1
|
Liu Y, Wang X, Li H, Zhang R, Liu X, Nan F, Liu Q, Lv J, Feng J, Ma C, Xie S. Evaluating the role of recalcitrant dissolved organic matter in bacterial community dynamics in urbanized freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177475. [PMID: 39528208 DOI: 10.1016/j.scitotenv.2024.177475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Dissolved organic matter (DOM) and recalcitrant dissolved organic matter (RDOM) play distinct roles in shaping microbial communities. However, characterizing these roles is difficult, especially in ecosystems subjected to varying degrees of anthropogenic influence. This study investigated the molecular compositions and ecological impacts of DOM and RDOM in the Fen River, Shanxi Taiyuan, comparing pristine upstream regions with highly urbanized downstream areas. Using 16S rRNA gene sequencing and LC-MS-based metabolomics, we observed significant shifts in microbial community composition, diversity, and metabolic functions. Upstream communities, characterized by higher diversity, were dominated by Bacteroidota, Proteobacteria, and Cyanobacteria, while downstream communities, influenced by pollution, exhibited increased expression of genes related to amino acid metabolism. Fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that upstream DOM contained higher proportions of complex, high molecular weight compounds, including significant proportions of carboxyl-rich alicyclic molecules (CRAM) and island of stability (IOS) compounds, which play key roles in long-term carbon storage and microbial carbon sequestration. In contrast, downstream DOM was characterized as having lower aromaticity and more saturated compounds, with reduced proportions of CRAM and IOS, reflecting the impact of anthropogenic activities. These findings underscored the critical roles of CRAM and IOS in regulating DOM stability and microbial communities, further highlighting the need for targeted pollution control strategies to preserve ecosystem function in urbanized water bodies.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiding Wang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Huimin Li
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ruikai Zhang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Liu S, Zhang Z, Hao J, Zhao C, Han F, Xiong Q, Wang X, Du C, Xu H. Plastic debris mediates bacterial community coalescence by breaking dispersal limitation in the sediments of a large river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124603. [PMID: 39047888 DOI: 10.1016/j.envpol.2024.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Plastic debris has recently been proposed as a novel habitat for bacterial colonization, which can raise perturbations in bacterial ecology after burial in riverine sediments. However, community coalescence, as a prevalent process involving the interrelationships of multiple communities and their surrounding environments, has been rarely discussed to reveal the impact of the plastisphere on sedimentary bacterial community. This study analyzed the bacterial community in plastic debris and sediment along the Nujiang River, elucidating the role of the plastisphere in mediating community coalescence in sediments. Our results demonstrated that the plastisphere and sedimentary bacterial communities exhibited distinct biogeography along the river (r = 0.694, p < 0.01). Based on overlapped taxa and SourceTracker, the extent of coalescence between adjacent communities was in following orders: plastic-plastic (0.589) > plastic-sediment (0.561) > sediment-sediment (0.496), indicating the plastisphere promoted bacterial community coalescence along the river. Flow velocity and geographic distance were the major factors driving the plastisphere changes, suggesting that the plastisphere were vulnerable to dispersal. The null model and the neutral model provided additional support for the higher immigration ability of the plastisphere to overcome dispersal limitation, highlighting the potential importance of the plastisphere in community coalescence. Network analysis indicated the critical role of keystone species (Proteobacteria, Bacteroidetes, and Gemmatimonadetes) in mediating the coalescence between sedimentary bacterial community and the plastisphere. In summary, the plastisphere could mediate the coalescence of bacterial communities by overcoming dispersal limitation, which provides new perspectives on the plastisphere altering bacterial ecology in riverine sediments.
Collapse
Affiliation(s)
- Sheng Liu
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China.
| | - Zixuan Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jie Hao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Qingrong Xiong
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenggong Du
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Hongzhe Xu
- Dept of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
3
|
Ma Y, Li J, Yang Q, Li F, Wang L, Yan P, Guo X, Zhao R, Gu Y, Xu Y, Wu X. Redox-Responsive Nanopesticides Based on Natural Polymers for Environmentally Safe Delivery of Pesticides with Enhanced Foliar Dispersion and Washout Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20343-20353. [PMID: 39226432 DOI: 10.1021/acs.jafc.4c05391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Based on the modified cross-linking of the degradable natural polymers chitosan oligosaccharides (COS) and gelatin (GEL) via introduction of a functional bridge 3,3'-dithiodipropionic acid, this study constructed an environmentally responsive dinotefuran (DNF) delivery system (DNF@COS-SS-GEL). The introduction of the disulfide bond (-S-S-) endowed DNF@COS-SS-GEL with redox-responsive properties, allowing for the rapid release of pesticides when stimulated by glutathione (GSH) in the simulated insect. Compared with commercial DNF suspension concentrate (DNF-SC), DNF@COS-SS-GEL showed superior wet spreading and retention performance on cabbage leaves with a reduced contact angle (57°) at 180 s and 4-fold increased retention capacity after rainfall washout. Nanoencapsulation effectively improved the UV-photostability with only a 31.4% decomposition rate of DNF@COS-SS-GEL at 96 h. The small scale and large specific surface area resulted in excellent uptake and transportation properties in plants as well as higher bioactivity against Plutella xylostella larvae. This study will help promote sustainable agricultural development by reducing environmental pollution through improved pesticide utilization.
Collapse
Affiliation(s)
- Yingjian Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Junyao Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Qinshu Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Fengyu Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Lei Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Pengkun Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xinyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Rui Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Yucheng Gu
- Jealott's Hill International Research Centre, Syngenta Ltd., Bracknell RG42 6EY, U.K
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xuemin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Yang Y, Ci F, Xu A, Zhang X, Ding N, Wan N, Lv Y, Song Z. Seasonal Dynamics of Eukaryotic Microbial Communities in the Water-Receiving Reservoir of the Long-Distance Water Diversion Project, China. Microorganisms 2024; 12:1873. [PMID: 39338548 PMCID: PMC11433762 DOI: 10.3390/microorganisms12091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Inter-basin water transfer projects, such as the Yellow River to Qingdao Water Diversion Project (YQWD), are essential for addressing water scarcity, but impact local aquatic ecosystems. This study investigates the seasonal characteristics of eukaryotic microbial communities in the Jihongtan Reservoir, the main water-receiving body of YQWD, over a one-year period using 18S rDNA amplicon sequencing. The results showed that the eukaryotic microbial diversity did not exhibit significant seasonal variation (p > 0.05), but there was a notable variance in the community structure (p < 0.05). Arthropoda and Paracyclopina, representing the most dominant phylum and the most dominant genus, respectively, both exhibited the lowest abundance during the winter. The Chlorophyta, as the second-dominant phylum, demonstrates its higher abundance in the spring and winter. The Mantel test and PLS-PM (Partial Least Squares Path Modeling) revealed that water temperature (WT), dissolved oxygen (DO), and pH influenced the seasonal dynamic of eukaryotic microbial communities significantly, of which WT was the primary driving factor. In addition to environmental factors, water diversion is likely to be an important influencing factor. The results of the co-occurrence network and robustness suggested that the spring network is the most complex and exhibits the highest stability. Moreover, keystone taxa within networks have been identified, revealing that these key groups encompass both abundant and rare species, with specificity to different seasons. These insights are vital for understanding the seasonal variation of microbial communities in the Jihongtan Reservoir during ongoing water diversions.
Collapse
Affiliation(s)
- Yingying Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Fangfang Ci
- Qingdao Branch of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266525, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xijian Zhang
- Binzhou Branch of Shandong Water Transfer Project Operation and Maintenance Center, Binzhou 256600, China
| | - Ning Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Nianxin Wan
- Qingdao Branch of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266525, China
| | - Yuanyuan Lv
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
5
|
Li M, Cheng X, Li S, Li B, Ma L, Chen X. Human activities strengthen the influence of deterministic processes in the mechanisms of fish community assembly in tropical rivers of Yunnan, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122131. [PMID: 39121627 DOI: 10.1016/j.jenvman.2024.122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Human-induced global alterations have worsened the severe decrease in fish biodiversity in rivers. To successfully reduce the pace of reduction in fish diversity, it is crucial to prioritize the understanding of how human activities impact the processes that shape and maintain fish diversity. Traditional fish survey methods are based on catch collection and morphological identification, which is often time-consuming and ineffective. Hence, these methods are inadequate for conducting thorough and detailed large-scale surveys of fish ecology. The rapid progress in molecular biology techniques has transformed environmental DNA (eDNA) technique into a highly promising method for studying fish ecology. In this work, we conducted the first systematic study of fish diversity and its formation and maintenance mechanism in the Xishuangbanna section of the Lancang River using eDNA metabarcoding. The eDNA metabarcoding detected a total of 159 species of freshwater fishes spanning 13 orders, 34 families, and 99 genera. The fishes in the order cypriniformes were shown to be overwhelmingly dominant. At different intensities of anthropogenic activity, we found differences in fish community composition and assembly. The analysis of the Sloan's neutral community model fitting revealed that stochastic processes were the dominant factor in the shaping of fish communities in the Xishuangbanna section of the Lancang River. We have further confirmed this result by using the phylogenetic normalized stochasticity ratio. Furthermore, our findings indicate that as human activities get more intense, the influence of stochastic processes on the shaping of fish communities decreases, while the influence of deterministic processes eventually becomes more prominent. Finally, we discovered that salinity positively correlated with fish community changes in the high-intensity anthropogenic sample sites, but all environmental factors had little effect on fish community changes in the low-intensity and moderate-intensity anthropogenic sample sites. Our study not only validated the potential application of eDNA metabarcoding for monitoring fish diversity in tropical rivers, but also revealed how fish communities respond to human activities. This knowledge will serve as a solid foundation for the protection of fish resources in tropical rivers.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyitaw 05282, Myanmar; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Mengla, 666303, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaopeng Cheng
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Bo Li
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyitaw 05282, Myanmar; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Mengla, 666303, China
| | - Li Ma
- Cave Fish Development and Evolution Research Group, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xiaoyong Chen
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Conservation of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Naypyitaw 05282, Myanmar; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Mengla, 666303, China.
| |
Collapse
|
6
|
Zhu A, Liang Z, Gao L, Xie Z. Dispersal limitation determines the ecological processes that regulate the seasonal assembly of bacterial communities in a subtropical river. Front Microbiol 2024; 15:1430073. [PMID: 39252829 PMCID: PMC11381306 DOI: 10.3389/fmicb.2024.1430073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Bacteria play a crucial role in pollutant degradation, biogeochemical cycling, and energy flow within river ecosystems. However, the underlying mechanisms governing bacterial community assembly and their response to environmental factors at seasonal scales in subtropical rivers remain poorly understood. In this study, we conducted 16S rRNA gene amplicon sequencing on water samples from the Liuxi River to investigate the composition, assembly processes, and co-occurrence relationships of bacterial communities during the wet season and dry season. The results demonstrated that seasonal differences in hydrochemistry significantly influenced the composition of bacterial communities. A more heterogeneous community structure and increased alpha diversity were observed during the dry season. Water temperature emerged as the primary driver for seasonal changes in bacterial communities. Dispersal limitation predominantly governed community assembly, however, during the dry season, its contribution increased due to decreased immigration rates. Co-occurrence network analysis reveals that mutualism played a prevailing role in shaping bacterial community structure. Compared to the wet season, the network of bacterial communities exhibited higher modularity, competition, and keystone species during the dry season, resulting in a more stable community structure. Although keystone species displayed distinct seasonal variations, Proteobacteria and Actinobacteria were consistently abundant keystone species maintaining network structure in both seasons. Our findings provide insights into how bacterial communities respond to seasonal environmental changes, uncovering underlying mechanisms governing community assembly in subtropical rivers, which are crucial for the effective management and conservation of riverine ecosystems.
Collapse
Affiliation(s)
- Aiping Zhu
- School of Geography and Tourism, Anhui Normal University, Wuhu, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zuobing Liang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Gao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenglan Xie
- School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| |
Collapse
|
7
|
Chen CZ, Yin MH, Niu LJ, Wang JX, Liu L, Sun YJ, Ju WM, Li P, Li ZH. Exploring seasonal variations, assembly dynamics, and relationships of bacterial communities in different habitats of marine ranching. MARINE POLLUTION BULLETIN 2024; 205:116658. [PMID: 38964192 DOI: 10.1016/j.marpolbul.2024.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Offshore coastal marine ranching ecosystems provide habitat for diverse and active bacterial communities. In this study, 16S rRNA gene sequencing and multiple bioinformatics methods were applied to investigate assembly dynamics and relationships in different habitats. The higher number of edges in the water network, more balanced ratio of positive and negative links, and more keystone species included in the co-occurrence network of water. Stochastic processes dominated in shaping gut and sediment community assembly (R2 < 0.5), while water bacterial community assembly were dominated by deterministic processes (R2 > 0.5). Dissimilarity-overlap curve model indicated that the communities in different habitats have general dynamics and interspecific interaction (P < 0.001). Bacterial source-tracking analysis revealed that the gut was more similar to the sediment than the water bacterial communities. In summary, this study provides basic data for the ecological study of marine ranching through the study of bacterial community dynamics.
Collapse
Affiliation(s)
| | - Ming-Hao Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lin-Jing Niu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong-Jun Sun
- Homey Group Co. Ltd, Rongcheng, Shandong 264306, China
| | - Wen-Ming Ju
- Homey Group Co. Ltd, Rongcheng, Shandong 264306, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
8
|
Cheng S, Meng F, Wang Y, Zhang J, Zhang L. The potential linkage between sediment oxygen demand and microbes and its contribution to the dissolved oxygen depletion in the Gan River. Front Microbiol 2024; 15:1413447. [PMID: 39144217 PMCID: PMC11322766 DOI: 10.3389/fmicb.2024.1413447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
The role of sediment oxygen demand (SOD) in causing dissolved oxygen (DO) depletion is widely acknowledged, with previous studies mainly focusing on chemical and biological SOD separately. However, the relationship between the putative functions of sediment microbes and SOD, and their impact on DO depletion in overlying water, remains unclear. In this study, DO depletion was observed in the downstream of the Gan River during the summer. Sediments were sampled from three downstream sites (YZ, Down1, and Down2) and one upstream site (CK) as a control. Aquatic physicochemical parameters and SOD levels were measured, and microbial functions were inferred from taxonomic genes through analyses of the 16S rRNA gene. The results showed that DO depletion sites exhibited a higher SOD rate compared to CK. The microbial community structure was influenced by the spatial variation of Proteobacteria, Chloroflexi, and Bacteroidota, with total organic carbon (TOC) content acting as a significant environmental driver. A negative correlation was observed between microbial diversity and DO concentration (p < 0.05). Aerobic microbes were more abundant in DO depletion sites, particularly Proteobacteria. Microbes involved in various biogeochemical cycles, such as carbon (methane oxidation, methanotrophs, and methylotrophs), nitrogen (nitrification and denitrification), sulfur (sulfide and sulfur compound oxidation), and manganese cycles (manganese oxidation), exhibited higher abundance in DO depletion sites, except for the iron cycle (iron oxidation). These processes were negatively correlated with DO concentration and positively with SOD (p < 0.05). Overall, the results highlight that aerobic bacteria's metabolic processes consume oxygen, increasing the SOD rate and contributing to DO depletion in the overlying water. Additionally, the study underscores the importance of targeting the removal of in situ microbial molecular mechanisms associated with toxic H2S and CH4 to support reoxygenation efforts in rehabilitating DO depletion sites in the Gan River, aiding in identifying factors controlling DO consumption and offering practical value for the river's restoration and management.
Collapse
Affiliation(s)
- Shoutao Cheng
- Country School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Fansheng Meng
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yeyao Wang
- Country School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
- China National Environmental Monitoring Center, Beijing, China
| | - Jiasheng Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Lingsong Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
9
|
Bagagnan S, Guérin-Rechdaoui S, Rocher V, Alphonse V, Moilleron R, Jusselme MD. Spatial and temporal characteristics of microbial communities in the Seine river in the greater Paris area under anthropogenic perturbation. Heliyon 2024; 10:e30614. [PMID: 38726162 PMCID: PMC11079399 DOI: 10.1016/j.heliyon.2024.e30614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Microorganisms play an important role in maintaining the proper functioning of river ecosystems and are promising candidates for environmental indicators. They are also highly sensitive to environmental changes. It is necessary to have basic knowledge about them in order to know the ecological status of river ecosystem. To our knowglege, there is very little information on the status of microorganisms in surface water of the Seine River, although the Seine River is one of the rivers that suffers the greatest impact from humain activities in the world due to a weak dilution effect. It is therefore necessary to carry out a microbial analysis to assess the ecological status of the Seine River and to use it as a reference to compare with the future state when, for instance, new disinfection technologies of wastewater are implemented. To this end, the microbial communities of the Seine surface water were analyzed, taking into account the spatial effect, including the tributaries, and from upstream to downstream of the Paris conurbation and the temporal aspect, with a monitoring over 4 seasons. The results showed that the microbiome of the water is highly diverse and involved a variety of functions. The main phyla making up the surface water microbiome were Proteobacteria, Actinobacteriota, Firmicutes, Bacteroidota, while other minor phyla were Deinococcota, Patescibacteria, Gemmatimonadota, Cyanobacteria, Bdellovibrionota, Acidobacteriota, Campilobacterota, Myxococcota, and Desulfobacterota. Overall, the microbial community did not change spatially (with the exception of some minor differences between upstream and downstream), but did vary seasonally. The main factors influencing this microbiome were temperature, nitrate and orthophosphate concentrations. The main predicted functions were related to cell metabolism, in particular carbohydrates, amino acids, lipids, energy, vitamins and cofactors, and cell mobility. The microbial compositions showed a strong balance between microbial groups and were involved in the degradation of recalcitrant compounds.
Collapse
Affiliation(s)
| | | | - Vincent Rocher
- SIAAP, Direction de l’Innovation, F-92700, Colombes, France
| | | | | | | |
Collapse
|
10
|
Liu Z, Sha H, Zhu P, Zheng H, Wang J, He J, Ma Y, An F, Liu X, Guo Z. Leachate derived humic-like substances drive the variation in microbial communities in landfill-affected groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121000. [PMID: 38669889 DOI: 10.1016/j.jenvman.2024.121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Landfills are commonly used for waste disposal in many countries, and pose a significant threat of groundwater contamination. Dissolved organic matter (DOM) plays a crucial role as a carbon and energy source, supporting the growth and activity of microorganisms. However, the changes in the DOM signature and microbial community composition in landfill-affected groundwater and their bidirectional relationships remain inadequately explored. Herein, we showed that DOM originating from more recent landfills mainly comprises microbially produced substances resembling tryptophan and tyrosine. Conversely, DOM originating from older landfills predominantly comprises fulvic-like and humic-like compounds. Leachate leakage increases microbial diversity and richness and facilitates the transfer of foreign bacteria from landfills to groundwater, thereby increasing the vulnerability of the microbial ecosystem in groundwater. Deterministic processes dominated the assembly of the groundwater microbial community, while stochastic processes accounted for an increased proportion of the microbial community in the old landfills. The dominant phyla observed in groundwater were Proteobacteria, Bacteroidota, and Actinobacteriota, and humic-like substances play a crucial role in driving the variation in microbial communities in landfill-affected groundwater. Predictions using PICRUSt2 suggested significant associations between various metabolic pathways and microbial communities, with the Kyoto Encyclopedia of Genes and Genomes pathway "Metabolism" being the most predominant. The findings contribute to advancing our understanding of the transformation of DOM and its interplay with microbial communities and can serve as a scientific reference for decision-making regarding groundwater pollution monitoring and remediation.
Collapse
Affiliation(s)
- Zhenhai Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Haoqun Sha
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Panpan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongmei Zheng
- HUAZE (Beijing) Ecological Environment Research Institute Co., Ltd., Beijing, 100071, China
| | - Jianfei Wang
- HUAZE (Beijing) Ecological Environment Research Institute Co., Ltd., Beijing, 100071, China
| | - Jun He
- HUAZE (Beijing) Ecological Environment Research Institute Co., Ltd., Beijing, 100071, China
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Fengxia An
- China Energy Science and Technology Research Institute Co. Ltd., Nanjing, 210023, China
| | - Xueyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zheng Guo
- Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing, 100081, China.
| |
Collapse
|
11
|
Song T, Tu W, Chen S, Fan M, Jia L, Wang B, Yang Y, Li S, Luo X, Su M, Guo J. Relationships between high-concentration toxic metals in sediment and evolution of microbial community structure and carbon-nitrogen metabolism functions under long-term stress perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29763-29776. [PMID: 38592631 DOI: 10.1007/s11356-024-33150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Microorganisms are highly sensitive to toxic metal pollution and play an important role in the material cycling and energy flow of the water ecosystem. Herein, 13 sediment samples from Junchong Reservoir (Guangxi Province, China) were collected in December 2021. The spatial distribution of pollution levels for toxic metals and the effects of toxic metals on the composition, functional characteristics, and metabolism of microorganisms were investigated. The results demonstrated that the area is a proximate area to industrial zones with severity of toxic metal pollution. Their mean concentrations of As, Cu, Zn, and Pb were up to 128.79 mg/kg, 57.62 mg/kg, 594.77 mg/kg, and 97.12 mg/kg respectively. There was a strong correlation between As, Cu, Zn, and Pb, with the highest correlation coefficient reaching 0.94. As the level of toxic metal pollution increases, the diversity and abundance of microorganisms gradually decrease. Compared to those with lower pollution levels, the Shannon index in regions with higher pollution levels decreases by up to 0.373, and the Chao index decreases by up to 143.507. However, the relative abundance of Bacteroidota, Patescibacteria, and Chloroflexi increased by 23%, 20%, and 5%, respectively, indicating their higher adaptability to toxic metals. Furthermore, microbial carbon and nitrogen metabolism were also affected by the presence of toxic metals. FAPROTAX analysis demonstrated an abundant reduction of ecologically functional groups associated with carbon and nitrogen transformations under high toxic metal pollution levels. KEGG pathway analysis indicated that carbon fixation and nitrogen metabolism pathways were inhibited with increasing toxic metal concentrations. These findings would contribute to a better understanding of the effects of toxic metal pollution on sediment microbial communities and function, shedding light on the ecological consequences of toxic metal contamination.
Collapse
Affiliation(s)
- Tao Song
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China.
| | - Min Fan
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Liang Jia
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Yuankun Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Sen Li
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| | - Mingyue Su
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621000, People's Republic of China
| | - Jingjing Guo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, People's Republic of China
| |
Collapse
|
12
|
Zheng S, Liu M, Han Q, Pang L, Cao H. Seasonal variation and human impacts of the river biofilm bacterial communities in the Shiting River in southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:341. [PMID: 38436747 DOI: 10.1007/s10661-024-12490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Bacterial communities in epilithic biofilm plays an important role in biogeochemistry processes in freshwater ecosystems. Nevertheless, our understanding of the geographical and seasonal variations of the composition of bacterial communities in the biofilm of gravels on river bed is still limited. Various anthropogenic activities also influence the biofilm bacteria in gravel rivers. By taking the Shiting River in the upper Yangtze River basin in Sichuan Province as an example, we studied the geographical and seasonal variations of epilithic bacteria and the impacts of weirs and other human activities (e.g., sewage pollution). The river has experienced severe degradation since the Ms 8.0 Wenchuan Earthquake, and weirs were constructed to prevent bed erosion. We collected epilithic biofilms samples at 17 sites along ~ 30 km river reach of the Shiting River in the autumn of 2021 and the summer of 2022, respectively. We applied 16S rRNA gene high-throughput sequencing technology and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to analyze the seasonal and biogeographic patterns and potential functions of the biofilm bacterial communities. The results showed that epilithic bacteria from the two surveys exhibited variation in community composition, bacterial diversity and potential functions. The bacteria samples collected in the autumn have much higher alpha diversity and richness than those collected in the summer. Bacterial richness and diversity were lower downstream of the weirs than upstream. Low diversity was observed at a sampling site influenced by sewage inflow, which contains high level of nitrogen-related chemicals.
Collapse
Affiliation(s)
- Shan Zheng
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China.
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China.
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| | - Min Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Qinghua Han
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Huiqun Cao
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| |
Collapse
|
13
|
Yan J, Guo X, He M, Niu Z, Xu M, Peng B, Yang Y, Jin Z. Metals and microorganisms in a Maar lake sediment core indicating the anthropogenic impact over last 800 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168392. [PMID: 37956839 DOI: 10.1016/j.scitotenv.2023.168392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
A closed Maar lake, receiving mostly atmospheric deposition, offers a unique setting for investigating the impact of human activities on the environment. In this study, we aimed to investigate the historical record of metals in core sediments of Maar Lake in Huguangyan (HGY), Southeast China, and elucidate the possible microbial responses to anthropogenic metal stress. Five stages were divided according to the historical record of metals and corresponding distribution of microbial community, among which Pb and Sn showed a peak value around 1760 CE, indicating the ancient mining and smelting activities. Since the 1980s, a substantial enrichment of metals such as Zn, As, Mo, Cd, Sn, Sb, and Pb was observed, due to the rapid industrial growth in China. In terms of microorganisms, Chloroflexi phylum, particularly dominated by Anaerolineales, showed significant correlations with Pb and Sn, and could potentially serve as indicator species for mining and smelting-related contamination. Desulfarculales and Desulfobacterales were found to be more prevalent in recent period and exhibited positive correlations with anthropogenic metals. Moreover, according to the multivariate regression modeling and variance decomposition analysis, Pb and Sn could regulate Anaerolineales and further pose impact on the carbon cycle; while sulfate-reducing bacteria (SRB) could response to anthropogenic metals and influence sulfur cycle. These findings provide new insights into the interaction between metals and microbial communities over human history.
Collapse
Affiliation(s)
- Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Maoyong He
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bo Peng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Zhangdong Jin
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
14
|
Liu Q, Sheng Y, Wang Z, Liu X. New insights into the sustainable use of co-pyrolyzed dredged sediment for the in situ remediation of Cd polluted sediments in coastal rivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133664. [PMID: 38309161 DOI: 10.1016/j.jhazmat.2024.133664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The remediation of Cd-polluted sediment in coastal rivers is essential because of its potential hazards to river and marine ecosystems. Herein, a co-pyrolysis product of contaminated dredged sediment (S@BC) was innovatively applied to cap and immobilize Cd-contaminated sediment in coastal rivers in situ, and their remediation efficiencies, mechanisms, and microbial responses were explored based on a 360 d incubation experiment. The results showed that although S@BC immobilization and capping restrained sediment Cd release to the overlying water, S@BC capping presented a high inhibitory efficiency (66.0% vs. 95.3% at 360 d). Fraction analysis indicated that labile Cd was partially transformed to stable fraction after remediation, with decreases of 0.5%- 32.7% in the acid-soluble fraction and increases of 5.0%- 182.8% in the residual fraction. S@BC immobilization and capping had minor influences on the sediment bacterial community structure compared to the control. S@BC could directly adsorb sediment mobile Cd (precipitation and complexation) to inhibit Cd release and change sediment properties (e.g., pH and cation exchange capacity) to indirectly reduce Cd release. Particularly, S@BC capping also promoted Cd stabilization by enhancing the sediment sulfate reduction process. Comparatively, S@BC capping was a priority approach for Cd-polluted sediment remediation. This study provides new insights into the remediation of Cd-contaminated sediments in coastal rivers.
Collapse
Affiliation(s)
- Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
| | - Zheng Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Fang W, Fan T, Wang S, Yu X, Lu A, Wang X, Zhou W, Yuan H, Zhang L. Seasonal changes driving shifts in microbial community assembly and species coexistence in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167027. [PMID: 37717779 DOI: 10.1016/j.scitotenv.2023.167027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Microbial communities play a vital role in urban river biogeochemical cycles. However, the seasonal variations in microbial community characteristics, particularly phylogenetic group-based community assembly and species coexistence, have not been extensively investigated. Here, we systematically explored the microbiome characteristics and assembly mechanisms of urban rivers in different seasons using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that the microbial community presented significant temporal heterogeneity in different seasons, and the diversity decreased from spring to winter. The phylogenetic group-based microbial community assembly was governed by dispersal limitation and drift in spring, summer, and autumn but was structured by homogeneous selection in winter. Moreover, the main functions of nitrification, denitrification, and methanol oxidation were susceptible to dispersal limitation and drift processes, whereas sulfate respiration and aromatic compound degradation were controlled by dispersal limitation and homogeneous selection. Network analyses indicated that network complexity decreased and then increased with seasonal changes, while network stability showed the opposite trend, suggesting that higher complexity and diversity reduced community stability. Temperature was determined to be the primary driver of microbial community structure and assembly processes in different seasons based on canonical correspondence analysis and linear regression analysis. In conclusion, seasonal variation drives the dynamics of microbial community assembly and species coexistence patterns in urban rivers. This study provides new insights into the generation and maintenance of microbial community diversity in urban rivers under seasonal change conditions.
Collapse
Affiliation(s)
- Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Tingyu Fan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China.
| | - Shun Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xiaokun Yu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Akang Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Weimin Zhou
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Hongjun Yuan
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
16
|
Liu B, Tian Z, Xie P, Guo F, Zhang W, Zhang J, Wu J, Zhu X, Song Z, Hu H, Zhu Y. Temporal and spatial dynamic changes of planktonic bacteria community structure in Li River, China: a seasonal survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111244-111255. [PMID: 37814045 DOI: 10.1007/s11356-023-30166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A combined temporal and spatial research approach helps us to evaluate the ecological status of a river scientifically and comprehensively. To understand the response mechanisms of bacteria in the Li River to different environments, we conducted a 1-year study (2020-2021) and collected water samples from 18 sections of the river in October, January, April, and August. 16S sequencing was used to study the composition and structure of bacterial communities in Li River at different temporal and spatial scales. The results showed that NO3--N, TP, T, pH, and DO were significantly different on spatial and temporal scales. Alpha diversity of planktonic bacteria in Li River fluctuated significantly with the season, reaching its highest in summer. Proteobacteria remained the most dominant phylum in all seasons, but the differential microorganisms varied between seasons. Although the abundance of metabolic functions of planktonic bacteria did not show significant differences between seasons, we found that DO, TP, T, and COD were the key environmental factors affecting bacterial metabolism. In addition, the co-occurrence network analysis showed that the autumn network had a higher number of nodes and edges and exhibited a high degree of complexity, while the summer network had the highest degree of modularity and exhibited greater stability. These results deepen our knowledge of the response mechanisms of river microorganisms to temporal and spatial changes and provide a scientific reference for the study of river ecosystems.
Collapse
Affiliation(s)
- Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Zeyuan Tian
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Penghao Xie
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Wenjun Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junxia Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhongxian Song
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yichun Zhu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
17
|
Yang C, Zhang H, Feng Y, Hu Y, Chen S, Guo S, Zeng Z. Effect of microbial communities on nitrogen and phosphorus metabolism in rivers with different heavy metal pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87398-87411. [PMID: 37421527 DOI: 10.1007/s11356-023-28688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Small urban and rural rivers usually face heavy metal pollution as a result of urbanization and industrial and agricultural activities. To elucidate the metabolic capacity of microbial communities on nitrogen and phosphorus cycle in river sediments under different heavy metal pollution backgrounds, this study collected samples in situ from two typical rivers, Tiquan River and Mianyuan River, with different heavy metal pollution levels. The microbial community structure and metabolic capacity of nitrogen and phosphorus cycles of sediment microorganisms were analyzed by high-throughput sequencing. The results showed that the major heavy metals in the sediments of the Tiquan River were Zn, Cu, Pb, and Cd with the contents of 103.80, 30.65, 25.95, and 0.44 mg/kg, respectively, while the major heavy metals in the sediments of the Mianyuan River were Cd and Cu with the contents of 0.60 and 27.81 mg/kg, respectively. The dominant bacteria Steroidobacter, Marmoricola, and Bacillus in the sediments of the Tiquan River had positive correlations with Cu, Zn, and Pb while are negatively correlated with Cd. Cd had a positive correlation with Rubrivivax, and Cu had a positive correlation with Gaiella in the sediments of the Mianyuan River. The dominant bacteria in the sediments of the Tiquan River showed strong phosphorus metabolic ability, and the dominant bacteria in the sediments of the Mianyuan River showed strong nitrogen metabolic ability, corresponding to the lower total phosphorus content in the Tiquan River and the higher total nitrogen content in the Mianyuan River. The results of this study showed that resistant bacteria became dominant bacteria due to the stress of heavy metals, and these bacteria showed strong nitrogen and phosphorus metabolic ability. It can provide theoretical support for the pollution prevention and control of small urban and rural rivers and have positive significance for maintaining the healthy development of rivers.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shanshan Guo
- China 19th Metallurgical Corporation, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
18
|
Yang C, Zeng Z, Wang Y, He G, Hu Y, Gao D, Dai Y, Li Q, Zhang H. Ecological risk assessment and identification of the distinct microbial groups in heavy metal-polluted river sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1311-1329. [PMID: 35939250 DOI: 10.1007/s10653-022-01343-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
To assess the health of river ecosystems, it is essential to quantify the ecological risk of heavy metals in river sediments and the structure of microbial communities. As important tributaries of the Tuo River in the upper reaches of the Yangtze River, the Mianyuan River and the Shiting River, are closely related to the economic development and human daily life in the region. This study assessed the ecological risks of heavy-metal-polluted river sediments, the heavy-metal-driven bacterial communities were revealed, and the relationships between the ecological risks and the identical bacterial communities were discussed. The Cd content was significantly greater than the environmental background value, leading to a serious pollution and very high ecological risk at the confluence of the two rivers and the upper reaches of the Mianyuan River. Microbial community analysis showed that Rhodobacter, Nocardioides, Sphingomonas, and Pseudarthrobacter were the dominant bacterial genera in the sediments of the Shiting River. However, the dominant bacterial genera in the Mianyuan River were Kouleothrix, Dechloromonas, Gaiella, Pedomicrobium, and Hyphomicrobium. Mantel test results showed (r = 0.5977, P = 0.005) that the Cd, As, Zn, Pb, Cr, and Cu were important factors that influenced differences in the distribution of sediment bacterial communities Mianyuan and Shiting rivers. A correlation heatmap showed that heavy metals were negatively correlated for most bacterial communities, but some bacterial communities were tolerant and showed a positive correlation. Overall, the microbial structure of the river sediments showed a diverse spatial distribution due to the influence of heavy metals. The results will improve the understanding of rivers contaminated by heavy metals and provide theoretical support for conservation and in situ ecological restoration of river ecosystems.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Guangyi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dongdong Gao
- Sichuan Academy of Environmental Science, Chengdu, 610000, China
| | - Yonghong Dai
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qingyu Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
19
|
Sha C, Wu J, Shen C, Wu J, Yan Z, Wang M. The ecology of bacterial communities in groundwater of industrial areas: Diversity, composition, network, and assembly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121207. [PMID: 36738877 DOI: 10.1016/j.envpol.2023.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Groundwater provides freshwater resources necessary for mankind, but its quality is significantly impacted by anthropologic activities. The unique characteristics of groundwater provide a special niche for bacterial colonization. To maintain the sustainability of groundwater ecosystem, a good understanding of the influencing factors and assembly mechanisms for bacterial communities is necessary. Here, we investigated the bacterial communities of groundwater from two industrial zones in Shanghai, a highly industrialized city, during the wet and dry seasons using the high-throughput sequencing technology. Our study uncovered the significant effects of season, geographical location, and industrial type on the diversity and composition of groundwater bacterial communities, particularly, we found that season was the most dominant factor with much stronger influences (give the explanation 17.7%) in comparison with geographical location (8.8%) and industrial type (7.5%). Co-occurrence networks revealed that geographical location explained more variations of bacterial ecological network than season did. Both distance-decay of similarities and variation partitioning analyses indicated that the assembly of groundwater bacterial communities was more governed by environmental filtering compared to spatial-related dispersal. Finally, null model analysis suggested the role of stochastic processes, including dispersal and drift, in shaping the groundwater bacterial communities cannot be ignored. These findings would benefit to improve our understanding of the bacterial communities in groundwater ecosystem and provide a theoretical foundation for groundwater health management.
Collapse
Affiliation(s)
- Chenyan Sha
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Cheng Shen
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jian Wu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhongchun Yan
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
20
|
Bhat S, Kaur H, Verma P, Pamposh. Characterization of the Sediment Bacterial Community Structure and Composition in Najafgarh Lake and Adjoining Dhansa Barrage. Indian J Microbiol 2023; 63:25-32. [PMID: 37188234 PMCID: PMC10172446 DOI: 10.1007/s12088-022-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
This study was undertaken to assess the changes in the community structure, diversity, and composition of sediment bacteria in a shallow lake, Najafgarh Lake (NL), that receives untreated sewage effluent through drains connected to it. These changes were analyzed by comparing the sediment bacterial community structure of NL to the sediment bacterial community structure of Dhansa Barrage (DB), which receives no such effluents. 16S rRNA amplicon was used for bacterial community analysis. Water and sediment samples were also analyzed and compared revealing high conductivity, ammonia, nitrite content, and low dissolved oxygen in NL. The organic matter content is also higher in the sediments of NL. Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are the predominant phyla in both sites and account for 91% of total bacterial abundance in DB and only 77% in the case of NL. Proteobacteria have the highest relative abundance, accounting for around 42% of the total bacterial population in the case of DB and Firmicutes has the highest relative abundance in Najafgarh at 30%. The diversity analysis found significant differences in the community structure at the two sites. The variation in the bacterial communities in the two wetlands is significantly associated with two water parameters (conductivity and temperature) and two sediment parameters (Sediment Nitrogen and Sediment Organic Matter). Correlation Analysis showed that high ammonia, nitrite, and conductance in NL resulted in bacterial communities shifting towards phyla abundant in degraded ecosystems like Acidobacteria, Choloroflexi, Caldiserica, Aminicenantes, Thaumarchaeota, and Planctomycetes.
Collapse
Affiliation(s)
- Sandhya Bhat
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Harbinder Kaur
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, JNU Ring Rd, New Delhi, 110067 India
| | - Priyanka Verma
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| | - Pamposh
- University School of Environment Management, GGSIP University, Sector-16C, Dwarka, New Delhi, 110078 India
| |
Collapse
|
21
|
Wang Y, Li H, Li Y, Guo H, Zhou J, Wang T. Metagenomic analysis revealed sources, transmission, and health risk of antibiotic resistance genes in confluence of Fenhe, Weihe, and Yellow Rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159913. [PMID: 36343807 DOI: 10.1016/j.scitotenv.2022.159913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Rivers are important vectors and reservoirs of antibiotics resistance genes (ARGs). Information regarding transmission and health risk of ARGs in river confluence is still lacking. In this study, metagenomics was used to distinguish contributions of human activities on ARGs and human pathogenic bacteria (HPB) in confluence of Fenhe, Weihe, and Yellow Rivers. Bacitracin resistance gene and bacA were the highest in all rivers, with 1.86 × 10-2-7.26 × 10-2 and 1.79 × 10-2-9.12 × 10-2 copies/16S rRNA copies, respectively. River confluence significantly increased the abundance of ARGs, especially at the confluence of three rivers with the highest 1.53 × 10-1 copies/16S rRNA copies. Antibiotic efflux and antibiotic target alteration were the dominant resistant mechanisms in three rivers. ARGs profiles were influenced by multiple factors, with the contributions of various factors ranked as microbial communities > physicochemical factors > human activities > mobile genetic elements (MGEs). Notably, human activities and animal feces were important potential contributors of ARGs in the Weihe River and Yellow River. Transposons, as the main MGEs in three rivers, played important roles in ARGs transfer. The confluence of three rivers had the highest abundance of MGEs with the greatest transfer potentials, and therefore exhibiting the largest exposure risk of ARGs with 232.4 copies/cap·d. Furthermore, correlations of ARGs, MGEs, and HPB in different rivers were constructed via co-occurrence modes to systematically illustrate the health risks of ARGs. This study firstly unveiled the transmission and health risk of ARGs in river confluence, providing supports for ARGs control in watershed.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hu Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Kuang B, Xiao R, Hu Y, Wang Y, Zhang L, Wei Z, Bai J, Zhang K, Acuña JJ, Jorquera MA, Pan W. Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Front Microbiol 2023; 13:1112669. [PMID: 36713194 PMCID: PMC9874162 DOI: 10.3389/fmicb.2022.1112669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction As the largest shallow freshwater lake in the North China Plain, Baiyangdian lake is essential for maintaining ecosystem functioning in this highly populated region. Sediments are considered to record the impacts of human activities. Methods The abundance, diversity and metabolic pathways of microbial communities in sediments were studied by metagenomic approach to reveal patterns and mechanism of C, N, P and S cycling under the threat of lake eutrophication. Results Many genera, with plural genes encoding key enzymes involved in genes, belonging to Proteobacteria and Actinobacteria which were the most main phylum in bacterial community of Baiyangdian sediment were involved in C, N, S, P cycling processes, such as Nocardioides (Actinobacteria), Thiobacillus, Nitrosomonas, Rhodoplanes and Sulfuricaulis (Proteobacteria).For instance, the abundance of Nocardioides were positively correlated to TN, EC, SOC and N/P ratio in pathways of phytase, regulation of phosphate starvation, dissimilatory sulfate reduction and oxidation, assimilatory sulfate reduction, assimilatory nitrate reduction and reductive tricarboxylic acid (rTCA) cycle. Many key genes in C, N, P, S cycling were closely related to the reductive citrate cycle. A complete while weaker sulfur cycle between SO4 2- and HS- might occur in Baiyangdian lake sediments compared to C fixation and N cycling. In addition, dissimilatory nitrate reduction to ammonia was determined to co-occur with denitrification. Methanogenesis was the main pathway of methane metabolism and the reductive citrate cycle was accounted for the highest proportion of C fixation processes. The abundance of pathways of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling in sediments with higher TN content was higher than those with lower TN content. Besides, Nocardioides with plural genes encoding key enzymes involved in nasAB and nirBD gene were involved in these pathways. Discussion Nocardioides involved in the processes of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling may have important effects on nitrogen transformation.
Collapse
Affiliation(s)
- Bo Kuang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Rong Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China,*Correspondence: Rong Xiao, ✉
| | - Yanping Hu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Yaping Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Zhuoqun Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
| | - Jacquelinne J. Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Milko A. Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Wenbin Pan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
23
|
Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Exploring the impacts of physicochemical characteristics and heavy metals fractions on bacterial communities in four rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116453. [PMID: 36274305 DOI: 10.1016/j.jenvman.2022.116453] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals contamination in sediment poses serious threats to bacterial communities that play critical roles in sediment biogeochemical processes. However, the physicochemical factors and the major heavy metals fractions that affect sediment bacterial communities are still unclear. Here, we performed heatmap and redundancy analyses to examine the effects of physico-chemical characteristics and heavy metals fractions on the sediment bacterial community from rivers in the UK (River Tyne and Ouseburn) and India (River Ganga and Yamuna). The results revealed that physicochemical characteristics and heavy metals fractions altered the diversity, richness, and structures of the bacterial community. Moreover, the fractions of Co, Zn, Pb, Cr, and Cu played significant roles in shaping the bacterial community structure, and physicochemical variables, particularly NH4+-N and NO2--N, also influenced the bacterial diversity and structure. Firmicutes showed strong associations with both physicochemical factors and heavy metals fractions. Chloroflexi and Actinobacteriota can be used as biomarkers for Zn contamination. Overall, our study identified the significance of sediment chemical characteristics and heavy metals fractions in determining the bacterial community structure as well as bioremediation and environmental management of metals contaminated sites.
Collapse
Affiliation(s)
- Sonia Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle Upon Tyne- NE1 7RU, United Kingdom
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
24
|
He R, Peng C, Jiang L, Han H, Chu YX, Wang J, Liu CY, Zhao N. Characteristic pollutants and microbial community in underlying soils for evaluating landfill leakage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:269-280. [PMID: 36403411 DOI: 10.1016/j.wasman.2022.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Leachate leakage poses a serious environmental risk to the safety of surrounding soils and groundwater. A much faster approach to reflect landfill leakage is the premise to mitigate the ecological risk of landfills. In this study, two landfills (BJ and WZ) were selected to investigate the leaching characteristics of various pollutants along the vadose soil depths. The physiochemical properties of underlying soils including NO3--N, NO2--N, NH4+-N, OM, TN, EC and Cl- exhibited a typical leaching dynamic along the depths. Among them, TN, NH4+-N, OM, NO3--N, and EC might be used as characteristic pollutants to evaluate the leachate leakage issues in landfilled sites. The genera Thiopseudomonas, Acinetobacter, Pseudomonas, and Hydrogenispora dominated in underlying soils. Compared to BJ samples, a more diverse and active microbiome capable of carbon and nitrogen cycles was observed in WZ samples, which was mainly ascribed to nutrients and elements contained in different types of soils. Among the environmental factors, nitrogenous compounds, SO42-, pH and EC had significant effects on the microbial community structures in the underlying soils. The relative abundances of Hydrogenispora and Caldicoprobacter might be used as characteristic microorganisms to evaluate the leachate leakage issues in landfilled sites. These results provided a deep insight into effects of leachate leakage in underlying soils, especially the pollutants vertical distribution and the corresponding microbial community structures.
Collapse
Affiliation(s)
- Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Chun Peng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lei Jiang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hua Han
- BGI Engineering Consultants LTD., Beijing 100000, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Yang Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
25
|
Yang C, Zeng Z, Zhang H, Gao D, Wang Y, He G, Liu Y, Wang Y, Du X. Distribution of sediment microbial communities and their relationship with surrounding environmental factors in a typical rural river, Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84206-84225. [PMID: 35778666 DOI: 10.1007/s11356-022-21627-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
With rapid urbanization and industrialization, rural rivers in China are facing deterioration in water quality and ecosystem health. Microorganisms living in river sediments are involved in biogeochemical processes, mineralization, and degradation of pollutants. Understanding bacterial community distribution in rural rivers could help evaluate the response of river ecosystems to environmental pollution and understand the river self-purification mechanism. In this study, the relationship between characteristics of sediment microbial communities and the surrounding environmental factors in a typical rural river was analyzed using 16S rRNA gene sequencing technology. The results showed that the dominant bacterial groups in the river sediment were Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, and Firmicutes, accounting for 83.61% of the total microbial load. Different areas have different sources of pollution which give rise to specific dominant bacteria. The upstream part of the river flows through an agricultural cultivation area where the dominant bacteria were norank_f_Gemmatimonadaceae, Haliangium, and Pseudolabrys, possessing obvious nitrogen- and phosphorus-metabolizing activities. The midstream section flows through an urban area where the dominant bacteria were Marmoricola, Nocardioides, Gaiella, Sphingomonas, norank_f_67-14, Subgroup_10, Agromyces, and Lysobacter, with strong metabolizing activity for toxic pollutants. The dominant bacteria in the downstream part were Clostridium_sensu_stricto_1, norank_f__Bacteroidetes_vadinHA17, Candidatus_Competibacter, and Methylocystis. Redundancy analysis and correlation heatmap analysis showed that environmental factors: ammonia nitrogen (NH4+-N) and total nitrogen (TN) in the sediment, and pH, temperature, TN, electrical conductivity (EC), and total dissolved solids (TDS) in the water, significantly affected the bacterial community in the sediment. The PICRUSt2 functional prediction analysis identified that the main function of bacteria in the sediment was metabolism (77.3%), specifically carbohydrate, amino acid, and energy metabolism. These activities are important for degrading organic matter and removing pollutants from the sediments. The study revealed the influence of organic pollutants derived from human activities on the bacterial community composition in the river sediments. It gave a new insight into the relationship between environmental factors and bacterial community distribution in rural watershed ecosystems, providing a theoretical basis for self-purification and bioremediation of rural rivers.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Dongdong Gao
- Sichuan Academy of Environmental Science, Chengdu, China
| | - Yuanyuan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Guangyi He
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ying Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Du
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
26
|
Pan Y, Xie J, Yan W, Zhang TC, Chen C. Response of microbial community to different land-use types, nutrients and heavy metals in urban river sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115855. [PMID: 35994962 DOI: 10.1016/j.jenvman.2022.115855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
Nutrients and heavy metals (HM) in the sediment have an impact on microbial diversity and community structure. In this study, the distribution characteristics of nutrients, HM, and microbial community in the sediments along the Longsha River, a tributary of the Pearl River (or Zhu Jiang), China were investigated by analyzing samples from 11 sites. On the basis of the HM-contamination level, the 11 sampling sites were divided into three groups to explore the changes in microbial communities at different ecological risk levels. Results indicated that nutrient concentrations were higher near farmlands and residential lands, while the ecological risk of HM at the 11 sampling sites was from high to low as S10 > S2 > S9 > S6 > S11 > S7 > S5 > S8 > S3 > S4 > S1. Among these HM, Cu, Cr, and Ni had intense ecological risks. In addition, the results of Variance Partitioning Analysis (VPA) revealed a higher contribution of HM (35.93%) to microbial community variation than nutrients (12.08%) and pH (4.08%). Furthermore, the HM-tolerant microbial taxa (Clostridium_sensu_stricto_1, Romboutsia, norank_o__Gaiellales, and etc.) were the dominant genera, and they were more dynamic around industrial lands, while microbes involved in the C, N, and S cycles (e.g., Smithella, Thiobacillus, Dechloromonas, Bacter oidetes_vadinHA17, and Syntrophorhabdus) were inhibited by HM, while their abundance was lower near industrial lands and highway but higher around residential lands. A three-unit monitoring program of land-use types, pollutants, and microbial communities was proposed. These results provide a new perspective on the control of riparian land-use types based on contaminants and microbes, and different microbial community response patterns may provide a reference for contaminant control in sediments with intensive industrial activities.
Collapse
Affiliation(s)
- Yuwei Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Weixing Yan
- Foshan Nanhai Suzhou University of Science and Technology Environmental Research Institute, Foshan 528226, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept., University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Foshan Nanhai Suzhou University of Science and Technology Environmental Research Institute, Foshan 528226, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China.
| |
Collapse
|
27
|
Zhang Y, Zhang Y, Wei L, Li M, Zhu W, Zhu L. Spatiotemporal correlations between water quality and microbial community of typical inflow river into Taihu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63722-63734. [PMID: 35460482 DOI: 10.1007/s11356-022-19023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Changxing River, which is a typical inflow river into Taihu Lake and occurs severe algae invasion, is selected to study the effect of different pollution sources on the water quality and ecological system. Four types of pollution sources, including the estuary of Taihu Lake, discharge outlets of urban wastewater treatment plants, stormwater outlets, and nonpoint source agricultural drainage areas, were chosen, and next-generation sequencing and multivariate statistical analyses were used to characterize the microbial communities and reveal their relationship with water physicochemical properties. The results showed that ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were the main pollutants in Changxing River, especially at stormwater outlets. At the same time, the diversity of microbial communities was the highest in the summer, and dominant microbes included Proteobacteria (40.9%), Bacteroidetes (21.0%), and Euryarchaeota (6.1%). The results of BIOENV analysis showed that the major seasonal differences in the diversity of microbial community of Changxing river were explained by the combination of water temperature (T), air pressure (P), TP, and CODMn. From the perspective of different pollution types, relative abundances of Microcystis and Nostocaceae at the estuary of Taihu Lake were correlated positively with dissolved oxygen (DO) and pH, and relative abundances of Pseudomonas and Arcobacter were correlated positively with concentrations of TN and nitrate nitrogen (NO3--N) at stormwater outlets. This study provided a reference for the impact of pollution types on river microbial ecosystem under complex hydrological conditions and guidance for the selection of restoration techniques for polluted rivers entering the important lake.
Collapse
Affiliation(s)
- Yajie Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Ye Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Lecheng Wei
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, USA
| | - Weitang Zhu
- Environmental Protection Bureau of Changxing County, Huzhou, 313100, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou, 310058, China.
- Department of Environmental Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
28
|
Zhou Y, Toyoda R, Suenaga T, Aoyagi T, Hori T, Terada A. Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. WATER RESEARCH 2022; 216:118276. [PMID: 35339050 DOI: 10.1016/j.watres.2022.118276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Urban rivers receive used water derived from anthropogenic activities and are a crucial source of the potent greenhouse gas nitrous oxide (N2O). However, considerable uncertainties still exist regarding the variation and mechanisms of N2O production in response to the discharge of treated sewage from municipal wastewater treatment plants (WWTPs). This study investigated N2O concentrations and microbial processes responsible for nitrogen conversion upstream and downstream of WWTPs along the Tama River flowing through Tokyo, Japan. We evaluated the effect of treated sewage on dissolved N2O concentrations and inherent N2O consumption activities in the river sediments. In summer and winter, the mean dissolved N2O concentrations were 0.67 µg-N L-1 and 0.82 µg-N L-1, respectively. Although the dissolved N2O was supersaturated (mean 288.7% in summer, mean 240.7% in winter) in the river, the N2O emission factors (EF5r, 0.013%-0.025%) were significantly lower than those in other urban rivers and the Intergovernmental Panel on Climate Change default value (0.25%). The nitrate (NO3-) concentration in the Tama River increased downstream of the WWTPs discharge sites, and it was the main nitrogen constituent. An increasing trend of NO3- concentration was observed from upstream to downstream, along with an increase in the N2O consumption potential of the river sediment. A multiple regression model showed that NO3- is the crucial factor influencing N2O saturation. The diversity in the upstream microbial communities was greater than that in the downstream ones, indicating the involvement of treated sewage discharge in shaping the microbial communities. Functional gene quantification for N2O production and consumption suggested that nirK-type denitrifiers likely contributed to N2O production. Structural equation models (SEMs) revealed that treated sewage discharged from WWTPs increased the NO3- loading from upstream to downstream in the river, inducing changes in the microbial communities and enhancing the N2O consumption activities. Collectively, aerobic conditions limited denitrification and in turn facilitated nitrification, leading to low N2O emissions even despite high NO3- loadings in the Tama River. Our findings unravel an overestimation of the N2O emission potential in an urban oxygen-rich river affected by treated sewage discharge.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Risako Toyoda
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Department of Chemical Engineering, Hiroshima University, Hiroshima 739-8527, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
29
|
Wu B, Wang P, Devlin AT, She Y, Zhao J, Xia Y, Huang Y, Chen L, Zhang H, Nie M, Ding M. Anthropogenic Intensity-Determined Assembly and Network Stability of Bacterioplankton Communities in the Le'an River. Front Microbiol 2022; 13:806036. [PMID: 35602050 PMCID: PMC9114710 DOI: 10.3389/fmicb.2022.806036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bacterioplankton are essential components of riverine ecosystems. However, the mechanisms (deterministic or stochastic processes) and co-occurrence networks by which these communities respond to anthropogenic disturbances are not well understood. Here, we integrated niche-neutrality dynamic balancing and co-occurrence network analysis to investigate the dispersal dynamics of bacterioplankton communities along human activity intensity gradients. Results showed that the lower reaches (where intensity of human activity is high) had an increased composition of bacterioplankton communities which induced strong increases in bacterioplankton diversity. Human activity intensity changes influenced bacterioplankton community assembly via regulation of the deterministic-stochastic balance, with deterministic processes more important as human activity increases. Bacterioplankton molecular ecological network stability and robustness were higher on average in the upper reaches (where there is lower intensity of human activity), but a human activity intensity increase of about 10%/10% can reduce co-occurrence network stability of bacterioplankton communities by an average of 0.62%/0.42% in the dry and wet season, respectively. In addition, water chemistry (especially NO3–-N and Cl–) contributed more to explaining community assembly (especially the composition) than geographic distance and land use in the dry season, while the bacterioplankton community (especially the bacterioplankton network) was more influenced by distance (especially the length of rivers and dendritic streams) and land use (especially forest regions) in the wet season. Our research provides a new perspective of community assembly in rivers and important insights into future research on environmental monitoring and classified management of aquatic ecosystems under the influence of human activity.
Collapse
Affiliation(s)
- Bobo Wu
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Adam Thomas Devlin
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China
| | - Yuanyang She
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing, China
| | - Yang Xia
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Yi Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Lu Chen
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| | - Mingjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang, China.,Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
30
|
Yang J, Zhou M, Yu K, Gin KYH, Hassan M, He Y. Heavy metals in a typical city-river-reservoir system of East China: Multi-phase distribution, microbial response and ecological risk. J Environ Sci (China) 2022; 112:343-354. [PMID: 34955217 DOI: 10.1016/j.jes.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 06/14/2023]
Abstract
The rapid construction of artificial reservoirs in metropolises has promoted the emergence of city-river-reservoir systems worldwide. This study investigated the environmental behaviors and risks of heavy metals in the aquatic environment of a typical system composed of main watersheds in Suzhou and Jinze Reservoir in Shanghai. Results shown that Mn, Zn and Cu were the dominant metals detected in multiple phases. Cd, Mn and Zn were mainly presented in exchangeable fraction and exhibited high bioavailability. Great proportion and high mobility of metals were found in suspended particulate matter (SPM), suggesting that SPM can greatly affect metal multi-phase distribution process. Spatially, city system (CiS) exhibited more serious metal pollution and higher ecological risk than river system (RiS) and reservoir system (ReS) owing to the diverse emission sources. CiS and ReS were regarded as critical pollution source and sink, respectively, while RiS was a vital transportation aisle. Microbial community in sediments exhibited evident spatial variation and obviously modified by exchangeable metals and nutrients. In particular, Bacteroidetes and Firmicutes presented significant positive correlations with most exchangeable metals. Risk assessment implied that As, Sb and Ni in water may pose potential carcinogenic risk to human health. Nevertheless, ReS was in a fairly safe state. Hg was the main risk contributor in SPM, while Cu, Zn, Ni and Sb showed moderate risk in sediments. Overall, Hg, Sb and CiS were screened out as priority metals and system, respectively. More attention should be paid to these priority issues to promote the sustainable development of the watershed.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore
| | - Mingrui Zhou
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Muhammad Hassan
- Ecology and Chemical Engineering Department, South Ural State University, Lenin Prospect 76, Chelyabinsk 454080, Russian Federation
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Huff Chester A, Gordon C, Hartmann HA, Bartell SE, Ansah E, Yan T, Li B, Dampha NK, Edmiston PL, Novak PJ, Schoenfuss HL. Contaminants of Emerging Concern in the Lower Volta River, Ghana, West Africa: The Agriculture, Aquaculture, and Urban Development Nexus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:369-381. [PMID: 34939696 DOI: 10.1002/etc.5279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Contaminants of emerging concern (CECs) are ubiquitous in aquatic environments across all continents and are relatively well known in the developed world. However, few studies have investigated their presence and biological effects in low- and middle-income countries. We provide a survey of CEC presence in the Volta River, Ghana, and examine the microbial consequences of anthropogenic activities along this economically and ecologically important African river. Water and sediment samples were taken by boat or from shore at 14 sites spanning 118 km of river course from the Volta estuary to the Akosombo dam. Sample extracts were prepared for targeted analysis of antimicrobial CECs, N,N-diethyl-meta-toluamide, and per- and polyfluoroalkyl substances (PFAS; water only). Concurrent samples were extracted to characterize the microbial community and antibiotic-resistant genes (ARGs). Antibiotics and PFAS (PFAS, 2-20 ng/L) were found in all water samples; however, their concentrations were usually in the low nanograms per liter range and lower than reported for other African, European, and North American studies. N,N-Diethyl-meta-toluamide was present in all samples. The number of different genes detected (between one and 10) and total ARG concentrations varied in both water (9.1 × 10-6 to 8.2 × 10-3 ) and sediment (2.2 × 10-4 to 5.3 × 10-2 ), with increases in gene variety at sites linked to urban development, sand mining, agriculture, and shellfish processing. Total ARG concentration spikes in sediment samples were associated with agriculture. No correlations between water quality parameters, CEC presence, and/or ARGs were noted. The presence of CECs in the lower Volta River highlights their global reach. The overall low concentrations of CECs detected is encouraging and, coupled with mitigation measures, can stymie future CEC pollution in the Volta River. Environ Toxicol Chem 2022;41:369-381. © 2021 SETAC.
Collapse
Affiliation(s)
- Anndee Huff Chester
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Gordon
- Institute of Environmental and Sanitation Studies, University of Ghana, Legon, Greater Accra, Ghana
| | | | - Stephen E Bartell
- Department of Biology, Normandale Community College, Bloomington, Minnesota, USA
| | - Emmanuel Ansah
- Institute of Environmental and Sanitation Studies, University of Ghana, Legon, Greater Accra, Ghana
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Nfamara K Dampha
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul L Edmiston
- Department of Chemistry, The College of Wooster, Wooster, Ohio, USA
| | - Paige J Novak
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
32
|
Hou Y, Li B, Xu G, Li D, Zhang C, Jia R, Li Q, Zhu J. Dynamic and Assembly of Benthic Bacterial Community in an Industrial-Scale In-Pond Raceway Recirculating Culture System. Front Microbiol 2022; 12:797817. [PMID: 35003028 PMCID: PMC8733461 DOI: 10.3389/fmicb.2021.797817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
To reduce water utilization, limit environmental pollution, and guarantee aquatic production and quality, the in-pond raceway recirculating culture system (IPRS) has been developed and is widely used. The effectiveness and sustainability of IPRSs rely on a good understanding of the ecological processes related to bacterial communities in the purification area. In this study, we investigated the dynamics and assembly mechanisms of benthic bacterial communities in the purification area of an industrial-scale IRPS. We found significant temporal and spatial variations in the sediment characteristics and benthic bacterial communities of the IPRS, although correlation analyses revealed a very limited relationship between them. Among the different culture stages, we identified numerous benthic bacteria with different abundances. Abundances of the phyla Bacteroidota and Desulfobacterota decreased whereas those of Myxococcota and Gemmatimonadota increased as the culture cycle progressed. Co-occurrence networks revealed that the bacterial community was less complex but more stable in the IPRS at the final stage compared with the initial stage. The neutral community model (NCM) showed that stochastic processes were the dominant ecological processes shaping the assembly of the benthic bacterial community. The null model suggested that homogenizing dispersal was more powerful than dispersal limitation and drift in regulating the assembly of the community. These findings indicate that the benthic microbial communities in purification areas of the IPRS may not be affected by the deposited wastes, and a more stable benthic microbial communities were formed and mainly driven by stochastic processes. However, the benthic microbial communities in the purification area at the end of the culturing stage was characterized by potentially inhibited organic matter degradation and carbon and sulfur cycling abilities, which was not corresponding to the purification area’s function. From this point on, the IPRS, especially the purification area was needed to be further optimized and improved.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bing Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Da Li
- Ocean and Fishery Research Institute of Rizhao, Rizhao, China
| | - Chengfeng Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
33
|
Liu S, Wang P, Wang C, Chen J, Wang X, Hu B, Yuan Q. Ecological insights into the disturbances in bacterioplankton communities due to emerging organic pollutants from different anthropogenic activities along an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148973. [PMID: 34274679 DOI: 10.1016/j.scitotenv.2021.148973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Emerging organic pollutants (EOPs) in urban rivers have raised concerns regarding their eco-toxicological effects. However, the bacterioplankton community disturbances caused by EOPs in urban rivers and the associated ecological mechanisms remain unclear. This study provided profiles of the spatial distribution of a bacterioplankton community disturbed by human activity along an urban river. The results showed that EOP concentration and composition were differently distributed in residential and industrial areas, which significantly influenced bacterioplankton community structure. Based on redundancy analysis, parabens (methylparaben and propylparaben) were the major factors driving bacterioplankton community changes. Parabens inhibited gram-positive bacteria and promoted oxidative stress-tolerant bacteria in the river ecosystem. Parabens also disturbed ecological processes of bacterioplankton community assembly, shifting from a homogeneous selection (consistent selection pressure under similar environmental condition) to stochastic processes (random changes due to birth, death, immigration, and emigration) with changing in paraben concentrations. Heterogeneous selection was predicted to dominate microbial community assembly with paraben concentration changes exceeding 61.6 ng/L, which could deteriorate the river ecosystem. Furthermore, specific bacterial genera were identified as potential bioindicators to assess the condition of EOP contaminants in the river. Overall, this study highlights significant disturbances in bacterioplankton communities by EOPs at environmental concentrations, and our results could facilitate generation of appropriate management strategies aimed at EOPs in urban rivers.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Qiusheng Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
34
|
Liu L, Wang S, Chen J. Transformations from specialists to generalists cause bacterial communities are more stable than micro-eukaryotic communities under anthropogenic activity disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148141. [PMID: 34090161 DOI: 10.1016/j.scitotenv.2021.148141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Different microbial components have different responses to environmental disturbances. Here, we found that the planktonic bacterial and micro-eukaryotic communities had different responses to anthropogenic activity disturbance in a subtropical river, because they had different survival strategies (generalist and specialist). We used nutrients (nitrogen and phosphorus) as indicators of anthropogenic activities. We found that river stretch 1 showed low nutrient concentrations from October 2018 to September 2019. However, a nutrient disturbance was observed in river stretch 2. The nutrient concentrations increased largely in December and January but recovered to low values in June. Bacterial communities had higher resilience under this disturbance than micro-eukaryotic communities in river stretch 2. The bacterial community composition were quite different between the two river stretches in December and January but were similar in June and July. However, the differences of micro-eukaryotic community composition between the two river stretches were always high during the study period. The bacterial communities in river stretch 2 contained more generalists and nutrient tolerant specialists. The bacterial nutrient tolerant specialists rapidly decreased in the low nutrient months and were replaced by the generalists. Bacteria which were involved in this shifts accounted for 29.3% of the total abundance. However, the micro-eukaryotic communities in river stretch 2 contained more moderate generalists. These moderate generalists were insensitive to the variation of nutrients and only 19.56% of the micro-eukaryotes had significant responses to the disturbance. The survival strategies caused bacterial communities had higher adaptability than eukaryotes to environmental fluctuation.
Collapse
Affiliation(s)
- Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China.
| | - Shanshan Wang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China; Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
35
|
Liu X, Hu S, Sun R, Wu Y, Qiao Z, Wang S, Zhang Z, Cui C. Dissolved oxygen disturbs nitrate transformation by modifying microbial community, co-occurrence networks, and functional genes during aerobic-anoxic transition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148245. [PMID: 34380284 DOI: 10.1016/j.scitotenv.2021.148245] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 05/23/2023]
Abstract
No consensus has been achieved among researchers on the effect of dissolved oxygen (DO) on nitrate (NO3--N) transformation and the microbial community, especially during aerobic-anoxic transition. To supplement this knowledge, NO3--N transformation, microbial communities, co-occurrence networks, and functional genes were investigated during aerobic-anoxic transition via microcosm simulation. NO3--N transformation rate in the early stage (DO ≥2 mg/L) was always significantly higher than that in the later stage (DO <2 mg/L) during aerobic-anoxic transition, and NO2--N accumulation was more significant during the anoxic stage, consistent with the result obtained under constant DO conditions. These NO3--N transformation characteristics were not affected by other environmental factors, indicating the important role of DO in NO3--N transformation during aerobic-anoxic transition. Changes in DO provoked significant alterations in microbial diversity and abundance of functional bacteria dominated by Massilia, Bacillus, and Pseudomonas, leading to the variation in NO3--N transformation. Co-occurrence network analysis revealed that NO3--N transformation was performed by the interactions between functional bacteria including symbiotic and competitive relationship. In the presence of oxygen, these interactions accelerated the NO3--N transformation rate, and bacterial metabolization proceeded via increasingly varied pathways including aerobic and anoxic respiration, which was demonstrated through predicted genes. The higher relative abundance of genes narG, narH, and napA suggested the occurrence of coupled aerobic-anoxic denitrification in the early stage. NO3--N transformation rate decreased accompanied by a significant NO2--N accumulation with the weakening of coupled aerobic-anoxic denitrification during aerobic-anoxic transition. Structural equation modeling further demonstrated the relationship between DO and NO3--N transformation. DO affects NO3--N transformation by modifying microbial community, bacterial co-occurrence, and functional genes during aerobic-anoxic transition.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zixia Qiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sichang Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zehong Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chuwen Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
36
|
Wang C, Wang Y, Liu P, Sun Y, Song Z, Hu X. Characteristics of bacterial community structure and function associated with nutrients and heavy metals in coastal aquaculture area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116639. [PMID: 33578318 DOI: 10.1016/j.envpol.2021.116639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 05/20/2023]
Abstract
Coastal aquaculture area has become one of the critical zones that are more susceptible to the influence of human activity. Many aquaculture operations invariably result in the accumulation of nutrients and heavy metals in the coastal ecosystem. Our study investigated sediment bacterial community structure and function across 23 sites under the influence of nutrients and heavy metals in the coastal aquaculture area. The habitat environment of the sediment was described by analyzing physicochemical characteristics. Sediment bacterial community structure and diversity were investigated by 16S rRNA sequencing. The sequencing data presented that Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria and Chloroflexi were predominant at phylum level. Variations in the bacterial community composition and diversity were significant (P < 0.01) among different groups (according to the distance from the bank side) which indicated that specific environmental conditions had shaped distinct bacterial community. Specifically, bacterial diversity and composition were significantly influenced by the temperature, salinity, pH, dissolved oxygen (DO), TOC, TON, nitrite, nitrate and heavy metals (P < 0.05). Results related to functional prediction demonstrated that carbon, nitrogen and sulfur metabolism were the dominant processes in the coastal aquaculture area. In the meantime, the potential pathogens such as Arcobacter was found in site S3, which indicated the possible threat to the cultured species in this area. Overall, variations in bacterial communities caused by nutrients and heavy metals can affect biogeochemical cycles, which may provide an indication for the protection of coastal aquaculture environments.
Collapse
Affiliation(s)
- Caixia Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China
| | - Yibo Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengyuan Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zenglei Song
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China.
| |
Collapse
|
37
|
Cifuentes GR, Jiménez-Millán J, Quevedo CP, Gálvez A, Castellanos-Rozo J, Jiménez-Espinosa R. Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): The role of bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143113. [PMID: 33131835 DOI: 10.1016/j.scitotenv.2020.143113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
We studied the relationships between the trace element concentration in sediments from a saline lake at a tropical latitude (Sochagota Lake, Colombia) containing hydrothermal and anthropic inputs with the organic matter content, the mineral assemblage composition and the activity of the bacterial communities of the sediments. Organic matter-poor sediments (TOC < 0.7%) with quartz and kaolinite near the southern entrance of the lake were enriched in Zr (up to 603 mg/kg) and some major detrital elements (Na, Ti, Al and Si). Fine-sized clay-rich sediments deposited in the deep zones of the lake (central and northern segments) were characterized by substantial organic matter (up to 11.10%) and the crystallization of S-bearing minerals, clay mineral mixed layers and illite. These sediments were enriched in S, Fe, Zn, Mo, Rb, Co, K, Cr, Sb, Ni, As, Ba, Cu, Mn, Pb, P, Mg, and Sr. The presence of Fe sulfide nanoparticles enriched in heavy metals encrusting microbial cells and a dominant sulfate-reducing bacteria (SRB) community (Desulfatiglans, Desulfobacterales and Sva0485) suggested that the precipitation of the hydrothermal S and the accumulation of trace elements in the sediments was regulated by SRB activity. The crystallization of S°, barite and calcite and the good correlations between Ba, Sr and Ca indicated that previously precipitated sulfide can be oxidized by the activity of a relevant sulfur-oxidizing bacterial community (Thioalkalimicrobium, Sulfurovum, Arcobacter and Sulfurimonas), possibly facilitating the release of the metals.
Collapse
Affiliation(s)
- Gabriel Ricardo Cifuentes
- Faculty of Sciences and Engineering, Water Resources Research Group, University of Boyacá, 150003 Tunja, Colombia
| | - Juan Jiménez-Millán
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Claudia Patricia Quevedo
- Faculty of Sciences and Engineering, Water Resources Research Group, University of Boyacá, 150003 Tunja, Colombia
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, Campus Las Lagunillas, 23071 Jaén, Spain
| | - José Castellanos-Rozo
- Department of Biology and Microbiology, Faculty of Sciences and Engineering, Environmental Management Group, University of Boyacá, 150003 Tunja, Colombia
| | - Rosario Jiménez-Espinosa
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
38
|
Abstract
The aquatic ecosystem is continuously threatened by the infiltration and discharge of anthropogenic wastewaters. This issue requires the unending improvement of monitoring systems to become more comprehensive and specific to targeted pollutants. This review intended to elucidate the overall aspects explored by researchers in developing better water pollution monitoring tools in recent years. The discussion is encircled around three main elements that have been extensively used as the basis for the development of monitoring methods, namely the dissolved compounds, bacterial indicator, and nucleic acids. The latest technologies applied in wastewater and surface water mapped from these key players were reviewed and categorized into physicochemical and compound characterizations, biomonitoring, and molecular approaches in taxonomical and functional analyses. Overall, researchers are continuously rallying to enhance the detection of causal source for water pollution through either conventional or mostly advanced approaches focusing on spectrometry, high-throughput sequencing, and flow cytometry technology among others. From this review’s perspective, each pollution evaluation technology has its own advantages and it would be beneficial for several aspects of pollutants assessments to be combined and established as a complementary package for better aquatic environmental management in the long run.
Collapse
|
39
|
Ouyang L, Wang K, Liu X, Wong MH, Hu Z, Chen H, Yang X, Li S. A study on the nitrogen removal efficacy of bacterium Acinetobacter tandoii MZ-5 from a contaminated river of Shenzhen, Guangdong Province, China. BIORESOURCE TECHNOLOGY 2020; 315:123888. [PMID: 32721830 DOI: 10.1016/j.biortech.2020.123888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) has advantages over the traditional nitrogen removal process when removing multiple types of nitrogen in wastewater treatment. Acinetobacter tandoii MZ-5, which is capable of HN-AD, was isolated from the sediment of a polluted river for the first time. It used NH4+-N, NO2--N and NO3--N as sole nitrogen sources with maximum removal rates of 2.28, 1.18 and 1.04 mg L-1h-1, respectively. Simultaneous nitrification and denitrification were observed when using mixed N sources and NH4+-N was preferentially utilized. High nitrogen removal efficiencies (>90%) were achieved under the following conditions: C/N ratio 11-18, pH 6-8, 25-30 °C and dissolved oxygen 7.35-7.66 mg L-1. Strain MZ-5 was effective at treating wastewater from landfill leachate treatment plants, with NH4+-N, NO3--N and total nitrogen (TN) removal efficiencies of 99.28%, 44.85% and 45.31%, respectively. Thus, strain MZ-5 may be a good candidate for wastewater treatment.
Collapse
Affiliation(s)
- Liao Ouyang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Keju Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinyue Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of HongKong, Taipo, HongKong, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Huirong Chen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|