1
|
Peng J, Feng Y, Xiao A, Li B, Ding D, Wang G, Dong R. A review of emission characteristics and risk assessments of volatile organic compounds in petrochemical industry areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125576. [PMID: 39722310 DOI: 10.1016/j.envpol.2024.125576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
As the petrochemical industry grows, environmental and human health issues associated with petroleum refining and chemical processes also increase. Consequently, several studies have been conducted on this topic. However, the results of the current research vary, and a comprehensive review is lacking. This study summarized the volatile organic compounds (VOCs) emission and risk assessments in the petrochemical industry based on data collected from previous studies. A discussion of VOC emission characteristics is provided. The effects of VOCs on human health, ozone formation potential (OFP), and secondary organic aerosol (SOA) are also reviewed. According to this review, the VOC emission characteristics are related to the raw materials and processes. Moreover, research methods can lead to certain biases. In entire petrochemical plants, alkanes were the largest contributors to VOC emissions, with n-pentane, n-butane, and propane frequently appearing in the top five emission lists. Among the process unit areas, alkanes were the major contributors, except for the delayed coking unit, where aromatics significantly contributed. Regarding the risks associated with VOC emissions, benzene, and 1,3-butadiene are common carcinogens impacting human health. 1,3-Butadiene, benzene, and acrolein are major contributors to noncarcinogenic risk. OFP is related to VOC emissions and their corresponding reactivities. Alkenes, alkanes, and aromatics are major contributors to OFP. Aromatics were the largest contributors to SOA concentration. In the future, research methods on the characteristics and risks of VOC emissions need to be further improved. More precise sampling techniques and advanced analytical instruments should be employed to better characterize VOC emissions. Overall, this study considered the characteristics of VOC emissions from petrochemical industrial areas, as well as the risks to the environment and health to provide a reference for the control of VOCs.
Collapse
Affiliation(s)
- Jinchan Peng
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China.
| | - Yunxia Feng
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Anshan Xiao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Bo Li
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Dewu Ding
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Guolong Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Rui Dong
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| |
Collapse
|
2
|
Yang Y, Meng X, Chen Q, Xue Q, Wang L, Sun J, Guo W, Tao H, Yang L, Chen F. Characteristics of volatile organic compounds under different operating conditions in a petrochemical industrial zone and their effects on ozone formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125254. [PMID: 39510299 DOI: 10.1016/j.envpol.2024.125254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The petrochemical industry is one of the major sources of volatile organic compounds (VOCs) emissions. Current research on VOC pollution characteristics in petrochemical industrial areas predominantly focuses on normal operating conditions, overlooking VOC pollution during overhaul. This study comparatively analyzes the pollution characteristics of VOCs, the potential sensitivity of O3 formation, and the pollution sources during normal production (PI), partial instrument overhaul (PII), and large-scale instrument overhaul (PIII) at a typical petrochemical industrial enterprise A (PEA) in Northwest China. The results revealed that with the overhaul of the petrochemical industrial enterprise, the average concentration of VOCs decreased from 70.43 ppbv during the PI period to 27.94 ppbv during the PIII period, in which the concentration of alkanes decreased by 67.99% but the concentration of aromatic hydrocarbons increased by 7.0%. The ozone formation potentials (OFPs) of the three periods were 249.28, 212.57 and 114.23 ppbv, respectively. During PI, alkanes contributed the largest share (44.23%) to the OFP, and the OFP of OVOCs was the largest during PII and PIII, with shares of 34.77% and 42.07%, respectively. During PI, O3 formation was limited by anthropogenic volatile organic compounds (AVOCs). During PIII, O3 formation tended to be synergistically limited by VOCs and NOx. In PI, fuel evaporation (29.34%) and combustion sources (26.94%) made substantial contributions to VOC concentrations. However, owing to overhaul, the contribution from combustion sources decreased from 26.94% in PI to 8.54% in PII, whereas the contribution from solvent usage increased from 6.66% in PI to 11.86% in PII. In PIII, fuel evaporation (24.18%) and solvent usage sources (24.25%) significantly influenced VOC concentrations. This study can provide a reference for the control of VOCs pollution in the petrochemical industry during different production periods and is crucial for O3 control strategy development.
Collapse
Affiliation(s)
- Yanping Yang
- Gansu Environmental Monitoring Centre, Lanzhou, 730000, China; Northwest Institute of Eco-environmental Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xianhong Meng
- Northwest Institute of Eco-environmental Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Chen
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Xue
- Gansu Land Development and Rehabilitation Centre, Lanzhou, 730000, China
| | - Lina Wang
- Gansu Environmental Monitoring Centre, Lanzhou, 730000, China
| | - Jian Sun
- Gansu Environmental Monitoring Centre, Lanzhou, 730000, China
| | - Wenkai Guo
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Huijie Tao
- Gansu Environmental Monitoring Centre, Lanzhou, 730000, China
| | - Lili Yang
- Gansu Environmental Monitoring Centre, Lanzhou, 730000, China; Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Chen
- Gansu Environmental Monitoring Centre, Lanzhou, 730000, China
| |
Collapse
|
3
|
Tian J, Wang J, Wang D, Fang C, Huang J. Research on ozone pollution control strategies for urban agglomerations based on ozone formation sensitivity and emission source contributions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125182. [PMID: 39447629 DOI: 10.1016/j.envpol.2024.125182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Despite recent enhancements in China's anthropogenic emission controls, ozone (O3) concentrations have continuously increased owing to its nature as a secondary pollutant and the complexities of its production and consumption processes. This study quantified the contributions of urban and sectoral cross-emission sources to O3 levels and identified the anthropogenic emission sources requiring targeted control. Moreover, O3 sensitivity tests were conducted to determine optimal reduction ratios for nitrogen oxides (NOx) and volatile organic compounds (VOCs) emissions. The results were used to recommend effective measures for controlling O3 pollution in the Central Plains urban agglomeration (CPUA). The top 35 cities and sectoral cross-emission sources accounted for 80% of the O3 concentrations in the region, indicating the need for prioritized management of these sources. To achieve reductions in O3 concentrations across all cities, it was found that a 10% reduction in total NOx emissions would require a minimum of 18% reduction in VOCs emissions. Our results indicated that the appropriate coordination of reductions in VOCs and NOx emissions reduced the maximum daily 8-h average O3 (MDA8) concentrations in CPUA by 0.14%-4.78%. Enhancing control measures for prioritized emission sources reduced MDA8 concentrations by 0.78%-7.09%. Furthermore, adjusting the production and emission hours of the industrial sector resulted in a decrease in MDA8 concentrations by 1.10%-12.62%. Overall, our findings indicate that appropriately coordinated reduction of precursor emissions can reduce O3 levels. Further efforts to mitigate O3 pollution should include optimizing the timing of emissions from the industrial sector and other major sources of VOCs emissions.
Collapse
Affiliation(s)
- Jiaqi Tian
- College of New Energy and Environment, Jilin University, Changchun, 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Ju Wang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Province Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Dali Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Chunsheng Fang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; Jilin Province Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Jieyu Huang
- College of New Energy and Environment, Jilin University, Changchun, 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Rahaman S, Tu X, Ahmad K, Qadeer A. A real-time assessment of hazardous atmospheric pollutants across cities in China and India. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135711. [PMID: 39255663 DOI: 10.1016/j.jhazmat.2024.135711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
China and India are two of the fastest-growing developing economies covering about 35 % of the world's population. Due to the extensive prevalence of air pollution across cities in China and India, contemporary assessment of atmospheric pollution through real-time and remote sensing observations is inadequate. The study aims to determine the spatial distribution and temporal variation of hazardous atmospheric pollutants across cities in China (Shanghai, Nanjing, Jinan, Zhengzhou and Beijing) and India (Kolkata, Asansol, Patna, Kanpur and Delhi). Ground observation data on CO, O3, PM2.5, PM10, NO2 and SO2 along with remote sensing data on AOD, CO, O3, BC, NO2, SO2 and dust surface mass concentrations are used to assess atmospheric pollution. This study examines daily, zonal and longitudinal pollutant distributions using Sentinel-5 P data and surface mass concentrations over the vertical column evaluated from NASA satellite data. The Mann-Kendall test and relative change methods have been implemented to assess pollutant trends while Sen's Slope identifies the magnitude of change. The similarity test and data validation methods including NRMSE, PC and MBias have been employed to ensure consistency in analysing annual trends for each air pollutant in the datasets. Additionally, multiple correlation matrix analysis has been used to examine the associations among different pollutants from both datasets based on their annual averages. Remote sensing data reveals that eastern China and north-eastern India have the highest aerosol, BC, CO, NO2 and SO2 while western China and southern India lowest. Dust peaks in the west while O3 levels are highest in the northern part of China and India. Ground observation data indicates that Chinese cities have higher annual mean SO2 and O3 concentrations with yearly declines in PM2.5, PM10, NO2, SO2 and CO notably SO2. Indian cities witnessed overall increases in PM2.5, PM10, NO2 and SO2 from 2012 to 2019 with a slight decline in 2020 followed by a resurgence in 2023. The findings provide insights for implementing regional policy measures to reduce air pollution based on changes in pollutant behaviour. The study suggests that addressing atmospheric pollutants, particularly NO2, CO, PM2.5, PM10, and SO2 requires a comprehensive environmental policy framework involving central and state governments and enforcing stringent environmental protection laws.
Collapse
Affiliation(s)
- Saidur Rahaman
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Xiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Khalil Ahmad
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wei Y, Jing X, Chen Y, Sun W, Zhang Y, Zhu R. Spatial-Temporal Characteristics, Source Apportionment, and Health Risks of Atmospheric Volatile Organic Compounds in China: A Comprehensive Review. TOXICS 2024; 12:787. [PMID: 39590967 PMCID: PMC11598060 DOI: 10.3390/toxics12110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Volatile organic compounds (VOCs) are ubiquitous in the atmosphere, posing significant adverse impacts on air quality and human health. However, current research on atmospheric VOCs mainly focuses on specific regions or industries, without comprehensive national-level analysis. In this study, a total of 99 articles on atmospheric VOCs in China published from 2015 to 2024 were screened, and data on their concentrations, source apportionment, and health risks were extracted and summarized. The results revealed that the annual average concentrations of TVOCs and their groups in China generally increased and then decreased between 2011 and 2022, peaking in 2018-2019. A distinct seasonal pattern was observed, with the highest concentrations occurring in winter, followed by autumn, spring, and summer. TVOC emissions were highly concentrated in northern and eastern China, mainly contributed by alkanes and alkenes. Source apportionment of VOCs indicated that vehicle sources (32.9% ± 14.3%), industrial emissions (18.0% ± 12.8%), and other combustion sources (13.0% ± 13.0%) were the primary sources of VOCs in China. There was a significant positive correlation (p < 0.05) between the annual mean VOC concentration and population size, and a notable negative correlation (p < 0.05) with GDP per capita. Atmospheric VOCs had no non-carcinogenic risk (HI = 0.5) but exhibited a probable carcinogenic risk (7.5 × 10-5), with relatively high values for 1,2-dibromoethane, 1,2-dichloroethane, and naphthalene. The health risk was predominantly driven by halocarbons. These findings are essential for a better understanding of atmospheric VOCs and for developing more targeted VOC control measures.
Collapse
Affiliation(s)
- Yangbing Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Xuexue Jing
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Yaping Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Wenxin Sun
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| | - Yuzhe Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rencheng Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (X.J.); (Y.C.); (W.S.)
| |
Collapse
|
6
|
Liu Z, Xiang Y, Pan Y, Zhang T, Xu W, Li L. Unveiling 3-D evolution and mechanisms of ozone pollution in Changzhou, China: Insights from lidar observations and modelling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124556. [PMID: 39025291 DOI: 10.1016/j.envpol.2024.124556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Ground ozone (O3) pollution has emerged as a prominent environmental concern in eastern cities of China, particularly during the summer and autumn seasons. However, a comprehensive investigation into the three-dimensional (3-D) evolution characteristics of O3 within complicated urban environments, especially in lake-land environment, is notably scarce. To enhance our understanding of the mechanisms underlying elevated O3 concentrations within a 3-D scale, this study employed an ozone lidar to delineate vertical ozone profiles in Changzhou, a typical city in China with complicated anthropogenic and biogenic emissions and complex land cover. The process analysis tool integrated into the Weather Research and Forecasting with Chemistry (WRF-Chem) model was further utilized to analyze the formation processes of O3. The results unveil a persistent O3 pollution episode lasting over 15 days in Changzhou during the study period, with multiple peaks exceeding 200 μg m⁻³. Notably, O3 predominantly accumulated within the boundary layer, confined below 1.2 km. Both ground and vertical contributions to this pollution were mainly due to local chemical reactions, with a maximum near-surface contribution reaching 19 ppb h-1 and a vertical contribution of 10 ppb h-1 at the height of 900 ± 200 m. Furthermore, episodes of the enhanced O3 concentrations on August 9 and August 26, 2021, were influenced by external advection process. Our study also found that local circulation plays an important role in the accumulation of surface O3 during certain periods. There was a temperature difference between the surface of Lake Tai and the adjacent land, resulting in the formation of lake-land breezes that facilitate the transport of O3 from the lake surface to the terrestrial environment during pollution events. Our study emphasizes the necessity of reducing local pollutant emissions and implementing joint emission controls as the primary strategies for mitigating O3 pollution in Changzhou and the surrounding region.
Collapse
Affiliation(s)
- ZhiQiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Jiangsu Changhuan Environment Technology Co., Ltd., Changzhou, 213002, China
| | - Yan Xiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Ying Pan
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Tianshu Zhang
- Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - WenLong Xu
- Jiangsu Changhuan Environment Technology Co., Ltd., Changzhou, 213002, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Sheng Y, Gao W, Cao M, Cheng H, Cai Y. Enhancing source apportionment of carbon, nitrogen, and phosphorus through integrating PMF and observed source profiles in a subtropical river. Heliyon 2024; 10:e38190. [PMID: 39381221 PMCID: PMC11459008 DOI: 10.1016/j.heliyon.2024.e38190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Apportioning pollution sources under compound pollution conditions is challenging in river pollution source analysis. The positive matrix factorization (PMF) model is widely used to analyze river pollution sources. However, the identification of pollutants in this model relies primarily on the subjective experience of the researchers, leading to ineffective identification of different contaminants from similar sources. In this study, we propose a comprehensive deviation index (CDI) to quantitatively identify pollution source types based on the PMF and observed source profiles. Taking the subtropical Xizhijiang River Basin as a case study, we quantitatively identified the pollution sources and their contributions to dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) using observed water quality and pollution sources data. The results showed that the eight major pollutants in the study region exhibited significant positive correlations, indicating the similarity of pollutant sources in the watershed. The PMF model identified three primary pollution sources with coefficients of determination for observed versus predicted concentrations ranging from 0.60 to 0.98. The CDI unveiled that the watershed's three pollution sources were farmland, rural, and wastewater treatment plants (WTPs). Farmland emerges as the predominant contributor to DOC (68.04 %), TC (63.29 %), and TDP (44.51 %). Rural notably contributes to NH3-N, PO4 3-, TDP, and TN, with percentages of 86.37 %, 57.65 %, 41.40 %, and 30.45 %, respectively. WTPs significantly contribute to NO2 -, NO3 -, and TN, accounting for 71.81 %, 57.39 %, and 37.26 %, respectively. Incorporating source fingerprints into the PMF model, the CDI can accurately identify pollution sources, improve the interpretability of source identification, and mitigate uncertainty in the multiple-source unknown receptor model. These findings have immediate and practical implications for river ecosystem management and pollution control, providing a more effective method for identifying and addressing pollution sources.
Collapse
Affiliation(s)
- Yajing Sheng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Wei Gao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Min Cao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Hao Cheng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Cao J, Liu J, Cheng Y, Ai S, Li F, Xue T, Zhang Q, Zhu T. Impacts of different vehicle emissions on ozone levels in Beijing: Insights into source contributions and formation processes. ENVIRONMENT INTERNATIONAL 2024; 191:109002. [PMID: 39265323 DOI: 10.1016/j.envint.2024.109002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Beijing, with the highest number of motor vehicles in China, significantly contributes to O3 pollution through substantial NOx and VOC emissions in the on-road transportation sector. Understanding the unique impact of emissions from different vehicle types on O3 levels is crucial for developing targeted strategies for O3 pollution. This study applied the Community Multiscale Air Quality Modeling System (CMAQ) to comprehensively investigate the impacts of emissions from different vehicle types on O3 levels in various regions of Beijing and to provide valuable insights into source contributions and formation processes. The results revealed that various vehicle types exhibited different spatial-temporal emission patterns, with medium-heavy duty trucks (HDT) and mini-light passenger vehicles (LDPV) identified as the primary contributors to NOx (36.1 %) and VOC (57.6 %) emissions. Using the Integrated Source Apportionment Method (ISAM) coupled in CMAQ, we found the total vehicle emissions contributed to over 20 % of daily maximum 8-h average O3 (MDA8 O3) concentration, ranked as the second largest contributor after regional transport. Contributions to O3 formation from LDPV and medium-large passenger vehicles (MDPV) were 2.6-4.0 and 4.2-6.8 ppb and mainly concentrated in urban areas, while the contributions from mini-light duty trucks (LDT) and HDT were 3.5-4.8 and 3.7-6.2 ppb and mainly concentrated in suburban areas. Through scenario analysis that removed emissions from specific types of vehicles, we found removing LDPV emissions led to decreases in daytime O3 concentration by 0.3-3.8 ppb. In contrast, removing MDPV emissions led to notable O3 increases by 4.0-11.8 ppb at rush hours. Removing LDT and HDT emissions resulted in 0.6-8.0 ppb increases in nocturnal O3 concentrations while 0.8-2.0 ppb decreases during the afternoon. This research highlights the necessity of tailoring control strategies for different vehicle types to effectively reduce O3 levels in Beijing and provides useful information for decision-makers to formulate effective measures of vehicle management in the future.
Collapse
Affiliation(s)
- Jingyuan Cao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Jun Liu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, China.
| | - Ying Cheng
- Beijing Transport Institute, Beijing, China.
| | - Siqi Ai
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Fangzhou Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health / Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases, School of Public Health, Peking University Health Science Centre, Beijing, China; State Environmental Protection Key Laboratory of Atmospheric Exposure, and Health Risk Management and Center for Environment and Health, Peking University, Beijing, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China; State Environmental Protection Key Laboratory of Atmospheric Exposure, and Health Risk Management and Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
9
|
Wang W, Zheng Z, Liu Y, Xu B, Yang W, Wang X, Geng C, Bai Z. Quantification for photochemical loss of volatile organic compounds upon ozone formation chemistry at an industrial city (Zibo) in North China Plain. ENVIRONMENTAL RESEARCH 2024; 256:119088. [PMID: 38768881 DOI: 10.1016/j.envres.2024.119088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Volatile organic compounds (VOCs) are consumed by photochemical reactions during transport, leading to inaccuracies in estimating the local ozone (O3) formation mechanism and its subsequent strategy for O3 attainment. To comprehensively quantify the deviations in O3 formation mechanism by consumed VOCs (C-VOCs), a 5-month field campaign was conducted in a typical industrial city in Northern China over incorporating a 0-D box model (implemented with MCMv3.3.1). The averaged C-VOCs concentration was 6.8 ppbv during entire period, and Alkenes accounted for 62% dominantly. Without considering C-VOCs, the relative incremental reactivity (RIR) of anthropogenic VOCs (AVOC, overestimated by 68%-75%) and NOx (underestimated by 137%-527%) demonstrated deviations at multiple scenarios, and the RIR deviations for precursors in High-O3-periods (HOP) were lower than Low-O3-periods (LOP). The RIR deviations from individual species involved C-VOCs calculation did not impact the identification for the high-ranking-RIR AVOC species but non-negligible. Monthly comparisons showed that higher C-VOCs concentrations would lead to higher RIR deviations. The daily maximum of net Ox production rate (P(Ox)) and the regional transport Ox (Trans(Ox)) without C-VOCs were underestimated by 56%-194% and 81%-243%, respectively. After considering C-VOCs, the contribution of HO2+NO for Ox gross production (G(Ox)) decreased by 7% (LOP) and 7% (HOP), but OH + NO2 for Ox destruction (D(Ox)) decreased by 16% (LOP) and 23% (HOP), and alkenes + O3 increased for D(Ox) by 12% (LOP) and 22% (HOP). This implies that VOCs-NOx-O3 sensitivity was deviated between with/without C-VOCs, and severe O3 pollution rendered deviations in O3 formation, especially via NOx-driving chemistry. Based on RIR(NOx)/RIR(AVOC) with/without C-VOCs, the sensitivity regime shifted from VOCs-limited (-0.93) to transition (1.38) at LOP, and from VOCs-limited (0.19) to NOx-limited (3.79) at HOP. Our results reflected that the NOx limitation degree was underestimated without constraint C-VOCs, especially HOP, and provided implication to more precise O3 pollution control strategies.
Collapse
Affiliation(s)
- Wenting Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science & Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhensen Zheng
- University of Innsbruck, Institute of Ion Physics and Applied Physics, 6020, Innsbruck, Austria
| | - Yanhui Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bo Xu
- Zibo Eco-Environment Monitoring Center, Zibo, 255000, China
| | - Wen Yang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Wang
- College of Environmental Science & Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Chunmei Geng
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhipeng Bai
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
10
|
Zhao D, Wang Q, Hui Y, Liu Y, Wang F, Chu B. Characteristics, sources, and health risks of volatile organic compounds in different functional regions of Shenyang. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173148. [PMID: 38735334 DOI: 10.1016/j.scitotenv.2024.173148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The concentration of 56 volatile organic compounds (VOCs) in the ambient air of Shenyang was continuously monitored at four sites in 2021. The characteristics, sources, secondary pollution potential and health risks of VOCs in different functional regions of Shenyang were discussed. The results indicate that the concentration of VOCs in industrial regions was significantly higher than that in non-industrial regions, with a mean of 41.09 ± 69.82 parts per billion volumes (ppbv) compared to 19.99 ± 17.86 ppbv (commercial & residential region in urban fringe), 27.51 ± 28.81 ppbv (educational & scenic region) and 29.71 ± 23.97 ppbv (commercial & residential region in urban center). The positive matrix factorization (PMF) model was utilized to assign the sources of VOCs in Shenyang, and six factors were recognized: gasoline vehicles (34.8 %), diesel vehicles (28.3 %), combustion (11.4 %), biogenic emissions (9.7 %), industrial processes (8.2 %), and fuel evaporation (7.7 %). The results of the reactivity evaluation indicated that the ozone (O3) formation potential (OFP) was primarily influenced by industrial processes (29.2 %), diesel vehicles (25.7 %), biogenic emissions (17.0 %). These three factors were also the top three contributors to secondary organic aerosol formation potential (SOAP), accounting for 44.2 %, 9.4 % and 30.3 %, respectively. At the all four sites, the non-carcinogenic and carcinogenic risks of VOCs ranged from 1.6 × 10-2 to 3.8 × 10-2 and from 2.3 × 10-6 to 3.3 × 10-6, respectively. And the main risks can be attributed to emissions from industrial processes and gasoline vehicles. These findings suggested to strengthen the control of vehicle emissions throughout all regions in Shenyang and industrial processes emissions in industrial regions.
Collapse
Affiliation(s)
- Di Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Qi Wang
- Department of Transfusion, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Yu Hui
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Yan Liu
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Fan Wang
- Liaoning Provincial Key Laboratory of Atmospheric Environmental Pollution Prevention and Control, Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Huo S, Zhang X, Xu W, Dang J, Xu F, Xie W, Tao C, Han Y, Liu X, Teng Z, Xie R, Cao X, Zhang Q. Updating vehicle VOCs emissions characteristics under clean air actions in a tropical city of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172733. [PMID: 38663608 DOI: 10.1016/j.scitotenv.2024.172733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
In the context of clean air actions in China, vehicle emission limits have been continuously tightened, which has facilitated the reduction of volatile organic compounds (VOCs) emissions. However, the characteristics of VOC emissions from vehicles with strict emission limits are poorly understood. This study investigated the VOC emission characteristics from vehicles under the latest standards based on tunnel measurements, and identified future control strategies for vehicle emissions. The results showed that the highest percentage of VOCs from vehicle consisted of alkanes (80.9 %), followed by aromatics (15.8 %) and alkenes (3.1 %). Alkanes had the most significant ozone formation potential due to their high concentrations, in contrast to the aromatics that have been dominant in previous studies. The measured fleet-average VOC emission factor was 71.3 mg·km-1, including tailpipe emissions of 39.6 mg·km-1 and evaporative emissions of 31.7 mg·km-1. The VOC emission factors of the subgroups were obtained. The emission of evaporated VOCs accounted for 44.5 % of the total vehicle VOC emissions, which have increased substantially from previous studies. In addition, the emission characteristics of vehicles that are under the latest emission threshold values have changed significantly, and the mixing ratio of toluene/benzene (T/B) has been updated to 3:1. This study updates the VOCs emission factors of vehicles under clean air actions and highlights the future mitigation policies should focus on reducing evaporative VOC emissions.
Collapse
Affiliation(s)
- Sisi Huo
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Xin Zhang
- Environmental Research Institute, Shandong University, Qingdao 266237, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Wenshuai Xu
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China; Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 571126, China.
| | - Juan Dang
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Fei Xu
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Wenjing Xie
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Chenliang Tao
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yanan Han
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Xinning Liu
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Zhuochao Teng
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Rongfu Xie
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Xiaocong Cao
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Qingzhu Zhang
- Environmental Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Zhang C, Xie Y, Shao M, Wang Q. Application of machine learning to analyze ozone sensitivity to influencing factors: A case study in Nanjing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172544. [PMID: 38643875 DOI: 10.1016/j.scitotenv.2024.172544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Ground-level ozone (O3) has been an emerging concern in China. Due to its complicated formation mechanisms, understanding the effects of influencing factors is critical for making effective efforts on the pollution control. This study aims to present and demonstrate the practicality of a data-driven technique that applies a machine learning (ML) model coupled with the SHapley Additive exPlanations (SHAP) approach in O3 simulation and sensitivity analysis. Based on hourly measured concentrations of O3 and its major precursors, as well as meteorological factors in a northern area of Nanjing, China, a Light Gradient Boosting Machine (LightGBM) model was established to simulate O3 concentrations in different seasons, and the SHAP approach was applied to conduct in-depth analysis on the impacts of influencing factors on O3 formation. The results indicated a reliable performance of the ML model in simulating O3 concentrations, with the coefficient of determination (R2) between the measured and simulated larger than 0.80, and the impacts of influencing factors were reasonably evaluated by the SHAP approach on both seasonal and diurnal time scales. It was found that although volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as temperature and relative humidity, were generally the main influencing factors, their sensitivities to O3 formation varied significantly in different seasons and with time of the day. This study suggests that the data-driven ML model is a practicable technique and may act as an alternative way to perform mechanism analysis to some extent, and has immense potential to be applied in both problem research and decision-making for air pollution control.
Collapse
Affiliation(s)
- Chenwu Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumin Xie
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Min Shao
- School of Environment, Nanjing Normal University, Nanjing 210046, China
| | - Qin'geng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
13
|
Yang X, Song K, Guo S, Wang Y, Wang J, Peng D, Wen Y, Li A, Fan B, Lu S, Ding Y. Elucidating the unexpected importance of intermediate-volatility organic compounds (IVOCs) from refueling procedure. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134361. [PMID: 38669924 DOI: 10.1016/j.jhazmat.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Evaporative emissions release organic compounds comparable to gasoline exhaust in China. However, the measurement of intermediate volatility organic compounds (IVOCs) is lacking in studies focusing on gasoline evaporation. This study sampled organics from a real-world refueling procedure and analyzed the organic compounds using comprehensive two-dimensional gas chromatography coupled with a mass spectrometer (GC×GC-MS). The non-target analysis detected and quantified 279 organics containing 93 volatile organic compounds (VOCs, 64.9 ± 7.4 % in mass concentration), 182 IVOCs (34.9 ± 7.4 %), and 4 semivolatile organic compounds (SVOCs, 0.2 %). The refueling emission profile was distinct from that of gasoline exhaust. The b-alkanes in the B12 volatility bin are the most abundant IVOC species (1.9 ± 1.4 μg m-3) in refueling. A non-negligible contribution of 17.5 % to the ozone formation potential (OFP) from IVOCs was found. Although IVOCs are less in concentration, secondary organic aerosol potential (SOAP) from IVOCs (58.1 %) even exceeds SOAP from VOCs (41.6 %), mainly from b-alkane in the IVOC range. At the molecular level, the proportion of cyclic compounds in SOAP (12.1 %) indeed goes above its mass concentration (3.1 %), mainly contributed by cyclohexanes and cycloheptanes. As a result, the concentrations and SOAP of cyclic compounds (>50 %) could be overestimated in previous studies. Our study found an unexpected contribution of IVOCs from refueling procedures to both ozone and SOA formation, providing new insights into secondary pollution control policy.
Collapse
Affiliation(s)
- Xinping Yang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kai Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Yunjing Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Junfang Wang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Di Peng
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Wen
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Ang Li
- China Automotive Technology and Research Center (CATARC), Beijing 100176, China
| | - Baoming Fan
- TECHSHIP (Beijing) Technology Co., LTD, Beijing 100039, China
| | - Sihua Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
14
|
Zhang J, Li J, Su Y, Chen C, Chen L, Huang X, Wang F, Huang Y, Wang G. Interannual evolution of the chemical composition, sources and processes of PM 2.5 in Chengdu, China: Insights from observations in four winters. J Environ Sci (China) 2024; 138:32-45. [PMID: 38135399 DOI: 10.1016/j.jes.2023.02.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 12/24/2023]
Abstract
The air quality in China has improved significantly in the last decade and, correspondingly, the characteristics of PM2.5 have also changed. We studied the interannual variation of PM2.5 in Chengdu, one of the most heavily polluted megacities in southwest China, during the most polluted season (winter). Our results show that the mass concentrations of PM2.5 decreased significantly year-by-year, from 195.8 ± 91.0 µg/m3 in winter 2016 to 96.1 ± 39.3 µg/m3 in winter 2020. The mass concentrations of organic matter (OM), SO42-, NH4+ and NO3- decreased by 49.6%, 57.1%, 49.7% and 28.7%, respectively. The differential reduction in the concentrations of chemical components increased the contributions from secondary organic carbon and NO3- and there was a larger contribution from mobile sources. The contribution of OM and NO3- not only increased with increasing levels of pollution, but also increased year-by-year at the same level of pollution. Four sources of PM2.5 were identified: combustion sources, vehicular emissions, dust and secondary aerosols. Secondary aerosols made the highest contribution and increased year-by-year, from 40.6% in winter 2016 to 46.3% in winter 2020. By contrast, the contribution from combustion sources decreased from 14.4% to 8.7%. Our results show the effectiveness of earlier pollution reduction policies and emphasizes that priority should be given to key pollutants (e.g., OM and NO3-) and sources (secondary aerosols and vehicular emissions) in future policies for the reduction of pollution in Chengdu during the winter months.
Collapse
Affiliation(s)
- Junke Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Jiaqi Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yunfei Su
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chunying Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Luyao Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xiaojuan Huang
- Department of Environmental Science & Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China.
| | - Fangzheng Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yawen Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
15
|
Lyu Y, Gao Y, Pang X, Sun S, Luo P, Cai D, Qin K, Wu Z, Wang B. Elucidating contributions of volatile organic compounds to ozone formation using random forest during COVID-19 pandemic: A case study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123532. [PMID: 38365075 DOI: 10.1016/j.envpol.2024.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Ozone has been reported to increase despite nitrogen oxides reductions during the COVID-19 pandemic, and ozone formation needs to be revisited using volatile organic compounds (VOCs), which are rarely measured during the pandemic. Here, a total of 98 VOCs species were monitored in an economy-active city in China from January 2021 to August 2022 to assess contributions to ozone formation during the pandemic. Total VOCs concentrations were 35.55 ± 21.47 ppb during the entire period, among which alkanes account for the largest fraction (13.78 ppb, 38.0%), followed by aromatics (6.16 ppb, 16.8%) and oxygenated VOCs (OVOCs, 5.69 ppb, 15.7%). Most VOCs groups (e.g., alkenes, OVOCs) and individual species (e.g., isoprene, methyl vinyl ketone) display obvious seasonal and diurnal variations, which are related to their sources and reactivities. No weekend effects of VOCs suggest limited influences from traffic emissions during pandemic. Aromatics and alkenes are the major contributors (39% and 33%) to ozone formation potential, largely driven by o/m/p-xylene (21%), ethylene (15%), toluene (9%). Secondary organic aerosol formation potential is dominated by toluene (>50%) despite its low proportion (5%). Further inclusion of VOCs and meteorology in the Random Forest model shows good ozone prediction performance (R2 = 0.77-0.86, RMSE = 11.95-19.91 μg/m3, MAE = 8.89-14.58 μg/m3). VOCs and NO2 contribute >50% of total importance with the largest difference in importance ratio of VOCs/NO2 in the summer and winter, implying ozone formation regime may vary. No seasonal variations in importance of meteorology are observed, while importance of other variables (e.g., PM2.5) is highest in the summer. This work identifies critical VOCs groups and species for ozone formation during the pandemic, and demonstrates the feasibility of machine learning algorithms in elucidation of ozone formation mechanisms.
Collapse
Affiliation(s)
- Yan Lyu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312077, China
| | - Yibu Gao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaobing Pang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312077, China.
| | - Songhua Sun
- Shaoxing Ecological and Environmental Monitoring Center of Zhejiang Province, Shaoxing, 312000, China
| | - Peisong Luo
- Shaoxing Ecological and Environmental Monitoring Center of Zhejiang Province, Shaoxing, 312000, China
| | - Dongmei Cai
- Department of Environment Sciences and Engineering, Fudan University, Shanghai, 200433, China
| | - Kai Qin
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhentao Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baozhen Wang
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing, 408100, China
| |
Collapse
|
16
|
Dong Z, Zhang D, Wang T, Song X, Hao Y, Wang S, Wang S. Sources and environmental impacts of volatile organic components in a street canyon: Implication for vehicle emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170569. [PMID: 38296102 DOI: 10.1016/j.scitotenv.2024.170569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Street canyons serve as a representative environment that directly reflects the impact of vehicular emissions. Volatile organic compounds (VOCs) sampling during an O3 pollution event and a PM2.5 pollution episode was conducted at an urban site and a street canyon in Zhengzhou, China. It has been determined that street canyons suffer from more severe particle and NOx pollution than the urban site. Additionally, O3 has been identified as a significant or emerging pollutant in street canyon environments. In terms of VOCs, the street canyon exhibits 1.4 and 1.1 times higher total VOC concentrations compared to the urban site during the O3 and PM2.5 pollution episodes, respectively. In the street canyon location, there was a slight increase in the proportion of alkanes and aromatics, while the proportions of oxygenated VOCs and halogenated hydrocarbons decreased. Source apportionment analysis reveals that street canyons were more susceptible to the accumulation of VOCs from coating solvent, liquid petroleum gas (LPG), and gasoline additives. Consequently, the environmental impacts of VOCs originating from coating solvent and LPG were more pronounced in the street canyon location compared to the urban site. The trends of NOx concentration indicate that future continuously stricter vehicle emission standards and control policies can further reduce vehicle exhaust emissions and more attention needs to be focused on the reduction of non-exhaust emissions (i.e., coating solvent) and LPG vehicles.
Collapse
Affiliation(s)
- Zhangsen Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Dong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Tiantian Wang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Xinshuai Song
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Yanyan Hao
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Shanshan Wang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China
| | - Shenbo Wang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
17
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
18
|
Li Y, Wu Z, Ji Y, Chen T, Li H, Gao R, Xue L, Wang Y, Zhao Y, Yang X. Comparison of the ozone formation mechanisms and VOCs apportionment in different ozone pollution episodes in urban Beijing in 2019 and 2020: Insights for ozone pollution control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168332. [PMID: 37949143 DOI: 10.1016/j.scitotenv.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Ground-level ozone (O3) pollution has been a tough issue in urban areas of China in the past decade. Clarifying the formation mechanisms of O3 and the sources of its precursors is necessary for the effective prevention of O3 pollution. In this study, a comparative analysis of O3 formation mechanisms and VOCs apportionment for five O3 pollution episodes was carried out at two urban sites (CRAES and CGZ) in Beijing in 2019 and 2020 by applying an observation-based modeling approach in order to obtain insights into O3 pollution control strategies. Results indicated that O3 pollution levels were generally more severe in 2019 than in 2020 during the observation periods. O3 formation at the two sites was both VOCs-limited on O3 polluted days and non-O3 polluted days. Stronger atmospheric oxidation capacity and ROx radicals cycling processes were found on O3 polluted days which could accelerate the local production of O3, and local photochemical production dominated the observed O3 concentrations at the two sites even on non-O3 polluted days. Emission reduction of VOCs should be a priority for mitigating O3 pollution, and alkenes and biogenic VOCs was the priority species at the CRAES and CGZ sites, respectively. Additionally, the reduction of oxygenated VOCs should also be important for the ozone control. Gasoline exhaust at the CRAES site, and solvent utilization and fuel evaporation at the CGZ site were main anthropogenic sources of VOCs. Therefore, local control measures should be further strengthened and differentiated control strategies of VOCs in the aspects of area, time, sources and species should be adopted in urban Beijing in the future. Overall, the findings of this study could provide a scientific understanding of the causes of O3 pollution and significant guidelines for formulating O3 control strategies from the perspective of different ozone pollution episodes in urban Beijing.
Collapse
Affiliation(s)
- Yunfeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianshu Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yafei Wang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yuxi Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
19
|
Zhang J, Chen C, Su Y, Guo W, Fu X, Long Y, Peng X, Zhang W, Huang X, Wang G. Characterization of summertime single aerosol particles in Chengdu (China): Interannual evolution and impact of COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167765. [PMID: 37832658 DOI: 10.1016/j.scitotenv.2023.167765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
To investigate the interannual evolution of air pollution in summer and the impact of the COVID-19 lockdown on local pollution in Chengdu, China, single aerosol particles were continuously measured in three summer periods: the regular period in 2020 (RP2020); the regular period in 2022 (RP2022); and the lockdown period in 2022 (LP2022). It was found that, from RP2020 to RP2022, the mass concentrations of PM2.5, PM10, SO2 and NO2 decreased by 25.6 %, 24.7 %, 28.8 % and 38.5 %, respectively, while the concentration of O3 increased by 11.0 %. Affected by regional transport, there was no significant decrease in the concentrations of various pollutants during LP2022. All single aerosol particles could be classified into seven categories: vehicle emissions (VE), dust, biomass burning (BB), coal combustion (CC), K mixed with sulfate (KSO4), K mixed with nitrate (KNO3) and K mixed with sulfate and nitrate (KSN) particles. From RP2020 to RP2022, the contributions of BB and CC particles decreased by 12.1 % and 0.9 %, respectively, while VE and dust particles increased by 3.6 % and 2.5 %, respectively; and compared to RP2022, the contributions of VE, dust and CC particles in LP2022 decreased by 22.2 %, 11.0 % and 12.7 %, respectively. The high PM2.5 pollution events in RP2020 and RP2022 were mainly caused by combustion sources (BB and CC, 51.6 %) and VE (38.3 %) particles, respectively, while the pollution event in LP2022 was contributed by BB (27.0 %) and secondary inorganic (KSO4, KNO3 and KSN, 60.2 %) particles. The formation mechanisms of different pollution events were further validated by WRF-Chem results. Although the potential source areas of particles showed a shrinking trend from RP2020 to RP2022, regional transport still caused high PM2.5 pollution events during LP2022. Photochemical processes dominated the formation of KSO4 particles, while the KNO3 and KSN particles were mainly generated by liquid-phase reactions, and this effect increased year by year.
Collapse
Affiliation(s)
- Junke Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Chunying Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yunfei Su
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Wenkai Guo
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinyi Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuhan Long
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xiaoxue Peng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Wei Zhang
- Sichuan Ecological Environment Monitoring Station, Chengdu 610091, China
| | - Xiaojuan Huang
- Department of Environmental Science & Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Li Q, Gong D, Wang H, Deng S, Zhang C, Mo X, Chen J, Wang B. Tibetan Plateau is vulnerable to aromatic-related photochemical pollution and health threats: A case study in Lhasa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166494. [PMID: 37659561 DOI: 10.1016/j.scitotenv.2023.166494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Anthropogenic aromatics play a key role in photochemical pollution and pose a serious threat to human health. Current knowledge on source characteristics of aromatics in the urban region of the Tibetan Plateau (TP), the "Third Pole" and ecologically sensitive area, remains limited. In this study, an intensive observation of 17 aromatic hydrocarbons was conducted in Lhasa, the cultural and economic center of TP, during the second Tibetan Plateau Scientific Expedition and Research in summer 2020. The results showed that the average concentration of aromatics in Lhasa (7.6 ± 7.4 ppbv) was unexpectedly higher than those in megacities such as Beijing, Shanghai, and Guangzhou. Tripled concentrations and corresponding ozone formation potential during pollution episodes were recorded. Further source apportionment using positive matrix factorization revealed that solvent usage (60.0 %) was the dominant source, which may be due to the extremely low atmospheric pressure. Vehicle exhaust (15.4 %), industrial emissions (12.8 %), fuel evaporation (6.2 %), and burning emissions (5.7 %) were also important sources. The concentration weighted trajectory analysis revealed that the observed high levels of aromatics were mainly driven by local anthropogenic emissions, rather than the regional transport by the Indian summer monsoon. Long-term exposure to aromatics in Lhasa was assessed to pose carcinogenic risks to the population, with the risks of benzene and ethylbenzene 5 times the criteria. Our results suggest that, given the magnified emissions of aromatics in this extreme environment (low atmospheric pressure and strong solar radiation), the implementation of targeted pollution controls is urgently needed to mitigate the aromatic-related photochemical pollution and health threats in TP.
Collapse
Affiliation(s)
- Qinqin Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| | - Shuo Deng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Chengliang Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Xujun Mo
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Jun Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| |
Collapse
|
21
|
Kim SJ, Lee HY, Lee SJ, Choi SD. Passive air sampling of VOCs, O 3, NO 2, and SO 2 in the large industrial city of Ulsan, South Korea: spatial-temporal variations, source identification, and ozone formation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125478-125491. [PMID: 37999843 DOI: 10.1007/s11356-023-31109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Concerns about volatile organic compounds (VOCs) have increased due to their toxicity and secondary reaction with nitrogen oxides (NOX) to form ozone (O3). In this study, passive air sampling of VOCs, O3, NO2, and SO2 was conducted in summer, fall, winter, and spring from 2019 to 2020 at six industrial and ten urban sites in Ulsan, the largest industrial city in South Korea. Over the entire sampling period, the concentration of toluene (mean: 8.75 μg/m3) was the highest of the 50 target VOCs, followed by m,p-xylenes (4.52 μg/m3), ethylbenzene (4.48 μg/m3), 3-methylpentane (4.40 μg/m3), and n-octane (4.26 μg/m3). Total (Σ50) VOC levels did not statistically differ between seasons, indicating that large amounts of VOCs are emitted into the atmosphere throughout the year. On the other hand, O3, NO2, and SO2 exhibited strong seasonal variation depending on the meteorological conditions and emission sources. The spatial distribution of Σ50 VOCs, NO2, and SO2 indicated that industrial complexes were major sources in Ulsan, while O3 had the opposite spatial distribution. Using a positive matrix factorization model, five major sources were identified, with industrial effects dominant. Aromatic compounds, such as m,p,o-xylenes, toluene, and 1,2,4-trimethylbenzene, significantly contributed to O3 formation. The VOC/NO2 ratio and O3 concentrations suggested that reducing VOC emissions is more effective than reducing NO2 emissions in terms of preventing the secondary formation of O3. The findings of this study allow for a better understanding of the relationship between VOCs, O3, NO2, and SO2 in industrial cities.
Collapse
Affiliation(s)
- Seong-Joon Kim
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang-Jin Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
22
|
Wang Z, Zhao H, Xu H, Li J, Ma T, Zhang L, Feng Y, Shi G. Strategies for the coordinated control of particulate matter and carbon dioxide under multiple combined pollution conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165679. [PMID: 37481086 DOI: 10.1016/j.scitotenv.2023.165679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Air pollutants represented by fine particulate matter (PM2.5) and the greenhouse effect caused by carbon dioxide (CO2), are both urgent threats to public health. Tackling the synergistic reduction of PM2.5 and CO2 is critical to achieving improvements in clean air worldwide. A persistent issue is the identification of their common sources and integrated impacts under different environmental conditions. In this study, we investigated the characteristics of the pollution types captured by combined analysis through a comprehensive observational dataset for 2017-2020, and applied machine learning algorithms to quantify the effects of drivers on air pollutants and CO2 formation. More importantly, detailed conclusions were drawn for the joint control of PM2.5-CO2 in multiple pollution types by using ensemble traceability technique. We demonstrated that reducing coal combustion emissions was an effective measure to maximize the benefits of PM2.5-CO2 in weather with low CO2 levels and no PM2.5 pollution. Correspondingly, on days with severe PM2.5 episodes, prioritizing control of vehicle emissions can simultaneously mitigate PM2.5 and CO2. Similar conclusions were found at high CO2 levels, accompanied by a more extensive role of vehicle emissions. Furthermore, a comparison of the differences in source impacts between PM2.5-CO2 and individual species suggests that focusing only on the sources that contribute significantly to one species may result in an underestimation or overestimation of PM2.5-CO2 source impacts. One such implication, as evidenced by our findings, is that synergistic controlling common sources of pollutants should be efficient. Thereby, common source management targeting PM2.5-CO2 under multiple pollution types is a more workable solution to alleviate environmental pollution.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huan Zhao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Han Xu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jie Li
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Ma
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Linlin Zhang
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
23
|
Zheng G, Wei K, Kang X, Fan W, Ma NL, Verma M, Ng HS, Ge S. A new attempt to control volatile organic compounds (VOCs) pollution - Modification technology of biomass for adsorption of VOCs gas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122451. [PMID: 37648056 DOI: 10.1016/j.envpol.2023.122451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.
Collapse
Affiliation(s)
- Guiyang Zheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Kang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Fan
- School of Textile Science and Engineering & Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an, Shanxi 710048, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030 Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Xu K, Liu Y, Li C, Zhang C, Liu X, Li Q, Xiong M, Zhang Y, Yin S, Ding Y. Enhanced secondary organic aerosol formation during dust episodes by photochemical reactions in the winter in Wuhan. J Environ Sci (China) 2023; 133:70-82. [PMID: 37451790 DOI: 10.1016/j.jes.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 07/18/2023]
Abstract
To investigate the effect of frequently occurring mineral dust on the formation of secondary organic aerosol (SOA), 106 volatile organic compounds (VOCs), trace gas pollutants and chemical components of PM2.5 were measured continuously in January 2021 in Wuhan, Central China. The observation period was divided into two stages that included a haze period and a following dust period, based on the ratio of PM2.5 and PM10 concentrations. The average ratio of secondary organic carbon (SOC) to elemental carbon (EC) was 1.98 during the dust period, which was higher than that during the haze period (0.69). The contribution of SOA to PM2.5 also increased from 2.75% to 8.64%. The analysis of the relationships between the SOA and relative humidity (RH) and the odd oxygen (e.g., OX = O3 + NO2) levels suggested that photochemical reactions played a more important role in the enhancement of SOA production during the dust period than the aqueous-phase reactions. The heterogeneous photochemical production of OH radicals in the presence of metal oxides during the dust period was believed to be enhanced. Meanwhile, the ratios of trans-2-butene to cis-2-butene and m-/p-xylene to ethylbenzene (X/E) dropped significantly, confirming that stronger photochemical reactions occurred and SOA precursors formed efficiently. These results verified the laboratory findings that metal oxides in mineral dust could catalyse the oxidation of VOCs and induce higher SOA production.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Qijie Li
- Wuhan Municipality Environmental Monitoring Center, Wuhan 430015, China
| | - Min Xiong
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Yujun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shijie Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Feng T, Liu L, Zhao S. Impacts of haze and nitrogen oxide alleviation on summertime ozone formation: A modeling study over the Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122347. [PMID: 37562528 DOI: 10.1016/j.envpol.2023.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The strict emission control measures have profoundly changed the air pollution in the Yangtze River Delta (YRD) region, China. However, the impacts of decreasing fine particulates (PM2.5) and nitrogen oxide (NOx) on summer ozone (O3) formation still remain disputable. We perform simulations in the 2018 summer over the YRD using the WRF-Chem model that considers the aerosol radiative forcing (ARF) and HO2 heterogeneous loss on aerosol surface. The model reasonably reproduces the measured spatiotemporal surface O3 and PM2.5 concentrations and aerosol compositions. Model sensitivity experiments show that the NOx mitigation during recent years changes daytime O3 formation in summer from the transition regime to the NOx-sensitive regime in the YRD. The decreasing NOx emission generally weakens O3 formation and lowers ambient O3 levels in summer during recent years, except for some urban centers of megacities. While, the haze alleviation characterized by a decline in ambient PM2.5 concentration in the past years largely counteracts the daytime O3 decrease caused by NOx mitigation, largely contributing to the persistently high levels of summertime O3. The counteracting effect is dominantly attributed to the attenuated ARF and minorly contributed by the suppressed HO2 uptake and heterogeneous loss on aerosol surface. These results highlight that the repeated O3 pollution in the YRD is closely associated with NOx and haze alleviation and more efforts must be taken to achieve lower O3 levels.
Collapse
Affiliation(s)
- Tian Feng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang, 315211, China; Institute of East China Sea, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Lang Liu
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Shuyu Zhao
- Ningbo Meteorological Bureau, Ningbo, Zhejiang, 315012, China
| |
Collapse
|
26
|
He Z, Chen K, Huang C, Xin X, Tan H, Jiang J, Wu X, Zhai J. Microbial metabolism and health risk assessment of kitchen waste odor VOCs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108946-108958. [PMID: 37759058 DOI: 10.1007/s11356-023-30053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Kitchen waste (KW) generates odors comprising complex volatile organic compounds (VOCs). We used gas chromatography-mass spectrometry to analyze VOCs, and 16S gene sequencing was used to analyze the microbial community composition and microbial metabolic mechanism. The results showed that the major odor-causing VOCs were hydrogen sulfide, methanethiol, methyl sulfide, dimethyl disulfide, and ethyl acetate. As the temperature increased, the VOCs and microbial community composition became more complex, and the microbial community related to VOC production included Leuconostoc, Pediococcus, Acetobacter, and Weissella. Based on PICRUSt2 analysis, the possibility of typical VOC interconversion by microbial metabolism was low. It was more likely that precursor substances were catalyzed by enzymes to generate the corresponding VOCs. Attention should be given to trichloromethane and 1,2-dichloroethane, which may cause adverse health effects through long-term inhalation. The study results provide guidance for controlling VOCs from KW.
Collapse
Affiliation(s)
- Zijun He
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Kejin Chen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Chuan Huang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Xiaobu Xin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Hanyue Tan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Jing Jiang
- Ecological and Environment Monitoring Center of Chongqing, Chongqing, 400010, China
| | - Xiaoyan Wu
- Ecological and Environment Monitoring Center of Chongqing, Chongqing, 400010, China
| | - Jinru Zhai
- Ecological and Environment Monitoring Center of Chongqing, Chongqing, 400010, China
| |
Collapse
|
27
|
Li X, Abdullah LC, Sobri S, Syazarudin Md Said M, Aslina Hussain S, Poh Aun T, Hu J. Long-term spatiotemporal evolution and coordinated control of air pollutants in a typical mega-mountain city of Cheng-Yu region under the "dual carbon" goal. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:649-678. [PMID: 37449903 DOI: 10.1080/10962247.2023.2232744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for megacities to formulate relevant air pollution prevention and control measures and achieve carbon neutrality goals. Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain-city in China, environmental problems are complex and sensitive. This research aims to investigate the exceeding standard levels and spatio-temporal evolution of criteria pollutants between 2014 and 2020. The results indicated that PM10, PM2.5, CO and SO2 were decreased significantly by 45.91%, 52.86%, 38.89% and 66.67%, respectively. Conversely, the concentration of pollutant O3 present a fluctuating growth and found a "seesaw" phenomenon between it and PM. Furthermore, PM and O3 are highest in winter and summer, respectively. SO2, NO2, CO, and PM showed a "U-shaped", and O3 showed an inverted "U-shaped" seasonal variation. PM and O3 concentrations are still far behind the WHO, 2021AQGs standards. Significant spatial heterogeneity was observed in air pollution distribution. These results are of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, and formulate a regional carbon peaking roadmap under climate coordination. Besides, it can provide an important platform for exploring air pollution in typical terrain around the world and provide references for related epidemiological research.Implications: Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain city, environmental problems are complex and sensitive. Under the background of the "14th Five-Year Plan", the construction of the "Cheng-Yu Dual-City Economic Circle" and the "Dual-Carbon" goal, this article comprehensively discussed the annual and seasonal excess levels and spatiotemporal evolution of pollutants under the multiple policy and the newest international standards (WHO,2021AQG) backgrounds from 2014 to 2020 in Chongqing. Furthermore, suggestions and measures related to the collaborative management of pollutants were discussed. Finally, limitations and recommendations were also put forward.Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for cities to formulate relevant air pollution control measures and achieve carbon neutrality goals. This study is of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, study and formulate a regional carbon peaking roadmap under climate coordination and an action plan for sustained improvement of air quality.In addition, this research can advanced our understanding of air pollution in complex terrain. Furthermore, it also promote the construction of the China national strategic Cheng-Yu economic circle and build a beautiful west. Moreover, it provides scientific insights for local policymakers to guide smart urban planning, industrial layout, energy structure, and transportation planning to improve air quality throughout the Cheng-Yu region. Finally, this is also conducive to future scientific research in other regions of China, and even megacities with complex terrain in the world.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Shafreeza Sobri
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Mohamad Syazarudin Md Said
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Tan Poh Aun
- SOx NOx Asia Sdn Bhd, Subang Jaya, Selangor, Malaysia
| | - Jinzhao Hu
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| |
Collapse
|
28
|
Zeng X, Han M, Ren G, Liu G, Wang X, Du K, Zhang X, Lin H. A comprehensive investigation on source apportionment and multi-directional regional transport of volatile organic compounds and ozone in urban Zhengzhou. CHEMOSPHERE 2023; 334:139001. [PMID: 37220798 DOI: 10.1016/j.chemosphere.2023.139001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
To understand the characteristics, source apportionment, and regional transport of volatile organic compounds (VOCs) and ozone (O3) in a typical city with severe air pollution in central China, we observed and analyzed 115 VOC species at an urban site in Zhengzhou from 29 July to 26 September 2021. During this period, observation- and emission-based approaches revealed that Zhengzhou was in a VOC-limited regime. The average concentration of total VOCs (TVOCs) was 162.25 ± 71.42 μg/m3, dominated by oxygenated VOCs (OVOCs, 34.49%), alkanes (24.29%), and aromatics (19.49%). Six VOC sources were identified using positive matrix factorization (PMF) model, including paint solvent usage (25.32%), secondary production (24.11%), industrial production (19.22%), vehicle exhaust (16.18%), biogenic emission (8.87%), and combustion (6.30%). To assess the regional contribution and source apportionment of VOCs and O3, Comprehensive Air Quality Model with Extensions (CAMx) with the Ozone Source Apportionment Technology (OSAT) was used for simulation. Results showed that the VOCs were significantly affected by local emissions (about 70%), while O3 was mainly attributed to regional and super-regional transport. Regarding multi-directional regional transport of VOCs and O3, dominant contributions were from the northeast and east-northeast directions, and O3 contributions were also predominantly from the east and east-southeast directions. In terms of source apportionment, the transportation and industrial sectors (including solvent usage) were the major contributors to O3 and VOCs. To alleviate VOCs and O3 pollution, transportation and industrial emission reduction should be strengthened, and regional coordination, especially from the northeast to east-southeast directions, should be emphasized in addition to local management.
Collapse
Affiliation(s)
- Xiaoxi Zeng
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Mengjuan Han
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Ge Ren
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China.
| | - Gege Liu
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Xiaoning Wang
- Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Kailun Du
- Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Xiaodong Zhang
- Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| | - Hong Lin
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China; Zhengzhou Institute of Metrology, Zhengzhou, 450001, China
| |
Collapse
|
29
|
Liu Z, Zha F, Wang Y, Yuan B, Liu B, Tang G. Vertical evolution of the concentrations and sources of volatile organic compounds in the lower boundary layer in urban Beijing in summer. CHEMOSPHERE 2023; 332:138767. [PMID: 37105313 DOI: 10.1016/j.chemosphere.2023.138767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Exploring the vertical variations in volatile organic compounds (VOCs) in the atmosphere and quantifying the sources of VOCs at different heights can help control atmospheric photochemical pollution in summer. Here, VOCs were vertically detected at three heights (47 m, 200 m and 320 m) along a 325 m tower of the Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, in the mornings (8:00) and afternoons (15:00) from May 19 to June 18, 2021. The VOC concentrations in Beijing in summer were 16.2 ± 5.6 ppbv, 14.7 ± 2.5 ppbv and 14.9 ± 3.8 ppbv at 47 m, 200 m and 320 m, respectively, and alkanes accounted for the largest proportion at all heights (>56%). The vertical gradients of the VOC concentrations and components did not significantly change, which was consistent with the summer observations of other stations in North China in recent years, but these results significantly differed from observations from more than a decade ago. To determine the reason for this, a classification based on atmospheric stability was performed, revealing that the vertical distribution of VOCs was uniform in convective and stable conditions and decreased with increasing height in neutral condition. With the transition of atmospheric stability from neutral to convective to stable, the contributions of fuel combustion sources and solvent use sources gradually increased, while those of biogenic sources and background sources gradually decreased. With increasing height, the contributions of background sources increased, those of biogenic sources, solvent use and gasoline vehicular emissions decreased, and those of fuel combustion and industrial emissions remained basically unchanged. The above results indicated that with air pollution treatment, the potential for reducing emissions of VOCs in Beijing has decreased. Therefore, regional joint prevention and control are the main ways to control VOC pollution in Beijing.
Collapse
Affiliation(s)
- Zhaoyun Liu
- School of Earth and Environment, Anhui University of Science and Technology, Anhui, 232001, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Fugeng Zha
- School of Earth and Environment, Anhui University of Science and Technology, Anhui, 232001, China.
| | - Yinghong Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bin Yuan
- Jinan University, Guangzhou, 510632, China
| | - Baoxian Liu
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Ecological Environmental Monitoring Center, Beijing, 100048, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Li C, Li F, Cheng Q, Guo Y, Zhang Z, Liu X, Qu Y, An J, Liu Y, Zhang S. Divergent summertime surface O 3 pollution formation mechanisms in two typical Chinese cities in the Beijing-Tianjin-Hebei region and Fenwei Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161868. [PMID: 36731547 DOI: 10.1016/j.scitotenv.2023.161868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Recently, severe summertime ozone (O3) pollution has swept across most areas of China, especially the Beijing-Tianjin-Hebei (BTH) region and Fenwei Plain. By focusing on Beijing and Yuncheng, which are two typical cities in the BTH region and the Fenwei Plain, we intended to reveal the neglected fact that they had disparate emission features and atmospheric movements but suffered from similar high-O3 pollution levels. Field observations indicated that Yuncheng had lower volatile organic compound (VOC) and NOx concentrations but higher background O3 levels. The model simulation verified that both photochemical reactions and net O3 generation were stronger in Beijing. Ultimately, faster net O3 generation rates (8.4 ppbv/h) plus lower background O3 values in Beijing and lower net O3 generation rates (6.2 ppbv/h) plus higher background O3 values in Yuncheng caused both regions to reach similar O3 peak values in July 2020. However, different O3 control measures were appropriate for the two cities according to the different simulated O3-VOCs-NOx responses. Additionally, as surface O3 levels are greatly affected by the ongoing O3 production/depletion process that occurs in three dimensions, exploring the effects of spatially distributed O3 on surface O3 should be high on the agenda in the future.
Collapse
Affiliation(s)
- Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Feng Li
- Jining Ecological Environment Monitoring Center, Jining 272000, China
| | - Qiang Cheng
- Dongchangfu Branch of Liaocheng Ecological Environment Bureau, Liaocheng 252000, China
| | - Yitian Guo
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Ziyin Zhang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Siqing Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Guan Y, Liu X, Zheng Z, Dai Y, Du G, Han J, Hou L, Duan E. Summer O 3 pollution cycle characteristics and VOCs sources in a central city of Beijing-Tianjin-Hebei area, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121293. [PMID: 36804559 DOI: 10.1016/j.envpol.2023.121293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
One of the major pollutants influencing urban air quality in China is O3. O3 is the second most important pollutant affecting air quality in Shijiazhuang, which is the third largest city in the Beijing-Tianjin-Hebei area and the provincial capital of Hebei province. To fully understand the characteristics of O3 and volatile organic compounds (VOCs), which are O3 precursors, and the role of VOCs to ozone formation, we measured the hourly concentrations of O3 and 85 VOCs in Shijiazhuang continuously from January to November 2020, and the concentration characteristics of both together with the chemical reactivity and sources of VOCs were analyzed from a seasonal perspective. The O3 concentration in Shijiazhuang showed a phenomenon of high summer and low winter, and the VOCs showed a phenomenon of high winter and low spring. In the summer when the O3 exceedance rate is the highest, the time-domain variation characteristics of O3 were analyzed by wavelet analysis model, and the main periods controlling the O3 concentration variation in Shijiazhuang in summer 2020 were 52 days, 32 days, 19 days and 12 days. The maximum incremental reactivity (MIR) and propylene equivalence method indicated ethene, propylene and 1-pentene were common substances in the top five species of each season. The T/B, Iso-p/N-p, Iso-p/E, N-p/E, and positive matrix factorization (PMF) model showed that industrial source (18.62%-22.03%) and vehicle emission (13.20%-17.69%) were the major VOCs sources in Shijiazhuang. Therefore, to control the O3 concentration in Shijiazhuang, it is necessary to decrease alkenes emissions as well as VOCs from industrial source and vehicle emission.
Collapse
Affiliation(s)
- Yanan Guan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China; National Joint Local Engineering Research Center for Volatile Organic Compounds and Odorous Pollution Control, Shijiazhuang, 050018, China
| | - Xuejiao Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhiyang Zheng
- Baiyangdian River Basin Ecological Environment Guarantee Center, Shijiazhuang, 050018, China
| | - Yanwei Dai
- Hebei Province Ecological Environment Monitoring Center, Shijiazhuang, 050018, China
| | - Guimin Du
- Hebei Province Ecological Environment Emergency and Heavy Pollution Weather Forewarning Center, Shijiazhuang, 050018, China
| | - Jing Han
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China; National Joint Local Engineering Research Center for Volatile Organic Compounds and Odorous Pollution Control, Shijiazhuang, 050018, China.
| | | | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China; National Joint Local Engineering Research Center for Volatile Organic Compounds and Odorous Pollution Control, Shijiazhuang, 050018, China
| |
Collapse
|
32
|
Li Y, Li H, Zhang X, Ji Y, Gao R, Wu Z, Yin M, Nie L, Wei W, Li G, Wang Y, Luo M, Bai H. Characteristics, sources and health risk assessment of atmospheric carbonyls during multiple ozone pollution episodes in urban Beijing: Insights into control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160769. [PMID: 36526184 DOI: 10.1016/j.scitotenv.2022.160769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Carbonyls have attracted continuous attention due to their critical roles in atmospheric chemistry and their potential hazards to the ecological environment and human health. In this study, atmospheric carbonyls were measured during several ground-level-ozone (O3) pollution episodes at three urban sites (CRAES, IEP and BJUT) in Beijing in 2019 and 2020. Comparative analysis revealed that the carbonyl concentrations were 20.25 ± 6.91 ppb and 13.43 ± 5.13 ppb in 2019 and 2020 in Beijing, respectively, with a significant spatial trend from north to south, and carbonyl levels in urban Beijing were in an upper-intermediate range in China, and higher than those in other countries reported in the literature. A particularly noteworthy phenomenon is the consistency of carbonyl concentrations with variations in O3 concentrations. On O3 polluted days, the carbonyl concentrations were 1.3-1.5 times higher than those on non-O3 polluted days. Secondary formation contributed more to formaldehyde (FA) and acetaldehyde (AA) on O3 polluted days, while the anthropogenic emissions were more significant for acetone (AC) on non-O3 polluted days. Vehicle exhaust and solvent utilization were the main primary contributors to carbonyls. Due to reduced anthropogenic emissions caused by the COVID-19 lockdown and the "Program for Controlling Volatile Organic Compounds in 2020" in China, the contributions of primary emissions to carbonyls decreased in 2020 in Beijing. Human cancer risks to exposed populations from FA and AA increased with elevated O3 levels, and the risks still remained on non-O3 polluted days. The residents around the BJUT site might experience relatively higher human cancer risks than those around the other two sites. The findings in this study confirmed that atmospheric carbonyl pollution and its potential human health hazards cannot be ignored in urban Beijing; therefore, more strict control strategies for atmospheric carbonyls are urgently needed to better protect human health in Beijing in the future.
Collapse
Affiliation(s)
- Yunfeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xin Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuanyuan Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhenhai Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Manfei Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Nie
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Wei Wei
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guohao Li
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Yafei Wang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mei Luo
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Hongxiang Bai
- Department of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
33
|
Pothier MA, Boedicker E, Pierce JR, Vance M, Farmer DK. From the HOMEChem frying pan to the outdoor atmosphere: chemical composition, volatility distributions and fate of cooking aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:314-325. [PMID: 36519677 DOI: 10.1039/d2em00250g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cooking organic aerosol (COA) is frequently observed in urban field studies. Like other forms of organic aerosol, cooking emissions partition between gas and particle phases; a quantitative understanding of the species volatility governing this partitioning is essential to model the transport and fate of COA. However, few cooking-specific volatility measurements are available, and COA is often assumed to be semi-volatile. We use measurements from a thermodenuder coupled to an aerosol chemical speciation monitor during the HOMEChem study to investigate the chemical components and volatility of near-source COA. We found that fresh emissions of COA have three chemical components: a biomass burning-like component (COABBOA), a lower volatility component associated with cooking oil (COAoil-2), and a higher volatility component associated with cooking oil (COAoil-1). We provide characteristic mass spectra and volatility profiles for these components. We develop a model to describe the partitioning of these emissions as they dilute through the house and outdoor atmosphere. We show that the total emissions from cooking can be misclassified in air quality studies that use semi-volatile emissions as a proxy for cooking aerosol, due to the presence of substantial mass in lower volatility bins of COA not generally represented in models. Primary emissions of COA can thus be not only primary sources of urban aerosol pollution, but also sources of semi-volatile organic compounds that undergo secondary chemistry in the atmosphere and contribute to ozone formation and secondary organic aerosol.
Collapse
Affiliation(s)
- Matson A Pothier
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Erin Boedicker
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Marina Vance
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
34
|
Mu J, Zhang Y, Xia Z, Fan G, Zhao M, Sun X, Liu Y, Chen T, Shen H, Zhang Z, Zhang H, Pan G, Wang W, Xue L. Two-year online measurements of volatile organic compounds (VOCs) at four sites in a Chinese city: Significant impact of petrochemical industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159951. [PMID: 36336034 DOI: 10.1016/j.scitotenv.2022.159951] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) management has been recently given a high priority in China to mitigate ozone (O3) air pollution. However, there is a relatively poor understanding of VOCs due to their complexity and fewer observations. To better understand the pollution characteristics of VOCs and their impact on O3 pollution, two-year continuous measurements were conducted at four representative sites in Ji'nan, eastern China. These four sites cover urban, background, and industrial areas (within a petroleum refinery). Ambient VOCs showed higher concentrations at industrial site than at urban and background sites, owing to intensive emissions from petrochemical industry. The VOCs compositions present spatial heterogeneity with alkenes dominated in total reactivity at urban and background sites, while alkenes and aromatics together dominated at industrial site. The VOCs emission profile from petrochemical industry was calculated based on observational data, which revealed a huge impact on light alkanes (C2-C5), light alkenes (ethene), and aromatics (toluene and m/p-xylene). The positive matrix factorization (PMF) model analysis further refined the impact of different petrochemical industrial processes. Alkanes and alkenes dominated the emissions during refining process, while aromatics dominated during solvent usage process. Analysis by an observation-based model indicated stronger in-situ O3 production and higher sensitivity to nitrogen oxides at industrial site compared to urban and background sites. The reduction of VOCs emissions from petrochemical industry would significantly reduce the O3 concentrations. The analyses underline the significant impact of petrochemical industry on VOCs and O3 pollution, and provide important reference for the formulation of refined and effective control strategies.
Collapse
Affiliation(s)
- Jiangshan Mu
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yingnan Zhang
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhiyong Xia
- Ji'nan Ecological Environment Monitoring Center of Shandong Province, Ji'nan, Shandong 250000, China
| | - Guolan Fan
- Ji'nan Ecological Environment Monitoring Center of Shandong Province, Ji'nan, Shandong 250000, China
| | - Min Zhao
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoyan Sun
- Ji'nan Ecological Environment Monitoring Center of Shandong Province, Ji'nan, Shandong 250000, China
| | - Yuhong Liu
- Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Tianshu Chen
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Hengqing Shen
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Zhanchao Zhang
- Ji'nan Ecological Environment Monitoring Center of Shandong Province, Ji'nan, Shandong 250000, China
| | - Huaicheng Zhang
- Ji'nan Ecological Environment Monitoring Center of Shandong Province, Ji'nan, Shandong 250000, China
| | - Guang Pan
- Ji'nan Ecological Environment Monitoring Center of Shandong Province, Ji'nan, Shandong 250000, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China; Ji'nan Ecological Environment Monitoring Center of Shandong Province, Ji'nan, Shandong 250000, China.
| |
Collapse
|
35
|
Wang Z, Tian X, Li J, Wang F, Liang W, Zhao H, Huang B, Wang Z, Feng Y, Shi G. Quantitative evidence from VOCs source apportionment reveals O 3 control strategies in northern and southern China. ENVIRONMENT INTERNATIONAL 2023; 172:107786. [PMID: 36738582 DOI: 10.1016/j.envint.2023.107786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Ground-level ozone (O3) pollution has received widespread attention because its rising trend and adverse ecological impacts. However, the extremely strong photochemical reactions of its precursor volatile organic compounds (VOCs) increase the difficulty of reducing VOCs emissions to alleviate O3. Here, we carried out a one-year comprehensive observation in two representative cities, Tianjin (TJ, Northern China) and Guangzhou (GZ, Southern China). By revealing the concentration characteristics of three different types of VOCs, i.e., initial VOCs without photochemical reaction (In-VOCs), consumed VOCs (C-VOCs), and measured VOCs after the reaction (M-VOCs), we elucidated the important role of C-VOCs in the formation of O3. Although the overall trends were similar in both cities, the average concentration level of VOCs in GZ was 8.2 ppbv higher than that in TJ, and the photochemical loss of VOCs was greater by 2.2 ppbv. In addition, various drivers affecting O3 generation from C-VOCs were specifically explored, and it was found that most alkenes of TJ were key substances for rapid O3 formation compared to aromatics of GZ. Meanwhile, favorable meteorological conditions such as high temperature (T > 31 °C in TJ, and T > 33 °C in GZ), low relative humidity (56% in TJ and 45% in GZ), and stable atmospheric environment (proper pressure and gentle wind speed) also contribute to the generation of O3. More importantly, we combined chemical kinetics and receptor model to quantify the three-type VOCs source contributions and assess the potential impact of C-VOCs sources on O3 production, thus proposing environmental abatement technologies corresponding to the three types of VOCs. The differences in the comparison results of the three-type VOCs highlight the need to reduce O3 pollution from C-VOCs sources, which provides insights for future clean air policies development.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiao Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jie Li
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Feng Wang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weiqing Liang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huan Zhao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Huang
- Guangzhou Hexin Instrument Co., Ltd, Guangzhou 510530, China
| | - Zaihua Wang
- Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
36
|
Li B, Ho SSH, Li X, Guo L, Feng R, Fang X. Pioneering observation of atmospheric volatile organic compounds in Hangzhou in eastern China and implications for upcoming 2022 Asian Games. J Environ Sci (China) 2023; 124:723-734. [PMID: 36182177 DOI: 10.1016/j.jes.2021.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 06/16/2023]
Abstract
Understanding the emission sources of volatile organic compounds (VOCs) is critical for air pollution mitigation. Continuous measurements of atmospheric VOCs were conducted from January to February in Hangzhou in 2021. The average measured concentration of total VOCs (TVOCs) was 38.2 ± 20.9 ppb, > 42% lower than that reported by previous studies at the urban center in Hangzhou. The VOC concentrations and proportions were similar between weekdays and weekends. During the long holidays of the Spring Festival in China, the concentrations of TVOCs were ∼50% lower than those during the regular days, but their profiles showed no significant difference (p > 0.05). Further, we deduced that aromatics and alkenes were the most crucial chemicals promoting the formation of O3 and secondary organic aerosol (SOA) in Hangzhou. According to interspecies correlations, combustion processes and solvent use were inferred as major VOC emission sources. This study provides implications for air quality improvements before and during the upcoming Asian Games that will be hosted in Hangzhou in 2022.
Collapse
Affiliation(s)
- Bowei Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, 89512, USA
| | - Xinhe Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liya Guo
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rui Feng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuekun Fang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
37
|
Xu K, Liu Y, Li F, Li C, Zhang C, Zhang H, Liu X, Li Q, Xiong M. A retrospect of ozone formation mechanisms during the COVID-19 lockdown: The potential role of isoprene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120728. [PMID: 36427823 PMCID: PMC9679402 DOI: 10.1016/j.envpol.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Wuhan took strict measures to prevent the spread of COVID-19 from January 26 to April 7 in 2020. The lockdown reduced the concentrations of atmospheric pollutants, except ozone (O3). To investigate the increase in O3 during the lockdown, trace gas pollutants were collected. The initial concentrations of volatile organic compounds (VOCs) were calculated based on a photochemical ratio method, and the ozone formation potential (OFP) was obtained using the initial and measured VOC concentrations. The O3 formation regime was NOX-limited based on the VOCs/NOX diurnal ratios during the lockdown period. The reduced nitric oxide (NO) concentrations and lower wind speed (WS) could explain the night-time O3 accumulation. The initial total VOCs (TVOCs) during the lockdown were 47.6 ± 2.9 ppbv, and alkenes contributed 48.1%. The photochemical loss amounts of alkenes were an order of magnitude higher than those of alkenes in the same period in 2019 and increased from 16.6 to 28.0 ppbv in the daytime. The higher initial alkene concentrations sustained higher OFP during the lockdown, reaching between 252.4 and 504.4 ppbv. The initial isoprene contributed approximately 35.0-55.0% to the total OFP and had a positive correlation with the increasing O3 concentrations. Approximately 75.5% of the temperatures were concentrated in the range of 5 and 20 °C, which were higher than those in 2019. In addition to stronger solar radiation, the higher temperatures induced higher isoprene emission rates, partially accounting for the higher isoprene concentrations. Lower isoprene-emitting trees should be considered for future urban vegetation to control O3 episodes.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Feng Li
- Jining Ecological Environment Monitoring Center, Jining, 272000, China
| | - Chenlu Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chen Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Qijie Li
- Wuhan Municipality Environmental Monitoring Center, Wuhan, 430015, China
| | - Min Xiong
- Chongqing University, College of Environment and Ecology, Chongqing, 400030, China
| |
Collapse
|
38
|
Liu C, Xin Y, Zhang C, Liu J, Liu P, He X, Mu Y. Ambient volatile organic compounds in urban and industrial regions in Beijing: Characteristics, source apportionment, secondary transformation and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158873. [PMID: 36126704 DOI: 10.1016/j.scitotenv.2022.158873] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Field measurements of volatile organic compounds (VOCs) were conducted simultaneously at an urban site and one industrial park site in Beijing in summer. The VOCs concentrations were 94.3 ± 157.8 ppbv and 20.7 ± 8.9 ppbv for industrial and urban sites, respectively. Alkanes and aromatics were the major contributors to VOCs in industrial site, while oxygenated volatile organic compounds (OVOCs) contributed most in urban site. The most abundant VOC species were n-pentane and formaldehyde for industrial site and urban site, respectively. The calculated ozone formation potential (OFP) and OH loss rates (LOH) were 621.1 ± 1491.9 ppbv (industrial site), 102.9 ± 37.3 ppbv (urban site), 22.0 ± 39.0 s-1 (industrial site) and 5.3 ± 2.2 s-1 (urban site), respectively. Based on the positive matrix factorization (PMF) model, solvent utilization I (34.1 %), solvent utilization II (27.9 %), mixture combustion source (19.3 %), OVOCs related source (9.6 %) and biogenic source (9.1 %) were identified in the industrial site, while OVOCs related source (27.8 %), vehicle exhaust (22.1 %), solvent utilization (19.3 %), coal combustion (16.0 %) and biogenic source (14.8 %) were identified in the urban site. The results of O3-VOCs-NOx sensitivity indicated that O3 formation were respectively under the VOC-limited and NOx-limited conditions in Beijing urban and industrial regions. Additionally, aromatics accounted remarkable SOA formation ability both in the two sites, and SOA potentials of xylene, toluene and ethylbenzene as the indicator species for the solvent utilization in industrial site were remarkable higher than those obtained in urban regions. The hazard index values in the industrial and urban sites were 1.72 and 3.39, respectively, suggesting a high non-carcinogenic risks to the exposed population. Formaldehyde had the highest carcinogenic risks in the two sites, and the cumulative carcinogenic risks in the industrial site and urban site were 1.95 × 10-5 and 1.21 × 10-5, respectively.
Collapse
Affiliation(s)
- Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yanyan Xin
- College of Environmental Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaowei He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
39
|
Cheng Y, Huang XF, Peng Y, Tang MX, Zhu B, Xia SY, He LY. A novel machine learning method for evaluating the impact of emission sources on ozone formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120685. [PMID: 36400136 DOI: 10.1016/j.envpol.2022.120685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.
Collapse
Affiliation(s)
- Yong Cheng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiao-Feng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yan Peng
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Meng-Xue Tang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bo Zhu
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shi-Yong Xia
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ling-Yan He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
40
|
Wang J, Yue H, Cui S, Zhang Y, Li H, Wang J, Ge X. Chemical Characteristics and Source-Specific Health Risks of the Volatile Organic Compounds in Urban Nanjing, China. TOXICS 2022; 10:722. [PMID: 36548555 PMCID: PMC9783090 DOI: 10.3390/toxics10120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This work comprehensively investigated the constituents, sources, and associated health risks of ambient volatile organic compounds (VOCs) sampled during the autumn of 2020 in urban Nanjing, a megacity in the densely populated Yangtze River Delta region in China. The total VOC (TVOC, sum of 108 species) concentration was determined to be 29.04 ± 14.89 ppb, and it was consisted of alkanes (36.9%), oxygenated VOCs (19.9%), halogens (19.1%), aromatics (9.9%), alkenes (8.9%), alkynes (4.9%), and others (0.4%). The mean TVOC/NOx (ppbC/ppbv) ratio was only 3.32, indicating the ozone control is overall VOC-limited. In terms of the ozone formation potential (OFP), however, the largest contributor became aromatics (41.9%), followed by alkenes (27.6%), and alkanes (16.9%); aromatics were also the dominant species in secondary organic aerosol (SOA) formation, indicative of the critical importance of aromatics reduction to the coordinated control of ozone and fine particulate matter (PM2.5). Mass ratios of ethylbenzene/xylene (E/X), isopentane/n--pentane (I/N), and toluene/benzene (T/B) ratios all pointed to the significant influence of traffic on VOCs. Positive matrix factorization (PMF) revealed five sources showing that traffic was the largest contributor (29.2%), particularly in the morning. A biogenic source, however, became the most important source in the afternoon (31.3%). The calculated noncarcinogenic risk (NCR) and lifetime carcinogenic risk (LCR) of the VOCs were low, but four species, acrolein, benzene, 1,2-dichloroethane, and 1,2-dibromoethane, were found to possess risks exceeding the thresholds. Furthermore, we conducted a multilinear regression to apportion the health risks to the PMF-resolved sources. Results show that the biogenic source instead of traffic became the most prominent contributor to the TVOC NCR and its contribution in the afternoon even outpaced the sum of all other sources. In summary, our analysis reveals the priority of controls of aromatics and traffic/industrial emissions to the efficient coreduction of O3 and PM2.5; our analysis also underscores that biogenic emissions should be paid special attention if considering the direct health risks of VOCs.
Collapse
|
41
|
Li X, Li B, Guo L, Feng R, Fang X. Research progresses on VOCs emission investigations via surface and satellite observations in China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1968-1981. [PMID: 36000414 DOI: 10.1039/d2em00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volatile organic compounds (VOCs) are important precursors of severe pollution of ozone (O3) and secondary organic aerosols in China. Fully understanding the VOCs emission is crucial for making regulations to improve air quality. This study reviews the published studies on atmospheric VOCs concentration observations in China and observation-based estimation of China's VOCs emission strengths and emission source structures. The results reveal that direct sampling and stainless-steel-tank sampling are the most commonly used methods for online and offline observations in China, respectively. The GC-MS/FID is the most commonly used VOCs measuring instrument in China (in 60.8% of the studies we summarized). Numerous studies conducted observation campaigns in urban areas (76.2%) than in suburban (17.1%), rural (18.1%), and background areas (14.3%) in China. Moreover, observation sites are largely set in eastern China (83.8%). Though there are published studies reporting observation-based China's VOCs emission investigation, these kinds of studies are still limited, and gaps are found between the results of top-down investigation and bottom-up inventories of VOCs emissions in China. In order to enhance the observation-based VOCs emission investigations in China, this study suggests future improvements including: (1) development of VOCs detection techniques, (2) strengthening of atmospheric VOCs observations, (3) improvement of the accuracy of observation-based VOCs emission estimations, and (4) facilitation of better VOCs emission inventories in China.
Collapse
Affiliation(s)
- Xinhe Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Bowei Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Liya Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | - Xuekun Fang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
42
|
Cha JS, Kim YM, Lee IH, Choi YJ, Rhee GH, Song H, Jeon BH, Lam SS, Khan MA, Andrew Lin KY, Chen WH, Park YK. Mitigation of hazardous toluene via ozone-catalyzed oxidation using MnOx/Sawdust biochar catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119920. [PMID: 35977635 DOI: 10.1016/j.envpol.2022.119920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
This study investigated catalytic ozone oxidation using a sawdust char (SDW) catalyst to remove hazardous toluene emitted from the chemical industry. The catalyst properties were analyzed by proximate, ultimate, nitrogen adsorption-desorption isotherms, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses. In addition, hydrogen-temperature programmed reduction experiments were conducted to analyze the catalyst properties. The specific area and formation of micropores of SDC were improved by applying KOH treatment. MnOx/SDC-K3 exhibited a higher toluene removal efficiency of 89.7% after 100 min than MnOx supported on activated carbon (MnOx/AC) with a removal efficiency of 6.6%. The higher (Oads (adsorbed oxygen)+Ov(vacancy oxygen))/OL (lattice oxygen) and Mn3+/Mn4+ ratios of MnOx/SDC-K3 than those of MnOx/AC seemed to be important for the catalytic oxidation of toluene.
Collapse
Affiliation(s)
- Jin Sun Cha
- Material Technology Center, Korea Testing Laboratory, Seoul, 08389, Republic of Korea
| | - Young-Min Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Im Hack Lee
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, 02504, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung Univ., Tainan, 701, Taiwan; Research Center for Smart Sustain. Circular Economy, Tunghai Univ., Taichung, 407, Taiwan; Department of Mechanical. Engineering, National Chin-Yi Univ. of Technol., Taichung, 411, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
43
|
Shi Y, Liu C, Zhang B, Simayi M, Xi Z, Ren J, Xie S. Accurate identification of key VOCs sources contributing to O 3 formation along the Liaodong Bay based on emission inventories and ambient observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156998. [PMID: 35787908 DOI: 10.1016/j.scitotenv.2022.156998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In order to achieve the precise control of the volatile organic compounds (VOCs) species with high ozone (O3) formation contribution from key sources in Panjin and Yingkou, two coastal industrial cities with severe O3 pollution along the Liaodong Bay, northeast China, the ambient concentrations of 99 VOCs species were measured online at urban-petrochemical (XLT), suburban-industrial (PP), and rural (XRD) sites in July 2019, contemporary monthly anthropogenic VOCs emission inventories were developed. The source contribution of ambient VOCs resolved by positive matrix factorization (PMF) model was comparable with emission inventories, and the location of VOCs sources were speculated by potential source contribution function (PSCF). 17.5 Gg anthropogenic VOCs was emitted in Panjin and Yingkou in July 2019 with potential to form 54.7 Gg-O3 estimated by emission inventories. The average VOC mixing ratios of 47.1, 26.7, and 16.5 ppbv was observed at XLT, PP, and XRD sites, respectively. Petroleum industry (22 %), organic chemical industry (21 %), and mobile vehicle emission (19 %) were identified to be the main sources contributing to O3 formation at XLT site by PMF, while it is organic chemical industry (33 %) and solvent utilization (28 %) contributed the most at PP site. Taking the subdivided source contributions of emission inventories and source locations speculated by PSCF into full consideration, organic raw chemicals manufacturing, structural steel coating, petroleum refining process, petroleum products storage and transport, off-shore vessels, and passenger cars were identified as the key anthropogenic sources. High O3-formation contribution sources, organic chemical industry and solvent utilization were located in the industrial parks at the junction of the two cities and the southeast of Panjin, and petroleum industry distributed in the whole Panjin and offshore areas. These results identify the key VOCs species and sources and speculate the potential geographical location of sources for precisely controlling ground-level O3 along the Liaodong Bay.
Collapse
Affiliation(s)
- Yuqi Shi
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, PR China
| | - Chang Liu
- Liaoning Ecological and Environmental Service Center, Shenyang, Liaoning 110161, PR China
| | - Baosheng Zhang
- Department of Ecology and Environment of Liaoning Province, Shenyang, Liaoning 110161, PR China
| | - Maimaiti Simayi
- College of Resources and Environments, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
| | - Ziyan Xi
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, PR China
| | - Jie Ren
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, PR China
| | - Shaodong Xie
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing 100871, PR China.
| |
Collapse
|
44
|
Liu T, Sun J, Liu B, Li M, Deng Y, Jing W, Yang J. Factors Influencing O 3 Concentration in Traffic and Urban Environments: A Case Study of Guangzhou City. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12961. [PMID: 36232266 PMCID: PMC9564865 DOI: 10.3390/ijerph191912961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ozone (O3) pollution is a serious issue in China, posing a significant threat to people's health. Traffic emissions are the main pollutant source in urban areas. NOX and volatile organic compounds (VOCs) from traffic emissions are the main precursors of O3. Thus, it is crucial to investigate the relationship between traffic conditions and O3 pollution. This study focused on the potential relationship between O3 concentration and traffic conditions at a roadside and urban background in Guangzhou, one of the largest cities in China. The results demonstrated that no significant difference in the O3 concentration was observed between roadside and urban background environments. However, the O3 concentration was 2 to 3 times higher on sunny days (above 90 μg/m3) than on cloudy days due to meteorological conditions. The results confirmed that limiting traffic emissions may increase O3 concentrations in Guangzhou. Therefore, the focus should be on industrial, energy, and transportation emission mitigation and the influence of meteorological conditions to minimize O3 pollution. The results in this study provide some theoretical basis for mitigation emission policies in China.
Collapse
Affiliation(s)
- Tao Liu
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jia Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511485, China
| | - Baihua Liu
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miao Li
- College of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Yingbin Deng
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511485, China
| | - Wenlong Jing
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511485, China
| | - Ji Yang
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511485, China
| |
Collapse
|
45
|
Kim SJ, Lee SJ, Lee HY, Son JM, Lim HB, Kim HW, Shin HJ, Lee JY, Choi SD. Characteristics of volatile organic compounds in the metropolitan city of Seoul, South Korea: Diurnal variation, source identification, secondary formation of organic aerosol, and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156344. [PMID: 35654203 DOI: 10.1016/j.scitotenv.2022.156344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric volatile organic compounds (VOCs) in Seoul, the capital of South Korea, have attracted increased attention owing to their emission, secondary formation, and human health risk. In this study, we collected 24 hourly samples once a month at an urban site in Seoul for a year (a total of 288 samples) using a sequential tube sampler. Analysis results revealed that toluene (9.08 ± 8.99 μg/m3) exhibited the highest annual mean concentration, followed by ethyl acetate (5.55 ± 9.09 μg/m3), m,p-xylenes (2.79 ± 4.57 μg/m3), benzene (2.37 ± 1.55 μg/m3), ethylbenzene (1.81 ± 2.27 μg/m3), and o-xylene (0.91 ± 1.47 μg/m3), indicating that these compounds accounted for 77.8-85.6% of the seasonal mean concentrations of the total (Σ59) VOCs. The concentrations of the Σ59 VOCs were statistically higher in spring and winter than in summer and fall because of meteorological conditions, and the concentrations of individual VOCs were higher during the daytime than nighttime owing to higher human activities during the daytime. The conditional bivariate probability function and concentration weighted trajectory analysis results suggested that domestic effects (e.g., vehicular exhaust and solvents) exhibited a dominant effect on the presence of VOCs in Seoul, as well as long-range atmospheric transport of VOCs. Further, the most important secondary organic aerosol formation potential (SOAFP) compounds included benzene, toluene, ethylbenzene, and m,p,o-xylenes, and the total SOAFP of nine VOCs accounted for 5-29% of the seasonal mean PM2.5 concentrations. The cancer and non-cancer risks of the selected VOCs were below the tolerable (1 × 10-4) and acceptable (Hazard quotient: HQ < 1) levels, respectively. Overall, this study highlighted the feasibility of the sequential sampling of VOCs and hybrid receptor modeling to further understand the source-receptor relationship of VOCs.
Collapse
Affiliation(s)
- Seong-Joon Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Jin Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Min Son
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyung-Bae Lim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hyeon-Woong Kim
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Hye-Jung Shin
- Air Quality Research Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
46
|
Jookjantra P, Thepanondh S, Keawboonchu J, Kultan V, Laowagul W. Formation potential and source contribution of secondary organic aerosol from volatile organic compounds. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1016-1034. [PMID: 35751911 DOI: 10.1002/jeq2.20381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Secondary organic aerosol (SOA), a key constituent of fine particulate matter, can be formed through the oxidation of volatile organic compounds (VOCs). However, information on its relevant emission sources remains limited in many cities, especially concerning different types of land use. In this study, VOC concentration in Bangkok Metropolitan Region (BMR), Thailand, was continuously collected for 24 h by 6-L evacuated canister and analyzed by gas chromatography/mass spectrophotometry following USEPA TO15, and the formation of SOA was evaluated through the comprehensive direct measurements and speciation of ambient VOCs. Finally, source contribution of VOCs to SOA formation was characterized using the Positive Matrix Factorization (PMF) model. The results revealed the abundant group of VOCs species in the overall BMR was oxygenated VOCs, accounting for 49.97-57.37%. The SOA formation potential (SOAP) ranged from 1,134.33 to 3,143.74 μg m-3 . The VOC species contributing to the highest SOAP was toluene. Results from the PMF model revealed the dominant emission source of VOCs that greatly contributed to SOA was vehicle exhaust emission. Industrial combustion was the main source of VOC emission contributing to SOA in industrial areas. Sources of fuel evaporation, biomass burning, and cooking were also found in the study areas but in small quantities. The results of this study elucidated that different emission sources of VOCs contribute to SOA with respect to different types of land use. Findings of this study highlight the necessity to identify the contribution of potential emission sources of SOA precursors to effectively manage urban air pollution.
Collapse
Affiliation(s)
- Peemapat Jookjantra
- Dep. of Sanitary Engineering, Faculty of Public Health, Mahidol Univ., Bangkok, 10400, Thailand
| | - Sarawut Thepanondh
- Dep. of Sanitary Engineering, Faculty of Public Health, Mahidol Univ., Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Jutarat Keawboonchu
- Dep. of Sanitary Engineering, Faculty of Public Health, Mahidol Univ., Bangkok, 10400, Thailand
| | - Vanitchaya Kultan
- Dep. of Sanitary Engineering, Faculty of Public Health, Mahidol Univ., Bangkok, 10400, Thailand
| | - Wanna Laowagul
- Dep. of Environmental Quality Promotion, Environmental Research and Training Center, Pathumthani, Thailand
| |
Collapse
|
47
|
Niu Y, Yan Y, Chai J, Zhang X, Xu Y, Duan X, Wu J, Peng L. Effects of regional transport from different potential pollution areas on volatile organic compounds (VOCs) in Northern Beijing during non-heating and heating periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155465. [PMID: 35500706 DOI: 10.1016/j.scitotenv.2022.155465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Despite the adoption of air quality control measures, the influence of regional transport on volatile organic compounds (VOCs) pollution has gradually increased in Beijing. In this study, the whole observation period (September 24 to December 12, 2020) was divided into heating period and non-heating period to explore the impact of changing VOCs sources in different observation periods, and also classified into "Type-N" and "Type-S" periods both in non-heating period and heating period to explore the impact of regional transport from the northern and southern regions of sampling site, respectively. The average VOCs concentrations in northern Beijing during observation period were 22.6 ± 12.6 ppbv, which showed a decrease trend in recent years compared with other studies. And higher VOCs concentrations were observed in Type-S than in Type-N period. The positive matrix factorization results showed that vehicular exhaust dominated VOCs (26.1%-33.7%), but coal combustion could not be ignored in heating period, when it was twice that in non-heating period. In particular, coal combustion dominated VOCs in southern trajectories (30.9%) in heating period. The analysis of concentration weighted trajectory showed that coal combustion was affected by regional transport from the southeast regions of Beijing, while vehicular exhaust was affected by urban and the southeast regions of Beijing. Regarding human health risks, the carcinogenic risks of benzene and ethylbenzene exceeded the acceptable cancer risk value (1 × 10-6), and were higher in Type-S than in Type-N period. The results indicated that regional transport from urban areas and the areas south of Beijing had a significant impact on VOCs in northern Beijing. Thus, targeted control measures for different potential pollution regions are important for controlling VOCs pollution in Beijing.
Collapse
Affiliation(s)
- Yueyuan Niu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yulong Yan
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Jianwei Chai
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiangyu Zhang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yang Xu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Duan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Wu
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Lin Peng
- Institute of Transport Energy and Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
48
|
Li J, Deng S, Tohti A, Li G, Yi X, Lu Z, Liu J, Zhang S. Spatial characteristics of VOCs and their ozone and secondary organic aerosol formation potentials in autumn and winter in the Guanzhong Plain, China. ENVIRONMENTAL RESEARCH 2022; 211:113036. [PMID: 35283079 DOI: 10.1016/j.envres.2022.113036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
As critical precursors of tropospheric ozone (O3) and secondary organic aerosol (SOA), volatile organic compounds (VOCs) largely influence air quality in urban environments. In this study, measurements of 102 VOCs at all five major cities in the Guanzhong Plain (GZP) were conducted during Sep.09-Oct. 13, 2017 (autumn) and Nov. 14, 2017-Jan. 19, 2018 (winter) to investigate the characteristics of VOCs and their roles in O3 and SOA formation. The average concentrations of total VOCs (TVOCs) at Xi'an (XA), Weinan (WN), Xianyang (XY), Tongchuan (TC), and Baoji (BJ) sites were in the range of 55.2-110.2 ppbv in autumn and 42.4-74.3 ppbv in winter. TVOCs concentrations were reduced by 22.4%-43.5% from autumn to winter at XA, WN and BJ. Comparatively low concentrations of TVOCs were observed in XY and TC, ranging from 53.5 to 62.7 ppbv across the sampling period. Alkanes were the major components at all sites, accounting for 26.4%-48.9% of the TVOCs during the sampling campaign, followed by aromatics (4.2%-26.4%). The average concentration of acetylene increased by a factor of up to 4.8 from autumn to winter, indicating the fuel combustion in winter heating period significantly impacted on VOCs composition in the GZP. The OH radical loss rate and maximum incremental reactivity method were employed to determine photochemical reactivities and ozone formation potentials (OFPs) of VOCs, respectively. The VOCs in XA and WN exhibited the highest reactivities in O3 formation, with the OFP of 168-273 ppbv and the OH loss rates of 19.3-40.8 s-1. Alkenes and aromatics primarily related to on-road and industrial emissions contributed 57.8%-76.3% to the total OFP. The contribution of aromatics to the SOA formation at all sites reached 94.1%-98.6%. Considering the potential source-area of VOCs, regional transport of VOCs occurred within the GZP cities.
Collapse
Affiliation(s)
- Jianghao Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Shunxi Deng
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Abla Tohti
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Guanghua Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Xiaoxiao Yi
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Zhenzhen Lu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Jiayao Liu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| | - Shuai Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
49
|
Ogbodo JO, Arazu AV, Iguh TC, Onwodi NJ, Ezike TC. Volatile organic compounds: A proinflammatory activator in autoimmune diseases. Front Immunol 2022; 13:928379. [PMID: 35967306 PMCID: PMC9373925 DOI: 10.3389/fimmu.2022.928379] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The etiopathogenesis of inflammatory and autoimmune diseases, including pulmonary disease, atherosclerosis, and rheumatoid arthritis, has been linked to human exposure to volatile organic compounds (VOC) present in the environment. Chronic inflammation due to immune breakdown and malfunctioning of the immune system has been projected to play a major role in the initiation and progression of autoimmune disorders. Macrophages, major phagocytes involved in the regulation of chronic inflammation, are a major target of VOC. Excessive and prolonged activation of immune cells (T and B lymphocytes) and overexpression of the master pro-inflammatory constituents [cytokine and tumor necrosis factor-alpha, together with other mediators (interleukin-6, interleukin-1, and interferon-gamma)] have been shown to play a central role in the pathogenesis of autoimmune inflammatory responses. The function and efficiency of the immune system resulting in immunostimulation and immunosuppression are a result of exogenous and endogenous factors. An autoimmune disorder is a by-product of the overproduction of these inflammatory mediators. Additionally, an excess of these toxicants helps in promoting autoimmunity through alterations in DNA methylation in CD4 T cells. The purpose of this review is to shed light on the possible role of VOC exposure in the onset and progression of autoimmune diseases.
Collapse
Affiliation(s)
- John Onyebuchi Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukkagu, Enugu State, Nigeria
| | - Amarachukwu Vivan Arazu
- Department of Science Laboratory Technology, University of Nigeria, Nsukkagu, Enugu State, Nigeria
| | - Tochukwu Chisom Iguh
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ngozichukwuka Julie Onwodi
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tobechukwu Christian Ezike
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
- *Correspondence: Tobechukwu Christian Ezike,
| |
Collapse
|
50
|
Characteristics and Sources of Volatile Organic Compounds in the Nanjing Industrial Area. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, 56 volatile organic compounds species (VOCs) and other pollutants (NO, NO2, SO2, O3, CO and PM2.5) were measured in the northern suburbs of Nanjing from September 2014 to August 2015. The total volatile organic compound (TVOC) concentrations were higher in the autumn (40.6 ± 23.8 ppbv) and winter (41.1 ± 21.7 ppbv) and alkanes were the most abundant species among the VOCs (18.4 ± 10.0 ppbv). According to the positive matrix factorization (PMF) model, the VOCs were found to be from seven sources in the northern suburbs of Nanjing, including liquefied petroleum gas (LPG) sources, gasoline vehicle emissions, iron and steel industry sources, industrial refining coke sources, solvent sources and petrochemical industry sources. One of the sources was influenced by seasonal variations: it was a diesel vehicle emission source in the spring, while it was a coal combustion source in the winter. According to the conditional probability function (CPF) method, it was found that the main contribution areas of each source were located in the easterly direction (mainly residential areas, industrial areas, major traffic routes, etc.). There were also seasonal differences in concentration, ozone formation potential (OFP), OH radical loss rate (LOH) and secondary organic aerosols potential (SOAP) for each source due to the high volatility of the summer and autumn temperatures, while combustion increases in the winter. Finally, the time series of O3 and OFP was compared to that PM2.5 and SOAP and then they were combined with the wind rose figure. It was found that O3 corresponded poorly to the OFP, while PM2.5 corresponded well to the SOAP. The reason for this was that the O3 generation was influenced by several factors (NOx concentration, solar radiation and non-local transport), among which the influence of non-local transport could not be ignored.
Collapse
|