1
|
Brand JA, Bertram MG, Cerveny D, McCallum ES, Hellström G, Michelangeli M, Palm D, Brodin T. Psychoactive pollutant alters movement dynamics of fish in a natural lake system. Proc Biol Sci 2024; 291:20241760. [PMID: 39657799 PMCID: PMC11631415 DOI: 10.1098/rspb.2024.1760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Pharmaceutical pollution poses an increasing threat to global wildlife populations. Psychoactive pharmaceutical pollutants (e.g. antidepressants, anxiolytics) are a distinctive concern owing to their ability to act on neural pathways that mediate fitness-related behavioural traits. However, despite increasing research efforts, very little is known about how these drugs might influence the behaviour and survival of species in the wild. Here, we capitalize on the development of novel slow-release pharmaceutical implants and acoustic telemetry tracking tools to reveal that exposure to environmentally relevant concentrations of the benzodiazepine pollutant temazepam alters movement dynamics and decreases the migration success of brown trout (Salmo trutta) smolts in a natural lake system. This effect was potentially owing to temazepam-exposed fish suffering increased predation compared with unexposed conspecifics, particularly at the river-lake confluence. These findings underscore the ability of pharmaceutical pollution to alter key fitness-related behavioural traits under natural conditions, with likely negative impacts on the health and persistence of wildlife populations.
Collapse
Affiliation(s)
- Jack A. Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- Institute of Zoology, Zoological Society of London, LondonNW1 4RY, UK
| | - Michael G. Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
- Department of Zoology, Stockholm University, Stockholm114 18, Sweden
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
- Australian Rivers Institute, Griffith University, Nathan, Queensland4111, Australia
| | - Daniel Palm
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå907 36, Sweden
| |
Collapse
|
2
|
Dolatimehr A, Mahyar A, Barough SPH, Mahmoodi M. Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11153. [PMID: 39539062 DOI: 10.1002/wer.11153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
This review presents a comprehensive analysis of current research on biological treatment processes for removing pharmaceutical compounds (PhCs) from wastewater. Unlike previous studies on this topic, our study specifically delves into the effectiveness and drawbacks of various treatment approaches such as traditional wastewater treatment facilities (WWTP), membrane bioreactors (MBRs), constructed wetlands (CW), and moving bed biofilm reactors (MBBR). Through the examination and synthesis of information gathered from more than 200 research studies, we have created a comprehensive database that delves into the effectiveness of eliminating 19 particular PhCs, including commonly studied compounds such as acetaminophen, ibuprofen, diclofenac, naproxen, ketoprofen, indomethacin, salicylic acid, codeine, and fenoprofen, amoxicillin, azithromycin, ciprofloxacin, ofloxacin, tetracycline, atenolol, propranolol, and metoprolol. This resource provides a depth and scope of information that was previously lacking in this area of study. Notably, among these pharmaceuticals, azithromycin demonstrated the highest removal rates across all examined treatment systems, with the exception of WWTPs, while carbamazepine consistently exhibited the lowest removal efficiencies across various systems. The analysis showcases the diverse results in removal efficiency impacted by factors such as system configuration, operation specifics, and environmental circumstances. The findings emphasize the critical need for continued innovation and research, specifically recommending the integration of advanced oxidation processes (AOPs) with existing biological treatment methods to improve the breakdown of recalcitrant compounds like carbamazepine. PRACTITIONER POINTS: Persistent pharmaceuticals harm aquatic ecosystems and human health. Biological systems show varying pharmaceutical removal efficiencies. Enhancing HRT and SRT improves removal but adds complexity and costs. Tailored treatment approaches needed based on contaminants and conditions.
Collapse
Affiliation(s)
- Armin Dolatimehr
- Master of Water and Hydraulics, Independent Researcher, Islamic Azad University, Berlin, Germany
| | - Ali Mahyar
- Brandenburg University of Technology (Cottbus-Senftenberg) Volmerstr, Berlin, Germany
| | | | - Mohammadreza Mahmoodi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Xu Y, Yang F, Ye H, Tang Q, Chen Y, Gao Z, Wang S, Zhang F, Li X. Determination of three ephedrine psychoactive substances in sewage using solid-phase extraction-ultra-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9877. [PMID: 39185853 DOI: 10.1002/rcm.9877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024]
Abstract
RATIONALE In recent years, ephedrine psychoactive substances have attracted much attention due to their prevalence in water bodies and potential threat to aquatic ecosystems. Psychoactive substances have been considered as a new type of environmental pollutant due to their unpredictable potential risks to the behavior and nervous system of non-target organisms. A rapid, sensitive, selective, and robust method for the quantification of three ephedrine psychoactive substances in sewage is needed. METHODS An ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of three ephedrine psychoactive substances in water. The optimal processing conditions were determined by optimizing the chromatography-mass spectrometry and solid-phase extraction (SPE) conditions (e.g., the SPE column, sample pH, washing, and elution), and the treatment conditions were determined; this was achieved via positive ion scanning in multiple reaction monitoring mode. Poly-Sery MCX was selected as the extraction column, with samples loaded at pH 3. And 4-mL solution of 2% formic acid (FA) aqueous solution was used as the eluent; the target compounds were eluted with 5 mL of 5% NH4OH in acetonitrile (ACN) solution. The best results were obtained when the residue was resolubulization in ACN after nitrogen evaporation. RESULTS The developed UPLC-MS/MS showed a good linear relationship in the range of 0-50.00 μg/L, with determination coefficients (R2) greater than 0.9990. The detection limit and quantitation limit were 0.05-0.10 and 0.20-0.50 μg/L, respectively. Recovery rates of the target compounds in blank sewage at three different concentrations ranged from 92.37% to 106.31%, with relative standard deviations (RSDs) of 0.77%-4.83% (n = 7). CONCLUSIONS This method has been successfully applied to the analysis of surface water and domestic sewage, and the samples were processed stably, indicating that the method is practical for the determination of ephedrine psychoactive drugs in water bodies.
Collapse
Affiliation(s)
- Yiqin Xu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
| | - Fang Yang
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
| | - Hong Ye
- Fuzhou International Travel Healthcare Centre, Fuzhou, Fujian, China
| | - Qingqiang Tang
- Technology Center of Fuzhou Customs, Fuzhou, Fujian, China
- Comprehensive Technology Service Center of Sanming Customs, Fuzhou, Sanming, China
| | - Yanwen Chen
- Fuzhou International Travel Healthcare Centre, Fuzhou, Fujian, China
| | - Zhigang Gao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Shuhua Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiaojing Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Saaristo M, Sharp S, McKenzie R, Hinwood A. Pharmaceuticals in biota: The impact of wastewater treatment plant effluents on fish in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124695. [PMID: 39122170 DOI: 10.1016/j.envpol.2024.124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Globally, pharmaceuticals and personal care products (PPCPs) are detected in surface waters receiving wastewater, yet their presence in biota, remain largely understudied. To address this, we conducted a study that measured 46 PPCPs in spot water samples and fish caught up- and downstream from wastewater treatment plants (WWTPs) in Victoria, Australia. We sampled 15 sites located along four waterways following a 3-site design: WWTP-discharge('hotspot'), 'upstream'(∼2 km) and 'downstream'(∼2 km). Spot water and fish were also sampled at reference sites >100 km from WWTP discharge (n = 3). Additionally, spot water samples were taken from WWTP effluent outflows (n = 3). From each locality, we analysed 3-12 fish (n = 131 total). In waterways, passive samplers (POCIS; ∼28d, n = 19 PPCPs) were also deployed. Individual fish (axial muscle) and water were analysed with LC-MS-MS. We found that PPCP concentrations in environmental surface water ranged from<0.02-0.97 μg/L. In WWTP effluent, the range was <0.02-1.4 μg/L. Of the 46 PPCPs analysed, 12 were detected in spot water samples and five in fish. In water, the highest concentration detected was for antidepressant venlafaxine (3 μg/L). The most frequently detected PPCPs: venlafaxine (54.9%), metoprolol (41.2%), propranolol (29.4%), carbamazepine (29.4%), caffeine (17.6%) and sulfamethoxazole (17.6%). Out of 131 fish analysed, 35 fish had detectable levels of PPCPs in the muscle tissue. The highest muscle concentrations were: venlafaxine (150 μg/kg, redfin perch), and sertraline (100 μg/kg, eel). Bioaccumulation factors ranged from 104 to 341L/kg for venlafaxine in redfins, 21-1,260L/kg for carbamazepine in redfins and eels, and 367-3,333L/kg for sertraline in eels. Based on our human health risk calculations for venlafaxine, carbamazepine, sertraline, triclosan, and caffeine, consumption of fish does not pose a significant risk to human health. Despite this, most of the detected PPCPs in surface waters exceeded 10 ng/L trigger value, which has led to further investigations by EPA. Our study highlights the need for using multiple lines of evidence for estimating risks of PPCPs.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment Protection Authority, EPA Science, Victoria, Australia.
| | - Simon Sharp
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Robert McKenzie
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority, EPA Science, Victoria, Australia
| |
Collapse
|
5
|
Fogliano C, Carotenuto R, Agnisola C, Motta CM, Avallone B. Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii. BIOLOGY 2024; 13:808. [PMID: 39452117 PMCID: PMC11505015 DOI: 10.3390/biology13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Benzodiazepines, a significant group of newly recognised water contaminants, are psychotropic medications prescribed for common anxiety symptoms and sleep disorders. They resist efficient degradation during sewage treatment and endure in aquatic environments. Their presence in aquatic matrices is increasing, particularly after the recent pandemic period, which has led many people to systematically use benzodiazepines to manage anxiety. In previous studies, an important interference of this class of drugs on both the larval and adult stages of some aquatic species has been demonstrated, with effects on behaviour and embryonic development. This study examined the influence of delorazepam, a diazepam metabolite, on Artemia salina development to gain insight into responses in naupliar larvae. Results demonstrated that treatments (1, 5, and 10 µg/L) increase the hatching percentage and induce a desynchronisation in growth. Mortality was only slightly increased (close to 10% at six days post-hatching), but lipid reserve consumption was modified, with the persistence of lipid globules at the advanced naupliar stages. Locomotory activity significantly decreased only at 10 µg/L treatment. No teratogenic effects were observed, though modest damages were noticed in the posterior trunk and eyes, two targets of environmental toxicity. The negative impact of delorazepam on Artemia salina adds to those already reported in other species of invertebrates and vertebrates, which are not yet considered targets of these drugs. This study underscores the need for further research and immediate attention to this class of contaminants and the importance of monitoring their presence during environmental risk assessments.
Collapse
Affiliation(s)
| | | | | | - Chiara Maria Motta
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (B.A.)
| | | |
Collapse
|
6
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
7
|
Grabicová K, Duchet C, Švecová H, Randák T, Boukal DS, Grabic R. The effect of warming and seasonality on bioaccumulation of selected pharmaceuticals in freshwater invertebrates. WATER RESEARCH 2024; 254:121360. [PMID: 38422695 DOI: 10.1016/j.watres.2024.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Multiple human-induced environmental stressors significantly threaten global biodiversity and ecosystem functioning. Climate warming and chemical pollution are two widespread stressors whose impact on freshwaters is likely to increase. However, little is known about the combined effects of warming on the bioaccumulation of environmentally relevant mixtures of emerging contaminants, such as pharmaceutically active compounds (PhACs) in freshwater biota. This study investigated the bioaccumulation of a mixture of 15 selected PhACs at environmentally relevant concentrations in common freshwater macroinvertebrate taxa, exposed to ambient temperatures and warming (+4 °C) during the warm and cold seasons in two outdoor mesocosm experiments. Nine PhACs (carbamazepine, cetirizine, clarithromycin, clindamycin, fexofenadine, telmisartan, trimethoprim, valsartan and venlafaxine) were dissipated faster in the warm season experiment than in the cold season experiment, while lamotrigine showed the opposite trend. The most bioaccumulated PhACs in macroinvertebrates were tramadol, carbamazepine, telmisartan, venlafaxine, citalopram and cetirizine. The bioaccumulation was taxon, season and temperature dependent, but differences could not be fully explained by the different water stability of the PhACs and their partitioning between water and leaf litter. The highest water-based bioaccumulation factors were found in Asellus and Planorbarius. Moreover, the bioaccumulation of some PhACs increased with warming in Planorbarius, suggesting that it could be used as a sentinel taxon in environmental studies of the effects of climate warming on PhAC bioaccumulation.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Claire Duchet
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
8
|
Vaudreuil MA, Munoz G, Vo Duy S, Sauvé S. Tracking down pharmaceutical pollution in surface waters of the St. Lawrence River and its major tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168680. [PMID: 37996029 DOI: 10.1016/j.scitotenv.2023.168680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
A reconnaissance survey was undertaken to evaluate the occurrence and risks of 27 pharmaceuticals and metabolites in the St. Lawrence watershed. Surface water samples were collected over a five-year period (2017-2021) along a 700-km reach of the St. Lawrence River as well as 55 tributary rivers (overall N = 406 samples). Additionally, depth water samples and sediments were collected near a major wastewater effluent. Caffeine, diclofenac, and venlafaxine were the most recurrent substances (detection rates >80 %), and extremely high levels were found near a municipal effluent (e.g., ibuprofen (860 ng/L), hydroxyibuprofen (1800 ng/L) and caffeine (7200 ng/L)). Geographical mapping and statistical analyses indicated that the St. Lawrence River water mass after the Montreal City effluent was significantly more contaminated than the other water masses, and that contamination could extend up to 70 km further downstream. This phenomenon was repeatedly observed over the five years of sampling, confirming that this is not a random trend. A slight increase in contamination was also observed near Quebec City, but concentrations rapidly declined in the estuarine transition zone. Tributaries with the highest pharmaceutical levels (ΣPharmas ∼400-900 ng/L) included the Mascouche, Saint-Régis, and Bertrand rivers, all located in the densely populated Greater Montreal area. When flowrate was factored in, the top five tributaries in terms of mass load (ΣPharmas ∼200-2000 kg/year) were the Des Prairies, Saint-François, Richelieu, Ottawa, and Yamaska rivers. All samples met the Canadian Water Quality Guideline for carbamazepine. Despite the large dilution effect of the St. Lawrence River, a risk quotient approach based on freshwater PNEC values suggested that four compounds (caffeine, carbamazepine, diclofenac, and ibuprofen) could present intermediate to high risks for aquatic organisms in terms of chronic exposure.
Collapse
Affiliation(s)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
Hubená P, Horký P, Grabic R, Grabicová K, Douda K, Slavík O, Randák T. Aggression repeatability in stressed fish in response to an environmental concentration of sertraline and lunar cycle as evidenced by brain metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106707. [PMID: 37806025 DOI: 10.1016/j.aquatox.2023.106707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Sertraline is an environmental pollutant which received magnified scientific attention due to its global presence in waters. Adverse effects on feeding, reproduction and other traits were observed mostly in unstressed aquatic organisms. Chronic stress, however, induces significant physiological changes, and the effects of sertraline in stressed fish may differ from those observed in non-stressed individuals. The current laboratory study addresses this gap by repeatedly monitoring the individual aggression of chronically stressed juvenile chub (Squalius cephalus L.) using the non-reversing mirror test at an environmental sertraline concentration of 0.022 g/L every three to four days for a period of 39 days. Specifically, it was hypothesized that the level and repeatability of aggressiveness would be (i) correlated with the concentration of sertraline/norsertraline in the fish brain; (ii) linked to the individual brain metabolomic profile described by LC-HRMS analyses; (iii) related to the lunar cycle. Sertraline led to an increase in fish aggression and more repeatable/consistent behaviour compared to control fish. While the level of sertraline in the brain did not correlate with aggressiveness, aggressive responses increased with higher norsertraline concentration. The observed aggressive behaviour also varied depending on the individual metabolomic profile of the brain. The behavioural outcome and metabolic change in fish brain may indicate that sertraline has demonstrated neuroprotective effects by reducing cortisol release. It is possible that fish exposed to sertraline could suffer a blunted stress response under the chronic stressors in the wild. Aggressiveness of both treatments evolved in time, revealing a sinusoid-like pattern corresponding to a lunar cycle with a peak of the aggressiveness during the new moon. There is a need for future studies to focus on this relationship to reveal its details and general validity. Our results emphasize that long-term behavioural variability should generally be taken into account in laboratory behavioural studies.
Collapse
Affiliation(s)
- Pavla Hubená
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic; Uppsala University, Uppsala Biomedical Centre, Department of Medical Cell Biology, Husargatan 3, 751 23 Uppsala, Sweden.
| | - Pavel Horký
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Karel Douda
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Ondřej Slavík
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 Suchdol, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| |
Collapse
|
10
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
11
|
Mir A, Shabani-Nooshabadi M, Ziaie N. Determination of methotrexate in plasma and environmental samples using an electrochemical sensor modified by UiO66-NH 2/mesoporous carbon nitride composite and synergistic signal amplification with decorated AuNPs. CHEMOSPHERE 2023; 338:139427. [PMID: 37419151 DOI: 10.1016/j.chemosphere.2023.139427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Electrochemical methods have low toxicity, fast response and, easy operation. By modifying electrochemical sensors with a conductive and porous modifier, their sensitivity and selectivity can be improved. Nanomaterials with new and extraordinary properties are a new approach in science and especially in electrochemical sensors. In this study, UiO66-NH2/mesoporous carbon nitride (M - C3N4) composite provides a porous structure for decorated Au nanoparticles (AuNPs) to prepare a potent modifier for carbon paste electrode (CPE). Due to environmental toxicity of methotrexate, its sensitive, fast and, low-cost determination in workplace environments is of great interest. So, the modified CPE was applied as a sensitivity analysis approach for methotrexate in plasma samples. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as techniques to optimize the analysis and measurement of methotrexate. To measure this drug, several effective parameters were optimized and a calibration curve was drawn under optimal conditions. The calibration curve showed a linear range from 0.5 to 150 μM with a detection limit of 0.15 μM for methotrexate. Examining the repeatability of the response of one electrode and multiple electrodes under optimal conditions shows the high precision of the developed method. Finally, this developed method based on UiO66-NH2/M-gC3N4/AuNPs|CPE was used to determine the methotrexate in the plasma sample using the standard addition method.
Collapse
Affiliation(s)
- Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran
| | - Mehdi Shabani-Nooshabadi
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Neda Ziaie
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
12
|
Sancho Santos ME, Horký P, Grabicová K, Steinbach C, Hubená P, Šálková E, Slavík O, Grabic R, Randák T. From metabolism to behaviour - Multilevel effects of environmental methamphetamine concentrations on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163167. [PMID: 37003339 DOI: 10.1016/j.scitotenv.2023.163167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Methamphetamine (METH) is a concerning drug of abuse that produces strong psychostimulant effects. The use of this substance, along with the insufficient removal in the sewage treatment plants, leads to its occurrence in the environment at low concentrations. In this study, brown trout (Salmo trutta fario) were exposed to 1 μg/L of METH as environmental relevant concentration for 28 days in order to elucidate the complex effects resulting from the drug, including behaviour, energetics, brain and gonad histology, brain metabolomics, and their relations. Trout exposed to METH displayed lowered activity as well as metabolic rate (MR), an altered morphology of brain and gonads as well as changes in brain metabolome when compared to controls. Increased activity and MR were correlated to an increased incidence of histopathology in gonads (females - vascular fluid and gonad staging; males - apoptotic spermatozoa and peritubular cells) in exposed trout compared to controls. Higher amounts of melatonin in brain were detected in exposed fish compared to controls. Tyrosine hydroxylase expression in locus coeruleus was related to the MR in exposed fish, but not in the control. Brain metabolomics indicated significant differences in 115 brain signals between control and METH exposed individuals, described by the coordinates within the principal component analyses (PCA) axes. These coordinates were subsequently used as indicators of a direct link between brain metabolomics, physiology, and behaviour - as activity and MR varied according to their values. Exposed fish showed an increased MR correlated with the metabolite position in PC1 axes, whereas the control had proportionately lower MR and PC1 coordinates. Our findings emphasize the possible complex disturbances in aquatic fauna on multiple interconnected levels (metabolism, physiology, behaviour) as a result of the presence of METH in aquatic environments. Thus, these outcomes can be useful in the development of AOP's (Adverse Outcome Pathways).
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Behavioural Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
13
|
Wang Z, Wang W, Yang F. Species-specific bioaccumulation and risk prioritization of psychoactive substances in cultured fish. CHEMOSPHERE 2023; 325:138440. [PMID: 36934481 DOI: 10.1016/j.chemosphere.2023.138440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Psychoactive substances are becoming new concern in environmental research with their increasing applications and the potential threats to fishery production as these substances could alter the behavior of fish and consequently affect the yield and quality of cultured fish. In this study, the accumulation and risk of twenty psychoactive substances were investigated in five species of cultured fish in Eastern China. The results showed that the total concentrations of these twenty psychoactive substances ranged from 0.15 to 0.92 ng mL-1 in the plasma among the five species of cultured fish with an order of perch > crucian carp > bighead carp > grass carp > silver carp. Diazepam (DIAZ) and methamphetamine (MAMP) were identified as the most frequently detected compounds, which were found in 100% and 93% of the samples with a median concentration of 0.15 and 0.12 ng mL-1 in the plasma, respectively. Although all of the psychoactive substances posed low or negligible risk, species-specific analysis of risk prioritization revealed that alprazolam, MAMP, temazepam and DIAZ exhibited the greatest potentials of hazard to all species of the cultured fish but with a species-dependent variation. These findings suggest that the adverse effects of psychoactive substances on fishery production, especially on different species, should be considered.
Collapse
Affiliation(s)
- Zeyuan Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Wei Wang
- Zhejiang Institute of Hydraulics and Estuary, Hangzhou, 310020, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
14
|
Iqbal A, Ložek F, Soto I, Kaur D, Grabicová K, Kuklina I, Randák T, Malinovska V, Buřič M, Kozák P. Effect of psychoactive substances on cardiac and locomotory activity of juvenile marbled crayfish Procambarus virginalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115084. [PMID: 37267780 DOI: 10.1016/j.ecoenv.2023.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Pharmaceutically active compounds are common and increasing in the aquatic environment. Evidence suggests they have adverse effects on non-target organisms, and they are classified as emerging pollutants for a variety of aquatic organisms. To determine the effects of environmentally relevant levels of psychoactive compounds on non-target organisms, we analyzed cardiac and locomotory activity in early developmental stages of marbled crayfish Procambarus virginalis. Responses to sertraline, methamphetamine, and a mixture of citalopram, oxazepam, sertraline, tramadol, venlafaxine, and methamphetamine at a concentration of 1 µg L-1 of each compound were assessed. On day four of exposure, cardiac activity was recorded for 5 min, and on day eight, locomotory activity was recorded for 15 min. There was a significant increase (p < 0.01) in heart rate in methamphetamine-exposed and Mix-exposed juveniles compared to the unexposed control and there was significant difference (p < 0.01) in proportion of time (activity %) was observed with sertraline-exposed, whereas velocity, and distance moved did not significantly differ (p > 0.05) in exposed and control animals. These findings revealed that low concentrations of chemicals and their mixtures can modify the physiological state of aquatic animals without outward manifestations (activity, distance moved, and velocity). Aquatic animals can be impacted earlier than is visible, but effects can potentially lead to substantial changes in populations and in ecosystem processes. Additional research to investigate chemical combinations, exposure systems, and organism physiological and molecular responses may provide evidence of broad impact of environmental pharmaceuticals.
Collapse
Affiliation(s)
- Azeem Iqbal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Filip Ložek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Davinder Kaur
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Iryna Kuklina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Viktoriia Malinovska
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
15
|
Ivankovic K, Jambrosic K, Mikac I, Kapetanovic D, Ahel M, Terzic S. Multiclass determination of drug residues in water and fish for bioaccumulation potential assessment. Talanta 2023; 264:124762. [PMID: 37276678 DOI: 10.1016/j.talanta.2023.124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
In this work, a wide-scope liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of environmental levels of multiclass drugs and their metabolites in water and fish samples was developed. The method allowed the reliable determination of 44 drugs, covering a rather wide range of chemistries and physicochemical characteristics. In order to obtain a reliable and robust analytical protocol, different combinations of extraction and cleanup techniques were systematically examined. Aqueous samples were extracted using a simple Oasis HLB SPE enrichment protocol with pH-optimized sample percolation (pH 3). The extraction of cryo-homogenized biota samples was performed using double extraction with MeOH basified with 0.5% NH3, which allowed high extraction recoveries for all target analytes. The problem of the coextracted lipid matrix, which is known to be the key obstacle for reliable biota analysis, was systematically examined in a series of model cleanup experiments. A combination of cryo-precipitation, filtration, and HLB SPE cleanup was proposed as a protocol, which allowed reliable and robust analysis of all target compounds at low ng/g levels. At the final conditions, the method which was validated at three concentration levels showed high extraction recoveries (68-97%), acceptable matrix effects (12 to -32%), accuracies (81-129%), and reproducibilities (3-32%) for all analytes. The developed method was used to determine drug concentrations in river water and in feral freshwater fish, including whole fish and muscle tissue, from the Sava River (Croatia), in order to estimate their corresponding bioaccumulation potential. With respect to bioaccumulation potential in whole fish and fish muscle, the most relevant drugs were lisinopril, sertraline, terbinafine, torsemide, diazepam, desloratadine, and loratadine with estimated bioaccumulation factors ranging from 20 to 838 and from 1 to 431, respectively.
Collapse
Affiliation(s)
- Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Iva Mikac
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Damir Kapetanovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
16
|
Yan Z, Chen Y, Zhang X, Lu G. The metabolites could not be ignored: A comparative study of the metabolite norfluoxetine with its parent fluoxetine on zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106467. [PMID: 36870174 DOI: 10.1016/j.aquatox.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The ubiquitous pharmaceuticals in aquatic environments have attracted huge attention due to their significant risks to humans and ecosystems. However, even though the knowledge of the negative effects induced by the parent pharmaceuticals is quite extensive, little is known about their metabolites for a long time. This study provides systematical knowledge about the potential toxicity of metabolite norfluoxetine and its parent fluoxetine on zebrafish (Danio rerio) at the early life stage. The results showed that the metabolite norfluoxetine had similar acute toxicity in fish with the parent fluoxetine. For the altered fish development, there was no significant difference in most cases between the two pharmaceuticals. Compared to the control, the metabolite markedly inhibited the locomotor behavior under light-to-dark transitions, which was comparable to the parent. Norfluoxetine could easily accumulate but hardly eliminate from fish, relative to fluoxetine. In addition, the accumulated fluoxetine in zebrafish may rapidly metabolize to norfluoxetine and then be eliminated through different metabolic pathways. The functional genes related to serotonergic process (5-ht1aa, 5-ht2c, slc6a4b, and vmat), early growth (egr4), and circadian rhythm (per2) were downregulated by both the norfluoxetine and fluoxetine, indicative of the same mode-of-action of norfluoxetine with its parent in these functions. Meanwhile, the alterations caused by norfluoxetine were more pronounced than that of fluoxetine in the genes of 5-ht2c, slc6a4b, vmat, and per2. The molecular docking also confirmed that norfluoxetine could bind with serotonin transporter protein in the same as fluoxetine with a lower binding free energy. Overall, the metabolite norfluoxetine could induce similar and even more toxic effects on zebrafish with the same mode of action. The different and binding energy of the metabolite norfluoxetine and its parent fluoxetine on zebrafish may be responsible for the differentiated effects. It highlights the risks of the metabolite norfluoxetine in the aquatic environment could not be ignored.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiadong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
17
|
Burket SR, Sims JL, Dorman R, Kemble N, Brunson E, Steevens JA, Brooks BW. Bioaccumulation Kinetics of Model Pharmaceuticals in the Freshwater Unionid Pondmussel, Sagittunio subrostratus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1183-1189. [PMID: 36808626 DOI: 10.1002/etc.5590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/09/2023]
Abstract
Bioaccumulation of ionizable pharmaceuticals has been increasingly studied, with most reported aquatic tissue concentrations in field or laboratory experiments being from fish. However, higher levels of antidepressants have been observed in bivalves compared with fish from effluent-dominated and dependent surface waters. Such observations may be important for biodiversity because approximately 70% of freshwater bivalves in North America are considered to be vulnerable to extinction. Because experimental bioaccumulation information for freshwater bivalves is lacking, we examined accumulation dynamics in the freshwater pondmussel, Sagittunio subrostratus, following exposure to a model weak acid, acetaminophen (mean (±SD) = 4.9 ± 1 µg L-1 ), and a model weak base, sertraline (mean (±SD) = 1.1 ± 1.1 µg L-1 ) during 14-day uptake and 7-day depuration experiments. Pharmaceutical concentrations were analyzed in water and tissue using isotope dilution liquid chromatography-tandem mass spectrometry. Mussels accumulated two orders of magnitude higher concentrations of sertraline (31.7 ± 9.4 µg g-1 ) compared to acetaminophen (0.3 ± 0.1 µg g-1 ). Ratio and kinetic-based bioaccumulation factors of 28,836.4 (L kg-1 ) and 34.9 (L kg-1 ) were calculated for sertraline and for acetaminophen at 65.3 (L kg-1 ) and 0.13 (L kg-1 ), respectively. However, after 14 days sertraline did not reach steady-state concentrations, although it was readily eliminated by S. subrostratus. Acetaminophen rapidly reached steady-state conditions but was not depurated over a 7-day period. Future bioaccumulation studies of ionizable pharmaceuticals in freshwater bivalves appear warranted. Environ Toxicol Chem 2023;00:1-7. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- S Rebekah Burket
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Texas, Waco, USA
| | - Jaylen L Sims
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Texas, Waco, USA
| | - Rebecca Dorman
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Nile Kemble
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Eric Brunson
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Jeffery A Steevens
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Texas, Waco, USA
| |
Collapse
|
18
|
Chang X, Shen Y, Yun L, Wang X, Feng J, Yang G, Meng X, Zhang J, Su X. The antipsychotic drug olanzapine altered lipid metabolism in the common carp (Cyprinus carpio L.): Insight from the gut microbiota-SCFAs-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159054. [PMID: 36170916 DOI: 10.1016/j.scitotenv.2022.159054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Olanzapine (OLA) is a common drug used to treat schizophrenia and has recently come under increasing scrutiny as an emerging contaminant. However, its impact on lipid metabolism in fish and its mechanisms of action are not well understood. In this study, common carp were exposed to 0, 10, 100, and 250 μM OLA for 60 days. The results indicated that OLA exposure increased weight gain, total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG) and decreased high-density lipoprotein (HDL). In addition, lipids accumulated in the liver of the common carp. To explore the underlying mechanisms of action, gut microbiota, short-chain fatty acids (SCFAs), liver transcripts, and genes related to lipid metabolism were measured. It was discovered that OLA exposure altered the common carp gut microbiota composition and increased the abundance of SCFA-producing bacteria. Correspondingly, this study showed that OLA exposure increased the levels of SCFAs, which are highly relevant to the development of lipid accumulation. Transcriptome sequencing results indicated that OLA exposure could change lipid metabolism signalling pathways, including steroid biosynthesis, the PPAR signalling pathway, asglycerophospholipid metabolism, glycerolipid metabolism, and fatty acid metabolic pathways of the common carp. Additionally, OLA exposure interrupted lipid metabolism by means of significant upregulation of lipid synthesis-related genes, including pparγ, srebp1, and fas. OLA exposure also resulted in significant lipolysis-related gene downregulation, including cpt, lpl, hsl, and pparα. The results of this study indicated that contamination of aquatic environments with OLA alters lipid metabolism in common carp. In addition, the underlying mechanism might be due in part to the modulation of the gut microbiota-SCFA-PPAR signalling pathway.
Collapse
Affiliation(s)
- Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yihao Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lili Yun
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Junchang Feng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xi Su
- Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453007, PR China.
| |
Collapse
|
19
|
Chen X, Liu S, Jiang R, Luan T, Ouyang G. Rapid detection and speciation of illicit drugs via a thin-film microextraction approach for wastewater-based epidemiology study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156888. [PMID: 35753476 DOI: 10.1016/j.scitotenv.2022.156888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
High detection frequency of illicit drugs in water samples urges the development of rapid detection method for wastewater-based epidemiology (WBE) study. Here, we first developed a fast, convenient, and cost-effective method by combining thin-film microextraction (TFME) with gas chromatography-mass spectrometry (GC-MS) for sensing illicit drugs in wastewater sample. A divinylbenzene particle-loaded membrane was prepared by dip coating on a copper mesh. The sampling conditions of three illicit drugs were optimized and the performance of the proposed method was evaluated. The limit of detection was 5.5 2.0, and 1.1 ng L-1 for methamphetamine (MAMP), ketamine (KET), and methaqualone (MEQA), respectively, with acceptable precision (< 6.1 % for membrane to membrane reproducibility) and recovery from influent water (95 % - 111 %). Then, the proposed method was applied to study the occurrence and distribution of the target compounds in a wastewater treatment plant. The presence of methamphetamine, ketamine, and methaqualone was confirmed and their concentrations in the influent sample were 57 ± 8, 40 ± 4, and 75 ± 2 ng L-1, respectively. The speciation of the target compounds in different ponds was also investigated. Results showed that the content of organic matter and the pH of the sample significantly affected the binding state of the compounds. This work provides an efficient and accurate analytical protocol for WBE investigation of illicit drugs.
Collapse
Affiliation(s)
- Xinlv Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and safety, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
20
|
Lin W, Zhao B, Ping S, Zhang X, Ji Y, Ren Y. Ultraviolet oxidative degradation of typical antidepressants: Pathway, product toxicity, and DFT theoretical calculation. CHEMOSPHERE 2022; 305:135440. [PMID: 35753423 DOI: 10.1016/j.chemosphere.2022.135440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The ubiquity of antidepressants in the environment has posed a potential threat to eco-systematic safety. In this study, six kinds of antidepressants including fluoxetine (FLU), paroxetine (PAR), sertraline (SER), fluvoxamine (FLX), citalopram (CTP), and venlafaxine (VEN) were selected to explore their degrading kinetics, transformation pathways, and the acute toxicity of the reaction solution during UV oxidation. The results showed that the order of the photodegradation rate was FLU > PAR > SER > CTP > FLX > VEN. The calculation results of density functional theory (DFT) and molecular orbital theory showed that it was positively correlated with the frontier electron density of drugs and negatively correlated with the HOMO-LUMO gap, respectively. Intermediates were identified with UHPLC-Q-TOF/MS/MS to propose the possible degradation pathways of the drugs and the most likely directions of the reactions were determined by the single point energy calculation. The results of toxicity tests indicated that the acute toxicity of the reaction solution of PAR did not change significantly. The photolysates toxicity of FLU, SER, and FLX decreased at the end of the reaction, while that of CTP and VEN was increased by 1.5 and 1.3 times compared with the parent compound, respectively. Toxicity predictions by the quantitative structure activity relationship (QSAR) model showed that except FLU-162, FLX-174, and VEN-230, other degradation products have developmental toxicity. The results revealed the transformation pathways of these drugs under the UV disinfection process in wastewater treatment plants, especially the formation of toxic by-products during the disinfection process.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Baocong Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong, Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Senwen Ping
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaohan Zhang
- Shenzhen Shenshui Water Resources Consulting Co..Ltd, Shenzhen, 518003, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong, Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, China.
| |
Collapse
|
21
|
Grabicová K, Vojs Staňová A, Švecová H, Nováková P, Kodeš V, Leontovyčová D, Brooks BW, Grabic R. Invertebrates differentially bioaccumulate pharmaceuticals: Implications for routine biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119715. [PMID: 35809709 DOI: 10.1016/j.envpol.2022.119715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Surface water quality monitoring programs have been developed to examine traditional contaminants, such as persistent organic pollutants (POPs). However, urbanization, which is increasing around the world, is increasing discharge of treated wastewater and raw sewage in many regions. Pharmaceuticals and their metabolites represent typical markers of such trajectories in urbanization. We selected an ongoing monitoring program, which was designed for routine surveillance of nonionizable POPs in different aquatic matrices, to examine the occurrence of 67 pharmaceuticals and their metabolites in water and multiple bioindicator matrices: benthic invertebrates, juvenile fish, and adult fish (plasma and muscle tissue) from ten river systems with varying levels of watershed development. In addition, we placed zebra mussels and passive samplers in situ for a fixed period. A statistically significant relationship between pharmaceutical levels in passive samplers and biota was found for caged zebra mussels and benthic invertebrates, while only a few pharmaceuticals were identified in fish matrices. Invertebrates, which have received relatively limited study for pharmaceutical bioaccumulation, accumulated more pharmaceuticals than fish, up to thirty different substances. The highest concentration was observed for sertraline in zebra mussels and telmisartan in benthic invertebrates (83 and 31 ng/g ww, respectively). Our results across diverse study systems indicate that ongoing surface water quality monitoring programs, which were originally designed for traditional organic pollutants, need to be revised to account for bioaccumulation dynamics of pharmaceuticals and other ionizable contaminants. Aquatic monitoring programs routinely examine accumulation of nonionizable organic pollutants; however, we identified that these efforts need to be revised to account for bioaccumulation of ionizable contaminants, which reached higher levels in invertebrates than in fish.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Section of Water Quality, Na Šabatce 17, CZ-143 06, Prague 4, Czech Republic
| | - Drahomíra Leontovyčová
- Czech Hydrometeorological Institute, Section of Water Quality, Na Šabatce 17, CZ-143 06, Prague 4, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
22
|
Contribution of Illicit Drug Use to Pharmaceutical Load in the Environment: A Focus on Sub-Saharan Africa. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:9056476. [PMID: 35719855 PMCID: PMC9200571 DOI: 10.1155/2022/9056476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Illicit drug abuse and addiction are universal issues requiring international cooperation and interdisciplinary and multisectoral solutions. These addictive substances are utilized for recreational purposes worldwide, including in sub-Saharan Africa. On the other hand, conventional wastewater treatment facilities such as waste stabilization ponds lack the design to remove the most recent classes of pollutants such as illicit drug abuse. As a result, effluents from these treatment schemes contaminate the entire ecosystem. Public health officials are concerned about detecting these pollutants at alarming levels in some countries, with potential undesirable effects on aquatic species and increased health hazards through exposure to contaminated waters or recycling treated or untreated effluents in agriculture. Contaminants including illicit substances enter the environment by human excreta following illegal intake, spills, or through direct dumping, such as from clandestine laboratories, when their manufacturer does not follow accepted production processes. These substances, like other pharmaceuticals, have biological activity and range from pseudopersistent to highly persistent compounds; hence, they persist in the environment while causing harm to the ecosystem. The presence of powerful pharmacological agents such as cocaine, morphine, and amphetamine in water as complex combinations can impair aquatic organisms and human health. These compounds can harm human beings and ecosystem health apart from their low environmental levels. Therefore, this article examines the presence and levels of illicit substances in ecological compartments such as wastewater, surface and ground waters in sub-Saharan Africa, and their latent impact on the ecosystem. The information on the occurrences of illicit drugs and their metabolic products in the sub-Saharan Africa environment and their contribution to pharmaceutical load is missing. In this case, it is important to research further the presence, levels, distribution, and environmental risks of exposure to human beings and the entire ecosystem.
Collapse
|
23
|
Environmental Occurrence and Predicted Pharmacological Risk to Freshwater Fish of over 200 Neuroactive Pharmaceuticals in Widespread Use. TOXICS 2022; 10:toxics10050233. [PMID: 35622646 PMCID: PMC9143194 DOI: 10.3390/toxics10050233] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
There is a growing concern that neuroactive chemicals released into the environment can perturb wildlife behaviour. Among these chemicals, pharmaceuticals such as antidepressants and anxiolytics have been receiving increasing attention, as they are specifically prescribed to modify behavioural responses. Many laboratory studies have demonstrated that some of these compounds can affect various aspects of the behaviour of a range of aquatic organisms; however, these investigations are focused on a very small set of neuroactive pharmaceuticals, and they often consider one compound at a time. In this study, to better understand the environmental and toxicological dimension of the problem, we considered all pharmaceuticals explicitly intended to modulate the central nervous system (CNS), and we hypothesised that these compounds have higher probability of perturbing animal behaviour. Based on this hypothesis, we used the classification of pharmaceuticals provided by the British National Formulary (based on their clinical applications) and identified 210 different CNS-acting pharmaceuticals prescribed in the UK to treat a variety of CNS-related conditions, including mental health and sleep disorders, dementia, epilepsy, nausea, and pain. The analysis of existing databases revealed that 84 of these compounds were already detected in surface waters worldwide. Using a biological read-across approach based on the extrapolation of clinical data, we predicted that the concentration of 32 of these neuroactive pharmaceuticals in surface waters in England may be high enough to elicit pharmacological effects in wild fish. The ecotoxicological effects of the vast majority of these compounds are currently uncharacterised. Overall, these results highlight the importance of addressing this environmental challenge from a mixture toxicology and systems perspective. The knowledge platform developed in the present study can guide future region-specific prioritisation efforts, inform the design of mixture studies, and foster interdisciplinary efforts aimed at identifying novel approaches to predict and interpret the ecological implications of chemical-induced behaviour disruption.
Collapse
|
24
|
Let M, Černý J, Nováková P, Ložek F, Bláha M. Effects of Trace Metals and Municipal Wastewater on the Ephemeroptera, Plecoptera, and Trichoptera of a Stream Community. BIOLOGY 2022; 11:648. [PMID: 35625376 PMCID: PMC9137756 DOI: 10.3390/biology11050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Abundances of EPT larvae sampled in a Central European locality affected by mining and smelting, as well as by the continual inflow of treated communal wastewaters (WWs), were recorded. High concentrations of trace metals in water (maximum 1200 µg·L-1 for zinc) and sediments (maximum 140,000 mg·kg-1 in dry weight for lead) were found at the most contaminated sites. The highest loads of pesticides, pharmaceuticals, and illegal drugs were found under the WW effluent. Other associated factors such as the physicochemical parameters of the water and alterations to microhabitats were also evaluated and taken into account. Although EPT richness was lower at affected sites, abundances did not fall. Stoneflies were dominant at unaffected sites, while caddisflies dominated at affected sites. Only baetid mayflies were detected at the sites contaminated by trace metals and WWs; ephemerellid, heptageniid, and leptophlebiid mayflies were absent from these sites. The site contaminated by trace metals was also inhabited by numerous limnephilid caddisflies, in which limb malformations were detected in up to 11.8% of all specimens of a single taxon. Downstream from the entrance of the WWs, the locality was dominated by hydropsychid caddisflies. The increasing prevalence of predator or passive filter-feeding strategies in these EPT communities was significantly related to increasing water conductivity and acute ecosystemic exposure to 'poorly treated' WWs.
Collapse
Affiliation(s)
- Marek Let
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.Č.); (P.N.); (F.L.)
| | | | | | | | - Martin Bláha
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.Č.); (P.N.); (F.L.)
| |
Collapse
|
25
|
Sengar A, Vijayanandan A. Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152132. [PMID: 34863739 DOI: 10.1016/j.scitotenv.2021.152132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals have become contaminants of emerging concern due to their toxicity towards aquatic life and pseudo persistent nature in the environment. Membrane bioreactor (MBR) is one such technology that has the potential to act as a barrier against the release of pharmaceuticals into the environment. Fouling is the deposition of the constituents of the mixed liquor on the membrane surface and it limit the world-wide applicability of MBRs. To remove foulant layer, aggressive chemicals and extra cost consideration in terms of energy are required. Extracellular polymeric substances (EPS) and soluble microbial products (SMP) are recognized as principal foulants. Presence of pharmaceuticals has been found to increase the fouling in MBRs. Fouling aggravates in proportion to the concentration of pharmaceuticals. Pharmaceuticals exert chemical stress in microbes, hence forcing them to secrete more EPS/SMP. Pharmaceuticals alter the composition of the foulants and affect microbial metabolism, thereby inflicting direct/indirect effects on fouling. Pharmaceuticals have been found to increase or decrease the size of sludge flocs, however the exact mechanism that govern the floc size change is yet to be understood. Different techniques such as coupling advanced oxidation processes with MBR, adding activated carbon, bioaugmenting MBR with quorum quenching strains have shown to reduce fouling in MBRs treating pharmaceutical wastewater. These fouling mitigation techniques work on reducing the EPS/SMP concentration, thereby alleviating fouling. The present review provides a comprehensive understanding of the effects induced by pharmaceuticals in the activated sludge characteristics and identifying the fouling mechanism. Furthermore, significant knowledge gaps and recent advances in fouling mitigation strategies are discussed. This review has also made an effort to highlight the positive aspect of the foulant layer in retaining pharmaceuticals and antibiotic resistance genes, thereby suggesting a possible delicate trade-off between the flux decline and enhanced removal of pharmaceuticals.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
26
|
Świacka K, Maculewicz J, Kowalska D, Caban M, Smolarz K, Świeżak J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms - Current state of knowledge. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127350. [PMID: 34607031 DOI: 10.1016/j.jhazmat.2021.127350] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In the last decades an increasing number of studies has been published concerning contamination of aquatic ecosystems with pharmaceuticals. Yet, the distribution of these chemical compounds in aquatic environments raises many questions and uncertainties. Data on the presence of selected pharmaceuticals in the same water bodies varies significantly between different studies. Therefore, since early 1990 s, wild organisms have been used in research on environmental contamination with pharmaceuticals. Indeed, pharmaceutical levels measured in biological matrices may better reflect their overall presence in the aquatic environments as such levels include not only direct exposure of a given organisms to a specific pollutant but also processes such as bioaccumulation and biomagnification. In the present paper, data concerning occurrence of pharmaceuticals in aquatic biota was reviewed. So far, pharmaceuticals have been studied mainly in fish and molluscs, with only a few papers available on crustaceans and macroalgae. The most commonly found pharmaceuticals both in freshwater and marine organisms are antibiotics, antidepressants and NSAIDS while there is no information about the presence of anticancer drugs in aquatic organisms. Furthermore, only single studies were conducted in Africa and Australia. Hence, systematization of up-to-date knowledge, the main aim of this review, is needed for further research targeting.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Świeżak
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
27
|
Jin H, Yang D, Wu P, Zhao M. Environmental occurrence and ecological risks of psychoactive substances. ENVIRONMENT INTERNATIONAL 2022; 158:106970. [PMID: 34753034 DOI: 10.1016/j.envint.2021.106970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Psychoactive substances are ubiquitous in the environment at low concentrations, and tobacco, cannabis, etc. are all widely-existing examples. Given their potent biological activity, psychoactive substances are suspected to be harmful to the environment, and reports of their ecological risks are gradually increasing. Since the 1990s, the investigations into psychoactive substances have made remarkable progress, yet some research fields still need to be modernised. For example, the unification of standardised analytical methods as well as the supplementation of occurrence literature. In addition, a relatively lagging risk evaluation system caused by a lack of toxicity data is particularly in need of improvement. The purpose of this article is to develop a review of current research on psychoactive substances, including analytical methods, distribution in environmental compartments, and ecological risk assessment, as well as to point out deficiencies and development prospects and to offer motivation for enhancing the research level in this field.
Collapse
Affiliation(s)
- Hangbiao Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Dan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Pengfei Wu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
28
|
Hubená P, Horký P, Grabic R, Grabicová K, Douda K, Slavík O, Randák T. Prescribed aggression of fishes: Pharmaceuticals modify aggression in environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112944. [PMID: 34715502 DOI: 10.1016/j.ecoenv.2021.112944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Traces of psychoactive substances have been found in freshwaters globally. Fish are chronically exposed to pollution at low concentrations. The changes of aggressive behaviour of chub (Squalius cephalus) were determined under the exposure to four psychoactive compounds (sertraline, citalopram, tramadol, methamphetamine) at environmentally relevant concentrations of 1 μg/L for 42 days. We tested whether (A) the behavioural effect of compounds varies within a single species; (B) there is a correlation between the individual brain concentration of the tested pollutants and fish aggression using the novel analysis of pollutants in brain; and (C) there is detectable threshold to effective pollutant concentration in brain. Behaviour and pollutant concentrations in brain were determined repeatedly (1st, 7th, 21st, 42nd and 56th days), including a two-week-long depuration period. The effect of particular compounds varied. Citalopram and methamphetamine generally increased the fish aggression, while no such effect was found after exposure to tramadol or sertraline. The longitudinal analysis showed an aggression increase after depuration, indicating the presence of withdrawal effects in methamphetamine- and tramadol-exposed fish. The analysis of pollutant concentration in brain revealed a positive linear relationship of citalopram concentration and aggression, while no such effect was detected for other compounds and/or their metabolites. Structural break analyses detected concentration thresholds of citalopram (1 and 3 ng/g) and sertraline (1000 ng/g) in brain tissue, from which a significant effect on behaviour was manifested. While the effect of sertraline was not detected using traditional approaches, there was a reduction in aggression after considering its threshold concentration in the brain. Our results suggest that pursuing the concentration threshold of psychoactive compounds can help to reduce false negative results and provide more realistic predictions on behavioural outcomes in freshwater environments, especially in the case of compounds with bioaccumulation potential such as sertraline.
Collapse
Affiliation(s)
- Pavla Hubená
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Pavel Horký
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Karel Douda
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Ondřej Slavík
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| |
Collapse
|
29
|
Mason RT, Martin JM, Tan H, Brand JA, Bertram MG, Tingley R, Todd-Weckmann A, Wong BBM. Context is Key: Social Environment Mediates the Impacts of a Psychoactive Pollutant on Shoaling Behavior in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13024-13032. [PMID: 34544238 DOI: 10.1021/acs.est.1c04084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Behavior-modifying drugs, such as antidepressants, are increasingly being detected in waterways and aquatic wildlife around the globe. Typically, behavioral effects of these contaminants are assessed using animals tested in social isolation. However, for group-living species, effects seen in isolation may not reflect those occurring in realistic social settings. Furthermore, interactions between chemical pollution and other stressors, such as predation risk, are seldom considered. This is true even though animals in the wild are rarely, if ever, confronted by chemical pollution as a single stressor. Here, in a 2 year multigenerational experiment, we tested for effects of the antidepressant fluoxetine (measured concentrations [±SD]: 42.27 ± 36.14 and 359.06 ± 262.65 ng/L) on shoaling behavior in guppies (Poecilia reticulata) across different social contexts and under varying levels of perceived predation risk. Shoaling propensity and shoal choice (choice of groups with different densities) were assessed in a Y-maze under the presence of a predatory or nonpredatory heterospecific, with guppies tested individually and in male-female pairs. When tested individually, no effect of fluoxetine was seen on shoaling behavior. However, in paired trials, high-fluoxetine-exposed fish exhibited a significantly greater shoaling propensity. Hence, effects of fluoxetine were mediated by social context, highlighting the importance of this fundamental but rarely considered factor when evaluating impacts of environmental pollution.
Collapse
Affiliation(s)
- Rachel T Mason
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3152, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Västerbotten 907 36, Sweden
| | - Reid Tingley
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Andrew Todd-Weckmann
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
30
|
Cerveny D, Fick J, Klaminder J, Bertram MG, Brodin T. Exposure via biotransformation: Oxazepam reaches predicted pharmacological effect levels in European perch after exposure to temazepam. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112246. [PMID: 33901781 DOI: 10.1016/j.ecoenv.2021.112246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
It is generally expected that biotransformation and excretion of pharmaceuticals occurs similarly in fish and mammals, despite significant physiological differences. Here, we exposed European perch (Perca fluviatilis) to the benzodiazepine drug temazepam at a nominal concentration of 2 µg L-1 for 10 days. We collected samples of blood plasma, muscle, and brain in a time-dependent manner to assess its bioconcentration, biotransformation, and elimination over another 10 days of depuration in clean water. We observed rapid pharmacokinetics of temazepam during both the exposure and depuration periods. The steady state was reached within 24 h of exposure in most individuals, as was complete elimination of temazepam from tissues during depuration. Further, the biologically active metabolite oxazepam was produced via fish biotransformation, and accumulated significantly throughout the exposure period. In contrast to human patients, where a negligible amount of oxazepam is created by temazepam biotransformation, we observed a continuous increase of oxazepam concentrations in all fish tissues throughout exposure. Indeed, oxazepam accumulated more than its parent compound, did not reach a steady state during the exposure period, and was not completely eliminated even after 10 days of depuration, highlighting the importance of considering environmental hazards posed by pharmaceutical metabolites.
Collapse
Affiliation(s)
- Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic.
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jonatan Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
31
|
Chen H, Liang X, Gu X, Zeng Q, Mao Z, Martyniuk CJ. Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124974. [PMID: 33450510 DOI: 10.1016/j.jhazmat.2020.124974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most prevalent antidepressants detected in aquatic environments, but its impact on fish behavior and growth remain poorly understood. As such, behavior and growth were assessed in yellow catfish (Tachysurus fulvidraco) following SER exposure. SER induced shoaling, reduced food consumption and growth, and increased cannibalism at environmentally relevant concentrations. To ascertain toxicity mechanisms, acetylcholinesterase (AChE) activity and transcripts related to growth and feeding were measured. AChE activity was increased in fish exposed to 10 and 100 μg/L SER. Transcript levels of neuropeptide Y, somatostatin, growth hormone, and insulin growth factor 1 were reduced in the brain following SER exposure. RNA-seq conducted in brain and liver revealed that gene networks associated with feeding and growth (i.e. leptin expression networks in the brain and insulin signaling pathways in the liver) were altered, proposed to be associated with the decreased food intake and growth. The brain also accumulated SER, which may relate to neurobehavioral responses. Lastly, the main metabolite of SER, norsertraline, was detected in the liver, and may also relate to toxicity. This study uncovers mechanisms and key events proposed to lead to impaired behavior and growth after exposure to some antidepressants.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Caban M, Lis H, Stepnowski P. Limitations of Integrative Passive Samplers as a Tool for the Quantification of Pharmaceuticals in the Environment - A Critical Review with the Latest Innovations. Crit Rev Anal Chem 2021; 52:1386-1407. [PMID: 33673780 DOI: 10.1080/10408347.2021.1881755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review starts with a presentation of the theory of kinetic uptake by passive sampling (PS), which is traditionally used to distinguish between integrative and equilibrium samplers. Demonstrated limitations of this model for the passive sampling of pharmaceuticals from water were presented. Most notably, the contribution of the protective membrane in the resistance to mass transfer of lipophilic analytes and the well documented effect of external parameters on sampling rates contributed to the greatest uncertainty in PS application. The diffusion gradient in thin layer (DGT) technique seems to reduce the effect of external parameters (e.g., flow rate) to some degree. The laboratory-determined integrative uptake periods over defined sampler deployments was compared, and the discrepancy found suggests that the most popular Polar Organic Chemical Integrative Sampler (POCIS) could in some cases utilized as an equilibrium sampler. This assertion is supported by own calculations for three pharmaceuticals with extremely different lipophilic characters. Finally, the reasons performance reference compounds (PRCs) are not recommended for the reduction in uncertainty of the TWAC found by adsorptive samplers were presented. It was concluded that techniques of passive sampling of pharmaceuticals need a new uptake model to fit the current situation.
Collapse
Affiliation(s)
- Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Hanna Lis
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| |
Collapse
|
33
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
34
|
Hossain MS, Kubec J, Guo W, Roje S, Ložek F, Grabicová K, Randák T, Kouba A, Buřič M. A combination of six psychoactive pharmaceuticals at environmental concentrations alter the locomotory behavior of clonal marbled crayfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141383. [PMID: 32882544 DOI: 10.1016/j.scitotenv.2020.141383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutically active compounds (PhACs) are ubiquitous in the aquatic environment worldwide and considered emerging contaminants. Their effects on growth, behavior, and physiological processes of aquatic organisms have been identified even at very low concentrations. Ecotoxicological investigations have primarily focused on single compound exposure, generally at a range of concentrations. In the natural environment, pollutants seldom occur in isolation, but little is known about the effects and risks of combinations of chemicals. This study aimed to investigate the effects of concurrent exposure to six psychoactive PhACs on locomotory behavior and life history traits of clonal marbled crayfish Procambarus virginalis. Crayfish were exposed to ~1 μg L-1 of the antidepressants sertraline, citalopram, and venlafaxine; the anxiolytic oxazepam; the opioid tramadol; and the widely abused psychostimulant methamphetamine. In the absence of shelter, exposed crayfish moved significantly shorter distances and at lower velocity and showed significantly less activity than controls. With available shelter, exposed crayfish moved significantly more distance, showed higher activity, and spent a significantly more time outside the shelter than controls. Molting, mortality, and spawning frequency did not vary significantly between the groups. Hemolymph glucose level did not vary among groups and was not correlated with observed behaviors. Results suggest that environmental concentrations of the tested compounds in combination can alter the behavior of non-target aquatic organisms as individual exposure of these compounds, which may lead to disruption of ecosystem processes due to their reduced caution in polluted conditions. Further research is needed using varied chemical mixtures, exposure systems, and habitats, considering molecular and physiological processes connected to behavior alterations.
Collapse
Affiliation(s)
- Md Shakhawate Hossain
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Bangabandhu Sheikh Mujibur Rahman Agricultural University, Department of Fisheries Biology and Aquatic Environment, Gazipur 1706, Bangladesh.
| | - Jan Kubec
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Wei Guo
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Sara Roje
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Filip Ložek
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Antonín Kouba
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
35
|
Cerveny D, Grabic R, Grabicová K, Randák T, Larsson DGJ, Johnson AC, Jürgens MD, Tysklind M, Lindberg RH, Fick J. Neuroactive drugs and other pharmaceuticals found in blood plasma of wild European fish. ENVIRONMENT INTERNATIONAL 2021; 146:106188. [PMID: 33096467 DOI: 10.1016/j.envint.2020.106188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
To gain a better understanding of which pharmaceuticals could pose a risk to fish, 94 pharmaceuticals representing 23 classes were analyzed in blood plasma from wild bream, chub, and roach captured at 18 sites in Germany, the Czech Republic and the UK, respectively. Based on read across from humans, we evaluated the risks of pharmacological effects occurring in the fish for each measured pharmaceutical. Twenty-three compounds were found in fish plasma, with the highest levels measured in chub from the Czech Republic. None of the German bream had detectable levels of pharmaceuticals, whereas roach from the Thames had mostly low concentrations. For two pharmaceuticals, four individual Czech fish had plasma concentrations higher than the concentrations reached in the blood of human patients taking the corresponding medication. For nine additional compounds, determined concentrations exceeded 10% of the corresponding human therapeutic plasma concentration in 12 fish. The majority of the pharmaceuticals where a clear risk for pharmacological effects was identified targets the central nervous system. These include e.g. flupentixol, haloperidol, and risperidone, all of which have the potential to affect fish behavior. In addition to identifying pharmaceuticals of environmental concern, the results emphasize the value of environmental monitoring of internal drug levels in aquatic wildlife, as well as the need for more research to establish concentration-response relationships.
Collapse
Affiliation(s)
- Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Sweden
| | - Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Monika D Jürgens
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
36
|
Grabicová K, Grabic R, Fedorova G, Vojs Staňová A, Bláha M, Randák T, Brooks BW, Žlábek V. Water reuse and aquaculture: Pharmaceutical bioaccumulation by fish during tertiary treatment in a wastewater stabilization pond. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115593. [PMID: 33254619 DOI: 10.1016/j.envpol.2020.115593] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
With increasing demand for aquaculture products, water reuse is likely to increase for aquaculture operations around the world. Herein, wastewater stabilization ponds (WSP) represents low cost and sustainable treatment technologies to reduce nutrients and various contaminants of emerging concern from effluent. In the present study, we examined bioaccumulation of selected pharmaceuticals from several therapeutic classes by two important fish species in aquaculture with different feeding preferences (Cyprinus carpio and Sander lucioperca) and their common prey to test whether species specific accumulation occurs. Forty and nineteen from 66 selected pharmaceuticals and their metabolites were positively found in water and sediment samples, respectively from the representative WSP. After a six-month study, which corresponds to aquaculture operations, fourteen pharmaceuticals and their metabolites were detected (at a frequency of higher than 50% of samples) in at least one fish tissue collected from the WSP. We observed striking differences for species and organ specific BAFs among study compounds. Though muscle tissues consistently accumulated lower levels of the target analytes, several substances were elevated in brain, liver and kidney tissues (e.g., sertraline) of both species. Low residual concentrations of these target analytes in aquaculture products (fish fillets) suggest WSPs are promising to support the water-food nexus in aquaculture.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Martin Bláha
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
37
|
Malev O, Lovrić M, Stipaničev D, Repec S, Martinović-Weigelt D, Zanella D, Ivanković T, Sindičić Đuretec V, Barišić J, Li M, Klobučar G. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115162. [PMID: 32771868 DOI: 10.1016/j.envpol.2020.115162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Chemical analysis of plasma samples of wild fish from the Sava River (Croatia) revealed the presence of 90 different pharmaceuticals/illicit drugs and their metabolites (PhACs/IDrgs). The concentrations of these PhACs/IDrgs in plasma were 10 to 1000 times higher than their concentrations in river water. Antibiotics, allergy/cold medications and analgesics were categories with the highest plasma concentrations. Fifty PhACs/IDrgs were identified as chemicals of concern based on the fish plasma model (FPM) effect ratios (ER) and their potential to activate evolutionary conserved biological targets. Chemicals of concern were also prioritized by calculating exposure-activity ratios (EARs) where plasma concentrations of chemicals were compared to their bioactivities in comprehensive ToxCast suite of in vitro assays. Overall, the applied prioritization methods indicated stimulants (nicotine, cotinine) and allergy/cold medications (prednisolone, dexamethasone) as having the highest potential biological impact on fish. The FPM model pointed to psychoactive substances (hallucinogens/stimulants and opioids) and psychotropic substances in the cannabinoids category (i.e. CBD and THC). EAR confirmed above and singled out additional chemicals of concern - anticholesteremic simvastatin and antiepileptic haloperidol. Present study demonstrates how the use of a combination of chemical analyses, and bio-effects based risk predictions with multiple criteria can help identify priority contaminants in freshwaters. The results reveal a widespread exposure of fish to complex mixtures of PhACs/IDrgs, which may target common molecular targets. While many of the prioritized chemicals occurred at low concentrations, their adverse effect on aquatic communities, due to continuous chronic exposure and additive effects, should not be neglected.
Collapse
Affiliation(s)
- Olga Malev
- Department for Translational Medicine, Srebrnjak Children's Hospital, Zagreb, Croatia; Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13/6, A-8010, Graz, Austria; NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia.
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia.
| | - Dalma Martinović-Weigelt
- University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN, 55105, USA.
| | - Davor Zanella
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | - Tomislav Ivanković
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | | | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|