1
|
Yin J, Li J, Xie H, Wang Y, Zhao J, Wang L, Wu L. Unveiling cold Code: Acinetobacter calcoaceticus TY1's adaptation strategies and applications in nitrogen treatment. BIORESOURCE TECHNOLOGY 2024; 413:131449. [PMID: 39244103 DOI: 10.1016/j.biortech.2024.131449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Overcoming low nitrogen removal efficiency at low temperatures is a challenge in biological treatment. This study investigated the cold-tolerant heterotrophic nitrification-aerobic denitrification by Acinetobacter calcoaceticus TY1. Transcriptomic and biochemical analyses indicated that strain TY1 upregulated genes for energy production, assimilation, cell motility, and antioxidant enzyme production under cold stress, maintaining functions such as energy supply, nitrogen utilization, and oxidative defense. Increasing the synthesis of extracellular polysaccharides, unsaturated fatty acids, and medium-chain fatty acids and secreting large amounts of antioxidant enzymes ensured cell membrane flexibility while enhancing the antioxidant system. Immobilization experiments showed that biofilms accelerated the removal of nitrogen pollutants and demonstrated good stability, with carriers being reusable to five times, maintaining high ammonia nitrogen (63.90 %) and total nitrogen (50.66 %) removal rates. These findings reveal the cold tolerance mechanisms of strain TY1 and its excellent practical potential as a candidate for wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Jiahui Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Junyi Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Hongliang Xie
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Yongman Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Jialin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Hohhot 010021, PR China.
| |
Collapse
|
2
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
3
|
Kou L, Huang T, Zhang H, Wen G, Li K. Aerobic denitrifying bacterial community with low C/N ratio remove nitrate from micro-polluted water: Metagenomics unravels denitrification pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175457. [PMID: 39137850 DOI: 10.1016/j.scitotenv.2024.175457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
The efficient nitrogen removal from micro-polluted source water is an international challenge to be solved urgently. However, the inner denitrification mechanism of native aerobic denitrifying bacterial communities in response to carbon scarcity remains relatively unclear. Here, the bacterial community XT6, screened from an oligotrophic reservoir, exhibited aerobic denitrifying capacity under low-carbon environments. Up to 76.79-81.64 % of total organic carbon (TOC) and 51.48-67.60 % of NO3--N were removed by XT6 within 48 h at C/N ratios of 2.0-3.0. Additionally, the nitrogen balance experiments further manifested that 26.27-38.13 % of NO3--N was lost in gaseous form. As the C/N ratio decreased, XT6 tended to generate more extracellular polymeric substances (EPS), with the tightly bound EPS showing the largest increase. Pseudomonas and Variovorax were quite abundant in XT6, constituting 59.69 % and 28.65 % of the total sequences, respectively. Furthermore, metagenomics analysis evidenced that XT6 removed TOC and nitrate mainly through the tricarboxylic acid cycle and aerobic denitrification. Overall, the abovementioned results provide a deeper understanding of the nitrogen metabolic pathways of indigenous aerobic denitrifying bacterial communities with low C/N ratios and offer useful guidance for controlling nitrogen pollution in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Haihan Zhang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Kai Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
4
|
Cao K, Huang X, Wang CD, Yu JH, Gui WJ, Zhang S. Refractory degradable dissolved organic matter (R-DOM) driving nitrogen removal by the electric field coupled iron‑carbon biofilter (E-ICBF): Performance and microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173374. [PMID: 38795998 DOI: 10.1016/j.scitotenv.2024.173374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Researches on the advanced nitrogen (N) removal of municipal tailwater always overlooked the value of refractory degradable dissolved organic matter (R-DOM). In this study, a novel electric field coupled iron‑carbon biofilter (E-ICBF) was utilized to explore the performance and microbial changes with polyethylene glycol (PEG) as the representative R-DOM. Results demonstrated that the removal efficiencies of E-ICBF for nitrate nitrogen (NO3--N), ammonia nitrogen (NH4+-N), and total nitrogen (TN) improved by 28.76 %, 12.96 %, and 28.45 %, compared to quartz sand biofilter (SBF). Moreover, removal efficiencies of NO3--N and TN in E-ICBF with R-DOM went up by 12.11 % and 14.02 % compared to methanol. Additionally, both PEG and the electric field reduced the microbial richness and diversity. However, PEG promoted the increase of denitrifying bacteria abundance including unclassified_f_Comamonadaceae, Thauera, and unclassified_f_Gallionellaceae. The electric field improved the abundances of genes related to N removal (hao, nasC, nasA, nifH, nifD, nifK) and PEG further enhanced the effect. The abundances of key enzymes [EC:1.7.5.1], [EC:1.7.2.1], [EC:1.7.2.4], and [EC:1.7.2.5] decreased due to the addition of PEG and the electric field mitigated the negative influence. Additionally, the electric field changed relationships between microorganisms and pollutant removal, and improved interspecific relationships between denitrifying bacterial genera and other genera in E-ICBF.
Collapse
Affiliation(s)
- Kai Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Cheng-Da Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jiang-Hua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wen-Jing Gui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
5
|
Wang Y, Wang Z, Ali A, Su J, Huang T, Hou C, Li X. Microbial-induced calcium precipitation: Bibliometric analysis, reaction mechanisms, mineralization types, and perspectives. CHEMOSPHERE 2024; 362:142762. [PMID: 38971440 DOI: 10.1016/j.chemosphere.2024.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Microbial-induced calcium precipitation (MICP) refers to the formation of calcium precipitates induced by mineralization during microbial metabolism. MICP has been widely used as an ecologically sustainable method in environmental, geotechnical, and construction fields. This article reviews the removal mechanisms of MICP for different contaminants in the field of water treatment. The nucleation pathway is explained at both extracellular and intracellular levels, with a focus on evaluating the contribution of extracellular polymers to MICP. The types of mineralization and the regulatory role of enzyme genes in the MICP process are innovatively summarized. Based on this, the environmental significance of MICP is illustrated, and the application prospects of calcium precipitation products are discussed. The research hotspots and development trends of MICP are analyzed by bibliometric methods, and the challenges and future directions of MICP technology are identified. This review aims to provide a theoretical basis for further understanding of the MICP phenomenon in water treatment and the effective removal of multiple pollutants, which will help researchers to find the breakthroughs and innovations in the existing technologies, with a view to making significant progress in MICP technology.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
6
|
Jiang L, Yi M, Jiang Z, Wu Y, Cao J, Liu Z, Wang Z, Lu M, Ke X, Wang M. Effect of Pond-Based Rice Floating Bed on the Microbial Community Structure and Quality of Water in Pond of Mandarin Fish Fed Using Artificial Diet. BIOLOGY 2024; 13:549. [PMID: 39056741 PMCID: PMC11274348 DOI: 10.3390/biology13070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The culture of mandarin fish using artificial feed has been gaining increasing attention in China. Ensuring good water quality in the ponds is crucial for successful aquaculture. Recently, the trial of pond-based rice floating beds (PRFBs) in aquaculture ponds has shown promising results. This research assessed the impact of PRFBs on the microbial community structure and overall quality of the aquaculture pond, thereby enhancing our understanding of its functions. The results revealed that the PRFB group exhibited lower levels of NH4+-N, NO2--N, NO3--N, TN, TP, and Alk in pond water compared to the control group. The microbial diversity indices in the PRFB group showed a declining trend, while these indices were increasing in the control group. At the phylum level, there was a considerable increase in Proteobacteria abundance in the PRFB group throughout the culture period, suggesting that PRFBs may promote the proliferation of Proteobacteria. In the PRFB group, there was a remarkable decrease in bacterial populations related to carbon, nitrogen, and phosphorus metabolism, including genera Rhodobacter, Rhizorhapis, Dinghuibacter, Candidatus Aquiluna, and Chryseomicrobium as well as the CL500_29_marine_group. Overall, the research findings will provide a basis for the application of aquaculture of mandarin fish fed an artificial diet and rice floating beds.
Collapse
Affiliation(s)
- Lijin Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhiyong Jiang
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Yuli Wu
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhang Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| |
Collapse
|
7
|
Wang Q, Zhao Y, Song J, Niu J, Liu Y, Chao C. How halogenated aromatic compounds affect the electron supply and consumption in glucose supported denitrification? WATER RESEARCH 2024; 256:121569. [PMID: 38615604 DOI: 10.1016/j.watres.2024.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Halogenated aromatic compounds possess bidirectional effects on denitrifying bio-electron behavior, providing electrons and potentially interfering with electron consumption. This study selected the typical 4-chlorophenol (4-CP, 0-100 mg/L) to explore its impact mechanism on glucose-supported denitrification. When COD(glucose)/COD(4-CP)=28.70-3.59, glucose metabolism remained the dominant electron supply process, although its removal efficiency decreased to 73.84-49.66 %. When COD(glucose)/COD(4-CP)=2.39-1.43, 4-CP changed microbial carbon metabolism priority by inhibiting the abundance of glucose metabolizing enzymes, gradually replacing glucose as the dominant electron donor. Moreover, 5-100 mg/L 4-CP reduced adenosine triphosphate (ATP) by 15.52-24.67 % and increased reactive oxygen species (ROS) by 31.13-63.47 %, causing severe lipid peroxidation, thus inhibiting the utilization efficiency of glucose. Activated by glucose, 4-CP dechlorination had stronger electron consumption ability than NO2--N reduction (NO3--N > 4-CP > NO2--N), combined with the decreased nirS and nirK genes abundance, resulting in NO2--N accumulation. Compared with the blank group (0 mg/L 4-CP), 5-40 mg/L and 60-100 mg/L 4-CP reduced the secretion of cytochrome c and flavin adenine dinucleotides (FAD), respectively, further decreasing the electron transfer activity of denitrification system. Micropruina, a genus that participated in denitrification based on glucose, was gradually replaced by Candidatus_Microthrix, a genus that possessed 4-CP degradation and denitrification functions after introducing 60-100 mg/L 4-CP.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Shao W, Qian Y, Zhai X, Xu L, Guo H, Zhang M, Qiao W. Mechanisms of nanoscale zero-valent iron mediating aerobic denitrification in Pseudomonas stutzeri by promoting electron transfer and gene expression. BIORESOURCE TECHNOLOGY 2024; 394:130202. [PMID: 38092073 DOI: 10.1016/j.biortech.2023.130202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Aerobic denitrification and its mechanism by P. stutzeri was investigated in the presence of nanoscale zero-valent iron (nZVI). The removal of nitrate and ammonia was accelerated and the nitrite nitrogen accumulation was reduced by nZVI. The particle size and dosage of nZVI were key factors for enhancing aerobic denitrification. nZVI reduced the negative effects of low carbon/nitrogen, heavy metals, surfactants and salts to aerobic denitrification. nZVI and its dissolved irons were adsorbed into the bacteria cells, enhancing the transfer of electrons from nicotinamide adenine dinucleotide (NADH) to nitrate reductase. Moreover, the activities of NADH-ubiquinone reductase involved in the respiratory system, and the denitrifying enzymes were increased. The expression of denitrifying enzyme genes napA and nirS, as well as the iron metabolism gene fur, were promoted in the presence of nZVI. This work provides a strategy for enhancing the biological denitrification of wastewater using the bio-stimulation of nanomaterials.
Collapse
Affiliation(s)
- Weizhen Shao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Qian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaopeng Zhai
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - He Guo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Ma B, Yang W, Li N, Kosolapov DB, Liu X, Pan S, Liu H, Li A, Chu M, Hou L, Zhang Y, Li X, Chen Z, Chen S, Huang T, Cao S, Zhang H. Aerobic Denitrification Promoting by Actinomycetes Coculture: Investigating Performance, Carbon Source Metabolic Characteristic, and Raw Water Restoration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:683-694. [PMID: 38102081 DOI: 10.1021/acs.est.3c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The coculture theory that promotes denitrification relies on effectively utilizing the resources of low-efficiency denitrification microbes. Here, the strains Streptomyces sp. PYX97 and Streptomyces sp. TSJ96 were isolated and showed lower denitrification capacity when cultured individually. However, the coculture of strains PYX97 and TSJ96 enhanced nitrogen removal (removed 96.40% of total nitrogen) and organic carbon reduction (removed 92.13% of dissolved organic carbon) under aerobic conditions. Nitrogen balance analysis indicated that coculturing enhanced the efficiency of nitrate converted into gaseous nitrogen reaching 70.42%. Meanwhile, the coculturing promoted the cell metabolism capacity and carbon source metabolic activity. The coculture strains PYX97 and TSJ96 thrived in conditions of C/N = 10, alkalescence, and 150 rpm shaking speed. The coculturing reduced total nitrogen and CODMn in the raw water treatment by 83.32 and 84.21%, respectively. During this treatment, the cell metabolic activity and cell density increased in the coculture strains PYX97 and TSJ96 reactor. Moreover, the coculture strains could utilize aromatic protein and soluble microbial products during aerobic denitrification processes in raw water treatment. This study suggests that coculturing inefficient actinomycete strains could be a promising approach for treating polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Huaqing College, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109 Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, Utah 84322, United States
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500Praha-Suchdol ,Czech Republic
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Zhang S, Su J, Liu S, Ren Y, Cao S. Regulating mechanism of denitrifier Comamonas sp. YSF15 in response to carbon deficiency: Based on carbon/nitrogen functions and bioaggregation. ENVIRONMENTAL RESEARCH 2023; 235:116661. [PMID: 37451570 DOI: 10.1016/j.envres.2023.116661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
There is an urgent demand to investigate mechanisms for the improvement of denitrification in carbon-deficient environment, which will effectively reduce the eutrophication in water bodies polluted by nitrate. In this study, denitrifying bacterium Comamonas sp. YSF15 was used to explore the differences in different carbon source concentrations, with the complete genome, metabolomics, and other detecting methods. Results showed that strain YSF15 was able to achieve efficient denitrification, with complete pathways for denitrification and central carbon metabolism. The carbon deficiency prompted the bacteria to use extracellular amino acid-like metabolites initially, to alleviate inhibition and maintain bioactivity, which also facilitated glycogen storage. The biogenic inhibitors (tautomycin, navitoclax, and glufosinate) at extremely low level potentially favored the competitiveness and intraspecific utilization of extracellular polysaccharides (PS). Optimal solutions for bioaggregation in carbon-deficient condition are achieved by regulating the hydrophobicity, and hydrogen bond in extracellular metabolites. The strategy contributes to the maintenance of bioactivity and adaptation to carbon deficiency. Overall, this study provides a new perspective on understanding the denitrification strategies in carbon-deficient environment, and helps to improve the nitrate removal in low-carbon wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
11
|
Zhang QQ, Yu Y, Liu JZ, Fu WJ, Quan JY, Chen Y, Zhao JQ, Wang S, Jin RC. Evaluation the role of soluble microbial products for denitrification sludge characteristic under starvation stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163319. [PMID: 37030357 DOI: 10.1016/j.scitotenv.2023.163319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Physiological changes with the assist role of soluble microbial products (SMP) of preserved denitrifying sludge (DS) undergoing long-term stress of starvation under different storage temperature is extremely important. In this study, SMP extracted from DS were added into DS in starvation condition under room temperature (15-20 °C), 4 °C and -20 °C with three different bio-augmentation phases of 10, 15 and 30 days. Experimental results showed that added SMP in room temperature was optimal for preservation of DS under starvation stress with optimized dosage of 2.0 mL mL-1 sludge and bio-augmentation phase of 10 d. SMP was more effective in maintaining the specific denitrification activity of DS, and it was nearly boosted to 94.1 % of control one due to assist of 2 times SMP addition with 10 days interval of each. Under assist of SMP, extracellular polymeric substances (EPS) secretion was enhanced as the defense layer to withstand starvation stress, and the protein may be utilized as an alternative substrate to gain energy, accelerate electron transport and transfer during denitrification process. This investigation revealed the feasibility of SMP as an economical and robust strategy for preservation of DS.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China.
| | - Yan Yu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jin-Ze Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Wen-Jing Fu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jin-Yang Quan
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Ying Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Jian-Qiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Sha Wang
- College of Environment and Life Sciences, Weinan Normal University, Weinan 714099, Shaanxi, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Ma B, Niu L, Li N, Pan S, Li A, Chu M, Liu H, Kosolapov DB, Xin X, Zhi W, Hou L, Chen Z, Zhang Y, Cao S, Huang T, Zhang H. Promoted aerobic denitrification through denitrifying fungal communities: Co-occurrence patterns and treatment of low C/N micro-polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163859. [PMID: 37142031 DOI: 10.1016/j.scitotenv.2023.163859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Despite the growing interest in using mixed-culture aerobic denitrifying fungal flora (mixed-CADFF) for water remediation, there is limited research on their nitrogen removal performance in low C/N polluted water bodies. To address this knowledge gap, we isolated three mixed-CADFFs from overlying water in urban lakes to evaluate their removal performance. The total nitrogen (TN) removal efficiencies were 93.60 %, 94.64 %, and 95.18 %, while the dissolved organic carbon removal efficiencies were 96.64 %, 95.12 %, and 96.70 % for mixed-CADFF LN3, LN7, and LN15, respectively in the denitrification medium under aerobic conditions at 48 h cultivation. The three mixed-CADFFs could utilize diverse types of low molecular weight carbon sources to drive the aerobic denitrification processes efficiently. The optimal C/N ratio for the mixed-CADFFs were C/N = 10, and then C/N = 15, 7, 5, and 2. The high-throughput sequencing analysis of three mixed-CADFFs indicated that Eurotiomycetes, Cystobasidiomycetes, and Sordariomycetes were the dominant class in the communities at class level. The network analysis showed that the rare fungal species, such as Scedosporium dehoogii Saitozyma, and Candida intermedia presented positively co-occurred with the TN removal and organic matter reduction capacity. Immobilization mixed-CADFFs treatment raw water experiments indicated that three mixed-CADFFs could reduce nearly 62.73 % of TN in the low C/N micro-polluted raw water treatment. Moreover, the cell density and cell metabolism indexes were also increased during the raw water treatment. This study will provides new insight into resource utilization of the mixed-culture aerobic denitrifying fungal community in field of environment restoration.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, UT 84322, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
13
|
Ji B, Qian Y, Zhang H, Al-Gabr HM, Xu M, Zhang K, Zhang D. Optimizing heterotrophic nitrification process: The significance of demand-driven aeration and organic matter concentration. BIORESOURCE TECHNOLOGY 2023; 376:128907. [PMID: 36933574 DOI: 10.1016/j.biortech.2023.128907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Heterotrophic nitrification and aerobic denitrification (HNAD) sludge were successfully acclimated. The effects of organics and dissolved oxygen (DO) on nitrogen and phosphorus removal by the HNAD sludge were investigated. The nitrogen can be heterotrophically nitrified and denitrified in the sludge at a DO of 6 mg/L. The TOC/N (total organic carbon to nitrogen) ratio of 3 was found to result in removal efficiencies of over 88% for nitrogen and 99% for phosphorus. The use of demand-driven aeration with a TOC/N ratio of 1.7 improved nitrogen and phosphorus removal from 35.68% and 48.17% to 68% and 93%, respectively. The kinetics analysis generated an empirical formula, Ammonia oxidation rate = 0.08917·(TOC·Ammonia)0.329·Biomass0.342. The nitrogen, carbon, glycogen, and poly-β-hydroxybutyric acid (PHB) metabolism pathways of HNAD sludge were constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The findings suggest that heterotrophic nitrification precedes aerobic denitrification, glycogen synthesis, and PHB synthesis.
Collapse
Affiliation(s)
- Bixiao Ji
- NingboTech University, 315000, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang X, Wang J, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130941. [PMID: 36758433 DOI: 10.1016/j.jhazmat.2023.130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Pseudomonas aeruginosa causes public health problems in drinking water systems. This study investigated the potential role of the stringent response in regulating the adaptive physiological metabolic behaviors of P. aeruginosa to low nitrogen stress and bacterial competition in drinking water systems. The results indicated that guanosine tetraphosphate (ppGpp) concentrations in P. aeruginosa increased to 135.5 pmol/g SS under short-term nitrogen deficiency. Meanwhile, the expression levels of the ppGpp synthesis genes (ppx, relA) and degradation gene (spoT) were upregulated by 37.0% and downregulated by 26.8%, respectively, indicating that the stringent response was triggered. The triggered stringent response inhibited the growth of P. aeruginosa and enhanced the metabolic activity of P. aeruginosa to adapt to nutrient deprivation. The interspecific competition significantly affected the regulation of the stringent response in P. aeruginosa. During short-term nitrogen deficiency, the extracellular polymeric substances concentration of P. aeruginosa decreased significantly, leading to desorption and diffusion of attached bacteria and increased ecological risks. The regulatory effect of stringent response on P. aeruginosa gradually weakened under long-term nitrogen deficiency. However, the expression of pathogenic genes (nalD/PA3310) and flagellar assembly genes (fliC) in P. aeruginosa was upregulated by the stringent response, which increased the risk of disease.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jing Wang
- Chongqing Jianzhu College, Chongqing 400072, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
15
|
Zhang K, Cao H, Luo H, Chen W, Chen J. Enhanced MFC sensor performances and extracellular electron transport efficiency mediated by biochar and underlying biochemical mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117282. [PMID: 36706605 DOI: 10.1016/j.jenvman.2023.117282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
To explore the application of biosensor in real-time monitoring of composite heavy metal polluted wastewater in view of the low performance of MFC sensor, this study used sodium alginate to immobilize biochar to the anode of MFC biosensor, and conducted a study on the sensor performance and related biological processes. The results showed that under the optimal HRT conditions, the output power of the MFC-sensor (BC-300) was 0.432 W/m3 after biochar modification, which was much higher than the highest power density of CG and BC-0 of 0.117 and 0.088 W/m3. The correlation coefficient was greater than that of the control group at the plating wastewater concentration of 0.1-1.0 M and had a wider detection range, and the time to recover the output voltage was 1/3 of that of the control group. The biochar significantly promoted the sensitivity, interference resistance, recovery and anti-interference performance of the MFC-sensor. The intrinsic mechanism was that the composition and structure of biochar lead to a 1.53 fold increase in the abundance of electrogenic microorganisms and the abundance of functional genes such as cytochrome c (MtrABC, CymA, Cox, etc.) and flavin (riba, Rib B, gdh, ushA, IDH, etc.) increased by about 1.03-3.20 times, which promoted the shift of electrons from intracellular to extracellular receptors and significantly improved the electron transfer and the energy metabolism efficiency. The results of this study can provide a reference for the application of MFCsensor to the detection of complex heavy metal effluents.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, PR China.
| | - Huiling Cao
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| |
Collapse
|
16
|
Zhang H, Niu L, Ma B, Huang T, Liu T, Liu X, Liu X, Shi Y, Liu H, Li H, Yang W. Novel insights into aerobic denitrifying bacterial communities augmented denitrification capacity and mechanisms in lake waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161011. [PMID: 36549517 DOI: 10.1016/j.scitotenv.2022.161011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Scanty attention has been paid to augmenting the denitrification performance of polluted lake water by adding mix-cultured aerobic denitrifying bacterial communities (Mix-CADBCs). In this study, to solve the serious problem of nitrogen pollution in lake water bodies, aerobic denitrifying bacteria were added to lake water to enhance the nitrogen and carbon removal ability. Three Mix-CADBCs were isolated from lake water and they could remove >94 % of total nitrogen and dissolved organic carbon, respectively. The balance of nitrogen analysis shown that >70 % of the initial nitrogen was converted to gaseous nitrogen, and <11 % of the initial nitrogen was converted into microbial biomass. The batch experiments indicated that three Mix-CADBCs could perform denitrification under various conditions. According to the results of nirS-type sequencing, the Hydrogenophaga sp., Prosthecomicrobium sp., and Pseudomonas sp. were dominated genera of three Mix-CADBCs. The analysis of network indicated Pseudomonas I.Bh25.14 and Vogsella LIG4 were correlated with the removal of total nitrogen (TN) and dissolved organic carbon in the Mix-CADBCs. Compared with lake raw water, the addition of three Mix-CADBCs could promote the denitrification capacity (the removal efficiencies of TN > 78.72 %), microbial growth (optical density increased by 0.015-0.138 and the total cell count increased by 2 times), and organic degradation ability (the removal efficiency chemical oxygen demand >38 %) of lake water. In general, the findings of this study demonstrated that Mix-CADBCs could provide a new perspective for biological treatment lake water body.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
17
|
Zhang H, Li H, Ma M, Ma B, Liu H, Niu L, Zhao D, Ni T, Yang W, Yang Y. Nitrogen reduction by aerobic denitrifying fungi isolated from reservoirs using biodegradation materials for electron donor: Capability and adaptability in the lower C/N raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161064. [PMID: 36565869 DOI: 10.1016/j.scitotenv.2022.161064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification was considered an efficient and environmentally friendly way to remove the nitrogen in the water body. However, biological denitrification showed poor nitrogen removal performance due to the lack of electron donors in the low C/N water. In this study, three novel aerobic denitrifying fungi (Trichoderma sp., Penicillium sp., and Fusarium sp.) were isolated and enhanced the performance of aerobic denitrification of fungi in low C/N water bodies combined with polylactic acid/polybutylene adipate-co-terephthalate (PLA/PBAT). In this work, the aerobic denitrifying fungi seed were added to denitrifying liquid medium and mixed with PLA/PBAT. The result showed that Trichoderma sp., Penicillium sp., and Fusarium sp. could reduce 89.93 %, 89.20 %, and 87.76 % nitrate. Meanwhile, the nitrate removal efficiency adding PLA/PBAT exceeded 1.40, 1.68, and 1.46 times that of none. The results of material characterization suggested that aerobic denitrifying fungi have different abilities to secrete proteases or lipases to catalyze ester bonds in PLA/PBAT and utilize it as nutrients in denitrification, especially in Penicillium brasiliensis D6. Besides, the electron transport system activity and the intracellular ATP concentration were increased significantly after adding PLA/PBAT, especially in Penicillium brasiliensis D6. Finally, the highest removal efficiency of total nitrogen in landscape water by fungi combined with PLA/PBAT was >80 %. The findings of this work provide new insight into the possibility of nitrogen removal by fungi in low C/N and the recycling of degradable resources.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; An De College, Xi'an University of Architecture and Technology, Xi'an 710311, China
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Cao Q, Chen Y, Li X, Li C, Li X. Low C/N promotes stable partial nitrification by enhancing the cooperation of functional microorganisms in treating high-strength ammonium landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116972. [PMID: 36528938 DOI: 10.1016/j.jenvman.2022.116972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Partial nitrification is an effective process for treating high-strength ammonium landfill leachate with low C/N ratio, for the cooperation with denitrification can save almost 40% carbon addition in biological nitrogen removal. However, high ammonia loading often causes the instability of partial nitrification process. Less carbon addition can promote the stability of partial nitrification and increase the nitrite accumulation ratio (NAR). Nevertheless, the microbial mechanisms within remain further elusive. In this study, two laboratory-scale sequencing batch reactors were constructed and operated for 125 days, which were fed with ammonia synthetic wastewater with C/N of 0.6 (CN system) and C/N of 0.0 as the control (N system). CN system performed more stably and had the highest NAR of 100%. Extracellular polymeric substances (EPS) generated from carbon source provided spatial and nutrient niches to tighten the cooperation of functional microorganisms, thus, enhanced the stability and efficiency of partial nitrification. Thauera was the dominant denitrifier in CN system. Nitrosomonas was one of the most important autotrophic ammonia oxidizing bacteria, while Paracoccus and Flavobacterium were the main heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria in CN system. The enrichment of HN-AD bacteria outcompeted nitrite oxidizing bacteria (NOB), therefore leaded to higher nitrite accumulation in CN system. The findings of this study may be conducive to increasing the understanding of the microbial collaboration mechanisms of partial nitrification, thereby provides theoretical support for the improvement of biological nitrogen removal technology.
Collapse
Affiliation(s)
- Qin Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Li
- Engineering Research Center of Soil Remediation of Fujian Province University; College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaonan Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiangzhen Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
19
|
Zhang H, Yang W, Ma B, Liu X, Huang T, Niu L, Zhao K, Yang Y, Li H. Aerobic denitrifying using actinobacterial consortium: Novel denitrifying microbe and its application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160236. [PMID: 36427714 DOI: 10.1016/j.scitotenv.2022.160236] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrifying capacity of actinomycete strain has been investigated recently, while little is known about nitrogen and carbon substrate removal by mix-cultured aerobic denitrifying actinobacteria (Mix-CADA) community. Hence, three Mix-CADA consortiums, named Y23, X21, and Y27, were isolated from urban lakes to investigate their aerobic denitrification capacity, and their removal efficiency for nitrate and dissolved organic carbon were >97 % and 90 %, respectively. Illumina Miseq sequencing revealed that Streptomyces was the most dominant genus in the Mix-CADA consortium. Network analysis indicated that Streptomyces exfoliates, as the core species in the Mix-CADA consortium, majorly contributed to dissolved organic carbon and total nitrogen reduction. Moreover, the three Mix-CADA consortiums could remove 78 % of the total nitrogen and 61 % of the permanganate index from the micro-polluted l water. Meanwhile, humic-like was significantly utilized by three Mix-CADA consortiums, whereas Mix-CADA Y27 could also utilize aromatic protein and soluble microbial by-product-like in the micro-polluted raw water purification. In summary, this study will offer a novel perspective for the purification of micro-polluted raw water using the Mix-CADA consortium.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
Zhang H, Shi Y, Huang T, Zong R, Zhao Z, Ma B, Li N, Yang S, Liu M. NirS-type denitrifying bacteria in aerobic water layers of two drinking water reservoirs: Insights into the abundance, community diversity and co-existence model. J Environ Sci (China) 2023; 124:215-226. [PMID: 36182133 DOI: 10.1016/j.jes.2021.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 06/16/2023]
Abstract
The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems. The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well. In this study, quantitative polymerase chain reaction (qPCR) and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structure in two drinking water reservoirs. The overall results showed that the water quality parameters in two reservoirs had obvious differences. The qPCR results suggested that nirS gene abundance ranged from (2.61 ± 0.12) × 105 to (3.68 ± 0.16) × 105 copies/mL and (3.01 ± 0.12) × 105 to (5.36 ± 0.31) × 105 copies/mL in Jinpen and Lijiahe reservoirs, respectively. The sequencing results revealed that Paracoccus sp., Azoarcus sp., Dechloromonas sp. and Thauera sp. were the dominant genera observed. At species level, Cupriavidus necator, Dechloromonas sp. R-28400, Paracoccus denitrificans and Pseudomonas stutzeri accounted for more proportions in two reservoirs. More importantly, the co-occurrence network analysis demonstrated that Paracoccus sp. R-24615 and Staphylococcus sp. N23 were the keystone species observed in Jinpen and Lijiahe reservoirs, respectively. Redundancy analysis indicated that water quality (particularly turbidity, water temperature, pH and Chlorophyll a) and sampling time had significant influence on the nirS-type denitrifying bacterial community in both reservoirs. These results will shed new lights on exploring the dynamics of nirS-type denitrifying bacteria in aerobic water layers of drinking water reservoirs.
Collapse
Affiliation(s)
- Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yinjie Shi
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rongrong Zong
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenfang Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengqiao Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Ding K, Xu L, Chen Y, Li W, Chai X, Dai X, Wu B. Mechanistic insights into polyhydroxyalkanoate-enhanced denitrification capacity of microbial community: Evolution of community structure and intracellular electron transfer of nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159147. [PMID: 36183769 DOI: 10.1016/j.scitotenv.2022.159147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Denitrification is the key driving force of nitrogen cycle in surface water and plays an important role in eutrophication water remediation. Compared with some other common carbon sources, such as glucose and sodium acetate, polyhydroxyalkanoates (PHAs) were found to have the distinguished advantages in screening specific denitrifying bacteria of natural surface water bodies. In this study, the large ensembles of taxa were obtained from surface water samples and then sub-cultured with PHA or glucose as the sole carbon source. The microbial community that could be screened by PHA was identified, and the environmental functions of these bacteria were analyzed. At the genus level, the main communities regulated by PHA included Pseudomonas (56.30 %), Acinetobacter (27.75 %), Flavobacterium (10.19 %) and Comamonas (3.14 %), which all had good denitrification ability. The changes in carbon source, nitrogen source and biomass (expressed by DNA) were simultaneously monitored when culturing the model strain (P. stuzeri) with PHA or glucose. Compared with the glucose group, less PHA was consumed to remove the same amount of nitrate within a shorter incubation time, and there was no significant difference in bacterial growth with PHA or glucose as the carbon source (glucose:ΔN:ΔC:ΔDNA = 1:18:0.072; PHA:ΔN:ΔC:ΔDNA = 1:11:0.063). PHA improved the denitrification efficiency by increasing the expression of NarGHI, NirB, NirK and NorB, i.e., the key enzymes in the denitrification process. In addition, PHA accelerated the assimilating rate of extracellular nitrate by bacteria through increasing the expression of NarK. Finally, PHA-regulated electron transfer during denitrification was studied by observing the changes in NADH and NAD+. PHA could use a large proportion of NADH to offer electrons for denitrification, which increased the rate of denitrification. Improved mechanistic insights into the PHA-enhanced denitrification capacity of the microbial community can provide novel options for the in-situ remediation of eutrophic surface water.
Collapse
Affiliation(s)
- Ke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Linge Xu
- Hydrochina Huadong Engineering Corporation Limited, 201 Gaojiao Road, Hangzhou, 311122, China
| | - Yulin Chen
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, 901 Zhongshan North 2nd Road, Shanghai 200092, China
| | - Wenxuan Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01 T-Lab Building, 117411 Singapore, Singapore
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
22
|
Ma B, Zhang H, Zhao D, Sun W, Liu X, Yang W, Zhao K, Liu H, Niu L, Li H. Characterization of non-taste & odor produced aerobic denitrification actinomycetes strains Streptomyces spp. isolated from reservoir ecosystem: Denitrification performance and carbon source metabolism. BIORESOURCE TECHNOLOGY 2023; 367:128265. [PMID: 36347481 DOI: 10.1016/j.biortech.2022.128265] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The aerobic denitrification performance of actinomycetes was investigated. Two strains of actinomycetes were isolated and identified as Streptomyces sp. LJH-12-1 and Streptomyces diastatochromogenes LJH-12-2. Strain LJH-12-1 could remove 94% of organic carbon and 91% of total nitrogen. Meanwhile, strain LJH-12-2 could reduce 96% of organic carbon and 93% of total nitrogen. Two strains of actinomycetes revealed excellent carbon source metabolism activity. Moreover, the total nitrogen removal efficiencies were 69%, and 54%, respectively for strains LJH-12-1, and LJH-12-2 during the micro-polluted landscape raw water treatment. Futhermore, strains LJH-12-1 and LJH-12-2 could utilize aromatic proteins, soluble microbial products, and humic acid to drive aerobic denitrification processes in the landscape water bodies. These results will provide a new insight into applying aerobic denitrification actinomycetes to treat micro-polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Daijuan Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
23
|
Xiao K, Wang K, Yu S, Yuan Y, Qin Y, An Y, Zhao X, Zhou Z. Membrane fouling behavior in membrane bioreactors for nitrogen-deficient wastewater pretreated by ammonium ion exchange. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Guo K, Li W, Wang Y, Hao T, Mao F, Wang T, Yang Z, Chen X, Li J. Low strength wastewater anammox start-up and stable operation by inoculating sponge-iron sludge: Cooperation of biological iron and iron bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116086. [PMID: 36041306 DOI: 10.1016/j.jenvman.2022.116086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The application of anaerobic ammonium oxidation (Anammox) technology in low-strength wastewater treatment still faces difficult in-situ start-ups and unstable operations. Sponge-iron sludge (R1) was used as a novel inoculum to provide a promising solution. Conventional activated sludge (R0) was used as the control. However, little is known about the feasibility and performance during the start-up and operation of Anammox combined with biological iron and iron bacteria in an iron sludge system. Anammox was successfully started both in R1 (87 days) and R0 (89 days) with a low-strength influent (with a nitrogen loading rate (NLR) of 43.64 ± 0.41 g N/(m3⋅d)). During long-term operation, the R0 nevertheless produced higher nitrates (9.7 ± 0.1 mg/L) than expected. In contrast, R1 presented no excess nitrate production (2.1 ± 0.06 mg/L). The total inorganic nitrogen (TIN) removal efficiency increased from 78.2 ± 7.1% in R0 to 86.1 ± 4.3% in R1. The iron sludge in R1 was divided equally into three parts and three different nitrogen-feeding methods were used over the 34 days of operation, as follows: first using a mixture of ammonium (27.15 ± 1.0 mg/L) and nitrite (32.7 ± 1.7 mg/L), then only ammonium (27.15 ± 1.0 mg/L) and lastly only nitrite (32.7 ± 1.7 mg/L) as the influent. R1 was a coupled system composed of Anammox, Feammox, and NOx--dependent Fe(II) oxidation (NDFO). The contribution of Feammox and NDFO to TIN removal was 27.1 ± 1.2% and 31.9 ± 0.7%. However, Anammox was the primary nitrogen transformation pathway. X-ray diffraction (XRD) analysis shows that iron hydroxide (Fe(OH)3) and iron oxide hydroxide (FeOOH) were generated in R1. The produced Fe(OH)3 and FeOOH were capable of participating in Feammox and formed a Fe(II)/Fe(III) cycle which further removed nitrogen. Therefore, a highly stable and impressive nitrogen removal performance was demonstrated in the iron sludge Anammox system under the cooperation of biological iron and iron bacteria. The study considered the enrichment of norank_c_OM190, Desulfuromonas, and Thiobacillus and their contribution to the Anammox, Feammox, and NDFO processes, respectively. This study provides a new perspective for the start-up and stable operation of low-strength wastewater Anammox engineering applications.
Collapse
Affiliation(s)
- Kehuan Guo
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, PR China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yae Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China.
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, PR China
| | - Feijian Mao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, PR China
| | - Te Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Zhenni Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Xinjuan Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
| |
Collapse
|
25
|
Li X, Wang T, Fu B, Mu X. Improvement of aquaculture water quality by mixed Bacillus and its effects on microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69731-69742. [PMID: 35576039 DOI: 10.1007/s11356-022-20608-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation, especially the application of probiotics, has recently gained popularity in improving water quality and maintaining aquatic animal health. The efficacy and mechanism of mixed Bacillus for improvement of water quality and its effects on aquatic microbial community structure remain unknown. To elucidate these issues, we applied two groups of mixed Bacillus (Bacillus megaterium and Bacillus subtilis (A0 + BS) and Bacillus megaterium and Bacillus coagulans (A0 + BC)) to the aquaculture system of Crucian carp. Our results showed that the improvement effect of mixed Bacillus A0 + BS on water quality was better than that of A0 + BC, and the NH4+-N, NO2--N, NO3--N, and total phosphorus (TP) concentrations were reduced by 46.3%, 76.3%, 35.6%, and 80.3%, respectively. In addition, both groups of mixed Bacillus increased the diversity of the bacterial community and decreased the diversity of the fungal community. Microbial community analysis showed that mixed Bacillus A0 + BS increased the relative abundance of bacteria related with nitrogen and phosphorus removal, such as Proteobacteria, Actinobacteria, Comamonas, and Stenotrophomonas, but decreased the relative abundance of pathogenic bacteria (Acinetobacter and Pseudomonas) and fungi (Epicoccum and Fusarium). Redundancy analysis showed that NH4+-N, NO2--N, and TP were the primary environmental factors affecting the microbial community in aquaculture water. PICRUST analysis indicated that all functional pathways in the A0 + BS group were richer than those in other groups. These results indicated that mixed Bacillus A0 + BS addition produced good results in reducing nitrogenous and phosphorus compounds and shaped a favorable microbial community structure to further improve water quality.
Collapse
Affiliation(s)
- Xue Li
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, People's Republic of China
| | - Tianjie Wang
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Baorong Fu
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, People's Republic of China
| |
Collapse
|
26
|
Lee YJ, Lin BL, Lei Z. Nitrous oxide emission mitigation from biological wastewater treatment - A review. BIORESOURCE TECHNOLOGY 2022; 362:127747. [PMID: 35964917 DOI: 10.1016/j.biortech.2022.127747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) emitted from wastewater treatment processes has emerged as a focal point for academic and practical research amidst pressing environmental issues. This review presents an updated view on the biological pathways for N2O production and consumption in addition to the critical process factors affecting N2O emission. The current research trends including the strain and reactor aspects were then outlined with discussions. Last but not least, the research needs were proposed. The holistic life cycle assessment needs to be performed to evaluate the technical and economic feasibility of the proposed mitigation strategies or recovery options. This review also provides the background information for the proposed future research prospects on N2O mitigation and recovery technologies. As pointed out, dilution effects of the produced N2O gas product would hinder its use as renewable energy; instead, its use as an effective oxidizing agent is proposed as a promising recovery option.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10649, Taiwan
| | - Bin-le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
27
|
Zhang H, Shi Y, Ma B, Huang T, Zhang H, Niu L, Liu X, Liu H. Mix-cultured aerobic denitrifying bacteria augmented carbon and nitrogen removal for micro-polluted water: Metabolic activity, coexistence and interactions, and immobilized bacteria for reservoir raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156475. [PMID: 35660604 DOI: 10.1016/j.scitotenv.2022.156475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Less attention has been paid on the oligotrophic water body nitrogen treatment with mix-cultured aerobic denitrifying bacteria (Mix-CADB). In this study, three Mix-CADB communities were screened from the sediments of reservoirs. The nitrate and dissolved organic carbon (DOC) removal efficiencies of Mix-CADB communities were higher than 92 % and 91 %, respectively. Biolog results suggested that Mix-CADB communities displayed excellent carbon source metabolic activity. The nirS gene sequencing indicated that Pseudomonas sp. and Pseudomonas stutzeri accounted for more proportions in the core species of three Mix-CADB communities. The network model revealed that Pseudomonas sp. and Pseudomonas stutzeri mainly drove the total nitrogen and DOC removal of Mix-CADB communities. More importantly, the immobilized Mix-CADB communities could reduce >91 % nitrate in the adjusted reservoir raw water. Overall, this study showed that the three Mix-CADB communities could be regarded as potential candidates for the nitrogen treatment in oligotrophic water body ecosystems.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
28
|
Gong L, Tong Y, Yang H, Feng S. Simultaneously pollutant removal and S 0 recovery from composite wastewater containing Cr(VI)-S 2- based on biofilm enhancement. BIORESOURCE TECHNOLOGY 2022; 351:127017. [PMID: 35306135 DOI: 10.1016/j.biortech.2022.127017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Bioaugmentation of extracellular polymeric substances-producing bacteria was applied in pollutant removal and S0 recovery from composite wastewater in a mixotrophic denitrification system. In the presence of 200 mg·L-1 S2- and 50 mg·L-1 Cr(VI), the removal efficiencies of chemical oxygen demand, NO3-, S2- and Cr(VI) were 86.38%, 91.82%, 95.75%, and 100.00% respectively, while S0 recovery efficiency reached 79.17%. Increased contents of protein and polysaccharide, especially the high ratio of protein/polysaccharide verified the structural stability of biofilm was promoted by biofilm enhancement. The widespread distribution of bacteria/extracellular polymeric substance (EPS) revealed the more obvious biofilms formation in biofilm-enhanced group. High-throughput sequencing analysis showed that EPS-producing bacteria (Flavobacterium, Thauera, Thiobacillus and Simplicispira) were dominant bacteria in the biofilm-enhanced group. Moreover, by comprehensive considering of redundancy analysis, the colonization of selected bacteria improved the robustness of the reactor and treatment performance to wastewater contained toxic pollutions.
Collapse
Affiliation(s)
- Liangqi Gong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, Jiangnan University, Wuxi, 1800 Lihu Road, People's Republic of China.
| |
Collapse
|
29
|
Sun Y, Ali A, Zheng Z, Su J, Zhang S, Min Y, Liu Y. Denitrifying bacteria immobilized magnetic mycelium pellets bioreactor: A new technology for efficient removal of nitrate at a low carbon-to-nitrogen ratio. BIORESOURCE TECHNOLOGY 2022; 347:126369. [PMID: 34838633 DOI: 10.1016/j.biortech.2021.126369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This study integrated spores and magnetite (Fe3O4) to form magnetic mycelium pellets (MMP) as bio-carriers immobilized with denitrifying bacteria in a bioreactor. Different carbon-to-nitrogen (C/N) ratios and hydraulic retention time (HRT) were established for investigating the performance of the bioreactor. The nitrate removal efficiency was 98.14% at C/N = 2.0 and HRT = 6 h. Gas chromatography (GC) results indicated that the main component of the produced gas was N2. Fe3O4 was well-integrated into MMP according to X-ray diffraction (XRD) results and infrared spectrometer (FTIR) analysis. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that bacteria were successfully immobilized on MMP. Fluorescence excitation-emission matrix (EEM) indicated that functional bacteria GF2 might enhance the metabolic activity of the microbial community in the bioreactor and microbial activity was highest at C/N = 2.0. Pseudomonas stutzeri sp. GF2 might be immobilized and had a major role in the bioreactor according to high throughput sequencing results.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
30
|
Chu YX, Wang J, Jiang L, Tian G, He R. Intermittent aeration reducing N 2O emissions from bioreactor landfills with gas-water joint regulation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:309-320. [PMID: 34999438 DOI: 10.1016/j.wasman.2021.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/04/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Landfills are important emission sources of atmospheric N2O, especially bioreactor landfills with leachate recirculation. In this study, N2O emissions were characterized in four bioreactor landfills with different ventilation methods, including intermittent (2-h aeration per 12 h or 4 h/d in continuous) and continuous aeration (20 h/d), in comparison to a traditional landfill without aeration. During the experiment, the N2O emissions from the landfill reactors with intermittent aeration were 7.48 and 7.15 mg, accounting for only 20.8% and 19.9% of those with continuous aeration, respectively. Continuous aeration was more favorable for the biodegradation of organic matter than intermittent aeration in the landfilled waste and leachate. Intermittent and continuous aeration could both effectively remove total nitrogen (TN) and NH4+-N with removal efficiencies above 64% in the leachate. In the experimental landfill reactors with gas-water joint regulation, the proportion of N2O-N to TN loss ranged from 0.02% to 0.75%. Luteimonas, Pseudomonas, Thauera, Pusillimonas and Comamonas were the dominant denitrifying bacteria in the landfill reactors. The denitrifying bacterial community in the landfilled waste was closely related to its degree of stabilization and nitrogenous compound concentrations in the landfilled waste and leachate. The NO3--N and NO2--N concentrations of leachate were the most important environmental factors affecting the succession of nirS-type and nirK-type denitrifying microbial communities in the landfilled waste. These findings indicated that intermittent aeration was an economical and effective way to accelerate the stabilization of landfilled waste and reduce the pollutants in leachate and N2O emissions during landfill mining and reclamation.
Collapse
Affiliation(s)
- Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lei Jiang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Zhang S, Ali A, Su J, Huang T, Li M. Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes. WATER RESEARCH 2022; 209:117899. [PMID: 34861436 DOI: 10.1016/j.watres.2021.117899] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The acceleration of nitrate removal in wastewater treatment by redox mediator (RM) is greatly weakened due to wash-out loss and mass transfer resistance (low hydrophilia) of RM during operation. In this study, an RM reactor with the fixed 1-Amino-4-hydroxyanthraquinone (AHAQ) and three core strains was established and achieved high nitrate removal efficiency (NRE) under low carbon to nitrogen ratio (C/N) and short hydraulic retention time (HRT) conditions, with the maximum efficiency of 99.41% (14.00 mg L-1 h-1) and average improvement by 11.97% (1.41 mg L-1 h-1). This acceleration led to more proportion of carbon consumption by denitrifying bacteria and improved their competitiveness against others in carbon deficiency, although resulting in nitrite accumulation (NIA) in lower C/N. The RM reactor induced the decorrelation tendencies between NRE and active extracellular organics and more sensitive denitrification toward C/N, which favored the stability of effluent organics and biological activities. The increase of oxidative phosphorylation and ubiquinone and other terpenoid-quinone biosynthesis pathway suggested electron transport activity was potentially enhanced by AHAQ. Although the lower C/N deteriorated the reactor NRE, the abundances of amino acids-, fatty acids- and carbohydrate-related metabolisms (45% of the total up-regulating pathways) were enhanced to utilize carbon source effectively. Meanwhile, the enhanced phosphotransferase system facilitated the balance between carbon and nitrogen metabolism. These indicated the changes in biological strategy to grow better and resist the adverse condition. This study highlighted the superior NRE by AHAQ in an immobilized reactor with core strains and more importantly, extended the RM application in wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
32
|
Hu B, Gu X, Wang Y, Leng J, Zhang K, Zhao J, Wu P, Li X, Wan C, Xu J. Revealing the effects of static magnetic field on the anoxic/oxic sequencing batch reactor from the perspective of electron transport and microbial community shifts. BIORESOURCE TECHNOLOGY 2022; 345:126535. [PMID: 34896533 DOI: 10.1016/j.biortech.2021.126535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The effects of static magnetic field (SMF) on an anoxic/oxic sequencing batch reactor were investigated from the perspective of electron transport via determining the variations of reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD+) ratio, NADH concentration, electron transport system activity (ETSA), poly-β-hydroxybutyrate (PHB), extracellular polymeric substances (EPS), as well as the gene expression under different conditions. Moreover, the shifts of microbial community were also analyzed. The application of SMF with an appropriate intensity significantly improved the performance of the process, the abundance of the anoxic denitrifiers, and the activity of the aerobic denitrifiers. The NADH content, as well as ETSA were also enhanced, therefore, the total nitrogen removal efficiency of the process was increased. However, the overhigh SMF intensity resulted in the change of microbial community, meanwhile, had negative effects on the metabolism of microorganisms. Selecting a proper intensity is crucial for the SMF-enhanced biological wastewater treatment process.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China.
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Bureau of Housing and Urban-Rural Development of Chencang District, Baoji City, China
| | - Juntong Leng
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Kai Zhang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China; School of Water and Environment, Chang' an University, Xi'an, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Xiaoling Li
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Chengjie Wan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jingtong Xu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| |
Collapse
|
33
|
Zhang S, Ali A, Su J, Huang T, Zheng Z, Wang Y, Li M. Lower C/N ratio induces prior utilization of soluble microbial products with more dramatic variability and higher biodegradability in denitrification by strain YSF15. BIORESOURCE TECHNOLOGY 2021; 335:125281. [PMID: 34015568 DOI: 10.1016/j.biortech.2021.125281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The emphasis of this study lies in how strain SYF15 regulates molecular weight (MW) fractions of soluble microbial products (SMPs) in response to low carbon to nitrogen (C/N) ratio, with high denitrification performance (over 99%). Results indicated SMPs with MW >100 and <50 kDa undoubtedly participated in denitrification before 12.0 h in C/N = 2.0, while sodium acetate was preferred in C/N = 5.0, indicating strain YSF15 was induced to degrade SMPs as a carbon source in low C/N. Additionally, lower C/N activated the extracellular metabolism, with increased fluorescence regional integration (FRI) volume amplitude by 48.08 and 53.43% (versus C/N = 5.0) in MW = 50-10 and 10-3 kDa, respectively. The FRI volume of proteins yielded greater with more degradable components than higher C/N in MW = 100-3 kDa, whereas polysaccharide and protein concentrations differed little with considerable biodegradability, implying components inside protein changed dramatically. This pioneering work contributed to the understanding of denitrification with carbon source deficiency.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
34
|
Narindri Rara Winayu B, Chuang HP, Hsueh HT, Chu H. Elimination of inorganic carbon and nitrogen resided in swine wastewater using Thermosynechococcus sp. CL-1 enriched culture. BIORESOURCE TECHNOLOGY 2021; 336:125325. [PMID: 34052545 DOI: 10.1016/j.biortech.2021.125325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nutrient pollution released from highly accumulated swine wastewater is getting concerned due to global warming and waterbody harmful. Traditional combination of nitrification and denitrification is commonly applied to remove carbon and nitrogen compounds resided in various wastewater with disadvantages of high cost and energy requirements. This study applied the thermophilic flat panel photobioreactor (tFPBR) with high growth rate of TCL-1 culture to evaluate the efficiency of inorganic carbon and nitrogen transformation. This 12-h operation resulted that TCL-1 enriched batch, grown in 50 °C and alkaline environment with 1,000 µE/m2/s light intensity, had high potential for CO2 fixation rate of 122.29 ± 9.93 mg/L/h and nitrogen removal rate of 7.76 mg-N/L/h treating swine wastewater, in comparison with comprehensive community involved in carbon and nitrogen cycles in the field-scale anoxic tank. This study provided the Rapid-growing photosynthetic cyanobacteria in place of slow-growing autotrophic microbes for of carbon and nitrogen transformation in the wastewater system.
Collapse
Affiliation(s)
| | - Hui-Ping Chuang
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Dionex Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Dionex Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
35
|
Anammox-Based Processes for Mature Leachate Treatment in SBR: A Modelling Study. Processes (Basel) 2021. [DOI: 10.3390/pr9081443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mature landfill leachates are characterized by high levels of ammoniacal nitrogen which must be reduced for discharge in the sewer system and further treatment in municipal wastewater treatment plants. The use of anammox-based processes can allow for an efficient treatment of ammonium-rich leachates. In this work, two real scale sequencing batch reactors (SBRs), designed to initially perform partial nitritation/anammox (PN/A) and simultaneous partial nitrification and denitrification (SPND) for the treatment of ammonium-rich urban landfill leachate, were modelled using BioWin 6.0 in order to enable plant-wide modelling and optimizing. The constructed models were calibrated and validated using data from long- and short-term (one cycle) SBR operation and fit well to the main physical-chemical parameters (i.e., ammonium, nitrite and nitrate concentrations) measured during short-term (one cycle) operations. Despite the different strategies in terms of dissolved oxygen (DO) concentrations and aeration and mixing patterns applied for SBR operation, the models allowed for understanding that in both reactors the PN/A process was shown as the main contributor to nitrogen removal when the availability of organic carbon was low. Indeed, in both SBRs, the activity of nitrite oxidizing bacteria was inhibited due to high levels of free ammonia, whereas anammox bacteria were active due to the simultaneous presence of ammonium and nitrite and their ability to recover from DO inhibition. Increasing the external carbon addition, a prompt decrease of the anammox biomass was observed, with SPND becoming the main nitrogen removal mechanism. Models were also applied to estimate the production rates of nitrous oxide by aerobic ammonia oxidizing bacteria and heterotrophic denitrifiers. The models were found to be a robust tool for understanding the effects of different operating conditions (i.e, temperature, cycle phases, DO concentration, external carbon addition) on the nitrogen removal performances of the two reactors, assessing the contribution of the different bacterial groups involved.
Collapse
|
36
|
Suspended membrane bioreactor with extracellular polymeric substances as reserve carbon source for low carbon to nitrogen ratio wastewater: Performance and microbial community composition. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0841-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Zhao T. Microbially induced calcium precipitation based simultaneous removal of fluoride, nitrate, and calcium by Pseudomonas sp. WZ39: Mechanisms and nucleation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125914. [PMID: 34492848 DOI: 10.1016/j.jhazmat.2021.125914] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A simultaneous denitrifying and mineralizing bacterium, Pseudomonas sp. WZ39 was isolated for fluoride (F-), nitrate (NO3--N), and calcium (Ca2+) removal. Strain WZ39 exhibited a remarkable defluoridation efficiency of 87.49% under a pH of 6.90, F- and Ca2+ concentration of 1.99 and 201.88 mg L-1, respectively. EEM, SEM-EDS, XRD, and FTIR analyses elucidated the chemical adsorption and co-precipitation with calcium salt contributed to the removal of F-. The mechanisms of biomineralization were also investigated by determining the role of bound and unbound extracellular polymeric substances (EPS), cell wall, and calcium channel in nucleation. The results showed that bacteria can promote nucleation on the templates of cell walls or EPS through the electrostatic effect. The presence of the calcium channel blocker inhibited the transport of intracellular Ca2+ to the extracellular environment. The outcome of the present research can provide a theoretical basis for the understanding of MICP phenomenon and the efficient treatment of F- containing groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tingbao Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
38
|
Chen C, Ali A, Su J, Wang Y, Huang T, Gao J. Pseudomonas stutzeri GF2 augmented the denitrification of low carbon to nitrogen ratio: Possibility for sewage wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 333:125169. [PMID: 33892425 DOI: 10.1016/j.biortech.2021.125169] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
A denitrifying strain with high efficiency at low carbon to nitrogen (C/N) ratio of 2.0 was isolated and characterized. It belongs to the genus Pseudomonas. Scanning electron microscopy (SEM) showed that GF2 was rod-shaped. The nitrate removal efficiency reached up to 92.41% (1.85 mg L-1 h-1) with the C/N ratio of 2.0 and the nitrite accumulation eventually decreased to 0.88 mg L-1. By response surface method (RSM) method, three reaction conditions of strain GF2 were optimized, including pH, C/N ratio, and nitrate concentration. Nitrogen balance and gas detection revealed that 88.03% of nitrogen was removed in gaseous form (included 98.80% nitrogen gas), which confirmed its efficient denitrification ability and pathway. 3D fluorescence spectrum (3D-EEM) manifested that in the absence of organic matter, strain GF2 can utilize extracellular polymeric substance (EPS) as carbon source for efficient denitrification. This research strived to provide new research ideas for low C/N ratio sewage treatment.
Collapse
Affiliation(s)
- Changlun Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
39
|
Zheng Z, Ali A, Su J, Huang T, Wang Y, Zhang S. Fungal pellets immobilized bacterial bioreactor for efficient nitrate removal at low C/N wastewater. BIORESOURCE TECHNOLOGY 2021; 332:125113. [PMID: 33853027 DOI: 10.1016/j.biortech.2021.125113] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
In this study, fungal pellets immobilized denitrifying Pseudomonas stutzeri sp. GF3 was cultivated to establish a bioreactor. The denitrification effect of fixed bacteria with fungal pellets was tested by response surface methodology (RSM). Analysis of the bioreactor showed that the denitrification efficiency reached 100% under the optimal conditions and the denitrification efficiency of the actual wastewater treatment in the stable phase reached 95.91%. Moreover, the organic matter and functional groups in the bioreactor under different C/N conditions were analyzed by fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared spectroscopy (FTIR), which revealed that metabolic activities of denitrifying bacteria were enhanced with the increase of C/N. The morphology and structure of bacteria immobilized by fungal pellets explored by scanning electron microscope (SEM) showed the filamentous porous fungal pellets loaded with bacteria. Community structure analysis by high-throughput sequencing demonstrated that strain GF3 might was the dominant strain in bioreactor.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
40
|
Zhao L, Chen H, Yuan Z, Guo J. Interactions of functional microorganisms and their contributions to methane bioconversion to short-chain fatty acids. WATER RESEARCH 2021; 199:117184. [PMID: 33984586 DOI: 10.1016/j.watres.2021.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Methane bioconversion to value-added liquid chemicals has been proposed as a promising solution to augment the petroleum-dominated chemical market. Recent investigations have reported that various electron acceptors (e.g., nitrite and nitrate) are available to drive methane bioconversion to short-chain fatty acids (SCFAs). However, little is known about effects of the rate electron acceptor supplied on liquid chemical production from methane. Herein, three independent membrane biofilm reactors (MBfRs) feeding with respective nitrate, nitrite, combined nitrate and nitrite were operated under high and low rate condition in succession, to study whether feeding rate of electron acceptors could impact the methane bioconversion to SCFAs and the associated microbiological features. Long-term operation showed that all tested electron acceptors with a high supply rate were favorable for methane bioconversion to SCFAs (990.9 mg L-1d-1, 1695.7 mg L-1d-1, and 2425.7 mg L-1d-1), while under a low electron acceptor feeding rate, the SCFA production rate decreased to 8.9 mg L-1d-1, 16.8 mg L-1d-1, and 260.1 mg L-1d-1, respectively. Microbial community characterization showed that the biofilm was predominated by Methanosarcina, Methanobacterium, Propionispora and Clostridium. On the basis of the known metabolism characteristics of these microorganisms, it was assumed that these methanogens and fermenters contributed jointly to methane bioconversion to SCFAs. The findings could be helpful to understand the role of electron acceptor rate in methane bioconversion to liquid chemicals.
Collapse
Affiliation(s)
- Lei Zhao
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hui Chen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
41
|
Wang K, Zhou Z, Yu S, Qiang J, Yuan Y, Qin Y, Xiao K, Zhao X, Wu Z. Compact wastewater treatment process based on abiotic nitrogen management achieved high-rate and facile pollutants removal. BIORESOURCE TECHNOLOGY 2021; 330:124991. [PMID: 33743281 DOI: 10.1016/j.biortech.2021.124991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Chemically enhanced primary treatment (CEPT), ammonium ion exchange and regeneration (AIR) and membrane bioreactor (MBR) were coupled as CAIRM to treat domestic wastewater compactly and efficiently. CAIRM achieved efficient removal of chemical oxygen demand, ammonia nitrogen, total nitrogen (TN) and total phosphorus with total hydraulic retention time of 4.6 h, and obtained 2.3 ± 0.9 mg/L TN in the effluent. CEPT removed phosphate and impurities and prevented AIR from pollution. AIR maintained excellent nitrogen removal with a slight decrease in the exchange capacity of ion exchangers. MBR polished the effluent from AIR, and the larger particle size and better dewaterability of sludge mitigated the membrane fouling. Many heterotrophic genera, such as Rhodobacter and Defluviimonas, were enriched in the oligotrophic MBR. This study demonstrates the viability and stability of CAIRM in efficient wastewater treatment, which will address critical challenges in insufficient nitrogen removal and high land occupancy of current processes.
Collapse
Affiliation(s)
- Kaichong Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Siqi Yu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaxin Qiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yao Yuan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yangjie Qin
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Kaiqi Xiao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhichao Wu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
42
|
Fan Y, Su J, Wang Z, Deng L, Zhang H. Impact of C/N ratio on the fate of simultaneous Ca 2+ precipitation, F - removal, and denitrification in quartz sand biofilm reactor. CHEMOSPHERE 2021; 273:129667. [PMID: 33485132 DOI: 10.1016/j.chemosphere.2021.129667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/25/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The coexistence of F-, Ca2+, nitrates, and other pollutants in water body has aroused widespread concern. In this research, a novel quartz sand biofilm reactor was established, aiming to study the key factors of different carbon to nitrogen (C/N) ratios (5:1, 4:1, and 3:1), initial Ca2+ concentration (180 mg L-1, 144 mg L-1, and 108 mg L-1), and hydraulic retention time (HRT) (4 h, 6 h, and 8 h) on simultaneous Ca2+ precipitation, F- removal, and denitrification. Results showed that the removal efficiencies of Ca2+, F-, and nitrate were 55.04%, 82.64%, and 97.69% under the low C/N ratio of 3:1, initial Ca2+ concentration of 180 mg L-1, and HRT of 8 h. 3-D Excitation-Emission Fluorescence Spectroscopy (3-D EEM) demonstrates that extracellular polymeric substances (EPS) was generated during the growth metabolism. Scanning Electron Microscopy (SEM) and X-ray diffractometer images showed that Ca2+, F- removed in the form of CaCO3, Ca5(PO4)3F and CaF2 under Acinetobacter sp. H12 induction. Moreover, high-throughput sequencing results display that the biomineralized bacteria Acinetobacter sp. H12 exerted great influence in the bioreactor. This research will underpin the practical use of multiple pollutants such as F- and Ca2+ wastewater under the different C/N ratios.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Linyu Deng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Han Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
43
|
Zhang S, Su J, Ali A, Zheng Z, Sun Y. Enhanced denitrification performance of strain YSF15 by different molecular weight of humic acid: Mechanism based on the biological products and activity. BIORESOURCE TECHNOLOGY 2021; 325:124709. [PMID: 33482476 DOI: 10.1016/j.biortech.2021.124709] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to clarify the facilitation by humic acid (HA) fractions (>100, 100-50, 50-30, 30-10, 10-3 and < 3 kDa), as well as their variable effect on denitrification of strain YSF15 under low carbon-nitrogen ratio and nitrate conditions. All HA fractions with 7 mg L-1 were able to accelerate nitrate removal by strain YSF15 and the role of carbon source was inconspicuous. The molecular weight (MW) < 3 kDa was the best promoter for denitrification, with the efficiency (91.32%) far exceeding the control (43.27%), resulting in more stable oxidation-reduction potential, higher nutrients utilization and electron transport activity, more compact protein structure in extracellular polymeric substances and the production of endogenous HA. Each HA fraction could change the bio-products and denitrification activity of strain YSF15. This study sheds light on the facilitation of HA in denitrification from the perspective of MW, implying the potential effect of HA on denitrifying bacteria in community.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
44
|
Hu X, Su J, Ali A, Wang Z, Wu Z. Heterotrophic nitrification and biomineralization potential of Pseudomonas sp. HXF1 for the simultaneous removal of ammonia nitrogen and fluoride from groundwater. BIORESOURCE TECHNOLOGY 2021; 323:124608. [PMID: 33421833 DOI: 10.1016/j.biortech.2020.124608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Pseudomonas sp. HXF1, a strain capable of heterotrophic nitrification, aerobic denitrification (HNAD), and biomineralization was identified and employed for the simultaneous removal of ammonia nitrogen (NH4+-N) and fluoride (F-). It removed 99.2% of NH4+-N without accumulation of nitrous nitrogen (NO2--N) and nitrate nitrogen (NO3--N), while removed 87.3% of F-. Response surface methodology (RSM) was used to study the best removal conditions for NH4+-N and F-. The results of nitrogen balance experiments with NH4Cl, NaNO2, and NaNO3 as single nitrogen sources and amplification experiments of denitrification genes proved that the bacterial strains may remove NH4+-N through HNAD. The experimental results of Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometer (XRD) indicated that the way of F- removal may be adsorption and co-precipitation. The results demonstrated that the strain HXF1 has great potential in the biological denitrification and F- removal of groundwater.
Collapse
Affiliation(s)
- Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
45
|
Yang Q, Yang T, Shi Y, Xin Y, Zhang L, Gu Z, Li Y, Ding Z, Shi G. The nitrogen removal characterization of a cold-adapted bacterium: Bacillus simplex H-b. BIORESOURCE TECHNOLOGY 2021; 323:124554. [PMID: 33360356 DOI: 10.1016/j.biortech.2020.124554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The removal efficacy of biological nitrogen removal process is inhibited by low temperatures. Herein, a psychrotrophic bacterium strain, Bacillus simplex H-b, was isolated and identified with the potential to conduct heterotrophic nitrification and aerobic denitrification in the temperature range from 5 to 37 °C. At 10 °C, the removal efficiencies of initial nitrate-N (63 mg/L), nitrite-N (10 mg/L) and ammonium-N (60 mg/L) were 67.29%, 78.69% and 82.16%, with the maximum removal rate of 0.56, 0.18 and 0.74 mg/L/h, respectively. Additionally, both the accumulation level of ATP (adenosine triphosphate) and the formation of extracellular polymeric substances was found to increase with the decrease of temperature from 37 °C to 10 °C, indicating strain H-b might resist low temperature stress through its cellular extreme environment resistant mechanism and further suggesting the newly isolated strain could serve as a promising candidate for nitrogen contaminated wastewater treatment, especially under low-temperature condition.
Collapse
Affiliation(s)
- Qian Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Ting Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Yi Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Yu Xin
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China.
| | - Zhenghua Gu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Youran Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Guiyang Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| |
Collapse
|
46
|
Fan Y, Su J, Zheng Z, Gao J, Ali A. Denitrification performance and mechanism of a novel isolated Acinetobacter sp. FYF8 in oligotrophic ecosystem. BIORESOURCE TECHNOLOGY 2021; 320:124280. [PMID: 33120060 DOI: 10.1016/j.biortech.2020.124280] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The main purpose of this study is to isolate and purify oligotrophic denitrifying bacteria, Acinetobacter sp. FYF8, so as to study the denitrification capacity and characteristics in response to oligotrophic ecosystem. The RSM showed that the best denitrification efficiency was 97.90% under 7.58 pH, 20.69 °C temperature, and 2.83 C/N ratio. Nitrogen balance experiments showed that the nitrogen gas conversion ratio was 39.88, 68.85, and 78.79% at 2.0, 2.5, and 3.0 C/N ratio, respectively. According to 3D-EEM, tyrosine, tryptophan and aromatic protein were the metabolites produced by strain FYF8. The concentration of polysaccharide (PS) and proteins (PN) in different types of extracellular polymeric substances (EPS) and the variation trend were quantitatively studied. Different functional groups such as CH2, C = O, and C-O-C was characterized by FTIR. These findings indicated that the denitrification strategy of strain FYF8 was related to EPS, which might be a reserve carbon storage in carbon scarcity.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
47
|
Zhang S, Su J, Zheng Z, Yang S. Denitrification strategies of strain YSF15 in response to carbon scarcity: Based on organic nitrogen, soluble microbial products and extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2020; 314:123733. [PMID: 32619805 DOI: 10.1016/j.biortech.2020.123733] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 05/06/2023]
Abstract
This paper aims to determine the denitrification strategies of strain YSF15 in carbon scarcity condition from novel view of organic nitrogen, soluble microbial products (SMP) and extracellular polymeric substances (EPS). The batch tests demonstrated that strain YSF15 could achieve complete denitrification at C/N of 3.0. The conversion ratio of nitrogen gas accounted for 89.03%, 85.29% and 82.95% among total nitrogen in C/N systems from 3.0 to 5.0, respectively, indicating denitrification instead of assimilation was the major contribution to nitrogen removal. C/N could affect composition and content of organic nitrogen, SMP and EPS. The biodegradability of EPS was better than SMP, whereas polysaccharide (PS) likely correlated with nitrogen removal, predating the protein (PN). These results implied high biodegradability of EPS and more electron donors for denitrification both improved denitrification capacity of strain YSF15, which revealed the potential contribution of bacterium with production of biodegradable SMP or EPS in biological treatment process.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
48
|
Xiao H, Wu J, Peng H, Jiang Z. Mixed carbon source improves deep denitrification performance in up-flow anaerobic sludge bed reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:763-772. [PMID: 32460279 DOI: 10.2166/wst.2020.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To investigate the advantages of mixed carbon source over a single one in deep denitrification, sodium acetate, glucose and their mixture were used as carbon sources in present study. Denitrification performance, effluent pH, microbial community and carbon source cost were taken into account. With the same influent NO3 --N concentration of 50 mg/L and the same C/N ratio of 1.5, the NO3 --N removal rate with the mixed carbon source (96.53%) was slightly lower than that with sodium acetate (98.15%), but significantly higher than that with glucose (74.69%). The specific denitrification rates of the sodium acetate, glucose and sodium acetate/glucose reactor were 47.7, 29.7 and 45.4 mg N/g VSS d, respectively. The effluent pH with sodium acetate varied in the range of 9.13-9.60, exceeding the discharge standard limit of 9.0, whereas the sodium acetate/glucose reactor could keep pH in the range of 7.80-8.23. The 16S rRNA gene-based high-throughput sequencing revealed that carbon sources determined the microbial community structure and the sludge Shannon index with the mixed carbon source was the highest. Furthermore, cost estimation indicated that the mixed carbon source was the cheapest. This study is significant as it tests reasonable selection of carbon sources for deep denitrification in practice.
Collapse
Affiliation(s)
- Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Jiaojiao Wu
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| | - Zhongyao Jiang
- College of Environmental Sciences, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China E-mail:
| |
Collapse
|