1
|
Alimohammadi M, Demirer GN. Microplastics in anaerobic digestion: occurrence, impact, and mitigation strategies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:397-411. [PMID: 39464825 PMCID: PMC11499492 DOI: 10.1007/s40201-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
Microplastic pollution has emerged as a global environmental concern, with pervasive contamination in terrestrial and aquatic ecosystems. This review paper delves into the intricate dynamics of microplastics within anaerobic digestion systems, addressing their occurrence, impact, and potential mitigation strategies. The occurrence of microplastics in anaerobic digesters is widespread, entering these systems through diverse inputs, such as sewage sludge, organic waste, and etc. Microplastics in anaerobic digestion have been associated with potential adverse impacts on biogas production, process performance, microbial communities, and degradation processes, though the relationship is complex and context dependent. This review highlights the urgent need for comprehensive research into the fate of microplastics within anaerobic digesters. Mitigation strategies offer promise in alleviating microplastic contamination, with advanced separation methods, innovative techniques such as magnetic micro-submarines, photocatalytic micro-motors, membrane bioreactors combined with activated carbon filters, rapid sand filtration, or conventional activated sludge, and disintegration-oriented techniques such as electrocatalysis, biodegradation, and thermal decomposition. Nonetheless, there is a significant knowledge gap that necessitates further research into the fate and long-term effects of microplastics in digestate. Collaborative efforts are crucial to addressing this emerging concern and ensuring the sustainability of anaerobic digestion systems in the face of microplastic challenges.
Collapse
Affiliation(s)
- Mahsa Alimohammadi
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
| | - Goksel N. Demirer
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Institute for Great Lakes Research, Central Michigan University, Mt. Pleasant, MI 48859 USA
| |
Collapse
|
2
|
Shi L, Feng Y, Wang J, Xiao R, Wang L, Tian P, Jin X, Zhao J, Wang G. Innovative mechanisms of micro- and nanoplastic-induced brain injury: Emphasis on the microbiota-gut-brain axis. Life Sci 2024; 357:123107. [PMID: 39369844 DOI: 10.1016/j.lfs.2024.123107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging environmental pollutants, infiltrate marine, terrestrial, and freshwater systems via diverse pathways, culminating in their accumulation in the human body through food chain transmission, posing potential health risks. Researches have demonstrated that MNPs disrupt gut microbiota equilibrium and compromise intestinal barrier integrity, as well as traverse the blood-brain barrier, leading to brain damage. Moreover, the complex interaction between the gut and the nervous system, facilitated by the "gut-brain axis," indicates an additional pathway for MNPs-induced brain damage. This has intensified scientific interest in the intercommunication between MNPs and the gut-brain axis. While existing studies have documented microbial imbalances and metabolic disruptions subsequent to MNPs exposure, the precise mechanisms by which the microbiota-gut-brain axis contributes to MNPs-induced central nervous system damage remain unclear. This review synthesizes current knowledge on the microbiota-gut-brain axis, elucidating the pathogenesis of MNPs-induced gut microbiota dysbiosis and its consequent brain injury. It emphasizes the complex interrelation between MNPs and the microbiota-gut-brain axis, advocating for the gut microbiota as a novel therapeutic target to alleviate MNP-induced brain harm.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Jialiang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing People's Hospital, Jiangsu, Wuxi 214200, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| |
Collapse
|
3
|
Fabrello J, Ciscato M, Asnicar D, Giorgi J, Roverso M, Bogialli S, Matozzo V. Effects of Bisphenol A analogues and their mixture on the crab Carcinus aestuarii: Cytotoxicity, oxidative stress and damage, neurotoxicity, physiological responses, and bioaccumulation. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106800. [PMID: 39432956 DOI: 10.1016/j.marenvres.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA) analogues are emerging contaminants, whose ecotoxicological profile for aquatic species, particularly marine ones, is little known. In this study, the effects of an environmentally realistic concentration (300 ng/L) of three BPA analogues (BPAF, BPF, and BPS) - alone or as a mixture (MIX) - were evaluated for the first time on the crab Carcinus aestuarii. A multibiomarker approach was adopted to assess the effects of 7 and 14 days of exposure on haemolymph parameters, gill and hepatopancreas biochemical parameters, and physiological responses of crabs. Bioaccumulation of the three bisphenols was also investigated in crabs by UHPLC-HRMS. A significant reduction in total haemocyte counts was recorded in crabs exposed for 7 days to BPAF and MIX and for 14 days to the MIX, whereas an increase was found in crabs treated for 14 days with BPAF. Cell proliferation increased significantly in crabs exposed for 14 days to BPS and MIX. An imbalance of the antioxidant system, as well as oxidative damage, was recorded in gills and hepatopancreas. No neurotoxic effects were observed in crabs. At the physiological level, exposure to MIX increased the respiration rate of crabs. As for bioaccumulation, only bisphenol AF was detected in crabs. Overall, the present study demonstrated that BPA analogues can affect some important cellular parameters, induce oxidative stress and alter physiological responses in crabs.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy.
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy
| | - Davide Asnicar
- Aquatic Bioscience, Huntsman Marine Science Centre, St. Andrews, NB, Canada
| | - Jacopo Giorgi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
4
|
Santovito A, Lambertini M, Nota A. In Vitro and In Vivo Genotoxicity of Polystyrene Microplastics: Evaluation of a Possible Synergistic Action with Bisphenol A. J Xenobiot 2024; 14:1415-1431. [PMID: 39449420 PMCID: PMC11503296 DOI: 10.3390/jox14040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The ubiquitous presence of plastics represents a global threat for all ecosystems and human health. In this study, we evaluated, in vitro and in vivo, the genotoxic potential of different concentrations of polystyrene microplastics (PS-MPs) and their possible synergistic interactions with bisphenol-A (BPA). For the in vitro and the in vivo assays, we used human lymphocytes and hemocytes from Lymnaea stagnalis, respectively. The genomic damage was evaluated by the micronucleus assay, and differences in eggs laid and growth of L. stagnalis were also evaluated. In human lymphocytes, PS-MPs alone at the concentration of 200 μg/mL and in association with BPA 0.100 µg/mL significantly increased the frequencies of micronuclei and nuclear buds, indicating a possible in vitro genotoxic additive action of these two compounds. Vice versa, PS-MPs did not result in genotoxicity in hemocytes. Our results indicated that PS-MPs have genotoxic properties only in vitro and at a concentration of 200 µg/mL; moreover, this compound could intensify the genomic damage when tested with BPA, indicating possible cumulative effects. Finally, PS significantly reduced the growth and the number of laid eggs in L. stagnalis.
Collapse
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Mattia Lambertini
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy;
| | - Alessandro Nota
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| |
Collapse
|
5
|
Fernández B, Vidal-Liñán L, Bellas J, Campillo JA, Chaves-Pozo E, Albentosa M. The particle effect: comparative toxicity of chlorpyrifos in combination with microplastics and phytoplankton particles in mussel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107053. [PMID: 39213727 DOI: 10.1016/j.aquatox.2024.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Lately, the role of microplastics (MP) as vectors for dissolved contaminants and as vehicle for their transfer to aquatic organisms has received attention. Similarly to MP, other inorganic and organic particles may act as passive samplers. However, limited comparative knowledge exists at this respect. In the present study we have comparatively investigated the risk for mussel of MP and the pesticide chlorpyrifos (CPF) alone and in combination with MP and phytoplankton particles of microalgae (MP-CPF and MA-CPF, respectively). We selected MP and microalgae of similar size to expose mussel to the same volume of particles (≈1.5 mm3L-1 ≈ equivalent to 1.5 mg MP L-1) and the same concentration of contaminant (CPF, 7.6 μg L-1). MP were virgin HDPE microparticles (≤10 μm) while the microalgae species was Isochrisis galbana (4-8 μm). Mussels were exposed for 21 days to MP, CPF, MP-CPF and MA-CPF. Then, a suite of neurotoxicity, oxidative stress and oxidative damage biomarkers were measured in samples collected at day 7 and 21. Additionally, these biochemical markers were assessed in an integrated manner with others measured at physiological, immune and cell component level in the same organisms, previously published. Overall, MP did not elicit significant alterations on the majority of parameters measured. In contrast, mussels exposed to CPF, MA-CPF and MP-CPF showed evidence of neurotoxicity and oxidant imbalance at day 7, added to a detrimental physiological condition and immune imbalance at day 21. At the latter time MP-CPF mussels showed greater alterations than CPF or MA-CPF mussels. This suggested a synergistic toxicity of MP combined with CPF greater than that produced by the contaminants alone (MP or CPF) or by MA combined with CPF.
Collapse
Affiliation(s)
- Beatriz Fernández
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain.
| | - Leticia Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (COV-IEO), CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (COV-IEO), CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Juan A Campillo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, Murcia 30860, Spain
| | - Marina Albentosa
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Calle Varadero 1., San pedro del Pinatar, Murcia 30740, Spain.
| |
Collapse
|
6
|
Xue M, Jia M, Qin Y, Li J, Yao T, Francis F, Gu X. Determination of Bisphenol Compounds and the Bioaccumulation after Co-Exposure with Polyethylene Microplastics in Zebrafish. TOXICS 2024; 12:702. [PMID: 39453122 PMCID: PMC11511028 DOI: 10.3390/toxics12100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Knowledge regarding the combined toxicity mechanism of bisphenol compounds and microplastics (MPs) on organisms remains limited. In this study, we first developed an accurate and sensitive method to simultaneously quantify two bisphenol compounds and evaluate their accumulation and tissue distribution after co-exposure with MPs in zebrafish. Then, we determined the bioaccumulation potential of bisphenol A (BPA) and bisphenol S (BPS) in adult zebrafish in the absence and presence of MPs. Bisphenol compounds were found to accumulate in different tissues of zebrafish, with BPS showing lower accumulation levels compared to BPA. Importantly, we discovered that the presence of MPs could exacerbate the accumulation of bisphenol compounds in biological tissues. These findings highlight the enhanced bioavailability and risk posed by the co-exposure of bisphenol compounds and MPs, underscoring the need for further investigation into their combined environmental and biological health impacts.
Collapse
Affiliation(s)
- Moyong Xue
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium;
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Jing Li
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| | - Ting Yao
- Beijing Institute of Food Control, Beijing 110108, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (M.X.)
| |
Collapse
|
7
|
Rajaura S, Bhardwaj N, Singh A, Babu R, Gupta N, Ahmed MZ. Bisphenol A-induced oxidative stress increases the production of ovarian cancer stem cells in mice. Reprod Toxicol 2024; 130:108724. [PMID: 39322090 DOI: 10.1016/j.reprotox.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Bisphenol A (BPA) belongs to the endocrine disruptor chemicals (EDCs) causing various reproductive disorders in females. We analysed the toxic effects of BPA in the uterus and ovaries. The BPA was administered orally with the repeated low dose (LD, 1 mg/kg) and high dose (HD, 5 mg/kg) of body weight on alternate days for 4 months via oral gavage to Swiss mice. BPA administration decreases body weight, ovarian weight and size at LD, but increases ovarian weight and size at HD. The uterus weight, length, and diameter were increased in both the treated groups. The histopathological data show decreased ovarian follicle size, epithelial hyperplasia, and lymphocytic infiltration in the ovary. The BPA-treated uterus shows increased vascularization, atrophied endometrium and myometrium, and endometrial hyperplasia (EH) with aberrant glandular growth. The cancer stem cells (CSCs) in the ovaries were identified based on staining with anti-mouse CD44 and anti-mouse CD133 antibodies and analysed by flow cytometry. Three different populations of ovarian CSCs: CD44+CD133-, CD44+CD133+, and CD44-CD133+, can be recognised based on the intensity of these receptors. CD44+CD133- and CD44+CD133+ cell percentages were increased in BPA-treated groups. CD44-CD133+ were increased in LD but decreased in HD. The BPA administration also induces ROS production, which decreases the expression of antioxidant genes Superoxide dismutase 1 (SOD1), Superoxide dismutase 2 (SOD2), Catalase (CAT), Glutathione peroxidase 1 (GPX1), and Forkhead box O3 (FOXO3) in ovarian cells. In conclusion, BPA exposure induced an inflammatory response, increased CSC proportions, induced ROS, and decreased antioxidant responses in the ovaries.
Collapse
Affiliation(s)
- Sumit Rajaura
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Nitin Bhardwaj
- Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India.
| | - Ashutosh Singh
- Department of Biochemistry, Lucknow University, Lucknow, Uttar Pradesh, India
| | - Ram Babu
- Department of Botany, Kirori Mal College, New Delhi, India
| | - Neelujain Gupta
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Ilaria B, Kevin T, Ika PP, Luca P, Giulia DR, Matthias H, Carole DP, Hugo K, Claudie Q, Virgile Q, Jacqueline LG, Nelly LG, Christophe L, Fabienne L, Camille D, Trevisan R, Corporeau C, Patarnello T, Massimo M, Arnaud H. Effects of tire particles and associated-chemicals on the Pacific oyster (Magallana gigas) physiology, reproduction and next-generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135742. [PMID: 39276742 DOI: 10.1016/j.jhazmat.2024.135742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
By 2040, tire particles (TP) are expected to dominate marine plastic contamination, raising concerns about their effects on marine animals. This study employed a multidisciplinary and multigenerational approach on the Pacific oyster Magallana gigas to investigate the effects of TP and their leachates (LEA). Effects were analyzed at the individual scale, from cellular, molecular, and microbiota changes to reproductive outputs and offspring performance. Microbiota characterization revealed potential dysbiosis in oysters treated with high concentration of both TP and LEA. RNA-seq analyses highlighted the activation of energy metabolism and stress responses in the LEA treatment. Additionally, transcriptional changes in oocytes and the reduction of motile spermatozoa suggested potential effects on gamete quality. Notably, possible oyster resilience was pointed out by the lack of significant ecophysiological modifications in adults and impacts on the growth and reproductive outputs of the offspring. Overall, the implications of the observed oyster resilience under our experimental setting are discussed in relation to available toxicity data and within a comprehensive view of coastal ecosystems, where a higher diversity of plastic/rubber materials and harsher environmental conditions occur.
Collapse
Affiliation(s)
- Bernardini Ilaria
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy.
| | - Tallec Kevin
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France; Cedre, 715 rue Alain Colas, 29200 Brest, France
| | - Paul-Pont Ika
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Peruzza Luca
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Dalla Rovere Giulia
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Huber Matthias
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Di Poi Carole
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Koechlin Hugo
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Quéré Claudie
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | | | - Le Goïc Nelly
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Lagarde Fabienne
- Institut des Molécules et Matériaux du Mans, IMMM - UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France
| | - Détrée Camille
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie MNHN, SU, UA, CNRS, IRD, Station Marine de Luc sur mer (CREC), France
| | - Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NFBC, National Future Biodiversity Center, Palermo, Italy
| | - Milan Massimo
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NFBC, National Future Biodiversity Center, Palermo, Italy.
| | - Huvet Arnaud
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France.
| |
Collapse
|
9
|
Fabrello J, Tarussio E, Romanello A, Schiavon A, Damoli VR, Luisi F, Roverso M, Bogialli S, Matozzo V. A multibiomarker approach to assess the effects of a BPA analogue-contaminated diet in the crab Carcinus aestuarii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107084. [PMID: 39276604 DOI: 10.1016/j.aquatox.2024.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Bisphenol A analogues are largely used plasticisers that are going to replace bisphenol A in many sectors. Due to this replacement, their discharge and presence in the marine coastal areas are increasing, with unknown consequences for organisms and the trophic chain. This study assessed the effects of three different bisphenols (BPAF, BPF and BPS) - alone or as a mixture - provided via food (exposed clams) to the crab Carcinus aestuarii. First, clams were exposed for two weeks to 300 ng/L of each of the three bisphenols and their mixture (100 ng/L of each) to allow the bioaccumulation of the contaminants in bivalves. Then, crabs were fed for two weeks with BPA analogue-exposed clams, while unexposed clams were used to feed control crabs. After 7 and 14 days, haemolymph, gills and hepatopancreas were collected from crabs to measure a battery of biomarkers indicative of cytotoxicity, oxidative stress and damage, neurotoxicity, physiological performance (respiration and excretion rate) and electron transport system activity. Lastly, bioaccumulation of BPA analogues was assessed by UHPLC-HRMS in crabs. Our findings revealed that BPA analogue-exposed clams were able to alter total haemocyte count, haemocyte size and their proliferation. The activity of immune enzymes, such as phosphatases and phenoloxidase was altered. Moreover, we observed an impairment of antioxidant and detoxifying enzymes like SOD, CAT, GST and GPX activities. Alterations of metabolism-involved enzymes and physiological parameters and increased oxidative damage to macromolecules like proteins, lipids, and DNA were also observed in crabs. Among BPA analogues, only bioaccumulation of BPAF, which has the highest Logkow value among the tested bisphenols, was evidenced in crabs. Overall, the obtained results indicated that crabs, under the tested experimental conditions at least, underwent alterations in cellular, biochemical and physiological responses following a diet of bisphenol-exposed clams, suggesting a potential ecotoxicological risk in the marine food chain.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy.
| | - Elisabetta Tarussio
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Alessia Romanello
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Anna Schiavon
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | | | - Francesco Luisi
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, Padova 35131, Italy
| |
Collapse
|
10
|
Fabrello J, Dalla Fontana M, Gaiani N, Ciscato M, Roverso M, Bogialli S, Matozzo V. Assessing the Effects of a Diet of BPA Analogue-Exposed Microalgae in the Clam Ruditapes philippinarum. J Xenobiot 2024; 14:1221-1237. [PMID: 39311148 PMCID: PMC11417738 DOI: 10.3390/jox14030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
In our previous study, we demonstrated that the microalgae Phaeodactylum tricornutum can bioaccumulate bisphenol A analogues. Since this microalgae species is part of the diet of marine filter-feeding organisms, such as bivalves, in this study we tested the hypothesis that a diet based on exposed microalgae can exert negative effects on the clam Ruditapes philippinarum. Microalgae were exposed for 7 days to 300 ng/L of bisphenol AF (BPAF), bisphenol F (BPF), and bisphenol S (BPS), alone or as a mixture (MIX), to allow bioaccumulation. Microalgae were then supplied as food to bivalves. After 7 and 14 days of diet, the effects of exposed microalgae were evaluated on a battery of biomarkers measured in haemolymph/haemocytes, gills and digestive glands of clams. In addition, bioaccumulation of the three bisphenols was investigated in clams by UHPLC-HRMS. The results obtained demonstrated that total haemocyte count (THC) increased in clams following ingestion for 7 days of BPAF- and BPF-exposed microalgae, while BPS-exposed microalgae significantly reduced THC after 14 days of diet. MIX- and BPS-exposed microalgae increased haemocyte proliferation. The diet of exposed microalgae affected acid and alkaline phosphatase activity in clams, with an opposite response between haemolymph and haemocytes. Regarding antioxidants, an increase in catalase activity was observed in clams after ingestion of BPA analogue-exposed microalgae. The results also demonstrated marked oxidative stress in gills, the first tissue playing an important role in the feeding process. Oxidative damage was recorded in both the gills and digestive glands of clams fed BPA analogue-exposed microalgae. Alterations in epigenetic-involved enzyme activity were also found, demonstrating for the first time that BPA analogue-exposed food can alter epigenetic mechanisms in marine invertebrates. No bioaccumulation of BPA analogues was detected in clam soft tissues. Overall, this study demonstrated that a diet of BPA analogue-exposed microalgae can induce significant alterations of some important biological responses of R. philippinarum. To our knowledge, this is the first study demonstrating the effects of ingestion of BPA analogue-exposed microalgae in the clam R. philippinarum, suggesting a potential ecotoxicological risk for the marine food chain, at least at the first levels.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Michela Dalla Fontana
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Noemi Gaiani
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (M.R.); (S.B.)
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; (M.D.F.); (N.G.); (M.C.)
| |
Collapse
|
11
|
Tahir R, Samra, Afzal F, Khan H, Ghaffar A, Qazi IH, Al-Khattaf FS, Liulan Z, Yan H, Kuo H, Shrestha A, Jamil H, Naseer S, Habib H, Yang S. Chronic bisphenol A induced neurotoxicity: Exposure risk, molecular fate within carp and its potential phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175876. [PMID: 39244053 DOI: 10.1016/j.scitotenv.2024.175876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting toxicant commonly used in the plastics industry, as a result, it is present in large quantities in the environment. Therefore, current study was designed to assess BPA induced neurotoxicity and molecular fate within common carp (Cyprinus carpio), largely used edible fish. Following 6 weeks exposure to BPA 1/5th of 96 h LC50 (1.31 mg/L), brain exhibited oxidative damage, which was evidenced by compromised antioxidant system (CAT, SOD, GSH) and increased level of biomacromolecule peroxidation (MDA and 8-OHDG). Functional damage to the brain observed in the form of blood-brain barrier disruption (decreased tight junction gene expression) and nerve conduction impairment (reduced acetylcholinesterase activity). Mechanistically, apoptotic cell death indicated by characteristic alteration in key biomarkers (bcl-2, caspase, and p53-related gene family). Whereas, coadministration of powdered PP (pomegranate peel) (8 %) with BPA effectively mitigated the BPA toxicity, as evidenced by the restoration of the above-mentioned bioindicators. Thereby, BPA-induced neurotoxicity could be potentially detoxified by applying PP dietary enrichment.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Hamid Khan
- Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Izhar Hyder Qazi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fatimah Saleh Al-Khattaf
- Department of Botany and Microbiology, College of Science, King Saudi University, Riyadh 11451, Saudi Arabia
| | - Zhao Liulan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - He Kuo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Abhimanyu Shrestha
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Habiba Jamil
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Sameera Naseer
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hamza Habib
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
12
|
Song J, Meng Q, Song H, Ni X, Zhou H, Liu Y, Zhan J, Yi X. Combined toxicity of pristine or artificially aged tire wear particles and bisphenols to Tigriopus japonicus. CHEMOSPHERE 2024; 363:142894. [PMID: 39029709 DOI: 10.1016/j.chemosphere.2024.142894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Tire wear particles (TWPs) are considered an important component of microplastic pollution in the marine environment and occur together with a variety of aquatic pollutants, including frequently detected bisphenols. The adverse effects of TWPs or bisphenols on aquatic organisms have been widely reported. However, the combined toxicity of TWPs and bisphenols is still unknown. In this study, the combined toxicity of both pristine (p-) and aged TWPs (a-TWPs) and four bisphenols ((bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF)) to Tigriopus japonicus was evaluated. TWPs increased the toxicity of BPA and BPF but decreased the toxicity of BPAF. For BPS, there was synergistic toxic effect in the presence of p-TWPs, but slightly antagonistic effect was observed in the presence of a-TWPs. This adsorption of BPAF by TWPs resulted in a reduction of its toxicity to the copepod. A-TWPs could release more Zn than p-TWPs, and the released Zn contributed to the synergistic effect of TWPs and BPA or BPF. The aggregation formed by TWPs in certain sizes (e.g., 90-110 μm) could cause intestinal damage and lipid peroxidation in T. japonicus. The synergistic effect of p-TWPs and BPS might be due to the aggregation size of the binary mixture. The results of the current study will be important to understand the combined toxic effect of TWPs and bisphenols and the potential toxic mechanisms of the binary mixture.
Collapse
Affiliation(s)
- Jinbo Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Qian Meng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hongyu Song
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xiaoming Ni
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Jingjing Zhan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin City, Liaoning, 116024, China.
| |
Collapse
|
13
|
Zhang W, Tang Y, Han Y, Tian D, Yu Y, Yu Y, Li W, Shi W, Liu G. Pentachlorophenol impairs the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk. CHEMOSPHERE 2024; 364:143230. [PMID: 39222693 DOI: 10.1016/j.chemosphere.2024.143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Due to past massive usage and persistent nature, pentachlorophenol (PCP) residues are prevalent in environments, posing a potential threat to various organisms such as sessile filter-feeding bivalves. Although humoral immunity and its crosstalk with cellular one are crucial for the maintaining of robust antimicrobic capability, little is known about the impacts of PCP on these critical processes in bivalve mollusks. In this study, pathogenic bacterial challenge and plasma antimicrobic capability assays were carried out to assess the toxic effects of PCP on the immunity of a common bivalve species, blood clam (Tegillarca granosa). Moreover, the impacts of PCP-exposure on the capabilities of pathogen recognition, hemocyte recruitment, and pathogen degradation were analyzed as well. Furthermore, the activation status of downstream immune-related signalling pathways upon PCP exposure was also assessed. Data obtained illustrated that 28-day treatment with environmentally realistic levels of PCP resulted in evident declines in the survival rates of blood clam upon Vibrio challenge along with markedly weakened plasma antimicrobic capability. Additionally, the levels of lectin and peptidoglycan-recognition proteins (PGRPs) in plasma as well as the expression of pattern recognition receptors (PRRs) in hemocytes were found to be significantly inhibited by PCP-exposure. Moreover, along with the downregulation of immune-related signalling pathway, markedly fewer chemokines (interleukin 8 (IL-8), IL-17, and tumor necrosis factor α (TNF-α)) in plasma and significantly suppressed chemotactic activity of hemocytes were also observed in PCP-exposed blood clams. Furthermore, compared to that of the control, blood clams treated with PCP had markedly lower levels of antimicrobic active substances, lysozyme (LZM) and antimicrobial peptides (AMP), in their plasma. In general, the results of this study suggest that PCP exposure could significantly impair the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- School of Life and Environmental, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Kim JH, Choi KS, Yang HS, Kang HS, Hong HK. In vitro impact of Bisphenol A on the immune functions of primary cultured hemocytes of Pacific abalone (Haliotis discus hannai). MARINE POLLUTION BULLETIN 2024; 206:116770. [PMID: 39053261 DOI: 10.1016/j.marpolbul.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the toxic effects of Bisphenol A (BPA) on the Pacific abalone (Haliotis discus hannai) using in vitro assays with primary cultured hemocytes. The abalone hemocytes were exposed to BPA concentrations up to 100 μM to assess cytotoxicity. Subsequently, hemocytes were exposed to sublethal BPA concentrations (LC20 = 2.3 μM and LC50 = 5.8 μM) for 48 h, and we evaluated the cellular immune responses of hemocytes via flow cytometry. Results showed no significant differences between LC20 and control groups, but LC50 exposure significantly reduced phagocytosis and oxidative capacities while increasing nitric oxide production. These findings suggest that BPA exposure negatively affects the immune system of the Pacific abalone, which makes them more susceptible to infections and other stressors in their natural environment. The study also implies that in vitro assays utilizing primary cultured abalone hemocytes may serve as effective proxies for quantifying the cytotoxic effects of chemical pollutants.
Collapse
Affiliation(s)
- Jeong-Hwa Kim
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang-Sik Choi
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun-Sung Yang
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Hyun-Sil Kang
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Jeju 63068, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
15
|
Nour OM, El-Saidy SA, Ghoneim AZ. Multiple-biomarker approach in the assessment of bisphenol A effect on the grooved carpet clam Ruditapes decussatus (Linnaeus, 1758). BMC ZOOL 2024; 9:19. [PMID: 39135081 PMCID: PMC11318329 DOI: 10.1186/s40850-024-00211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA), a plastic additive monomer, is among the most highly produced chemicals worldwide, and is broadly used in many industries, such as food and beverage containers, milk bottles, and paper products. Previous studies demonstrated that BPA has potential toxicity to aquatic organisms, causing endocrine disturbance and behavioural disorders. The current work aimed to determine the toxic impacts of BPA on the edible marine clam Ruditapes decussatus considering a multi-biomarker approach (mortality, biochemical studies, DNA strand breaks using comet assay, and histopathological examinations with semi-quantitative and quantitative histopathological analyses). The clams were exposed under laboratory conditions to three concentrations of BPA (0 "control", 1, and 5 µg/L) for a period of 21 days. After the exposure period, BPA impacts were assessed in the digestive gland as a versatile and environmentally relevant organ for ecotoxicological studies. RESULTS In BPA-treated clams, mortality (10%) occurred only at the highest BPA concentration (5 µg/L). Biochemical impairments were detected in a concentration-dependent manner as a consequence of BPA exposure. There were significant increases in malondialdehyde (MDA) and glutathione (GSH) levels, while catalase (CAT) activity was significantly reduced. Our results revealed that BPA induced neurotoxicity in R. decussatus, as evidenced by the inhibition of acetylcholinesterase (AChE) activity in a dose-dependent manner. Furthermore, DNA damage was strongly induced as BPA levels increased. Additionally, our results have been affirmed by alterations in digestive gland tissues at BPA treatments, which consequently can impair the clam's ability for food absorption; these alterations included mainly atrophic and necrotic digestive tubules, epithelial cell vacuolization, hemocyte infiltration, and intertubular fibrosis. Based on the data obtained from the semi-quantitative and quantitative histopathological analyses, the exposure of the clam's digestive gland to BPA with concentrations of 1 and 5 µg/L for 21 days showed significant histopathological alterations compared with the control clams. CONCLUSION The multi-biomarker approach used in the current study proved to be a useful tool for assessing the impact of diphenylmethane compounds, such as BPA. Water-borne BPA causes oxidative stress, neurotoxicity, genotoxicity, and deleterious effects on the clam digestive gland; all of these could deteriorate clam performance and health, causing tissue dysfunction.
Collapse
Affiliation(s)
- Ola Mohamed Nour
- Department of Biology and Geology, Faculty of Education, Alexandria University, Alexandria, 21526, Egypt.
| | - Salwa A El-Saidy
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Aml Z Ghoneim
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
16
|
Witczak A, Przedpełska L, Pokorska-Niewiada K, Cybulski J. Microplastics as a Threat to Aquatic Ecosystems and Human Health. TOXICS 2024; 12:571. [PMID: 39195673 PMCID: PMC11359092 DOI: 10.3390/toxics12080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The threat posed by microplastics has become one of the world's most serious problems. Recent reports indicate that the presence of microplastics has been documented not only in coastal areas and beaches, but also in water reservoirs, from which they enter the bodies of aquatic animals and humans. Microplastics can also bioaccumulate contaminants that lead to serious damage to aquatic ecosystems. The lack of comprehensive data makes it challenging to ascertain the potential consequences of acute and chronic exposure, particularly for future generations. It is crucial to acknowledge that there is still a substantial need for rapid and effective techniques to identify microplastic particles for precise evaluation. Additionally, implementing legal regulations, limiting plastic production, and developing biodegradation methods are promising solutions, the implementation of which could limit the spread of toxic microplastics.
Collapse
Affiliation(s)
- Agata Witczak
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland; (L.P.); (K.P.-N.); (J.C.)
| | | | | | | |
Collapse
|
17
|
Kumar S, O'Connor W, Islam R, Leusch FDL, Melvin SD, MacFarlane GR. Exploring the co-exposure effects of environmentally relevant microplastics and an estrogenic mixture on the metabolome of the Sydney rock oyster. CHEMOSPHERE 2024; 361:142501. [PMID: 38825244 DOI: 10.1016/j.chemosphere.2024.142501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
In aquatic environments the concurrent exposure of molluscs to microplastics (MPs) and estrogens is common, as these pollutants are frequently released by wastewater treatment plants into estuaries. Therefore, this study aimed to evaluate the independent and co-exposure impacts of polyethylene microplastics (PE-MPs) and estrogenic endocrine-disrupting chemicals (EEDCs) at environmentally relevant concentrations on polar metabolites and morphological parameters of the Sydney rock oyster. A seven-day acute exposure revealed no discernible differences in morphology; however, significant variations in polar metabolites were observed across oyster tissues. The altered metabolites were mostly amino acids, carbohydrates and intermediates of the Kreb's cycle. The perturbation of metabolites were tissue and sex-specific. All treatments generally showed an increase of metabolites relative to controls - a possible stimulatory and/or a potential hormetic response. The presence of MPs impeded the exposure of adsorbed and free EEDCs potentially due to the selective feeding behaviour of oysters to microplastics, favouring algae over similar-sized PE-MPs, and the formation of an eco/bio-corona involving faeces, pseudo-faeces, natural organic matter, and algae.
Collapse
Affiliation(s)
- Sazal Kumar
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wayne O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD 4222, Australia
| | - Steve D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD 4222, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
18
|
Elkader HTAEA, Al-Shami AS. Acetylcholinesterase and dopamine inhibition suppress the filtration rate, burrowing behaviours, and immunological responses induced by bisphenol A in the hemocytes and gills of date mussels, Lithophaga lithophaga. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106971. [PMID: 38843741 DOI: 10.1016/j.aquatox.2024.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Bisphenol A (BPA), a common industrial chemical with estrogenic activity, has recently gained attention due to its well-documented negative effects on humans and other organisms in the environment. The potential immunotoxicity and neurotoxicity of BPA remain poorly understood in marine invertebrate species. Therefore, the impacts of exposure to BPA on a series of behaviours, immune responses, oxidative stress, neural biomarkers, histology, and the ultrastructure of gills were investigated in the date mussel, Lithophaga lithophaga. After 28 days of exposure to 0.25, 1, 2, and 5 µg/L BPA, hemolymphs from controls and exposed date mussels were collected, and the effects of BPA on immunological parameters were evaluated. Moreover, oxidative stress and neurochemical levels were measured in the gills of L. lithophaga. BPA reduced filtration rates and burrowing behaviour, whereas a 2 µg/L BPA resulted in an insignificant increase after 24 h. The exposure of date mussels to BPA significantly increased total hemocyte counts, a significant reduction in the diameter and phagocytosis of hemocytes, as well as gill lysozyme level. BPA increased lipid peroxidation levels and SOD activity in gills exposed to 2 and 5 µg/L BPA, but decreased GSH levels and SOD activity in 0.25 and 1 µg/L BPA-treated date mussels. Dose-dependent dynamics were observed in the inhibition of acetylcholinesterase activity and dopamine levels. Histological and scanning electron microscope examination revealed cilia erosion, necrosis, inflammation, and hyperplasia formation in the gills. Overall, our findings suggest a relationship between BPA exposure and changes in the measured immune parameters, oxidative stress, and neurochemical disturbances, which may be factored into the mechanisms underlying BPA toxicity in marine molluscs, providing a scientific foundation for marine BPA risk assessment and indicating immunosuppression in BPA-exposed date mussels.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Li Z, Zhao M, Feng Z, Zhu L, Sui Q, Sun X, Xia B. Combined toxicity of polyvinyl chloride microplastics and copper to marine jacopever (Sebastes schlegelii). MARINE ENVIRONMENTAL RESEARCH 2024; 199:106598. [PMID: 38865873 DOI: 10.1016/j.marenvres.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Marine organisms commonly encounter co-stress resulting from the coexistence of microplastics (MPs) and heavy metals pollution in marine environments. Nevertheless, the combined effects and toxicity mechanisms of MPs and heavy metals on marine organisms remain unclear. This study integrated growth, physiological, morphological, and biochemical markers to assess the individual and combined toxicity of polyvinyl chloride MPs (PVC MPs, 1 × 104 particles/L) and copper (Cu, 200 μg/L) on marine jacopever (Sebastes schlegelii). The results revealed that co-exposure to MPs and Cu had a more detrimental impact on jacopever compared to the single-exposure groups, as evidenced by the enhanced growth inhibition, respiratory stress, and hepatotoxicity. This phenomenon may be attributed to PVC MPs accelerating the accumulation of Cu in jacopever liver. Therefore, peroxidation damage occurred in the co-exposed liver and may result in liver dysfunction. These findings contribute valuable insights into the risks associated with the coexistence of MPs and heavy metal pollution in marine ecosystems.
Collapse
Affiliation(s)
- Zike Li
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Meijing Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhihua Feng
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Qi Sui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xuemei Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Bin Xia
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
20
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
21
|
Liu S, He Y, Yin J, Zhu Q, Liao C, Jiang G. Neurotoxicities induced by micro/nanoplastics: A review focusing on the risks of neurological diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134054. [PMID: 38503214 DOI: 10.1016/j.jhazmat.2024.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Pollution of micro/nano-plastics (MPs/NPs) is ubiquitously prevalent in the environment, leading to an unavoidable exposure of the human body. Despite the protection of the blood-brain barrier, MPs/NPs can be transferred and accumulated in the brain, which subsequently exert negative effects on the brain. Nevertheless, the potential neurodevelopmental and/or neurodegenerative risks of MPs/NPs remain largely unexplored. In this review, we provide a systematic overview of recent studies related to the neurotoxicity of MPs/NPs. It covers the environmental hazards and human exposure pathways, translocation and distribution into the brain, the neurotoxic effects, and the possible mechanisms of environmental MPs/NPs. MPs/NPs are widely found in different environment matrices, including air, water, soil, and human food. Ambient MPs/NPs can enter the human body by ingestion, inhalation and dermal contact, then be transferred into the brain via the blood circulation and nerve pathways. When MPs/NPs are present in the brain, they can initiate a series of molecular or cellular reactions that may harm the blood-brain barrier, cause oxidative stress, trigger inflammatory responses, affect acetylcholinesterase activity, lead to mitochondrial dysfunction, and impair autophagy. This can result in abnormal protein folding, loss of neurons, disruptions in neurotransmitters, and unusual behaviours, ultimately contributing to the initiation and progression of neurodegenerative changes and neurodevelopmental abnormalities. Key challenges and further research directions are also proposed in this review as more studies are needed to focus on the potential neurotoxicity of MPs/NPs under realistic conditions.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinling He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jia Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Tian D, Zhang W, Lu L, Yu Y, Yu Y, Zhang X, Li W, Shi W, Liu G. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish. CHEMOSPHERE 2024; 356:141971. [PMID: 38604519 DOI: 10.1016/j.chemosphere.2024.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 μg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
23
|
Gou X, Fu Y, Li J, Xiang J, Yang M, Zhang Y. Impact of nanoplastics on Alzheimer 's disease: Enhanced amyloid-β peptide aggregation and augmented neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133518. [PMID: 38228001 DOI: 10.1016/j.jhazmat.2024.133518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Nanoplastics, widely existing in the environment and organisms, have been proven to cross the blood-brain barrier, increasing the incidence of neurodegenerative diseases like Alzheimer's disease (AD). However, current studies mainly focus on the neurotoxicity of nanoplastics themselves, neglecting their synergistic effects with other biomolecules and the resulting neurotoxicity. Amyloid β peptide (Aβ), which triggers neurotoxicity through its self-aggregation, is the paramount pathogenic protein in AD. Here, employing polystyrene nanoparticles (PS) as a model for nanoplastics, we reveal that 100 pM PS nanoparticles significantly accelerate the nucleation rate of two Aβ subtypes (Aβ40 and Aβ42) at low concentrations, promoting the formation of more Aβ oligomers and leading to evident neurotoxicity. The hydrophobic surface of PS facilitates the interaction of hydrophobic fragments between Aβ monomers, responsible for the augmented neurotoxicity. This work provides consequential insights into the modulatory impact of low-dose PS on Aβ aggregation and the ensuing neurotoxicity, presenting a valuable foundation for future research on the intricate interplay between environmental toxins and brain diseases.
Collapse
Affiliation(s)
- Xiaoli Gou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yongchun Fu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Juan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
24
|
Hou T, Yu J, Li C, Wang Z, Liu H. Immunotoxicity of microplastics and polychlorinated biphenyls alone or in combination to Crassostrea gigas. MARINE POLLUTION BULLETIN 2024; 200:116161. [PMID: 38364644 DOI: 10.1016/j.marpolbul.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are pervasive pollutants in the marine environment, exerting adverse effects on marine organisms. While it is suggested that their exposure may compromise the immune responses of marine organisms, the cumulative immunotoxic effects remain uncertain. Additionally, the intricate mechanisms underlying the immunotoxicity of PCBs and MPs in marine organisms are not yet fully comprehended. To illuminate their combined biological impacts, Crassostrea gigas were exposed to 50 μg/L MPs (30-μm porous) alone, as well as 10 or 100 ng/L PCBs individually or in combination with 50 μg/L of MPs for 28 days. Our data demonstrated that oysters treated with the pollutants examined led to decreased total haemocyte count, inhibited phagocytosis of haemocytes, enhanced the intracellular contents of reactive oxygen species, lipid peroxidation and DNA damage, reduced lysozyme concentration and activity, gave rise to superoxide dismutase. Catalaseand glutathione S-transferaseactivity. The expression of three immune-related genes (NF-κB, TNF-α, TLR-6) was drastically suppressed by the PCBs and MPs treatment, while the apoptosis pathway-related genes (BAX and Caspase-3) showed a significant increase. In addition, compared to oysters treated with a single type of pollutant, coexposure to MPs and PCBs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect. Therefore, the risk of MPs and PCBs chemicals on marine organisms should be paid more attention.
Collapse
Affiliation(s)
- Tinglong Hou
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Jinyu Yu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China
| | - Chuntao Li
- College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Zibin Wang
- Shenzhen Ocean Center, Ministry of Natural Resources, Shenzhen 518131, China
| | - Huiru Liu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
25
|
Chen X, Zhou S, Liu Y, Feng Z, Mu C, Zhang T. The combined effects of microplastics and bisphenol-A on the innate immune system response and intestinal microflora of the swimming crab Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106855. [PMID: 38335878 DOI: 10.1016/j.aquatox.2024.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Microplastics (MPs) and bisphenol-A (BPA) have been shown to have toxic effects on aquatic organisms. However, data on the combined effects of MPs and BPA on the innate immune system response and intestinal microorganisms of crabs are limited. Here, Portunus trituberculatus were exposed to BPA (at a concentration of 100 μg/L), MPs (microbeads of polystyrene with a particle size of 1 µm and at a concentration of 1 × 106 particles/L) or BPA+MPs for 21 days were tested at the tissue, cellular, and molecular levels. The results showed that neither the single nor combined exposure of MPs and BPA had a significant impact on the growth of crabs. However, intestinal histology study found that the intestinal villi of crabs in the BPA treated group, MP treated group and MP+BPA treated group appeared abnormal. Overall, compared with the control group and the single pollutant exposure group, co-exposure to the MP and BPA generally led to a significant increase in MDA and SOD activity and a significant decrease in CAT activity, and the activation of MyD88, Crustin-1, TARF6, Cu/Zn-SOD, Lyz, Toll-2 and NOX gene expression levels were significantly up-regulated. Co-exposure induced disorders of the intestinal microbial community of crabs, resulting in an increase in the abundance of harmful bacteria and a decrease in the abundance of beneficial bacteria. This study shows that the combined exposure of MPs and BPA can exacerbate the intestinal toxicity of a single pollutant to P. trituberculatus.
Collapse
Affiliation(s)
- Xiaocong Chen
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangjie Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai 264003, China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Changkao Mu
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
26
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
27
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
28
|
Zhu Y, Che R, Zong X, Wang J, Li J, Zhang C, Wang F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120039. [PMID: 38218169 DOI: 10.1016/j.jenvman.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 μm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinhan Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
29
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
30
|
Kim JA, Kim MJ, Choi JY, Park YS, Kim JH, Choi CY. Exposure to bisphenol A and fiber-type microplastics induce oxidative stress and cell damage in disk abalone Haliotis discus hannai: Bioaccumulation and toxicity. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109277. [PMID: 38072138 DOI: 10.1016/j.fsi.2023.109277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Along with environmental pollution caused by rapid economic development and industrialization, plastic waste is emerging as a global concern in relation to marine ecosystems and human health. Among the microplastics, fiber-type microfibers (MF) and bisphenol A (BPA), which are widely used as plasticizers, do not decompose well in the ocean, and tend to accumulate in organisms, generating an increased oxidative stress response. This study investigated the abalones' antioxidant and cell death responses following exposure to the environmental pollutants MF and BPA. Levels of malondialdehyde (MDA) and DNA damage increased over time, demonstrating the degree of lipid peroxidation and DNA damage in abalones exposed to individual and combined environmental conditions of MF and BPA. Compared to the single MF and BPA exposure groups, the combined exposure group showed a higher expression of antioxidant enzymes. A similar pattern was seen in the expression of the apoptosis enzyme caspase-3. Both MF and BPA caused oxidative stress and antioxidant enzymes were expressed to alleviate it, but it is believed that cell damage occurred because the stress level exceeded the allowed range.
Collapse
Affiliation(s)
- Jin A Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Min Ju Kim
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Ji Yong Choi
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science, Jeju, 63068, Republic of Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|
31
|
Fabrello J, Ciscato M, Munari M, Vecchiatti A, Roverso M, Bogialli S, Matozzo V. Ecotoxicological effects and bioaccumulation of BPA analogues and their mixture in the clam Ruditapes philippinarum. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106228. [PMID: 37866198 DOI: 10.1016/j.marenvres.2023.106228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Bisphenol A is recognized as an endocrine disruptor that can affect several biological processes in marine species. Consequently, its use has been restricted and it has been replaced with other similar compounds named bisphenol A analogues (BPA analogues). BPA analogues are speculatively considered safer compounds than BPA and their usage is increasing with a consequent higher environmental release. In this study, specimens of the clam Ruditapes philippinarum were exposed to three main BPA analogues, namely BPAF, BPF, BPS and their mixture at an environmentally relevant concentration of 300 ng/L for 7 and 14 days. Effects on biomarkers indicative of cytotoxicity, oxidative stress and damage and neurotoxicity were evaluated. In addition, bioaccumulation of the compound tested was analysed in clam soft tissues. Results showed that BPA analogues at an environment concentration affected cellular parameters and antioxidant system causing also oxidative damage, suggesting that BPA analogues can be harmful compounds for clams.
Collapse
Affiliation(s)
- Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy.
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Marco Munari
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Andrea Vecchiatti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| |
Collapse
|
32
|
Abd Elkader HTAE, Al-Shami AS. Chronic exposure to bisphenol A induces behavioural, neurochemical, histological, and ultrastructural alterations in the ganglia tissue of the date mussels Lithophaga lithophaga. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109041-109062. [PMID: 37768489 PMCID: PMC10622395 DOI: 10.1007/s11356-023-29853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA), a common plastic additive, has been demonstrated mechanistically to be a potential endocrine disruptor and to affect a variety of body functions in organisms. Although previous research has shown that BPA is toxic to aquatic organisms, the mechanism of neurotoxic effects in marine bivalves remains unknown. The current study aimed to elucidate the neurotoxic effects of BPA when administered at different concentrations (0.25, 1, 2, and 5 µg/L) for twenty-eight days in the ganglia of a bivalve model, the Mediterranean mussel (Lithophaga lithophaga), which is an ecologically and economically important human food source of bivalve species in the Mediterranean Sea. Our findings revealed an increase in behavioural disturbances and malondialdehyde levels in treated mussel ganglia compared to the control group. Furthermore, superoxide dismutase activity increased in the ganglia of L. lithophaga treated with 0.25 and 2 µg/L. However, at BPA concentrations of 1 and 5 µg/L, SOD activity was significantly reduced, as was total glutathione concentration. BPA causes neurotoxicity, as evidenced by concentration-dependent inhibition of acetylcholinesterase, dopamine, and serotonin. After chronic exposure to BPA, neurons showed distortion of the neuronal cell body and varying degrees of pyknosis. The ultrastructure changes in BPA-treated groups revealed the lightening of the nucleoplasm and a shrunken nuclear envelope. Overall, our findings suggest that BPA exposure altered antioxidation, neurochemical biomarkers, histopathological, and ultrastructural properties, resulting in behavioural changes. As a result, our findings provide a basis for further study into the toxicity of BPA in marine bivalves.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
33
|
Yu Y, Tong D, Yu Y, Tian D, Zhou W, Zhang X, Shi W, Liu G. Toxic effects of four emerging pollutants on cardiac performance and associated physiological parameters of the thick-shell mussel (Mytilus coruscus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122244. [PMID: 37482340 DOI: 10.1016/j.envpol.2023.122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Robust cardiac performance is critical for the health and even survival of an animal; however, it is sensitive to environmental stressors. At present, little is known about the cardiotoxicity of emerging pollutants to bivalve mollusks. Thus, in this study, the cardiotoxic effects of four emergent pollutants, carbamazepine (CBZ), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and tris(2-chloroethyl) phosphate (TCEP), on the thick-shell mussel, Mytilus coruscus, were evaluated by heartbeat monitoring and histological examinations. In addition, the impacts of these pollutants on parameters that closely related to cardiac function including neurotransmitters, calcium homeostasis, energy supply, and oxidative status were assessed. Our results demonstrated that 28-day exposure of the thick-shell mussel to these pollutants resulted in evident heart tissue lesions (indicated by hemocyte infiltration and myocardial fibrosis) and disruptions of cardiac performance (characterized by bradyrhythmia and arrhythmia). In addition to obstructing neurotransmitters and calcium homeostasis, exposure to pollutants also led to constrained energy supply and induced oxidative stress in mussel hearts. These findings indicate that although do differ somehow in their effects, these four pollutants may exert cardiotoxic impacts on mussels, which could pose severe threats to this important species and therefore deserves more attention.
Collapse
Affiliation(s)
- Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
34
|
Luo M, Ri S, Liu L, Ri S, Kim Y, Kim T, Ju K, Zhou W, Tong D, Shi W, Liu G. Identification, characterization, and agglutinating activity of a novel C-type lectin domain family 3 member B (CLEC3B) discovered in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108988. [PMID: 37541635 DOI: 10.1016/j.fsi.2023.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The lectins are a large family of carbohydrate-binding proteins that play important roles in the innate immune response of various organisms. Although C-type lectin domain family 3 member B (CLEC3B), an important member of C-type lectin, has been well documented in humans and several other higher vertebrates, little is currently known about this molecule in economically important marine fish species. In this study, through transcriptomic and BLAST screening, a novel CLEC3B gene was identified in the golden pompano (Trachinotus ovatus). The T. ovatus CLEC3B (ToCLEC3B) was subsequently characterized by bioinformatic analysis and compared with those reported in other species. In addition, the expression patterns of ToCLEC3B in different tissues under normal condition and at different times post pathogen challenge were assessed. Furthermore, the agglutinating activity of ToCLEC3B with and without Ca2+ against different bacteria and blood cells of donor species were verified using the recombinant T. ovatus CLEC3B (rToCLEC3B). Our results demonstrated that ToCLEC3B is a Ca2+-dependent galactose-binding lectin with a single copy of carbohydrate recognition domain (CRD). Similar to CLEC3B reported in other species, the CRD domain of ToCLEC3B consists of two α-helices, six β-sheets, and four loops, forming two Ca2+- and a galactose-binding sites. According to the phylogenetic analysis, the ToCLEC3B was highly similar (similarity at 95.00%) to that of its relative, the greater amberjack (Seriola dumerili). The expression of ToCLEC3B was detected in all tissues examined under normal condition and was significantly up-regulated by injection of pathogenic microbes. In addition, the rToCLEC3B exhibited strong agglutinating activity against different bacteria and blood cells of donor species in the presence of Ca2+. Our results indicate that ToCLEC3B is a constitutive and inducible acute-phase immune factor in the host's innate immune response of T. ovatus.
Collapse
Affiliation(s)
- Ming Luo
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Longlong Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, PR China
| | - Songnam Ri
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Yongchol Kim
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, Democratic People's Republic of Korea
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
35
|
Khanjani MH, Sharifinia M, Mohammadi AR. The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. MARINE POLLUTION BULLETIN 2023; 194:115271. [PMID: 37429180 DOI: 10.1016/j.marpolbul.2023.115271] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Ali Reza Mohammadi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| |
Collapse
|
36
|
Lei F, Zhang N, Miao J, Tong R, Li Y, Pan L. Potential pathway and mechanisms underlining the immunotoxicity of benzo[a]pyrene to Chlamys farreri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97128-97146. [PMID: 37582894 DOI: 10.1007/s11356-023-29016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The long-distance migration of polycyclic aromatic hydrocarbons (PAHs) promotes their release into the marine environment, posing a serious threat to marine life. Studies have shown that PAHs have significant immunotoxicity effects on bivalves, but the exact mechanism of immunotoxicity remains unclear. This paper aims to investigate the effects of exposure to 0.4, 2, and 10 μg/L of benzo(a)pyrene (B[a]P) on the immunity of Chlamys farreri under environmental conditions, as well as the potential molecular mechanism. Multiple biomarkers, including phagocytosis rate, metabolites, neurotoxicity, oxidative stress, DNA damage, and apoptosis, were adopted to assess these effects. After exposure to 0.4, 2, and 10 μg/L B[a]P, obvious concentration-dependent immunotoxicity was observed, indicated by a decrease in the hemocyte index (total hemocyte count, phagocytosis rate, antibacterial and bacteriolytic activity). Analysis of the detoxification metabolic system in C. farreri revealed that B[a]P produced B[a]P-7,8-diol-9,10-epoxide (BPDE) through metabolism, which led to an increase in the expression of protein tyrosine kinase (PTK). In addition, the increased content of neurotransmitters (including acetylcholine, γ -aminobutyric acid, enkephalin, norepinephrine, dopamine, and serotonin) and related receptors implied that B[a]P might affect immunity through neuroendocrine system. The changes in signal pathway factors involved in immune regulation indicated that B[a]P interfered with Ca2+ and cAMP signal transduction via the BPDE-PTK pathway or neuroendocrine pathway, resulting in immunosuppression. Additionally, B[a]P induced the increase in reactive oxygen species (ROS) content and DNA damage, as well as an upregulation of key genes in the mitochondrial pathway and death receptor pathway, leading to the increase of apoptosis rate. Taken together, this study comprehensively investigated the detoxification metabolic system, neuroendocrine system, and cell apoptosis to explore the toxic mechanism of bivalves under B[a]P stress.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
37
|
Park YK, Chin YW. Degradation of Bisphenol A by Bacillus subtilis P74 Isolated from Traditional Fermented Soybean Foods. Microorganisms 2023; 11:2132. [PMID: 37763976 PMCID: PMC10536603 DOI: 10.3390/microorganisms11092132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bisphenol A (BPA), one of the most widely used plasticizers, is an endocrine-disrupting chemical that is released from plastic products. The aim of this study was to screen and characterize bacteria with excellent BPA-degrading abilities for application in foods. BPA degradation ability was confirmed in 127 of 129 bacterial strains that were isolated from fermented soybean foods. Among the strains, B. subtilis P74, which showed the highest BPA degradation performance, degraded 97.2% of 10 mg/L of BPA within 9 h. This strain not only showed a fairly stable degradation performance (min > 88.2%) over a wide range of temperatures (30-45 °C) and pH (5.0-9.0) but also exhibited a degradation of 63% against high concentrations of BPA (80 mg/L). The metabolites generated during the degradation were analyzed using high-performance liquid chromatography-mass spectrometry, and predicted degradation pathways are tentatively proposed. Finally, the application of this strain to soybean fermentation was conducted to confirm its applicability in food.
Collapse
Affiliation(s)
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
38
|
Abidli S, Zaidi S, Ben Younes R, Lahbib Y, Trigui El Menif N. Impact of polyethylene microplastics on the clam Ruditapes decussatus (Mollusca: Bivalvia): examination of filtration rate, growth, and immunomodulation. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:746-755. [PMID: 37460906 DOI: 10.1007/s10646-023-02683-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
The present study was conducted to assess, for the first time, the effects of a 14 days experimental exposure to polyethylene (PE) based MPs (40-48 µm) on the clam Ruditapes decussatus. Clams were exposed to three different concentrations of MPs in controlled laboratory conditions: 10 µg/L (low), 100 µg/L (medium), and 1000 µg/L (high). The effects of MPs were assessed using a multi-marker approach, including the filtration rate, growth, and the integrity of immune cells (such as haemocyte numbers, viability, and lysosomal membrane destabilization). The results revealed that as the concentration of PE-MPs increased, the filtration rate decreased, indicating that PE-MPs hindered the clams' ability to filter water. Furthermore, there was a noticeable decrease in the overall weight of the clams, particularly in the group exposed to 1000 µg/L. This decrease could be attributed to the impairment of their nutrient filtration function. In terms of immune system biomarkers, exposure to PE-MPs led to immune system disruption, characterized by a significant increase in the number of haemocytic cells, especially in the group exposed to the high concentration. Additionally, there was a notable reduction in the viability of haemocytes, resulting in the destabilization of their lysosomal membranes, particularly in the groups exposed to medium and high PE-MPs concentrations. The findings of this study indicate that the sensitivity of hemolymph parameter changes and filtration rate in R. decussatus exposed to PE-MPs (100 and 1000 µg/L), surpasses that of growth performance and can serve as reliable indicators to assess habitat conditions and contaminant levels.
Collapse
Affiliation(s)
- Sami Abidli
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia.
| | - Salha Zaidi
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| | - Ridha Ben Younes
- University of Carthage, Faculty of Sciences of Bizerte, Research Unit of Immuno-Microbiology Environmental and Carcinogenesis, 7021, Zarzouna, Bizerte, Tunisia
| | - Youssef Lahbib
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| | - Najoua Trigui El Menif
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Bio-monitoring, 7021, Zarzouna, Bizerte, Tunisia
| |
Collapse
|
39
|
Ding P, Xiang C, Li X, Chen H, Shi X, Li X, Huang C, Yu Y, Qi J, Li AJ, Zhang L, Hu G. Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163480. [PMID: 37068667 DOI: 10.1016/j.scitotenv.2023.163480] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants and cause neurotoxicity in various organisms. However, previous studies that analyzed the effects of MPs mainly focused on virgin polystyrene (V-PS) as representative models of MPs, and the mechanism underlying the neurotoxicity of photoaged polystyrene (P-PS) remains largely unknown. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0.1-100 μg/L) of V-PS and P-PS(10 μm). The results indicated that UV radiation accelerated the aging process and changed physical and chemical properties of PS. Whereas exposure to both V-PS and P-PS at low concentrations (100 μg/L) significantly reduced the locomotor behavior of zebrafish larvae, P-PS caused more severe neurotoxicity compared to V-PS. The activity of antioxidant enzymes (SOD, CAT, and GST) and MDA content were significantly altered in zebrafish exposed to 10-100 μg/L of P-PS. Similarly, exposure to P-PS significantly increased neurotransmitter (5-HT, GABA, DA, and ACh) levels and activity of AChE, ChAT, and ChE. Star plots based on integrated biomarker response (IBR) values showed more incline toward neurotransmitter biomarkers in response to increasing P-PS concentration, and the behavioral parameters negatively correlated with the neurotransmitter biomarkers. Further investigations revealed that the expression of neurotransmission- (e.g., ache, drd3, 5th2c, and gat1) and oxidative stress- (e.g., cat1, sod1, gpx1a, and gstrl) related genes was significantly affected by PS in larval zebrafish. Thus, this study provides new insights on the potential risks of MPs into the environment.
Collapse
Affiliation(s)
- Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Chongdan Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Shi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chushan Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510630, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
40
|
Gendre H, Palos Ladeiro M, Geffard A, Poret A, Le Foll F, Ben Cheikh Y. Modulation of haemocyte motility by chemical and biological stresses in Mytilus edulis and Dreissena polymorpha. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108919. [PMID: 37422276 DOI: 10.1016/j.fsi.2023.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Mussels are constantly exposed to various pollutants in the environment, which can impair their immune defences against microbes and thus threaten their survival. In this study, we expand the insight into a key parameter of immune response in two mussel species by exploring the impact of exposure to pollutants or bacteria or simultaneous chemical and biological exposure on haemocyte motility. Basal haemocyte velocity in primary culture was high and increasing over time in Mytilus edulis (mean cell speed of 2.32 μm/min ± 1.57) whereas Dreissena polymorpha showed a constant and rather low cell motility with time (mean cell speed of 0.59 μm/min ± 0.1). In the presence of bacteria, the motility of haemocytes was instantly enhanced and slowed down after 90 min for M. edulis. In contrast, in vitro exposure of haemocytes to chemicals, either Bisphenol A, oestradiol, copper, or caffeine, induced an inhibition of cell motility in both mussel species. Finally, the cellular activation observed during bacterial challenges was inhibited by simultaneous exposure to bacteria and pollutants. Overall, our results indicate that chemical contaminants can alter haemocyte migration in mussels which can weaken their response to pathogens and therefore increase their susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Héloïse Gendre
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France; Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Mélissa Palos Ladeiro
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France
| | - Agnès Poret
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Frank Le Foll
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Yosra Ben Cheikh
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France.
| |
Collapse
|
41
|
Kang H, Zhang W, Jing J, Huang D, Zhang L, Wang J, Han L, Liu Z, Wang Z, Gao A. The gut-brain axis involved in polystyrene nanoplastics-induced neurotoxicity via reprogramming the circadian rhythm-related pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131949. [PMID: 37392641 DOI: 10.1016/j.jhazmat.2023.131949] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
The production of plastic is still increasing globally, which has led to an increasing number of plastic particles in the environment. Nanoplastics (NPs) can penetrate the blood-brain barrier and induce neurotoxicity, but in-depth mechanism and effective protection strategies are lacking. Here, C57BL/6 J mice were treated with 60 μg polystyrene NPs (PS-NPs, 80 nm) by intragastric administration for 42 days to establish NPs exposure model. We found that 80 nm PS-NPs could reach and cause neuronal damage in the hippocampus, and alter the expression of neuroplasticity-related molecules (5-HT, AChE, GABA, BDNF and CREB), and even affect the learning and memory ability of mice. Mechanistically, combined with the results of hippocampus transcriptome, gut microbiota 16 s ribosomal RNA and plasma metabolomics, we found that the gut-brain axis mediated circadian rhythm related pathways were involved in the neurotoxicity of NPs, especially Camk2g, Adcyap1 and Per1 may be the key genes. Both melatonin and probiotic can significantly reduce intestinal injury and restore the expression of circadian rhythm-related genes and neuroplasticity molecules, and the intervention effect of melatonin is more effective. Collectively, the results strongly suggest the gut-brain axis mediated hippocampal circadian rhythm changes involved in the neurotoxicity of PS-NPs. Melatonin or probiotics supplementation may have the application value in the prevention of neurotoxicity of PS-NPs.
Collapse
Affiliation(s)
- Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
42
|
Yuan J, Yang J, Xu X, Wang Z, Jiang Z, Ye Z, Ren Y, Wang Q, Wang T. Bisphenol A (BPA) Directly Activates the G Protein-Coupled Estrogen Receptor 1 and Triggers the Metabolic Disruption in the Gonadal Tissue of Apostichopus japonicus. BIOLOGY 2023; 12:798. [PMID: 37372083 DOI: 10.3390/biology12060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The sea cucumber, Apostichopus japonicus, is a marine benthic organism that feeds on small benthic particulate matter and is easily affected by pollutants. Bisphenol A (BPA, 4,4'-isopropylidenediphenol) has been identified as an endocrine disruptor. It is ubiquitously detectable in oceans and affects a variety of marine animals. It functions as an estrogen analog and typically causes reproductive toxicity by interfering with the endocrine system. To comparatively analyze the reproductive effects of estradiol (E2) and BPA on sea cucumbers, we identified a G protein-coupled estrogen receptor 1 (GPER1) in A. japonicus and investigated its effects on reproduction. The results showed that BPA and E2 exposure activated A. japonicus AjGPER1, thereby mediating the mitogen-activated protein kinase signaling pathways. High-level expression of AjGPER1 in the ovarian tissue was confirmed by qPCR. Furthermore, metabolic changes were induced by 100 nM (22.83 μg/L) BPA exposure in the ovarian tissue, leading to a notable increase in the activities of trehalase and phosphofructokinase. Overall, our findings suggest that AjGPER1 is directly activated by BPA and affects sea cucumber reproduction by disrupting ovarian tissue metabolism, suggesting that marine pollutants pose a threat to the conservation of sea cucumber resources.
Collapse
Affiliation(s)
- Jieyi Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiuwen Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zexianghua Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhijing Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhiqing Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yucheng Ren
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
43
|
Ghiglione JF, Barbe V, Bruzaud S, Burgaud G, Cachot J, Eyheraguibel B, Lartaud F, Ludwig W, Meistertzheim AL, Paul-Pont I, Pesant S, Ter Halle A, Thiebeauld O. Mission Tara Microplastics: a holistic set of protocols and data resources for the field investigation of plastic pollution along the land-sea continuum in Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-26883-9. [PMID: 37140856 DOI: 10.1007/s11356-023-26883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
The Tara Microplastics mission was conducted for 7 months to investigate plastic pollution along nine major rivers in Europe-Thames, Elbe, Rhine, Seine, Loire, Garonne, Ebro, Rhone, and Tiber. An extensive suite of sampling protocols was applied at four to five sites on each river along a salinity gradient from the sea and the outer estuary to downstream and upstream of the first heavily populated city. Biophysicochemical parameters including salinity, temperature, irradiance, particulate matter, large and small microplastics (MPs) concentration and composition, prokaryote and microeukaryote richness, and diversity on MPs and in the surrounding waters were routinely measured onboard the French research vessel Tara or from a semi-rigid boat in shallow waters. In addition, macroplastic and microplastic concentrations and composition were determined on river banks and beaches. Finally, cages containing either pristine pieces of plastics in the form of films or granules, and others containing mussels were immersed at each sampling site, 1 month prior to sampling in order to study the metabolic activity of the plastisphere by meta-OMICS and to run toxicity tests and pollutants analyses. Here, we fully described the holistic set of protocols designed for the Mission Tara Microplastics and promoted standard procedures to achieve its ambitious goals: (1) compare traits of plastic pollution among European rivers, (2) provide a baseline of the state of plastic pollution in the Anthropocene, (3) predict their evolution in the frame of the current European initiatives, (4) shed light on the toxicological effects of plastic on aquatic life, (5) model the transport of microplastics from land towards the sea, and (6) investigate the potential impact of pathogen or invasive species rafting on drifting plastics from the land to the sea through riverine systems.
Collapse
Affiliation(s)
- Jean-François Ghiglione
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC)/UMR 7621, Observatoire Océanologique de Banyuls, Laboratoire d'Océanographie Microbienne, 1 Avenue Fabre, F-66650, Banyuls sur mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans-GOSEE, Paris, France.
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, IRDL, Université Bretagne Sud, 56100, Lorient, France
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité Et Écologie Microbienne, 29280, Plouzané, France
| | - Jérôme Cachot
- Université Bordeaux, EPOC CNRS, EPHE, Université de Bordeaux, UMR 5805, 33600, Pessac, France
| | - Boris Eyheraguibel
- CNRS, Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), UMR6296, Clermont-Ferrand, France
| | - Franck Lartaud
- CNRS, Sorbonne Université, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB)/UMR 8222, Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| | - Wolfgang Ludwig
- CEFREM, UMR 5110, University of Perpignan - CNRS, 66860, Perpignan Cedex, France
| | | | - Ika Paul-Pont
- Ifremer, CNRS, IRD, LEMAR, Univ Brest, F-29280, Plouzané, France
| | - Stéphane Pesant
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans-GOSEE, Paris, France
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Alexandra Ter Halle
- CNRS, Laboratoire des InteractionsMoléculaires EtRéactivité Chimique Et Photochimique (IMRCP), UMR 5623, Université de Toulouse, Toulouse, France
| | | |
Collapse
|
44
|
Qian Q, Song J, Pu Q, Chen C, Yan J, Wang H. Acute/chronic exposure to bisphenol A induced immunotoxicity in zebrafish and its potential association with pancreatic cancer risk. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106514. [PMID: 37019016 DOI: 10.1016/j.aquatox.2023.106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Previous studies have confirmed that bisphenol A (BPA) induced immune toxicity and affected diseases, however, the underlying mechanism remains unknown. In the present study, zebrafish was employed as the model to assess the immunotoxicity and the potential disease risk of BPA exposure. Upon BPA exposure, a series of abnormalities were found, which included the increased oxidative stress, damaged innate and adaptive immune functions and the elevated insulin and blood glucose levels. According to the target prediction and RNA sequencing data of BPA, the differential expression genes were found enriched in immune- and pancreatic cancer-related pathway and process, and the potential role of stat3 in the regulation of these processes was revealed. The key immune- and pancreatic cancer-related genes were selected for further confirmation by RT-qPCR. Based on the changes in the expression levels of these genes, our hypothesis that BPA induced the occurrence of pancreatic cancer by modulating immune responses was further evidenced. Deeper mechanism was further disclosed by molecular dock simulation and survival analysis of key genes, proving that BPA stably bound to STAT3 and IL10 and STAT3 may serve as the target of BPA-inducing pancreatic cancer. These results are of great significance in deepening the molecular mechanism of immunotoxicity induced by BPA and our understanding of the risk assessment of contaminants.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China.
| |
Collapse
|
45
|
Xiang C, Chen H, Liu X, Dang Y, Li X, Yu Y, Li B, Li X, Sun Y, Ding P, Hu G. UV-aged microplastics induces neurotoxicity by affecting the neurotransmission in larval zebrafish. CHEMOSPHERE 2023; 324:138252. [PMID: 36849020 DOI: 10.1016/j.chemosphere.2023.138252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are nearly ubiquitous in aquatic ecosystems and may affect aquatic organisms. In this study, virgin and aged polystyrene MPs (PS-MPs) of size 1 μm were selected to analyze their adverse effects on larvae zebrafish. Exposure to PS-MPs significantly reduced the average swimming speed of zebrafish, and the behavioral effects caused by aged PS-MPs on zebrafish were more pronounced. Fluorescence microscopy revealed that 10-100 μg/L of PS-MPs accumulated in tissues of zebrafish. As an endpoint of neurotransmitter concentration, exposure to aged PS-MPs at doses ranging from 0.1 to 100 μg/L significantly increased the dopamine (DA), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), and acetylcholine (ACh) levels in zebrafish. Similarly, exposure to aged PS-MPs significantly altered the expression of genes related to these neurotransmitters (e.g., dat, 5ht1aa, and gabral genes). According to Pearson correlation analyses, neurotransmissions was significantly correlated with neurotoxic effects of aged PS-MPs. Thus, aged PS-MPs cause neurotoxicity in zebrafish through their effects on DA, 5-HT, GABA, and ACh neurotransmissions. The results highlight the importance of the neurotoxicity of aged PS-MPs in zebrafish, which has important implications for the risk assessment of aged MPs and the conservation of aquatic ecosystems.
Collapse
Affiliation(s)
- Chongdan Xiang
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaolin Liu
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bei Li
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yanan Sun
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guocheng Hu
- School of Public Health, Jinzhou Medical University, Jinzhou 121000, Liaoning, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
46
|
Han Y, Fu M, Wu J, Zhou S, Qiao Z, Peng C, Zhang W, Liu F, Ye C, Yang J. Polylactic acid microplastics induce higher biotoxicity of decabromodiphenyl ethane on earthworms (Eisenia fetida) compared to polyethylene and polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160909. [PMID: 36526185 DOI: 10.1016/j.scitotenv.2022.160909] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) and microplastics (MPs), such as fossil-based polymers polyethylene (PE), polypropylene (PP), and bio-based plastics polylactic acid (PLA) are abundant in e-waste dismantling areas. However, the information on the effects of DBDPE combined with MPs (DBDPE-MPs) on earthworms is still limited. In this study, we explored the impacts of DBDPE-MPs on neurotoxic biomarkers, tissue damage, and transcriptomics of Eisenia fetida by simulating different exposure patterns of 10 mg kg-1 DBDPE and 10 mg kg-1 DBDPE-MPs (PLA, PP, and PE). Results showed that the activities of acetylcholinesterase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, carboxylate enzyme, and the contents of calcium and glutamate were significantly stimulated. DBDPE-MP co-exposure caused more severe damage to the epidermis, muscles, and tissues. Transcriptomic analysis revealed that differentially expressed genes (DEGs) of DBDPE-MPs were mainly related to inflammation, the immune system, digestive system, endocrine system, and metabolism. DBDPE and PP-MPs had similar influences on immunity and metabolism. However, DBDPE-PLA and DBDPE-PE further affected the endocrine system and signaling pathways. Specific DEGs showed that detoxification systems in the case of MPs were significantly upregulated. The study indicated that MPs exacerbated DBDPE toxicity in the nervous system, epidermis, and gene regulation of E. fetida, helping to assess the ecological risks of e-wastes and microplastics in soil.
Collapse
Affiliation(s)
- Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Jinhong Wu
- Shanghai Yaxin Urban Construction Co., Ltd., Shanghai 200436, PR China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China.
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China.
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| |
Collapse
|
47
|
Wu H, Hou J, Wang X. A review of microplastic pollution in aquaculture: Sources, effects, removal strategies and prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114567. [PMID: 36706522 DOI: 10.1016/j.ecoenv.2023.114567] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
As microplastic pollution has become an emerging environmental issue of global concern, microplastics in aquaculture have become a research hotspot. For environmental safety, economic efficiency and food safety considerations, a comprehensive understanding of microplastic pollution in aquaculture is necessary. This review outlines an overview of sources and effects of microplastics in aquaculture. External environmental inputs and aquaculture processes are sources of microplastics in aquaculture. Microplastics may release harmful additives and adsorb pollutants in aquaculture environment, cause deterioration of aquaculture environment, as well as cause toxicological effects, affect the behavior, growth and reproduction of aquaculture products, ultimately reducing the economic benefits of aquaculture. Microplastics entering the human body through aquaculture products also pose potential health risks at multiple levels. Microplastic pollution removal strategies used in aquaculture in various countries are also reviewed. Ecological interception and purification are considered to be effective methods. In addition, strengthening aquaculture management and improving fishing gear and packaging are also currently feasible solutions. As proactive measures, new portable microplastic monitoring system and remote sensing technology are considered to have broad application prospects. And it was encouraged to comprehensively strengthen the supervision of microplastic pollution in aquaculture through talent exchange and strengthening the construction of laws and regulations.
Collapse
Affiliation(s)
- Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
48
|
Yu Y, Tian D, Ri S, Kim T, Ju K, Zhang J, Teng S, Zhang W, Shi W, Liu G. Gamma-aminobutyric acid (GABA) suppresses hemocyte phagocytosis by binding to GABA receptors and modulating corresponding downstream pathways in blood clam, Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108608. [PMID: 36764632 DOI: 10.1016/j.fsi.2023.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Although accumulating data demonstrated that gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, plays an important regulatory role in immunity of vertebrates, its immunomodulatory function and mechanisms of action remain poorly understood in invertebrates such as bivalve mollusks. In this study, the effect of GABA on phagocytic activity of hemocytes was evaluated in a commercial bivalve species, Tegillarca granosa. Furthermore, the potential regulatory mechanism underpinning was investigated by assessing potential downstream targets. Data obtained demonstrated that in vitro GABA incubation significantly constrained the phagocytic activity of hemocytes. In addition, the GABA-induced suppression of phagocytosis was markedly relieved by blocking of GABAA and GABAB receptors using corresponding antagonists. Hemocytes incubated with lipopolysaccharides (LPS) and GABA had significant higher K+-Cl- cotransporter 2 (KCC2) content compared to the control. In addition, GABA treatment led to an elevation in intracellular Cl-, which was shown to be leveled down to normal by blocking the ionotropic GABAA receptor. Treatment with GABAA receptor antagonist also rescued the suppression of GABAA receptor-associated protein (GABARAP), KCC, TNF receptor associated factor 6 (TRAF6), inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα), and nuclear factor kappa B subunit 1 (NFκB) caused by GABA incubation. Furthermore, incubation of hemocytes with GABA resulted in a decrease in cAMP content, an increase in intracellular Ca2+, and downregulation of cAMP-dependent protein kinase (PKA), calmodulin kinase II (CAMK2), calmodulin (CaM), calcineurin (CaN), TRAF6, IKKα, and NFκB. All these above-mentioned changes were found to be evidently relieved by blocking the metabotropic G-protein-coupled GABAB receptor. Our results suggest GABA may play an inhibitory role on phagocytosis through binding to both GABAA and GABAB receptors, and subsequently regulating corresponding downstream pathways in bivalve invertebrates.
Collapse
Affiliation(s)
- Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Tongchol Kim
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, North Korea
| | - Kwangjin Ju
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China; College of Aquaculture, Wonsan Fisheries University, Wonsan, 999093, North Korea
| | - Jiongming Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | | | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
49
|
Gong H, Li R, Li F, Guo X, Xu L, Gan L, Yan M, Wang J. Toxicity of nanoplastics to aquatic organisms: Genotoxicity, cytotoxicity, individual level and beyond individual level. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130266. [PMID: 36327848 DOI: 10.1016/j.jhazmat.2022.130266] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Due to the small size, high mobility and large surface area, nanoplastics (NPs) showed high potential risks to aquatic organisms. This paper reviews the toxicity of NPs to aquatic organism at various trophic levels including bacteria, plankton (algae), zooplankton, benthos, and nekton (fish). The effects at individual level caused by NPs were explained and proved by cytotoxicity and genotoxicity, and the toxicity of NPs beyond individual level was also illustrated. The toxicity of NPs is determined by the size, dosage, and surface property of NPs, as well as environmental factors, the presence of co-contaminants and the sensitivity of tested organisms. Furthermore, the joint effects of NPs with other commonly detected pollutants such as organic pollutants, metals, and nanoparticles etc. were summarized. In order to reflect the toxicity of NPs in the real natural environment, studies on toxicity assessment of NPs with the coexistence of various environmental factors and contaminants, particularly under the concentrations in natural environment are suggested.
Collapse
Affiliation(s)
- Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaowen Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
50
|
Zhang M, Ma B, Yang S, Wang J, Chen J. Bisphenol A (BPA) induces apoptosis of mouse Leydig cells via oxidative stress. ENVIRONMENTAL TOXICOLOGY 2023; 38:312-321. [PMID: 36315628 DOI: 10.1002/tox.23690] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As one of the most frequently produced synthetic compounds worldwide, bisphenol A (BPA) has been widely used in many kinds of products such as appliances, housewares, and beverage cans. BPA has been shown to cause damage to male reproductive system; however, the potential mechanism remains to be investigated. In the present study, BPA exposure decreased the testis and epididymis coefficient, caused a disintegration of germinal epithelium, decreased the density and motility of sperm in the epididymis tissue, and increased the number of abnormal sperm morphology, which indicated that BPA exposure could cause damage to testis. BPA was also shown to induce apoptosis and oxidative stress in the testis tissue. The serum testosterone concentration was decreased in the BPA-treated group, suggesting that BPA could lead to Leydig cell damage. Subsequently, mouse TM3 cell, a kind of mouse Leydig cell line, was utilized to investigate the potential mechanism. Herein, we showed that BPA exposure could inhibit cell viability and induce apoptosis of TM3 cells. Furthermore, oxidative stress in the cells could also be induced by BPA, while the inhibition of oxidative stress by N-acetyl-L-cysteine (NAC), an oxidative stress scavenger, could reverse the inhibition of cell viability and induction of apoptosis by BPA exposure, indicating that oxidative stress was involved in BPA-induced apoptosis of TM3 cells. Finally, RNA-sequencing and real-time PCR were utilized to screen and validate the potential oxidative stress-related genes involving in BPA-induced apoptosis. We found that BPA exposure increased the mRNA levels of oxidative stress-related genes such as Lonp1, Klf4, Rack1, Egln1, Txn2, Msrb1, Atox1, Mtr, and Atp2a2, as well as decreased the mRNA level of Dhfr gene; while NAC could rescue the expression of these genes. Taken together, oxidative stress was involved in BPA-induced apoptosis of mouse Leydig cells.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Bingchun Ma
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, People's Republic of China
| |
Collapse
|