1
|
Xiao Y, Xiang W, Ma X, Zheng A, Rong D, Zhang N, Yang N, Bayram H, Lorimer GH, Wang J. Research Progress on the Correlation Between Atmospheric Particulate Matter and Autism. J Appl Toxicol 2024. [PMID: 39701085 DOI: 10.1002/jat.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by the interaction of genetic and complex environmental factors. The prevalence of autism has dramatically increased in countries and regions undergoing rapid industrialization and urbanization. Recent studies have shown that particulate matter (PM) in air pollution affects the development of neurons and disrupts the function of the nervous system, leading to behavioral and cognitive problems and increasing the risk of ASD. However, research on the mechanism of environmental factors and ASD is still in its infancy. On this basis, we conducted a literature search and analysis to review epidemiological studies on the correlation between fine particulate matter (PM2.5) and inhalable particulate matter (PM10) and ASD. The signaling pathways and pathogenic mechanisms of PM in synaptic injury and neuroinflammation are presented, and the mechanism of the ASD candidate gene SHANK3 was reviewed. Additionally, the different sites of action of different particles in animal models and humans were highlighted, and the differences of their effects on the pathogenesis of ASD were explained. We summarized the aetiology and mechanisms of PM-induced autism and look forward to future research breakthroughs in improved assessment methods, multidisciplinary alliances and high-tech innovations.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Aijia Zheng
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Nimeng Zhang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland, USA
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Mamun MA, Al-Mamun F, Roy N, Raquib A, Kaggwa MM, ALmerab MM, Gozal D, Hossain MS. Preconception and gestational versus postnatal exposure to air pollutants and risk of autism spectrum disorder: a systematic review and meta-analysis. Int Arch Occup Environ Health 2024:10.1007/s00420-024-02112-9. [PMID: 39676091 DOI: 10.1007/s00420-024-02112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE The rising prevalence of ASD has prompted extensive research into potential environmental risk factors, with air pollution particularly emerging as a major concern. A systematic review and meta-analysis on the effect of air pollutants and time of exposure (particularly, PM2.5, PM10, NO2, and O3) and the risk of ASD was therefore performed. METHODS Following PRISMA guidelines and PROSPERO registration (Ref: CRD42023464592), a thorough literature search was conducted across multiple databases, including Scopus, PubMed/MEDLINE, Embase, PsycINFO, Web of Science, and Cochrane Library. The analysis included 27 studies encompassing 369,460 participants, 47,973 of whom were diagnosed with ASD. RESULTS Preconception exposure to air pollutants showed a protective trend for PM2.5, PM10, and O3 with a 10%, 5%, and 19% reduced risk of ASD, whereas NO2 had a 28% higher likelihood of ASD. During gestation, PM2.5 exposure increased ASD risk by 15%, with 13% and 9%, 25% and 7%, and 25% and 10% increases in ASD risk with PM2.5 and NO2 for the first, second, and third trimesters, respectively. In the first year of life, 20%, 8%, 33%, and 14% increases in risk were found for PM2.5, PM10, NO2, and O3, respectively, while such risk estimates increased to 179%, 60%, 12%, and 179% for the second year of life. CONCLUSIONS In this meta-analysis, the relationships between air pollutants and ASD risk revealed significant associations, particularly for PM2.5 and NO2. Exposure during preconception exhibited a protective trend, while postnatal exposure, particularly during the second year of life uncovered substantially higher ASD risk.
Collapse
Affiliation(s)
- Mohammed A Mamun
- Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Dhaka, Bangladesh
- CHINTA Research Bangladesh, Savar, Dhaka, Bangladesh
- Department of Public Health, University of South Asia, Dhaka, Bangladesh
| | - Firoj Al-Mamun
- Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Dhaka, Bangladesh
- CHINTA Research Bangladesh, Savar, Dhaka, Bangladesh
- Department of Public Health, University of South Asia, Dhaka, Bangladesh
| | - Nitai Roy
- Department of Biochemistry and Food Analysis, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Ahsan Raquib
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Mark Mohan Kaggwa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Moneerah Mohammad ALmerab
- Department of Psychology, College of Education and Human Development, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - David Gozal
- Department of Pediatrics and Dean's Office, Joan C. Edwards School of Medicine, Marshall University, 25701, Huntington, WV, United States
| | - Md Shakhaoat Hossain
- Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
3
|
Luglio D, Kleeman MJ, Yu X, Lin JC, Chow T, Martinez MP, Chen Z, Chen JC, Eckel SP, Schwartz J, Lurmann F, McConnell R, Xiang AH, Rahman MM. Prenatal Exposure to Source-Specific Fine Particulate Matter and Autism Spectrum Disorder. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18566-18577. [PMID: 39392704 PMCID: PMC11500427 DOI: 10.1021/acs.est.4c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
In this study, associations between prenatal exposure to fine particulate matter (PM2.5) from 9 sources and development of autism spectrum disorder (ASD) were assessed in a population-based retrospective pregnancy cohort in southern California. The cohort included 318,750 mother-child singleton pairs. ASD cases (N = 4559) were identified by ICD codes. Source-specific PM2.5 concentrations were estimated from a chemical transport model with a 4 × 4 km2 resolution and assigned to maternal pregnancy residential addresses. Cox proportional hazard models were used to estimate the hazard ratios (HR) of ASD development for each individual source. We also adjusted for total PM2.5 mass and in a separate model for all other sources simultaneously. Increased ASD risk was observed with on-road gasoline (HR [CI]: 1.18 [1.13, 1.24]), off-road gasoline (1.15 [1.12, 1.19]), off-road diesel (1.08 [1.05, 1.10]), food cooking (1.05 [1.02, 1.08]), aircraft (1.04 [1.01, 1.06]), and natural gas combustion (1.09 [1.06, 1.11]), each scaled to standard deviation increases in concentration. On-road gasoline and off-road gasoline were robust for other pollutant groups. PM2.5 emitted from different sources may have different impacts on ASD. The results also identify PM source mixtures for toxicological investigations that may provide evidence for future public health policies.
Collapse
Affiliation(s)
- David
G. Luglio
- Department
of Environmental Health Sciences, Tulane
University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70118, United States
| | - Michael J. Kleeman
- Department
of Civil and Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | - Xin Yu
- Spatial
Science Institute, University of Southern
California, Los Angeles, California 90089, United States
| | - Jane C. Lin
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Ting Chow
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Mayra P. Martinez
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Zhanghua Chen
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Jiu-Chiuan Chen
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Sandrah Proctor Eckel
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Joel Schwartz
- Department
of Environmental Health, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts 02115, United States
- Department
of Epidemiology, Harvard T.H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
| | | | - Rob McConnell
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Anny H. Xiang
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Md Mostafijur Rahman
- Department
of Environmental Health Sciences, Tulane
University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70118, United States
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Cotter DL, Ahmadi H, Cardenas-Iniguez C, Bottenhorn KL, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman DA, Chen JC, Herting MM. Exposure to multiple ambient air pollutants changes white matter microstructure during early adolescence with sex-specific differences. COMMUNICATIONS MEDICINE 2024; 4:155. [PMID: 39090375 PMCID: PMC11294340 DOI: 10.1038/s43856-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Air pollution is ubiquitous, yet questions remain regarding its impact on the developing brain. Large changes occur in white matter microstructure across adolescence, with notable differences by sex. METHODS We investigate sex-stratified effects of annual exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) at ages 9-10 years on longitudinal patterns of white matter microstructure over a 2-year period. Diffusion-weighted imaging was collected on 3T MRI scanners for 8182 participants (1-2 scans per subject; 45% with two scans) from the Adolescent Brain Cognitive Development (ABCD) Study®. Restriction spectrum imaging was performed to quantify intracellular isotropic (RNI) and directional (RND) diffusion. Ensemble-based air pollution concentrations were assigned to each child's primary residential address. Multi-pollutant, sex-stratified linear mixed-effect models assessed associations between pollutants and RNI/RND with age over time, adjusting for sociodemographic factors. RESULTS Here we show higher PM2.5 exposure is associated with higher RND at age 9 in both sexes, with no significant effects of PM2.5 on RNI/RND change over time. Higher NO2 exposure is associated with higher RNI at age 9 in both sexes, as well as attenuating RNI over time in females. Higher O3 exposure is associated with differences in RND and RNI at age 9, as well as changes in RND and RNI over time in both sexes. CONCLUSIONS Criteria air pollutants influence patterns of white matter maturation between 9-13 years old, with some sex-specific differences in the magnitude and anatomical locations of affected tracts. This occurs at concentrations that are below current U.S. standards, suggesting exposure to low-level pollution during adolescence may have long-term consequences.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Carter S, Lin JC, Chow T, Martinez MP, Qiu C, Feldman RK, McConnell R, Xiang AH. Preeclampsia Onset, Days to Delivery, and Autism Spectrum Disorders in Offspring: Clinical Birth Cohort Study. JMIR Public Health Surveill 2024; 10:e47396. [PMID: 38630528 PMCID: PMC11063875 DOI: 10.2196/47396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/08/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Maternal preeclampsia is associated with a risk of autism spectrum disorders (ASD) in offspring. However, it is unknown whether the increased ASD risk associated with preeclampsia is due to preeclampsia onset or clinical management of preeclampsia after onset, as clinical expectant management of preeclampsia allows pregnant women with this complication to remain pregnant for potentially weeks depending on the onset and severity. Identifying the risk associated with preeclampsia onset and exposure provides evidence to support the care of high-risk pregnancies and reduce adverse effects on offspring. OBJECTIVE This study aimed to fill the knowledge gap by assessing the ASD risk in children associated with the gestational age of preeclampsia onset and the number of days from preeclampsia onset to delivery. METHODS This retrospective population-based clinical cohort study included 364,588 mother-child pairs of singleton births between 2001 and 2014 in a large integrated health care system in Southern California. Maternal social demographic and pregnancy health data, as well as ASD diagnosis in children by the age of 5 years, were extracted from electronic medical records. Cox regression models were used to assess hazard ratios (HRs) of ASD risk in children associated with gestational age of the first occurrence of preeclampsia and the number of days from first occurrence to delivery. RESULTS Preeclampsia occurred in 16,205 (4.4%) out of 364,588 pregnancies; among the 16,205 pregnancies, 2727 (16.8%) first occurred at <34 weeks gestation, 4466 (27.6%) first occurred between 34 and 37 weeks, and 9012 (55.6%) first occurred at ≥37 weeks. Median days from preeclampsia onset to delivery were 4 (IQR 2,16) days, 1 (IQR 1,3) day, and 1 (IQR 0,1) day for those first occurring at <34, 34-37, and ≥37 weeks, respectively. Early preeclampsia onset was associated with greater ASD risk (P=.003); HRs were 1.62 (95% CI 1.33-1.98), 1.43 (95% CI 1.20-1.69), and 1.23 (95% CI 1.08-1.41), respectively, for onset at <34, 34-37, and ≥37 weeks, relative to the unexposed group. Within the preeclampsia group, the number of days from preeclampsia onset to delivery was not associated with ASD risk in children; the HR was 0.995 (95% CI 0.986-1.004) after adjusting for gestational age of preeclampsia onset. CONCLUSIONS Preeclampsia during pregnancy was associated with ASD risk in children, and the risk was greater with earlier onset. However, the number of days from first preeclampsia onset to delivery was not associated with ASD risk in children. Our study suggests that ASD risk in children associated with preeclampsia is not increased by expectant management of preeclampsia in standard clinical practice. Our results emphasize the need to identify effective approaches to preventing the onset of preeclampsia, especially during early pregnancy. Further research is needed to confirm if this finding applies across different populations and clinical settings.
Collapse
Affiliation(s)
- Sarah Carter
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Jane C Lin
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Mayra P Martinez
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Chunyuan Qiu
- Department of Anesthesiology and Perioperative Medicine, Baldwin Park Medical Center, Kaiser Permanente Southern California, Baldwin Park, CA, United States
| | - R Klara Feldman
- Department of Obstetrics and Gynecology, Baldwin Park Medical Center, Kaiser Permanente Southern California, Baldwin Park, CA, United States
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| |
Collapse
|
6
|
Amnuaylojaroen T, Parasin N, Saokaew S. Exploring the association between early-life air pollution exposure and autism spectrum disorders in children: A systematic review and meta-analysis. Reprod Toxicol 2024; 125:108582. [PMID: 38556115 DOI: 10.1016/j.reprotox.2024.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
The objective of this meta-analysis is to investigate the association between air pollution and the vulnerability of children to autism spectrum disorders (ASD). A thorough examination and analysis of data obtained from a compilation of 14 studies was undertaken, with a particular emphasis on investigating the effects of nitrogen dioxide (NO2), oxide of nitrogen (NOx), ozone (O3), and particulate matter (PM10 and PM2.5) on individuals diagnosed with ASD. The findings demonstrate a moderate association between exposure to nitrogen dioxide (NO2) and ASD, as indicated by a combined odds ratio (OR) of 1.13 and a 95% confidence interval (CI) spanning from 0.77 to 1.549. O3 shows a combined odds ratio (OR) of 0.82, along with a 95% confidence interval (CI) ranging from 0.49 to 1.14. NOx shows a moderate level of heterogeneity (I² = 75.9%, p = 0.002), suggesting that the impact of NOx on the risk of ASD. There is a statistically significant relationship between exposure to O3 and ASD, although the strength of this relationship is diminished. The findings demonstrated a noteworthy correlation between exposure to PM10 and PM2.5 and the occurrence of ASD. The study found a significant correlation, in relation to PM2.5, with a combined odds ratio (OR) of 1.22 and a 95% confidence interval (CI) ranging from 1.11 to 1.34. The findings have significant implications for the formulation of programs aimed at reducing exposure to harmful chemicals, especially among vulnerable groups such as children.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand; Atmospheric Pollution and Climate Change Research Units, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand.
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
7
|
Carter SA, Lin JC, Chow T, Martinez MP, Alves JM, Feldman KR, Qiu C, Page KA, McConnell R, Xiang AH. Maternal obesity and diabetes during pregnancy and early autism screening score at well-child visits in standard clinical practice. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:975-984. [PMID: 37646431 PMCID: PMC10902177 DOI: 10.1177/13623613231188876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
LAY ABSTRACT Early intervention and treatment can help reduce disability in children diagnosed with autism spectrum disorder. Screening for autism spectrum disorder in young children identifies those at increased likelihood of diagnosis who may need further support. Previous research has reported that exposure to maternal obesity and diabetes during pregnancy is associated with higher likelihood of autism spectrum disorder diagnosis in children. However, little is known about whether these maternal conditions are associated with how very young children score on autism spectrum disorder screening tools. This study examined associations between exposure to maternal obesity and diabetes during pregnancy and offspring scores on the Quantitative Checklist for Autism in Toddlers, an autism spectrum disorder screening questionnaire administered between 18-24 months at well-child visits. A higher score on the Quantitative Checklist for Autism in Toddlers suggests a higher likelihood of autism spectrum disorder; children with scores 3 or greater are referred to developmental pediatricians for evaluation. Our study found that children of mothers with obesity or diabetes during pregnancy had higher scores than children whose mothers did not have these conditions. Associations with maternal obesity and gestational diabetes diagnosed at or before 26 weeks of pregnancy were also present in children who did not have later autism spectrum disorder diagnoses, suggesting that exposure to these conditions during early pregnancy may be associated with a broad range of social and behavioral abilities. Identifying associations between maternal health conditions and early Quantitative Checklist for Autism in Toddlers screening scores could influence future screening and provision of support for children of mothers with these conditions.
Collapse
Affiliation(s)
- Sarah A. Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jane C. Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Mayra P. Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jasmin M. Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Klara R. Feldman
- Department of Anesthesiology & Perioperative Medicine, Kaiser Permanente Southern California, Baldwin Park, CA
| | - Chunyuan Qiu
- Department of Anesthesiology & Perioperative Medicine, Kaiser Permanente Southern California, Baldwin Park, CA
| | - Kathleen A. Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| |
Collapse
|
8
|
Herting M, Cotter D, Ahmadi H, Cardenas-Iniguez C, Bottenhorn K, Gauderman WJ, McConnell R, Berhane K, Schwartz J, Hackman D, Chen JC. Sex-specific effects in how childhood exposures to multiple ambient air pollutants affect white matter microstructure development across early adolescence. RESEARCH SQUARE 2023:rs.3.rs-3213618. [PMID: 37645919 PMCID: PMC10462194 DOI: 10.21203/rs.3.rs-3213618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Ambient air pollution is ubiquitous, yet questions remain as to how it might impact the developing brain. Large changes occur in the brain's white matter (WM) microstructure across adolescence, with noticeable differences in WM integrity in male and female youth. Here we report sex-stratified effects of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on longitudinal patterns of WM microstructure from 9-13 years-old in 8,182 (49% female) participants using restriction spectrum imaging. After adjusting for key sociodemographic factors, multi-pollutant, sex-stratified models showed that one-year annual exposure to PM2.5 and NO2 was associated with higher, while O3 was associated with lower, intracellular diffusion at age 9. All three pollutants also affected trajectories of WM maturation from 9-13 years-old, with some sex-specific differences in the number and anatomical locations of tracts showing altered trajectories of intracellular diffusion. Concentrations were well-below current U.S. standards, suggesting exposure to these criteria pollutants during adolescence may have long-term consequences on brain development.
Collapse
|
9
|
刘 贤, 郭 程, 邹 明, 冯 芳, 梁 思, 陈 文, 武 丽. [Association between maternal gestational diabetes mellitus and the risk of autism spectrum disorder in offspring]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:818-823. [PMID: 37668029 PMCID: PMC10484079 DOI: 10.7499/j.issn.1008-8830.2301021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES To explore the association between maternal gestational diabetes mellitus (GDM) exposure and the development of autism spectrum disorder (ASD) in offspring. METHODS A case-control study was conducted, recruiting 221 children with ASD and 400 healthy children as controls. Questionnaires and interviews were used to collect information on general characteristics of the children, socio-economic characteristics of the family, maternal pregnancy history, and maternal disease exposure during pregnancy. Multivariate logistic regression analysis was used to investigate the association between maternal GDM exposure and the development of ASD in offspring. The potential interaction between offspring gender and maternal GDM exposure on the development of ASD in offspring was explored. RESULTS The proportion of maternal GDM was significantly higher in the ASD group compared to the control group (16.3% vs 9.4%, P=0.014). After adjusting for variables such as gender, gestational age, mode of delivery, parity, and maternal education level, maternal GDM exposure was a risk factor for ASD in offspring (OR=2.18, 95%CI: 1.04-4.54, P=0.038). On the basis of adjusting the above variables, after further adjusting the variables including prenatal intake of multivitamins, folic acid intake in the first three months of pregnancy, and assisted reproduction the result trend did not change, but no statistical significance was observed (OR=1.94, 95%CI: 0.74-5.11, P=0.183). There was an interaction between maternal GDM exposure and offspring gender on the development of ASD in offspring (P<0.001). Gender stratified analysis showed that only in male offspring of mothers with GDM, the risk of ASD was significantly increased (OR=3.67, 95%CI: 1.16-11.65, P=0.027). CONCLUSIONS Maternal GDM exposure might increase the risk of ASD in offspring. There is an interaction between GDM exposure and offspring gender in the development of ASD in offspring.
Collapse
Affiliation(s)
- 贤 刘
- 广州医科大学附属妇女儿童医疗中心/广东省儿童健康与疾病临床医学研究中心出生队列, 广东广州510623
| | | | | | | | | | | | | |
Collapse
|
10
|
Rahman MM, Carter SA, Lin JC, Chow T, Yu X, Martinez MP, Chen Z, Chen JC, Rud D, Lewinger JP, van Donkelaar A, Martin RV, Eckel SP, Schwartz J, Lurmann F, Kleeman MJ, McConnell R, Xiang AH. Associations of Autism Spectrum Disorder with PM 2.5 Components: A Comparative Study Using Two Different Exposure Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:405-414. [PMID: 36548990 PMCID: PMC10898516 DOI: 10.1021/acs.est.2c05197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This retrospective cohort study examined associations of autism spectrum disorder (ASD) with prenatal exposure to major fine particulate matter (PM2.5) components estimated using two independent exposure models. The cohort included 318 750 mother-child pairs with singleton deliveries in Kaiser Permanente Southern California hospitals from 2001 to 2014 and followed until age five. ASD cases during follow-up (N = 4559) were identified by ICD codes. Prenatal exposures to PM2.5, elemental (EC) and black carbon (BC), organic matter (OM), nitrate (NO3-), and sulfate (SO42-) were constructed using (i) a source-oriented chemical transport model and (ii) a hybrid model. Exposures were assigned to each maternal address during the entire pregnancy, first, second, and third trimester. In single-pollutant models, ASD was associated with pregnancy-average PM2.5, EC/BC, OM, and SO42- exposures from both exposure models, after adjustment for covariates. The direction of effect estimates was consistent for EC/BC and OM and least consistent for NO3-. EC/BC, OM, and SO42- were generally robust to adjustment for other components and for PM2.5. EC/BC and OM effect estimates were generally larger and more consistent in the first and second trimester and SO42- in the third trimester. Future PM2.5 composition health effect studies might consider using multiple exposure models and a weight of evidence approach when interpreting effect estimates.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Daniel Rud
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Juan P Lewinger
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, St. Louis, Missouri 63130, United States
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, St. Louis, Missouri 63130, United States
| | - Sandrah Proctor Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, California 94954, United States
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90032, United States
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101, United States
| |
Collapse
|
11
|
Liu H, Ding L, Qu G, Guo X, Liang M, Ma S, Sun Y. Particulate matter exposure during pregnancy and infancy and risks of autism spectrum disorder in children: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158830. [PMID: 36150594 DOI: 10.1016/j.scitotenv.2022.158830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE This meta-analysis aimed to clarify the relationship between particulate matter (PM) and autism spectrum disorder (ASD) in detail. METHODS A systematic literature search was performed using eight databases before April 9, 2022. The estimated effects were combined separately according to the PM type. Subgroup analyses were conducted in terms of the study design type, study location, exposure window, birth year, and sex. RESULTS PM2.5 was associated with an increased risk of ASD, while PM10 was not. PMc, PM1, and diesel particulate matter (DPM) were also associated with an increased risk of ASD. Specifically, a 10 μg/m3 increase in PM2.5 was associated with a 1.337-fold increased risk of ASD in children, and a 10 μg/m3 increase in PMc and PM1 may increase the risk of ASD by 1.062 and 3.643 times, respectively. PM2.5 exposure may increase the risk of ASD in boys. Exposure to PMc might increase the risk of ASD in children born after the year 2000. The combined results of different PM differed between studies with continuous and non-continuous data for different study design type, study location, and birth year. The sensitive window for PM2.5 exposure to increase the risk of ASD may be from the first, second, and third trimesters to the first year of the postnatal period. Exposure to PMc during pregnancy was significantly associated with ASD. CONCLUSION Exposure to PM2.5 may increase the risk of ASD in boys. Exposure to PM2.5 during the first, second, and third trimesters and postnatally increased the risk of ASD.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liu Ding
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - MingMing Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Chaohu Hospital, Anhui Medical University, Hefei 238000, Anhui, China; Center for Evidence-Based Practice, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
12
|
Features and effects of computer-based games on cognitive impairments in children with autism spectrum disorder: an evidence-based systematic literature review. BMC Psychiatry 2023; 23:2. [PMID: 36597046 PMCID: PMC9809031 DOI: 10.1186/s12888-022-04501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Children with Autism Spectrum Disorder (ASD) have different cognitive and intelligence profiles than typical developing individuals. Some of these children need cognitive rehabilitation. This study's main purpose is to provide a systematic review about applying computerized cognitive games for autistic children and to determine the effectiveness of such interventions. MATERIAL AND METHODS A thorough search of the ISI Web of Science, Medline (through PubMed), Scopus, IEEE Xplore, and APA PsycInfo databases was performed for articles published from inception to May 17, 2022. RESULTS Of 1746 papers, 28 studies were found to be eligible in this systematic review. Fifteen studies (53.57%) compared a Control Group (CG) with Experimental Groups (EGs), while 13 papers (46.42%) evaluated only the impact of the applied intervention in an experimental group. Major domains of cognitive functions are divided into five main categories: 1. Executive functions, 2. Social cognition/emotions, 3. Attention/concentration, 4. Learning and memory, and 5. Language. In 42.85% (12 studies) of the screened papers, social cognition and emotions were assessed after cognitive rehabilitation. The highest rate of effects reported by studies were related to social cognition enhancement. Of the total number of included studies, 17 studies reported a positive effect at all scales, of which nine were quasi-experimental, and seven were fully experimental. CONCLUSION Using suitable computerized game-based solutions could enhance cognition indexes in autistic children. Hence, further investigation is needed to determine the real effectiveness of these novel technologies.
Collapse
|
13
|
Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders. Hum Exp Toxicol 2023; 42:9603271231191436. [PMID: 37537902 DOI: 10.1177/09603271231191436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.
Collapse
Affiliation(s)
- Xin-Qi Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Chao Song
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tian-Liang Zhang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yong-Ping Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Li Yu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| |
Collapse
|
14
|
Rahman MM, Carter SA, Lin JC, Chow T, Yu X, Martinez MP, Levitt P, Chen Z, Chen JC, Rud D, Lewinger JP, Eckel SP, Schwartz J, Lurmann FW, Kleeman MJ, McConnell R, Xiang AH. Prenatal exposure to tailpipe and non-tailpipe tracers of particulate matter pollution and autism spectrum disorders. ENVIRONMENT INTERNATIONAL 2023; 171:107736. [PMID: 36623380 PMCID: PMC9943058 DOI: 10.1016/j.envint.2023.107736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Traffic-related air pollution exposure is associated with increased risk of autism spectrum disorder (ASD). It is unknown whether carbonaceous material from vehicular tailpipe emissions or redox-active non-tailpipe metals, eg. from tire and brake wear, are responsible. We assessed ASD associations with fine particulate matter (PM2.5) tracers of tailpipe (elemental carbon [EC] and organic carbon [OC]) and non-tailpipe (copper [Cu]; iron [Fe] and manganese [Mn]) sources during pregnancy in a large cohort. METHODS This retrospective cohort study included 318,750 children born in Kaiser Permanente Southern California (KPSC) hospitals during 2001-2014, followed until age 5. ASD cases were identified by ICD codes. Monthly estimates of PM2.5 and PM2.5 constituents EC, OC, Cu, Fe, and Mn with 4 km spatial resolution were obtained from a source-oriented chemical transport model. These exposures and NO2 were assigned to each maternal address during pregnancy, and associations with ASD were assessed using Cox regression models adjusted for covariates. PM constituent effect estimates were adjusted for PM2.5 and NO2 to assess independent effects. To distinguish ASD risk associated with non-tailpipe from tailpipe sources, the associations with Cu, Fe, and Mn were adjusted for EC and OC, and vice versa. RESULTS There were 4559 children diagnosed with ASD. In single-pollutant models, increased ASD risk was associated with gestational exposures to tracers of both tailpipe and non-tailpipe emissions. The ASD hazard ratios (HRs) per inter-quartile increment of exposure) for EC, OC, Cu, Fe, and Mn were 1.11 (95% CI: 1.06-1.16), 1.09 (95% CI: 1.04-1.15), 1.09 (95% CI: 1.04-1.13), 1.14 (95% CI: 1.09-1.20), and 1.17 (95% CI: 1.12-1.22), respectively. Estimated effects of Cu, Fe, and Mn (reflecting non-tailpipe sources) were largely unchanged in two-pollutant models adjusting for PM2.5, NO2, EC or OC. In contrast, ASD associations with EC and OC were markedly attenuated by adjustment for non-tailpipe sources. CONCLUSION Results suggest that non-tailpipe emissions may contribute to ASD. Implications are that reducing tailpipe emissions, especially from vehicles with internal combustion engines, may not eliminate ASD associations with traffic-related air pollution.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Pat Levitt
- Department of Pediatrics, Keck School of Medicine, Program in Developmental Neuroscience and Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Rud
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| |
Collapse
|
15
|
Sex-Dependent Responses to Maternal Exposure to PM2.5 in the Offspring. Antioxidants (Basel) 2022; 11:antiox11112255. [PMID: 36421441 PMCID: PMC9686974 DOI: 10.3390/antiox11112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) can cross the blood-placental barrier causing adverse foetal outcomes. However, the impact of maternal exposure to low-levels of PM2.5 on liver health and the metabolic profile is unclear. This study aimed to investigate hepatic responses to long-term gestational low-dose PM2.5 exposure, and whether the removal of PM after conception can prevent such effects. Method: Female Balb/c mice (8 weeks) were exposed to PM2.5 (5 μg/day) for 6 weeks prior to mating, during gestation and lactation to model living in a polluted environment (PM group). In a sub-group, PM2.5 exposure was stopped post-conception to model mothers moving to areas with clean air (pre-gestation, Pre) group. Livers were studied in 13-week old offspring. Results: Female offspring in both PM and Pre groups had increased liver triglyceride and glycogen levels, glucose intolerance, but reduced serum insulin and insulin resistance. Male offspring from only the Pre group had increased liver and serum triglycerides, increased liver glycogen, glucose intolerance and higher fasting glucose level. Markers of oxidative stress and inflammation were increased in females from PM and Pre groups. There was also a significant sex difference in the hepatic response to PM2.5 with differential changes in several metabolic markers identified by proteomic analysis. Conclusions: Maternal PM exposure exerted sex-dependent effects on liver health with more severe impacts on females. The removal of PM2.5 during gestation provided limited protection in the offspring’s metabolism regardless of sex.
Collapse
|
16
|
Kim KN, Sohn JH, Cho SJ, Seo HY, Kim S, Hong YC. Effects of short-term exposure to air pollution on hospital admissions for autism spectrum disorder in Korean school-aged children: a nationwide time-series study. BMJ Open 2022; 12:e058286. [PMID: 36127101 PMCID: PMC9535151 DOI: 10.1136/bmjopen-2021-058286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES This study explored the effects of short-term exposure to air pollution on hospital admissions for autism spectrum disorder (ASD), a proxy for symptom aggravation, among Korean children aged 5-14 years. DESIGN Time-series study. SETTING, PARTICIPANTS AND OUTCOME MEASURES We used data from the National Health Insurance Service (2011-2015). Daily concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) levels in each region were used as exposures. ASD cases were defined based on a principal admission diagnosis of the claims data. We applied distributed lag non-linear models and a generalised difference-in-differences method to the quasi-Poisson models to estimate the causal effects of air pollution for up to 6 days. We also performed weighted quantile sum regression analyses to assess the combined effects of air pollution mixtures. RESULTS PM2.5 levels at lag day 1, NO2 levels at lag day 5 and O3 levels at lag day 4 increased the risks of hospital admissions for ASD (relative risk (RR)=1.17, 95% CI 1.10 to 1.25 for PM2.5; RR=1.09, 95% CI 1.01 to 1.18 for NO2 and RR=1.03, 95% CI 1.00 to 1.06 for O3). The mean daily count of hospital admissions for ASD was 8.5, and it would be 7.3, 7.8 and 8.3 when the PM2.5 levels would be decreased by 10.0 µg/m3, NO2 by 10 ppb and O3 by 10 ppb, respectively. The weighted quantile sum index, constructed from PM2.5, NO2 and O3 levels, was associated with a higher risk of hospital admissions for ASD (RR 1.29, 95% CI 1.14 to 1.46), where NO2 was found to contribute to the effects most (the weight of 0.80). CONCLUSIONS These results emphasise that reduction of air pollution exposure should be considered for ASD symptom management, with important implications for the quality of life and economic costs.
Collapse
Affiliation(s)
- Kyoung-Nam Kim
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Korea (the Republic of)
| | - Ji Hoon Sohn
- Institute of Public Health and Medical Care, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
- Department of Neuropsychiatry, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
- Public Healthcare Center, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Sung Joon Cho
- Department of Psychiatry, Kangbuk Samsung Hospital, Jongno-gu, Korea (the Republic of)
| | - Hwo Yeon Seo
- Institute of Public Health and Medical Care, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Korea (the Republic of)
| | - Yun-Chul Hong
- Institute of Public Health and Medical Care, Seoul National University Hospital, Jongno-gu, Korea (the Republic of)
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
17
|
Carter SA, Lin JC, Chow T, Yu X, Rahman MM, Martinez MP, Feldman K, Eckel SP, Chen JC, Chen Z, Levitt P, Lurmann FW, McConnell R, Xiang AH. Maternal obesity, diabetes, preeclampsia, and asthma during pregnancy and likelihood of autism spectrum disorder with gastrointestinal disturbances in offspring. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 27:916-926. [PMID: 36062479 PMCID: PMC9984567 DOI: 10.1177/13623613221118430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
LAY ABSTRACT Autism spectrum disorder is heterogeneous and often accompanied by co-occurring conditions. Previous studies have shown that maternal health conditions during pregnancy including obesity, diabetes, preeclampsia, and asthma were associated with increased likelihood of autism. However, little has been done examining the likelihood associated with autism with co-occurring conditions. This study assessed these maternal health conditions in relationship to autism and gastrointestinal disturbances, a common co-occurring condition in children diagnosed with autism. Data included 308,536 mother-child pairs from one integrated health care system with comprehensive electronic medical records. Among the study cohort, 5,131 (1.7%) children had a diagnosis of autism by age 5. Gastrointestinal disturbances were present in 35.4% of children diagnosed with autism and 25.1% of children without autism diagnoses. Our results showed that each of the four maternal health conditions during pregnancy was associated with increased likelihood of gastrointestinal disturbances, autism without gastrointestinal disturbances, and autism with gastrointestinal disturbances. For all four maternal health conditions, the association was greatest for likelihood of autism with gastrointestinal disturbances. Given that children diagnosed with autism are more likely to have gastrointestinal disturbances and over 80% of gastrointestinal disturbances in this cohort were diagnosed prior to autism diagnosis, this study suggests that there may be common biological pathways between autism and gastrointestinal disturbances impacted by these maternal exposures. Future studies are warranted to assess associations between different exposures and autism with other co-occurring conditions to increase our understanding of autism heterogeneity.
Collapse
Affiliation(s)
| | - Jane C Lin
- Kaiser Permanente Southern California, USA
| | - Ting Chow
- Kaiser Permanente Southern California, USA
| | - Xin Yu
- University of Southern California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pagalan L, Oberlander TF, Hanley GE, Rosella LC, Bickford C, Weikum W, Lanphear N, Lanphear B, Brauer M, van den Bosch M. The association between prenatal greenspace exposure and Autism spectrum disorder, and the potentially mediating role of air pollution reduction: A population-based birth cohort study. ENVIRONMENT INTERNATIONAL 2022; 167:107445. [PMID: 35921770 DOI: 10.1016/j.envint.2022.107445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) incidence has increased in past decades. ASD etiology remains inconclusive, but research suggests genetic, epigenetic, and environmental contributing factors and likely prenatal origins. Few studies have examined modifiable environmental risk factors for ASD, and far fewer have examined protective exposures. Greenspace has been associated with positive child development, but very limited greenspace research has examined ASD risk or prenatal exposures. Only one ecological study in 2017 has evaluated the association between greenspace and ASD, observing protective benefits. Greenspace may have direct effects on ASD risk and indirect effects by reducing air pollution exposure, a growing suspected ASD risk factor. OBJECTIVES To measure the association between prenatal greenspace exposure and ASD risk and examine if reduced air pollution levels in areas of higher greenspace mediate this association. METHODS We linked a population-based birth cohort of all deliveries in Metro Vancouver, Canada, from 2004 to 2009, with follow-up to 2014. Diagnoses were based on Autism Diagnostic Observation Schedule and Autism Diagnostic Interview-Revised instruments. Greenspace was quantified as the average of the annual mean Normalized Difference Vegetation Index (NDVI) within a 250 m buffer of a residential postal code. Air pollutant exposures-particulate matter with a diameter less than 2.5 µm (PM2.5), nitric oxide (NO), and nitrogen dioxide (NO2)-were derived from previously developed and temporally adjusted land use regression models. We estimated air pollutant exposures as the mean concentration per month during pregnancy. We calculated odds ratios (ORs) using logistic regression per NDVI interquartile range (IQR) increase, adjusting for child sex, birth month and year, maternal age and birthplace, and neighborhood-level urbanicity and income. To estimate the health impact of greenspace on ASD at the population level, we used the logistic regression model and marginal standardization to derive risk differences (RDs). Lastly, to quantify the mediating effect of greenspace on ASD risk through air pollution reduction, we used marginal structural models and a potential outcomes framework to calculate marginal risk differences (RDs) to decompose the total effect of greenspace on ASD into natural direct and indirect effects. RESULTS Of 129,222 births, 1,921 (1.5 %) children were diagnosed with ASD. The adjusted OR for ASD per NDVI IQR (0.12) increase was 0.96 (95 % CI: 0.90, 1.02) in 250 m buffer zones and 0.94 (95 % CI: 0.89, 1.00) in 100 m buffer zones. On the additive scale, the adjusted RDs were null. Natural direct, natural indirect, and total effect RDs were null for PM2.5, NO, and NO2 mediation models. CONCLUSION Prenatal greenspace exposure was associated with reduced odds of ASD, but in the additive scale, this effect was null at the population level. No mediating effect was observed through reduced air pollution, suggesting that air pollution may act as a confounder rather than as a mediator.
Collapse
Affiliation(s)
- Lief Pagalan
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Schwartz Reisman Institute for Technology and Society, University of Toronto, Ontario, Canada.
| | - Tim F Oberlander
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Sunny Hill Health Centre for Children, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| | - Gillian E Hanley
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Laura C Rosella
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| | - Celeste Bickford
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Whitney Weikum
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Sunny Hill Health Centre for Children, British Columbia Children's Hospital, Vancouver, British Columbia, Canada.
| | - Nancy Lanphear
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada.
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Matilda van den Bosch
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada; ISGlobal, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
19
|
Yi C, Wang Q, Qu Y, Niu J, Oliver BG, Chen H. In-utero exposure to air pollution and early-life neural development and cognition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113589. [PMID: 35525116 DOI: 10.1016/j.ecoenv.2022.113589] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 05/06/2023]
Abstract
Air pollution remains one of the major health threats around the world. Compared to adults, foetuses and infants are more vulnerable to the effects of environmental toxins. Maternal exposure to air pollution causes several adverse birth outcomes and may lead to life-long health consequences. Given that a healthy intrauterine environment is a critical factor for supporting normal foetal brain development, there is a need to understand how prenatal exposure to air pollution affects brain health and results in neurological dysfunction. This review summarised the current knowledge on the adverse effects of prenatal air pollution exposure on early life neurodevelopment and subsequent impairment of cognition and behaviour in childhood, as well as the potential of early-onset neurodegeneration. While inflammation, oxidative stress, and endoplasmic reticulum are closely involved in the physiological response, sex differences also occur. In general, males are more susceptible than females to the adverse effect of in-utero air pollution exposure. Considering the evidence provided in this review and the rising concerns of global air pollution, any efforts to reduce pollutant emission or exposure will be protective for the next generation.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Qi Wang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, NSW 2037, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
20
|
Lin LZ, Zhan XL, Jin CY, Liang JH, Jing J, Dong GH. The epidemiological evidence linking exposure to ambient particulate matter with neurodevelopmental disorders: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 209:112876. [PMID: 35134379 DOI: 10.1016/j.envres.2022.112876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND There has been increasing attention on the associations between ambient particulate matter (PM) in early-life and neurodevelopmental disorders (NDDs). However, the associations remained unclear when considering different types of NDDs and different sizes of PM, and vulnerable exposure windows during early-life were not identified yet. OBJECTIVE To synthesize the published literature on the associations between ambient particulate matter (PM) and risk of different types of neurodevelopmental disorders (NDDs) in a systematic review and meta-analysis. METHODS A systematic search of Medline, Embase, PubMed, Cochrane Library, and Web of Science was performed from inception through 24 January 2022. Two reviewers conducted the study selection, data extraction, and quality appraisal. A random-effects model was used for meta-analyses with two quality-of-evidence assessments (the Grading of Recommendations Assessment, Development, and Evaluation system and the best evidence synthesis system). RESULTS A total of 6554 articles were screened, of which 31 were included in the review, and 20 provided adequate data for meta-analyses. Exposures to particulate matter of 2.5 μm or less (PM2.5) during prenatal periods (OR, 1.32 [95%CI, 1.03-1.69]), the first year after birth (OR, 1.62 [95%CI, 1.22-2.15]) and the second year after birth (OR, 3.13 [95%CI, 1.47-6.67]) were associated with increased risk of autism spectrum disorders (ASD) in children. The quality of evidence for these associations during early postnatal periods was somewhat moderate with limited studies. We found inconsistent evidence when considering other types of NDDs and different sizes of PM. CONCLUSIONS AND RELEVANCE Current evidence indicated that there might be an association between PM2.5 exposure and higher risk of ASD, and early postnatal periods appeared to be the critical exposure window. High-quality studies are needed to assess the evidence for other types of NDDs.
Collapse
Affiliation(s)
- Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Ling Zhan
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu-Yao Jin
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Jing-Hong Liang
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin Jing
- Research Center of Children and Adolescent Psychological and Behavioral Development, Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Yu X, Rahman MM, Wang Z, Carter SA, Schwartz J, Chen Z, Eckel SP, Hackman D, Chen JC, Xiang AH, McConnell R. Evidence of susceptibility to autism risks associated with early life ambient air pollution: A systematic review. ENVIRONMENTAL RESEARCH 2022; 208:112590. [PMID: 34929192 PMCID: PMC11409923 DOI: 10.1016/j.envres.2021.112590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Many studies have found associations between early life air pollution exposure and subsequent onset of autism spectrum disorder (ASD). However, characteristics that affect susceptibility remain unclear. OBJECTIVE This systematic review examined epidemiologic studies on the modifying roles of social, child, genetic and maternal characteristics in associations between prenatal and early postnatal air pollution exposure and ASD. METHODS A systematic literature search in PubMed and Embase was conducted. Studies that examined modifiers of the association between air pollution and ASD were included. RESULTS A total of 19 publications examined modifiers of the associations between early life air pollution exposures and ASD. In general, estimates of effects on risk of ASD in boys were larger than in girls (based on 11 studies). Results from studies of effects of family education (2 studies) and neighborhood deprivation (2 studies) on air pollution-ASD associations were inconsistent. Limited data (1 study) suggest pregnant women with insufficient folic acid intake might be more susceptible to ambient particulate matter less than 2.5 μm (PM2.5) and 10 μm (PM10) in aerodynamic diameter, and to nitrogen dioxide (NO2). Children of mothers with gestational diabetes had increased risk of ozone-associated ASD (1 study). Two genetic studies reported that copy number variations may amplify the effect of ozone, and MET rs1858830 CC genotype may augment effects of PM and near-roadway pollutants on ASD. CONCLUSIONS Child's sex, maternal nutrition or diabetes, socioeconomic factors, and child risk genotypes were reported to modify the effect of early-life air pollutants on ASD risk in the epidemiologic literature. However, the sparsity of studies on comparable modifying hypotheses precludes conclusive findings. Further research is needed to identify susceptible populations and potential targets for preventive intervention.
Collapse
Affiliation(s)
- Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhongying Wang
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Rana J, Luna-Gutiérrez P, Haque SE, Ignacio Nazif-Muñoz J, Mitra DK, Oulhote Y. Associations between household air pollution and early child development among children aged 36-59 months in Bangladesh. J Epidemiol Community Health 2022; 76:667-676. [PMID: 35332101 PMCID: PMC9209676 DOI: 10.1136/jech-2021-217554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
Abstract
Background Household air pollution (HAP) from solid fuel use (SFU) for cooking may impact child health in low-resources countries. This study examined the associations between HAP and early childhood development (ECD) outcomes among children under 5 years of age in Bangladesh and explored potential effect modification by sex and urbanicity. Methods The study sample consisted of 9395 children aged 36–59 months in the households from the Bangladesh Multiple Indicator Cluster Survey 2019. SFU and levels of exposure to SFU (unexposed, moderately exposed and highly exposed) were used as proxies of HAP exposure. We estimated the covariate-adjusted prevalence ratios (aPRs) and 95% CIs for the associations between HAP and ECD outcomes using multilevel mixed-effects Poisson regression models with a robust variance estimator. Results 81.4% of children were exposed to SFU, and the prevalence of developmental delay (in Early Childhood Development Index) was 25.3%. Children exposed to SFU were 1.47 times more likely to have developmental delays (95% CI: 1.25, 1.73; p<0.001) compared with children with no SFU exposure. SFU was significantly associated with developmental delay in socioemotional (aPR: 1.17; 95% CI: 1.01, 1.36; p=0.035) and learning-cognitive (aPR: 1.90; 95% CI: 1.39, 2.60; p<0.001) domains. Similarly, children moderately exposed and highly exposed to HAP had higher prevalence of developmental delays than unexposed children. We did not observe effect modification by sex or urbanicity. Conclusion Public health policies should promote the use of clean cooking fuels and cookstoves to reduce the high burden of HAP exposure in low-resource countries for helping younger children to meet their developmental milestones.
Collapse
Affiliation(s)
- Juwel Rana
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada .,Department of Public Health, School of Health and Life Sciences, North South University, Dhaka, Bangladesh.,Research and Innovation, South Asian Institute for Social Transformation, Dhaka, Bangladesh
| | | | - Syed Emdadul Haque
- UChicago Research Bangladesh, The University of Chicago, Chicago, Illinois, USA
| | - José Ignacio Nazif-Muñoz
- Programmes d'études et de recherche en toxicomanie, Faculté de Médecine et des Sciences de la Santé, Universite de Sherbrooke, Sherbrooke, Quebec, Canada.,Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
| | - Dipak Kumar Mitra
- Department of Public Health, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
23
|
Hertz‐Picciotto I, Korrick SA, Ladd‐Acosta C, Karagas MR, Lyall K, Schmidt RJ, Dunlop AL, Croen LA, Dabelea D, Daniels JL, Duarte CS, Fallin MD, Karr CJ, Lester B, Leve LD, Li Y, McGrath M, Ning X, Oken E, Sagiv SK, Sathyanaraya S, Tylavsky F, Volk HE, Wakschlag LS, Zhang M, O'Shea TM, Musci RJ. Maternal tobacco smoking and offspring autism spectrum disorder or traits in ECHO cohorts. Autism Res 2022; 15:551-569. [PMID: 35199959 PMCID: PMC9304219 DOI: 10.1002/aur.2665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
Given inconsistent evidence on preconception or prenatal tobacco use and offspring autism spectrum disorder (ASD), this study assessed associations of maternal smoking with ASD and ASD-related traits. Among 72 cohorts in the Environmental Influences on Child Health Outcomes consortium, 11 had ASD diagnosis and prenatal tobaccosmoking (n = 8648). and 7 had Social Responsiveness Scale (SRS) scores of ASD traits (n = 2399). Cohorts had diagnoses alone (6), traits alone (2), or both (5). Diagnoses drew from parent/caregiver report, review of records, or standardized instruments. Regression models estimated smoking-related odds ratios (ORs) for diagnoses and standardized mean differences for SRS scores. Cohort-specific ORs were meta-analyzed. Overall, maternal smoking was unassociated with child ASD (adjusted OR, 1.08; 95% confidence interval [CI], 0.72-1.61). However, heterogeneity across studies was strong: preterm cohorts showed reduced ASD risk for exposed children. After excluding preterm cohorts (biased by restrictions on causal intermediate and exposure opportunity) and small cohorts (very few ASD cases in either smoking category), the adjusted OR for ASD from maternal smoking was 1.44 (95% CI, 1.02-2.03). Children of smoking (versus non-smoking) mothers had more ASD traits (SRS T-score + 2.37 points, 95% CI, 0.73-4.01 points), with results homogeneous across cohorts. Maternal preconception/prenatal smoking was consistently associated with quantitative ASD traits and modestly associated with ASD diagnosis among sufficiently powered United States cohorts of non-preterm children. Limitations resulting from self-reported smoking and unmeasured confounders preclude definitive conclusions. Nevertheless, counseling on potential and known risks to the child from maternal smoking is warranted for pregnant women and pregnancy planners. LAY SUMMARY: Evidence on the association between maternal prenatal smoking and the child's risk for autism spectrum disorder has been conflicting, with some studies reporting harmful effects, and others finding reduced risks. Our analysis of children in the ECHO consortium found that maternal prenatal tobacco smoking is consistently associated with an increase in autism-related symptoms in the general population and modestly associated with elevated risk for a diagnosis of autism spectrum disorder when looking at a combined analysis from multiple studies that each included both pre- and full-term births. However, this study is not proof of a causal connection. Future studies to clarify the role of smoking in autism-like behaviors or autism diagnoses should collect more reliable data on smoking and measure other exposures or lifestyle factors that might have confounded our results.
Collapse
Affiliation(s)
- Irva Hertz‐Picciotto
- Department of Public Health Sciences and MIND InstituteUniversity of California, Davis School of MedicineDavisCaliforniaUSA
| | - Susan A. Korrick
- Channing Division of Network Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christine Ladd‐Acosta
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Margaret R. Karagas
- Department of EpidemiologyGeisel School of Medicine at DartmouthHannoverNew HampshireUSA
| | - Kristen Lyall
- A.J. Drexel Autism InstituteDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and MIND InstituteUniversity of California, Davis School of MedicineDavisCaliforniaUSA
| | - Anne L. Dunlop
- Department of Gynecology & ObstetricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Lisa A. Croen
- Division of ResearchKaiser PermanenteOaklandCaliforniaUSA
| | - Dana Dabelea
- LEAD Center and Department of EpidemiologyColorado School of Public HealthAuroraColoradoUSA
| | - Julie L. Daniels
- Departments of Epidemiology and Maternal and Child Health; Gillings School of Global Public HealthUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Cristiane S. Duarte
- Department of PsychiatryColumbia University, New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - M. Daniele Fallin
- Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Catherine J. Karr
- Departments of Pediatrics and Environmental & Occupational Health SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Barry Lester
- Brown Center for the Study of Children at Risk and Departments of Psychiatry and Human Behavior and Pediatrics, Alpert Medical School, Brown UniversityWomen and Infants Hospital in Rhode IslandProvidenceRhode IslandUSA
| | | | - Yijun Li
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Monica McGrath
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Xuejuan Ning
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Emily Oken
- Department of Population MedicineHarvard Medical School and Harvard Pilgrim Health Care InstituteBostonMassachusettsUSA
| | - Sharon K. Sagiv
- Center for Environmental Research and Children's HealthUniversity of California, Berkeley, School of Public HealthBerkeleyCaliforniaUSA
| | - Sheela Sathyanaraya
- Department of Pediatrics, Seattle Children's Research InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Frances Tylavsky
- Department of Preventive MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Heather E. Volk
- Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Lauren S. Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine, and Institute for Innovations in Developmental SciencesNorthwestern UniversityChicagoIllinoisUSA
| | - Mingyu Zhang
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - T. Michael O'Shea
- Department of PediatricsUniversity of North Carolina at Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Rashelle J. Musci
- Department of Mental HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | |
Collapse
|
24
|
Pham C, Symeonides C, O'Hely M, Sly PD, Knibbs LD, Thomson S, Vuillermin P, Saffery R, Ponsonby AL. Early life environmental factors associated with autism spectrum disorder symptoms in children at age 2 years: A birth cohort study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:1864-1881. [PMID: 35012378 DOI: 10.1177/13623613211068223] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
LAY ABSTRACT Mounting evidence indicates the contribution of early life environmental factors in autism spectrum disorder. We aim to report the prospective associations between early life environmental factors and autism spectrum disorder symptoms in children at the age of 2 years in a population-derived birth cohort, the Barwon Infant Study. Autism spectrum disorder symptoms at the age of 2 years strongly predicted autism spectrum disorder diagnosis by the age of 4 years (area under curve = 0.93; 95% CI (0.82, 1.00)). After adjusting for child's sex and age at the time of behavioural assessment, markers of socioeconomic disadvantage, such as lower household income and lone parental status; maternal health factors, including younger maternal age, maternal pre-pregnancy body mass index, higher gestational weight gain and prenatal maternal stress; maternal lifestyle factors, such as prenatal alcohol and environmental air pollutant exposures, including particulate matter < 2.5 μm at birth, child secondhand tobacco smoke at 12 months, dampness/mould and home heating with oil, kerosene or diesel heaters at 2 years postnatal. Lower socioeconomic indexes for area, later birth order, higher maternal prenatal depression and maternal smoking frequency had a dose-response relationship with autism spectrum disorder symptoms. Future studies on environmental factors and autism spectrum disorder should consider the reasons for the socioeconomic disparity and the combined impact of multiple environmental factors through common mechanistic pathways.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children's Research Institute, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Parkville, Australia
- Deakin University, Geelong, Australia
| | - Peter D Sly
- The University of Queensland, South Brisbane, Australia
| | | | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia
- Deakin University, Geelong, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| |
Collapse
|
25
|
Rahman MM, Shu YH, Chow T, Lurmann FW, Yu X, Martinez MP, Carter SA, Eckel SP, Chen JC, Chen Z, Levitt P, Schwartz J, McConnell R, Xiang AH. Prenatal Exposure to Air Pollution and Autism Spectrum Disorder: Sensitive Windows of Exposure and Sex Differences. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17008. [PMID: 35040691 PMCID: PMC8765363 DOI: 10.1289/ehp9509] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Studies have shown that air pollution exposures during pregnancy are associated with an increased risk of autism spectrum disorder (ASD) in children, and the risk appears to be greater for boys. However, studies assessing gestational windows of susceptibility have been mostly limited by trimesters. OBJECTIVE We identified sensitive windows of exposure to regional air pollution and risk of ASD and examined sex differences in a large birth cohort. METHODS This population-based retrospective cohort study included 294,937 mother-child pairs with singleton deliveries in Kaiser Permanente Southern California (KPSC) hospitals from 2001 to 2014. Children were followed using electronic medical records until clinical ASD diagnosis, non-KPSC membership, death, or 31 December 2019, whichever came first. Weekly mean fine particulate matter [PM with an aerodynamic diameter of ≤2.5μm (PM2.5)], nitrogen dioxide (NO2), and ozone (O3) pregnancy exposures were estimated using spatiotemporal prediction models. Cox proportional hazard models with distributed lags were used to estimate weekly pollutant exposure associations with ASD risk for the entire cohort, and separately for boys and for girls. Models were adjusted for child sex (for full cohort), maternal race/ethnicity, maternal age at delivery, parity, maternal education, maternal comorbidities, medical center, census tract median household income, birth year, and season. RESULTS There were 5,694 ASD diagnoses (4,636 boys, 1,058 girls). Sensitive PM2.5 exposure windows associated with ASD were found early in pregnancy, statistically significant throughout the first two trimesters [1-27 wk of gestation, cumulative hazard ratio (HR)=1.14 [95% confidence interval (CI): 1.06, 1.23] per interquartile range (IQR) (7.4-μg/m3) increase]. O3 exposure during 34-37 wk of gestation was associated with increased risk [HR=1.06 (95% CI: 1.01, 1.11) per IQR (17.4 ppb) increase] but with reduced risk during 20-28 wk of gestation [HR=0.93 (95% CI: 0.89, 0.98)]. No associations were observed with NO2. Sex-stratified early gestational PM2.5 associations were stronger among boys [boys HR=1.16 (95% CI: 1.08, 1.26); girls HR=1.06 (95% CI: 0.89, 1.26)]. O3 associations in later gestation were observed only in boys [boys HR=1.10 (95% CI: 1.04, 1.16); girls HR=0.94 (95% CI: 0.84, 1.05)]. CONCLUSIONS Exposures to PM2.5 in the first two gestational trimesters were associated with increased ASD risk in children, with stronger associations observed for boys. The role of O3 exposure on ASD risk merits further investigation. https://doi.org/10.1289/EHP9509.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Yu-Hsiang Shu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | | | - Xin Yu
- Spatial Science Institute, USC, Los Angeles, California, USA
| | - Mayra P. Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Sarah A. Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Sandrah P. Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, Saban Research Institute, Children’s Hospital Los Angeles, USC, Los Angeles, California, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| |
Collapse
|
26
|
Carter SA, Rahman MM, Lin JC, Shu YH, Chow T, Yu X, Martinez MP, Eckel SP, Chen JC, Chen Z, Schwartz J, Pavlovic N, Lurmann FW, McConnell R, Xiang AH. In utero exposure to near-roadway air pollution and autism spectrum disorder in children. ENVIRONMENT INTERNATIONAL 2022; 158:106898. [PMID: 34627014 PMCID: PMC8688235 DOI: 10.1016/j.envint.2021.106898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 05/29/2023]
Abstract
IMPORTANCE Previous studies have reported associations between in utero exposure to regional air pollution and autism spectrum disorders (ASD). In utero exposure to components of near-roadway air pollution (NRAP) has been linked to adverse neurodevelopment in animal models, but few studies have investigated NRAP association with ASD risk. OBJECTIVE To identify ASD risk associated with in utero exposure to NRAP in a large, representative birth cohort. DESIGN, SETTING, AND PARTICIPANTS This retrospective pregnancy cohort study included 314,391 mother-child pairs of singletons born between 2001 and 2014 at Kaiser Permanente Southern California (KPSC) hospitals. Maternal and child data were extracted from KPSC electronic medical records. Children were followed until: clinical diagnosis of ASD, non-KPSC membership, death, or December 31, 2019, whichever came first. Exposure to the complex NRAP mixture during pregnancy was assessed using line-source dispersion models to estimate fresh vehicle emissions from freeway and non-freeway sources at maternal addresses during pregnancy. Vehicular traffic load exposure was characterized using advanced telematic models combining traditional traffic counts and travel-demand models with cell phone and vehicle GPS data. Cox proportional-hazard models estimated hazard ratios (HR) of ASD associated with near-roadway traffic load and dispersion-modeled NRAP during pregnancy, adjusted for covariates. Non-freeway NRAP was analyzed using quintile distribution due to nonlinear associations with ASD. EXPOSURES Average NRAP and traffic load exposure during pregnancy at maternal residential addresses. MAIN OUTCOMES Clinical diagnosis of ASD. RESULTS A total of 6,291 children (5,114 boys, 1,177 girls) were diagnosed with ASD. The risk of ASD was associated with pregnancy-average exposure to total NRAP [HR(95% CI): 1.03(1.00,1.05) per 5 ppb increase in dispersion-modeled NOx] and to non-freeway NRAP [HR(95% CI) comparing the highest to the lowest quintile: 1.19(1.11, 1.27)]. Total NRAP had a stronger association in boys than in girls, but the association with non-freeway NRAP did not differ by sex. The association of freeway NRAP with ASD risk was not statistically significant. Non-freeway traffic load exposure demonstrated associations with ASD consistent with those of NRAP and ASD. CONCLUSIONS In utero exposure to near-roadway air pollution, particularly from non-freeway sources, may increase ASD risk in children.
Collapse
Affiliation(s)
- Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Md Mostafijur Rahman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yu-Hsiang Shu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| |
Collapse
|
27
|
Funk WE, Montgomery N, Bae Y, Chen J, Chow T, Martinez MP, Lurmann F, Eckel SP, McConnell R, Xiang AH. Human Serum Albumin Cys34 Adducts in Newborn Dried Blood Spots: Associations With Air Pollution Exposure During Pregnancy. Front Public Health 2021; 9:730369. [PMID: 35004563 PMCID: PMC8733257 DOI: 10.3389/fpubh.2021.730369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Increasing evidence suggests that exposure to air pollution during pregnancy is associated with adverse pregnancy outcomes. However, biomarkers associated with air pollution exposure are widely lacking and often transient. In addition, ascertaining biospecimens during pregnacy to assess the prenatal environment remains largely infeasible. Objectives: To address these challenges, we investigated relationships between air pollution exposure during pregnancy and human serum albumin Cys34 (HSA-Cys34) adducts in newborn dried blood spots (DBS) samples, which captures an integration of perinatal exposures to small reactive molecules in circulating blood. Methods: Newborn DBS were obtained from a state archive for a cohort of 120 children born at one Kaiser Permanente Southern California (KPSC) hospitals in 2007. These children were selected to maximize the range of residential air pollution exposure during the entire pregnancy to PM2.5, PM10, NO2, O3, based on monthly estimates interpolated from regulatory monitoring sites. HSA-Cys34 adducts were selected based on previously reported relationships with air pollution exposure and oxidative stress. Results: Six adducts measured in newborn DBS samples were associated with air pollution exposures during pregnancy; these included direct oxidation products, adducts formed with small thiol compounds, and adducts formed with reactive aldehydes. Two general trends were identified: Exposure to air pollution late in pregnancy (i.e., in the last 30 days) was associated with increased oxidative stress, and exposure to air pollution earlier in pregnancy (i.e., not in the last 30 days) was associated with decreased oxidative stress around the time of birth. Discussion: Air pollution exposure occurring during pregnancy can alter biology and leave measurable impacts on the developing infant captured in the newborn DBS adductome, which represents a promising tool for investigating adverse birth outcomes in population-based studies.
Collapse
Affiliation(s)
- William E. Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Nathan Montgomery
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Yeunook Bae
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Jiexi Chen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Mayra P. Martinez
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, CA, United States
| | - Sandrah P. Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| |
Collapse
|
28
|
Zhou Q, Tian Y, Xu C, Wang J, Jin Y. Prenatal and postnatal traffic pollution exposure, DNA methylation in Shank3 and MeCP2 promoter regions, H3K4me3 and H3K27me3 and sociability in rats' offspring. Clin Epigenetics 2021; 13:180. [PMID: 34565458 PMCID: PMC8474908 DOI: 10.1186/s13148-021-01170-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background Road traffic air pollution is linked with an increased risk of autistic spectrum disorder (ASD). The aim of this study is to assess the effect of exposure to prenatal or postnatal traffic-related air pollution combining concomitant noise pollution on ASD-related epigenetic and behavioral alternations on offspring. Methods A 2 × 2 factorial analysis experiment was designed. Wistar rats were exposed at different sites (L group: green space; H group: crossroads) and timings (E group: full gestation; P group: 21 days after birth) at the same time, and air pollutants of nitrogen dioxide (NO2) and fine particles (PM2.5) were meanwhile sampled. On postnatal day 25, brains from offspring of each group were extracted to determine the levels of DNA methylation in Shank3 (three parts: Shank3_01, Shank3_02, Shank3_03) and MeCP2 (two parts: MeCP2_01, MeCP2_02) promoter regions, H3K4me3 and H3K27me3 after three-chamber social test. Meanwhile, the Shank3 and MeCP2 levels were quantified. Results The concentrations of PM2.5 (L: 58.33 µg/m3; H: 88.33 µg/m3, P < 0.05) and NO2 (L: 52.76 µg/m3; H: 146.03 µg/m3, P < 0.01) as well as the intensity of noise pollution (L: 44.4 dB (A); H: 70.1 dB (A), P < 0.001) differed significantly from 18:00 to 19:00 between experimental sites. Traffic pollution exposure (P = 0.006) and neonatal exposure (P = 0.001) led to lower weight of male pups on PND25. Male rats under early-life exposure had increased levels of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.001, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.94 µg/mg; EH: 11.98; PL: 17.14; PH: 14.78, timing P < 0.05), and reduced levels of H3K27me3 (EL: 71.07 µg/mg; EH: 44.76; PL: 29.15; PH: 28.67, timing P < 0.001; site P < 0.05) in brain compared to those under prenatal exposure. There was, for female pups, a same pattern of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.05, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.27 µg/mg; EH: 11.55; PL: 16.11; PH: 15.44, timing P < 0.001), but the levels of H3K27me3 exhibited an inverse trend concerning exposure timing. Hypermethylation at the MeCP2 and Shank3 promoter was correlated with the less content of MeCP2 (female: EL: 32.23 ng/mg; EH: 29.58; PL: 25.01; PH: 23.03, timing P < 0.001; site P < 0.05; male: EL: 31.05 ng/mg; EH: 32.75; PL: 23.40; PH: 25.91, timing P < 0.001) and Shank3 (female: EL: 5.10 ng/mg; EH: 5.31; PL: 4.63; PH: 4.82, timing P < 0.001; male: EL: 5.40 ng/mg; EH: 5.48; PL: 4.82; PH: 4.87, timing P < 0.001). Rats with traffic pollution exposure showed aberrant sociability preference and social novelty, while those without it behaved normally. Conclusions Our findings suggest early life under environmental risks is a crucial window for epigenetic perturbations and then abnormalities in protein expression, and traffic pollution impairs behaviors either during pregnancy or after birth. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01170-x.
Collapse
Affiliation(s)
- Qinfeng Zhou
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yu Tian
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Chenlu Xu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Juling Wang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yongtang Jin
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, People's Republic of China. .,Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
29
|
Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145182. [PMID: 33940721 PMCID: PMC7825818 DOI: 10.1016/j.scitotenv.2021.145182] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Converging data would indicate the existence of possible relationships between climate change, environmental pollution and epidemics/pandemics, such as the current one due to SARS-CoV-2 virus. Each of these phenomena has been supposed to provoke detrimental effects on mental health. Therefore, the purpose of this paper was to review the available scientific literature on these variables in order to suggest and comment on their eventual synergistic effects on mental health. The available literature report that climate change, air pollution and COVID-19 pandemic might influence mental health, with disturbances ranging from mild negative emotional responses to full-blown psychiatric conditions, specifically, anxiety and depression, stress/trauma-related disorders, and substance abuse. The most vulnerable groups include elderly, children, women, people with pre-existing health problems especially mental illnesses, subjects taking some types of medication including psychotropic drugs, individuals with low socio-economic status, and immigrants. It is evident that COVID-19 pandemic uncovers all the fragility and weakness of our ecosystem, and inability to protect ourselves from pollutants. Again, it underlines our faults and neglect towards disasters deriving from climate change or pollution, or the consequences of human activities irrespective of natural habitats and constantly increasing the probability of spillover of viruses from animals to humans. In conclusion, the psychological/psychiatric consequences of COVID-19 pandemic, that currently seem unavoidable, represent a sharp cue of our misconception and indifference towards the links between our behaviour and their influence on the "health" of our planet and of ourselves. It is time to move towards a deeper understanding of these relationships, not only for our survival, but for the maintenance of that balance among man, animals and environment at the basis of life in earth, otherwise there will be no future.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy; UniCamillus - Saint Camillus University of Health Sciences, Rome, Italy
| | - Paolo Cianconi
- Institute of Psychiatry, Department of Neurosciences, Catholic University, Rome, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Psychiatry, North-Western Tuscany Region, NHS Local Health Unit, Italy
| | - Lara Foresi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.
| |
Collapse
|
30
|
Dutheil F, Comptour A, Morlon R, Mermillod M, Pereira B, Baker JS, Charkhabi M, Clinchamps M, Bourdel N. Autism spectrum disorder and air pollution: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116856. [PMID: 33714060 DOI: 10.1016/j.envpol.2021.116856] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Despite the widely-known effects of air pollution, pollutants exposure surrounding pregnancy and the risk for autism spectrum disorder (ASD) in newborns remains controversial. The purpose of our study was to carry out a systematic review and meta-analyses of the risk of ASD in newborns following air pollution exposure during the perinatal period (preconception to second year of life). The PubMed, Cochrane Library, Embase and ScienceDirect databases were searched for articles, published up to July 2020, with the keywords "air pollution" and "autism". Three models were used for each meta-analysis: a global model based on all risks listed in included articles, a pessimistic model based on less favorable data only, and an optimistic model based on the most favorable data only. 28 studies corresponding to a total of 758 997 newborns were included (47190 ASD and 703980 controls). Maternal exposure to all pollutants was associated with an increased risk of ASD in newborns by 3.9% using the global model and by 12.3% using the optimistic model, while the pessimistic model found no change. Each increase of 5 μg/m3 in particulate matter <2.5 μm (PM2.5) was associated with an increased risk of ASD in newborns, regardless of the model used (global +7%, pessimistic +5%, optimistic +15%). This risk increased during preconception (global +17%), during pregnancy (global +5%, and optimistic +16%), and during the postnatal period (global +11% and optimistic +16%). Evidence levels were poor for other pollutants (PM10, NOx, O3, metals, solvents, styrene, PAHs, pesticides). PM2.5 was associated with a greater risk than PM10 (coefficient 0.20, 95CI -0.02 to 0.42), NOx (0.29, 0.08 to 0.50) or solvents (0.24, 0.04 to 0.44). All models revealed that exposure to pollutants, notably PM2.5 during pregnancy, was associated with an increased risk of ASD in newborns. Pregnancy and postnatal periods seem to be the most at-risk periods.
Collapse
Affiliation(s)
- Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, Clermont-Ferrand, France.
| | - Aurélie Comptour
- INSERM, CIC 1405 CRECHE Unit, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Gynecological Surgery, Clermont-Ferrand, France
| | - Roxane Morlon
- Université Clermont Auvergne, Faculty of Medicine, Occupational and Environmental Medicine, Clermont-Ferrand, France
| | | | - Bruno Pereira
- University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Biostatistics, Clermont-Ferrand, France
| | - Julien S Baker
- Hong Kong Baptist University, Physical Education and Health, Centre for Health and Exercise Science Research, Kowloon Tong, Hong Kong, China
| | - Morteza Charkhabi
- National Research University Higher School of Economics, Moscow, Russia
| | - Maëlys Clinchamps
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, Clermont-Ferrand, France
| | - Nicolas Bourdel
- Université Clermont Auvergne, UMR 6602, Pascal Institute, Endoscopy and Computer Vision Group, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Gynecological Surgery, Clermont-Ferrand, France
| |
Collapse
|
31
|
Imbriani G, Panico A, Grassi T, Idolo A, Serio F, Bagordo F, De Filippis G, De Giorgi D, Antonucci G, Piscitelli P, Colangelo M, Peccarisi L, Tumolo MR, De Masi R, Miani A, De Donno A. Early-Life Exposure to Environmental Air Pollution and Autism Spectrum Disorder: A Review of Available Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031204. [PMID: 33572907 PMCID: PMC7908547 DOI: 10.3390/ijerph18031204] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
The number of children diagnosed with Autism Spectrum Disorder (ASD) has rapidly increased globally. Genetic and environmental factors both contribute to the development of ASD. Several studies showed linkage between prenatal, early postnatal air pollution exposure and the risk of developing ASD. We reviewed the available literature concerning the relationship between early-life exposure to air pollutants and ASD onset in childhood. We searched on Medline and Scopus for cohort or case-control studies published in English from 1977 to 2020. A total of 20 articles were selected for the review. We found a strong association between maternal exposure to particulate matter (PM) during pregnancy or in the first years of the children’s life and the risk of the ASD. This association was found to be stronger with PM2.5 and less evident with the other pollutants. Current evidence suggest that pregnancy is the period in which exposure to environmental pollutants seems to be most impactful concerning the onset of ASD in children. Air pollution should be considered among the emerging risk factors for ASD. Further epidemiological and toxicological studies should address molecular pathways involved in the development of ASD and determine specific cause–effect associations.
Collapse
Affiliation(s)
- Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Alessandra Panico
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Tiziana Grassi
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
- Correspondence:
| | - Adele Idolo
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
| | - Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Francesco Bagordo
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| | - Giovanni De Filippis
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Donato De Giorgi
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Gianfranco Antonucci
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Prisco Piscitelli
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Manuela Colangelo
- Italian Association of Health, Environment and Society (AISAS), via De Gasperi 22, Lizzanello, 73023 Lecce, Italy;
| | - Luigi Peccarisi
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Medical Professional Association (OMCEO), 73100 Lecce, Italy
| | - Maria Rosaria Tumolo
- Research Unit of Brindisi, c/o ex Osp. Di Summa, Institute for Research on Population and Social Policies, National Research Council, Piazza Di Summa, 72100 Brindisi, Italy;
- c/o Campus Ecotekne via Monteroni, Branch of Lecce, Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy
| | - Roberto De Masi
- Local Health Authority ASL Le, 73100 Lecce, Italy; (G.D.F.); (D.D.G.); (G.A.); (P.P.); (L.P.); (R.D.M.)
- Multiple Sclerosis Centre, Laboratory of Neuroproteomics, “Francesco Ferrari” Hospital, 73042 Casarano, Italy
| | - Alessandro Miani
- Italian Society of Environmental Medicine, 02100 Milan, Italy;
- Department of Environmental Science and Policy, University of Milan, 02100 Milan, Italy
| | - Antonella De Donno
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni 165, 73100 Lecce, Italy; (G.I.); (A.P.); (A.I.); (F.S.); (F.B.); (A.D.D.)
| |
Collapse
|
32
|
Bangma JT, Hartwell H, Santos HP, O'Shea TM, Fry RC. Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm. Pediatr Res 2021; 89:326-335. [PMID: 33184498 PMCID: PMC7658618 DOI: 10.1038/s41390-020-01236-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023]
Abstract
Individuals born extremely preterm are at significant risk for impaired neurodevelopment. After discharge from the neonatal intensive care, associations between the child's well-being and factors in the home and social environment become increasingly apparent. Mothers' prenatal health and socioeconomic status are associated with neurodevelopmental outcomes, and emotional and behavioral problems. Research on early life risk factors and on mechanisms underlying inter-individual differences in neurodevelopment later in life can inform the design of personalized approaches to prevention. Here, we review early life predictors of inter-individual differences in later life neurodevelopment among those born extremely preterm. Among biological mechanisms that mediate relationships between early life predictors and later neurodevelopmental outcomes, we highlight evidence for disrupted placental processes and regulated at least in part via epigenetic mechanisms, as well as perinatal inflammation. In relation to these mechanisms, we focus on four prenatal antecedents of impaired neurodevelopment, namely, (1) fetal growth restriction, (2) maternal obesity, (3) placental microorganisms, and (4) socioeconomic adversity. In the future, this knowledge may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm. IMPACT: This review highlights early life risk factors and mechanisms underlying inter-individual differences in neurodevelopment later in life. The review emphasizes research on early life risk factors (fetal growth restriction, maternal obesity, placental microorganisms, and socioeconomic adversity) and on mechanisms (disrupted placental processes and perinatal inflammation) underlying inter-individual differences in neurodevelopment later in life. The findings highlighted here may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm.
Collapse
Affiliation(s)
- Jacqueline T Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Finch CE, Morgan TE. Developmental Exposure to Air Pollution, Cigarettes, and Lead: Implications for Brain Aging. ACTA ACUST UNITED AC 2020. [DOI: 10.1146/annurev-devpsych-042320-044338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain development is impaired by maternal exposure to airborne toxins from ambient air pollution, cigarette smoke, and lead. Shared postnatal consequences include gray matter deficits and abnormal behaviors as well as elevated blood pressure. These unexpectedly broad convergences have implications for later life brain health because these same airborne toxins accelerate brain aging. Gene-environment interactions are shown for ApoE alleles that influence the risk of Alzheimer disease. The multigenerational trace of these toxins extends before fertilization because egg cells are formed in the grandmaternal uterus. The lineage and sex-specific effects of grandmaternal exposure to lead and cigarettes indicate epigenetic processes of relevance to future generations from our current and recent exposure to airborne toxins.
Collapse
Affiliation(s)
- Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| | - Todd E. Morgan
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| |
Collapse
|
34
|
Wilson HA, Creighton C, Scharfman H, Choleris E, MacLusky NJ. Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder. Neuroscientist 2020; 27:650-667. [PMID: 32912048 DOI: 10.1177/1073858420952046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
Collapse
Affiliation(s)
- Hayley A Wilson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Carolyn Creighton
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Helen Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 2020; 11:69. [PMID: 32912338 PMCID: PMC7488083 DOI: 10.1186/s13229-020-00370-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complex pathophysiology of autism spectrum disorder encompasses interactions between genetic and environmental factors. On the one hand, hundreds of genes, converging at the functional level on selective biological domains such as epigenetic regulation and synaptic function, have been identified to be either causative or risk factors of autism. On the other hand, exposure to chemicals that are widespread in the environment, such as endocrine disruptors, has been associated with adverse effects on human health, including neurodevelopmental disorders. Interestingly, experimental results suggest an overlap in the regulatory pathways perturbed by genetic mutations and environmental factors, depicting convergences and complex interplays between genetic susceptibility and toxic insults. The pervasive nature of chemical exposure poses pivotal challenges for neurotoxicological studies, regulatory agencies, and policy makers. This highlights an emerging need of developing new integrative models, including biomonitoring, epidemiology, experimental, and computational tools, able to capture real-life scenarios encompassing the interaction between chronic exposure to mixture of substances and individuals' genetic backgrounds. In this review, we address the intertwined roles of genetic lesions and environmental insults. Specifically, we outline the transformative potential of stem cell models, coupled with omics analytical approaches at increasingly single cell resolution, as converging tools to experimentally dissect the pathogenic mechanisms underlying neurodevelopmental disorders, as well as to improve developmental neurotoxicology risk assessment.
Collapse
Affiliation(s)
- Cristina Cheroni
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Nicolò Caporale
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
36
|
Chen B, Huang S, He J, He Q, Chen S, Liu X, Peng S, Luo D, Duan Y. Sex-specific influence of prenatal air pollutant exposure on neonatal neurobehavioral development and the sensitive window. CHEMOSPHERE 2020; 254:126824. [PMID: 32335443 DOI: 10.1016/j.chemosphere.2020.126824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence indicates the adverse effect of air pollution exposure during pregnancy on neurologic development among children. However, the impact on neurobehavioral development in fetus remains unknown. In 2017, a total of 1193 mother-newborns pairs were enrolled in a birth cohort study in Changsha, China. Exposures to PM2.5, PM10, SO2, CO and NO2 were determined by using inverse distance weighted method based on local monitoring station data. Neurobehavioral measure was administered at 48-72 h postpartum by utilizing the neonatal behavioral neurological assessment (NBNA). Basic information and covariates were collected by face to face interview. Generalized linear regression and multivariable restricted cubic spline function were performed to explore the trimester-specific association and dose-response relationship of maternal air pollution exposure with NBNA score, respectively. In adjusted three-pollutant model, PM2.5 exposure in trimester 2 was negatively associated with behavior score (β, -0.003; 95% CI, -0.006, -0.001) and the inverse relation was more pronounced in male infants. In addition, PM2.5 level in the 2nd trimester was negatively related to activetone score (β, -0.012; 95% CI, -0.021, -0.002) in a dose-dependent manner for both genders. Collectively, our results demonstrated that prenatal exposure to PM2.5 was linked to poor neurobehavioral performance of newborns. The second trimester was the most sensitive time window for the developments of behavior and activetone, and male subject was more vulnerable as compared to females.
Collapse
Affiliation(s)
- Bingzhi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Shangzhuan Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China; Hunan Maternal and Child Health Hospital, Changsha, 410008, China
| | - Jun He
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Qican He
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Shaoyi Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiaoqun Liu
- Department of Children and Maternal Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Songxu Peng
- Department of Children and Maternal Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Dan Luo
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
37
|
Perera F, Cooley D, Berberian A, Mills D, Kinney P. Co-Benefits to Children's Health of the U.S. Regional Greenhouse Gas Initiative. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:77006. [PMID: 32749866 PMCID: PMC7388687 DOI: 10.1289/ehp6706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND While various policies have been implemented globally to mitigate climate change and reduce exposure to toxic air pollutants, policy assessments have considered few if any of the benefits to children. OBJECTIVE To comprehensively assess the co-benefits of climate change mitigation to children, we expanded the suite of adverse health outcomes in the U.S. Environmental Protection Agency's Benefits Mapping and Analysis Program (BenMAP) to include additional outcomes associated with prenatal and childhood exposure to ambient fine particulate matter (PM2.5). We applied this newly expanded program to an assessment of the U.S. Regional Greenhouse Gas Initiative (RGGI), the United States' first regional market-based regulatory program designed to reduce greenhouse gas emissions from the electric power sector within the Northeast. METHODS We used calculated changes in ambient PM2.5 concentrations for the period 2009-2014, with newly incorporated concentration-response (C-R) functions to quantify changes in the incidence of preterm birth (PTB), term low birth weight (TLBW), autism spectrum disorder (ASD), and asthma. These outcomes are causally or likely to be causally related to PM2.5 exposure. Cost per case estimates were incorporated to monetize those changes in incidence. RESULTS The estimated avoided cases of adverse child health outcomes included 537 asthma cases, 112 preterm births, 98 cases of ASD, and 56 cases of TLBW, with an associated avoided cost estimate ranging from $191 to $350 million. In a previous analysis of health benefits of RGGI, the only benefits accruing to children were limited to prevented cases of infant mortality and respiratory illnesses, with a monetized impact of $8.1 million-only 2-4% of the new results attributable to RGGI. CONCLUSION The results of this innovative analysis indicate that RGGI has provided substantial child health benefits beyond those initially considered. Moreover, those health benefits had significant estimated economic value. https://doi.org/10.1289/EHP6706.
Collapse
Affiliation(s)
- Frederica Perera
- Department of Environmental Health Sciences, Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Alique Berberian
- Department of Environmental Health Sciences, Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - David Mills
- Peak to Peak Economics, LLC, Boulder, Colorado, USA
| | - Patrick Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Wang L, Wei LY, Ding R, Feng Y, Li D, Li C, Malko P, Syed Mortadza SA, Wu W, Yin Y, Jiang LH. Predisposition to Alzheimer's and Age-Related Brain Pathologies by PM2.5 Exposure: Perspective on the Roles of Oxidative Stress and TRPM2 Channel. Front Physiol 2020; 11:155. [PMID: 32174842 PMCID: PMC7054442 DOI: 10.3389/fphys.2020.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating epidemiological evidence supports that chronic exposure to ambient fine particular matters of <2.5 μm (PM2.5) predisposes both children and adults to Alzheimer’s disease (AD) and age-related brain damage leading to dementia. There is also experimental evidence to show that PM2.5 exposure results in early onset of AD-related pathologies in transgenic AD mice and development of AD-related and age-related brain pathologies in healthy rodents. Studies have also documented that PM2.5 exposure causes AD-linked molecular and cellular alterations, such as mitochondrial dysfunction, synaptic deficits, impaired neurite growth, neuronal cell death, glial cell activation, neuroinflammation, and neurovascular dysfunction, in addition to elevated levels of amyloid β (Aβ) and tau phosphorylation. Oxidative stress and the oxidative stress-sensitive TRPM2 channel play important roles in mediating multiple molecular and cellular alterations that underpin AD-related cognitive dysfunction. Documented evidence suggests critical engagement of oxidative stress and TRPM2 channel activation in various PM2.5-induced cellular effects. Here we discuss recent studies that favor causative relationships of PM2.5 exposure to increased AD prevalence and AD- and age-related pathologies, and raise the perspective on the roles of oxidative stress and the TRPM2 channel in mediating PM2.5-induced predisposition to AD and age-related brain damage.
Collapse
Affiliation(s)
- Lu Wang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Lin Yu Wei
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ran Ding
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yanyan Feng
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Dongliang Li
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sharifah A Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Weidong Wu
- School of Public Heath, Xinxiang Medical University, Xinxiang, China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
40
|
Jo H, Eckel SP, Chen JC, Cockburn M, Martinez MP, Chow T, Lurmann FW, Funk WE, Xiang AH, McConnell R. Gestational diabetes mellitus, prenatal air pollution exposure, and autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2019; 133:105110. [PMID: 31610366 PMCID: PMC7250244 DOI: 10.1016/j.envint.2019.105110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ambient air pollution and maternal diabetes may affect common biological pathways underlying adverse neurodevelopmental effects. However, joint effects of maternal diabetes and air pollution on autism spectrum disorder (ASD) have not been studied. OBJECTIVE We evaluated whether prenatal and early-life air pollution exposure interacts with maternal diabetes status to affect ASD risk. METHODS This retrospective cohort study included 246,420 singleton children born in Kaiser Permanente Southern California hospitals in 1999-2009. Children were followed from birth until age 5, during which 2471 ASD cases were diagnosed. Ozone (O3), particulate matter < 2.5 μm (PM2.5) and <10 μm in aerodynamic diameter, and nitrogen dioxide measured at regulatory air monitoring stations were interpolated to estimate exposures during preconception and each pregnancy trimester, and first year of life at each child's birth address. Hazard ratios (HRs) for ASD were estimated adjusting for birth year, KPSC service areas, and relevant maternal and child characteristics. For each exposure window, interactions were tested between pollutants and a 4-category maternal diabetes variable (none, GDM ≥ 24 and <24 weeks' gestation, and pre-existing type 2 diabetes). For an exposure window with statistically significant global interaction between pollutant and diabetes (p < 0.05), pollutant-associated HRs were estimated separately for each category of maternal diabetes. RESULTS There were associations of ASD with preconception, first and third trimesters, and first year of life PM2.5, but not with other pollutants. There were, however, interactions of maternal diabetes with first trimester and first year of life O3. Increased ASD risk was associated with first trimester O3 among mothers with GDM < 24 weeks' gestation [adjusted HR 1.50 per 15.7 ppb O3 (95% CI: 1.08-2.09)]. No O3 associations with ASD were observed in other categories of maternal diabetes. CONCLUSIONS GDM onset early in pregnancy may increase children's susceptibility to prenatal O3-associated ASD risk. These novel findings merit further investigation.
Collapse
Affiliation(s)
- Heejoo Jo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America; Department of Epidemiology, University of Colorado School of Public Health, United States of America
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | | | - William E Funk
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|