxic to sorghum than its matrix AgNO3.
Collapse
Affiliation(s)
- Ana Beatriz Sicchieri Ziotti
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cristiane Angélica Ottoni
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
- Instituto de Estudos Avançados do Mar (IEAMar), São Paulo State University, São Vicente, SP, Brazil
| | - Cláudia Neves Correa
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Odair José Garcia de Almeida
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil
| | - Ana Olivia de Souza
- Innovation and Development Laboratory, Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Costa Lima Neto
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Don Henrique, s/n, Parque Bitarú, São Vicente, SP, 11380-972, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
28
|
Abstract
The increasing metal release into the environment warrants investigating their impact on plants, which are cornerstones of ecosystems. Here, Lactuca sativa L. (lettuce) seedlings were exposed hydroponically to different concentrations of silver ions and nanoparticles (Ag NPs) for 25 days to evaluate their impact on plant growth. Seedlings taking Ag+ ions showed an increment of 18% in total phenolic content and 12% in total flavonoid content, whereas under Ag NPs, 7% free radical scavenging activity, 12% total phenolic contents (TPC), and 10% total reducing power are increased. An increase in 31% shoot length, 25% chlorophyll, 11% carbohydrate, and 16% protein content of the lettuce plant is observed in response to Ag NPs, while silver nitrate (AgNO3) has a reduced 40% growth. The lettuce plant was most susceptible to toxic effects of Ag+ ions at a lower concentration, i.e., 0.01 mg/L, while Ag NPs showed less toxicity, only when higher concentrations >100 mg/L were applied. Further, biomolecules other than antioxidant enzymes showed higher phytotoxicity for Ag+ ions, followed by Ag NPs with the concentration of 25, 50, and 100 mg/L compared to the control. Thus, moderate concentrations of Ag NPs have a stimulatory effect on seedling growth, while higher concentrations induced inhibitory effects due to the release of Ag+ ions. These results suggest that optimum metallic contents are desirable for the healthier growth of plants in a controlled way.
Collapse
|
29
|
Huang J, Wang Y, Yin L, Jiang HS. Letter to the editor: Proteomic responses to silver nanoparticles vary with the fungal ecotype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:140705. [PMID: 32654808 DOI: 10.1016/j.scitotenv.2020.140705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Jiaquan Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, HaiKou 570228, China
| | - Ying Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, HaiKou 570228, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, HaiKou 570228, China.
| | - Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
30
|
Huang Z, Xie W, Wang M, Liu X, Ashraf U, Qin D, Zhuang M, Li W, Li Y, Wang S, Tian H, Mo Z. Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles' (NPs) stress. CHEMOSPHERE 2020; 250:126337. [PMID: 32135442 DOI: 10.1016/j.chemosphere.2020.126337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/24/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Nitrate reductase is a nitric oxide (NO) induced enzyme in plants, NO acts as a signaling molecule under ZnO NPs-induced stress whereas melatonin (N-acetyl-5-methoxytryptamine) could improve morpho-physiological attributes of plants under adverse conditions. In present study, seedlings of two rice genotypes differed regarding nitrate reductase activities i.e., transgenic 'NR' and wild type 'WT' were applied with two melatonin levels i.e., 0, 10 μΜ regarded as M0, M10, respectively and three levels of ZnO NPs i.e., 0, 50, 500 mg L-1 regarded as ZnO NPs0, ZnO NPs50 and ZnO NPs500, respectively. Results revealed that melatonin application substantially increased the dry biomass accumulation of both rice genotypes under all ZnO NPs levels. The root growth, mineral absorption as well as the antioxidant responses were also improved by melatonin application under ZnO NPs stress. The interactive effects of melatonin and genotype on plant growth, antioxidant responses and mineral contents i.e., Zn, Na, Fe and Mn were also found significant under different ZnO NPs stress. Furthermore, total plant dry weight was significantly correlated with the leaf dry weight, root volume, catalase (CAT) activity in leaves, Na accumulation in stem sheath and Fe accumulation in root under both M0 and M10 treatments. Moreover, the comparative transcriptome analysis identified key genes which were responsible for melatonin and NO-induced modulations in plant growth under ZnO NPs stress. Overall, melatonin could improve the morphological growth of the rice plants by modulating root-shoot characteristics, antioxidant activities and mineral uptake in root and shoot of rice.
Collapse
Affiliation(s)
- Zhuoli Huang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wenjun Xie
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Meng Wang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xuwei Liu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Dejun Qin
- Guangdong Seed Association, Guangzhou, 510000, Guangdong, China
| | - Maosen Zhuang
- BASF(China) Company Limited Guangzhou Branch, Guangzhou, 510095, Guangdong, China
| | - Wu Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, 510640, Guangdong, China
| | - Yuzhan Li
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shuli Wang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Hua Tian
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.
| | - Zhaowen Mo
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China; Center for International Field Agriculture Research & Education, Ibaraki University, Ami, Ibaraki, 300-0393, Japan.
| |
Collapse
|
31
|
Zhang Y, Li Y, Feng Q, Shao M, Yuan F, Liu F. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. CHEMOSPHERE 2020; 248:126009. [PMID: 32000039 DOI: 10.1016/j.chemosphere.2020.126009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a widespread environment contaminant due to the development of electroplating and metallurgical industry. Cd can be enriched by organisms via food chain, causing the enlarged environmental problems and posing threats to the health of humans. Polydatin (PD), a natural stilbenoid compound derived from Polygonum cuspidatum, shows pronouncedly curative effect on oxidative damage. In this work, the protective effects of PD on oxidative damage induced by Cd in Musca domestica (housefly) larvae were evaluated. The larvae were exposed to Cd and/or PD, subsequently, the oxidative stress status, mitochondria activity, oxidative phosphorylation efficiency, and survival rate were assessed. Cd exposure generated significant increases of malondialdehyde (MDA), reactive oxygen species (ROS) and 8-hydroxy-2-deoxyguanosine (8-oxoG) in the housefly larvae, causing mitochondrial dysfunction and survival rate decline. Interestingly, pretreatment with PD exhibited obviously mitochondrial protective effects in the Cd-exposed larvae, as evidenced by reduced MDA, ROS and 8-oxoG levels, and increased activities of superoxide dismutase (SOD), mitochondrial electron transfer chain, and mitochondrial membrane potential, as well as respiratory control ratio. These results suggested that PD could attenuate Cd-induced damage via maintaining redox balance, stimulating SOD activity, and regulating mitochondria activity in housefly larvae. As a natural polyphenolic chemical, PD can act as a potential candidate compounds to relieve Cd injury.
Collapse
Affiliation(s)
- Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yajing Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qin Feng
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Menghua Shao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|