1
|
Zhang Y, Yuan J, Mao T. Impact of microplastics exposure on liver health: A comprehensive meta-analysis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110080. [PMID: 39579839 DOI: 10.1016/j.cbpc.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Microplastics (MPs) are significant concerns affecting liver health. This is the first comprehensive meta-analysis, evaluating the impact of MPs on liver functions across various animal models, including mice, fish, crabs, and shrimp. Five databases, including PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, and Web of Science, were used to select eligible studies. In all, 70 studies out of 1872 publications were included in the analysis, the impact of MPs on liver enzymes, oxidative stress markers, and inflammatory cytokines were evaluated. Our results revealed significant increases in liver enzymes ALT and AST, oxidative stress markers MDA, and pro-inflammatory cytokines IL-6 and TNF-α, along with a notable reduction in antioxidative enzymes like SOD, CAT, GSH, and GPx. These findings suggest that MPs exposure significantly disrupts liver function by inducing oxidative stress and inflammation. The results underscore the urgent need for targeted environmental policies and further research.
Collapse
Affiliation(s)
- Yizi Zhang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, United States
| | - Jiahui Yuan
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, United States
| | - Ting Mao
- Alfred Dairy Science Laboratory, Department of Dairy and Food Science, South Dakota State University, Brookings, SD, United States.
| |
Collapse
|
2
|
Wang YF, Wang XY, Chen BJ, Yang YP, Li H, Wang F. Impact of microplastics on the human digestive system: From basic to clinical. World J Gastroenterol 2025; 31:100470. [DOI: 10.3748/wjg.v31.i4.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
As a new type of pollutant, the harm caused by microplastics (MPs) to organisms has been the research focus. Recently, the proportion of MPs ingested through the digestive tract has gradually increased with the popularity of fast-food products, such as takeout. The damage to the digestive system has attracted increasing attention. We reviewed the literature regarding toxicity of MPs and observed that they have different effects on multiple organs of the digestive system. The mechanism may be related to the toxic effects of MPs themselves, interactions with various substances in the biological body, and participation in various signaling pathways to induce adverse reactions as a carrier of toxins to increase the time and amount of body absorption. Based on the toxicity mechanism of MPs, we propose specific suggestions to provide a theoretical reference for the government and relevant departments.
Collapse
Affiliation(s)
- Ya-Fen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xin-Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bang-Jie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi-Pin Yang
- First Clinical Medical College, Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
3
|
Zheng Y, Li J, Zhu H, Hu J, Sun Y, Xu G. Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE 153 acute co-exposure. Comp Biochem Physiol C Toxicol Pharmacol 2024; 289:110117. [PMID: 39725183 DOI: 10.1016/j.cbpc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L-1 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE153), and 5 ng·L-1 BDE153 + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia. The results showed that the enzymatic activities of anti-oxidative (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory (TNFα, IL-1β) and apoptosis (caspase 3) significantly increased at 2 d in BDE153 and the combined group and together in BDE153 group at 8 d. Histological slice showed displaced nucleus by BDE153 exposure and vacuoles appeared in the combined groups. KEGG results revealed that pathways associated with endocytosis, protein processing in endoplasmic reticulum and regulation of actin cytoskeleton were significantly enriched. The selected genes associated with neurocentral development (ganab, diaph3/baiap2a/ddost decreased and increased), lipid metabolism (ldlrap1a decreased, stt3b increased), energy (agap2 decreased, uggt1 increased) were affected under co-exposure, and fibronectin significantly increased via proteome. Our study indicated that endocytosis, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton were affected in tilapia liver under NPs and BDE153 co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| |
Collapse
|
4
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
5
|
Zhang J, Hu G, Guo H, Yang W, Li X, Ni Y, He M, Ding P, Yu Y. Amino modifications exacerbate the developmental abnormalities of polystyrene microplastics via mitochondria-mediated apoptosis pathway in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178031. [PMID: 39689476 DOI: 10.1016/j.scitotenv.2024.178031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been identified as a potential threat to ecosystems. However, the mechanisms of toxicity of modified MPs remain unknown. This study investigated the developmental toxicity of amino-modified polystyrene microplastics (PS-NH2) with environmentally relevant concentrations ranging from 0.1 to 100 μg/L in the early developmental stages of zebrafish. Adding amino functional groups resulted in significant alterations in the surface morphology and zeta potential of traditional polystyrene microplastics (PS-MPs). Zebrafish larvae exposed to PS-NH2 exhibited increased developmental toxicity compared to PS-MPs, as indicated by reduced body length, heart rate, and spontaneous movement. The expression of cat1, sod1, gstr1, nrf2a, nrf2b, and HO-1, as well as alterations in ROS, SOD, CAT, and MDA levels, all demonstrated oxidative damage caused by PS-NH2 exposure. Mitochondrial dysfunction was also induced, as evidenced by changes in the expression of cox4i1, ndufs1, and uqcrc1, as well as changes in the levels of ATP, cytochrome c, NAD, and NADH. Furthermore, PS-NH2 exposure disrupted apoptosis regulation, increasing apoptotic cells and caspase activity, along with changes in caspase-3 and bcl-2 expression. Molecular docking showed that PS-NH2 interacts with bcl-2 with high binding energy. This study contributes to understanding the toxic effects and mechanisms of charge-modified MPs in zebrafish.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenhui Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yuyang Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Miao He
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
6
|
Sun J, Peng S, Yang Q, Yang J, Dai Y, Xing L. Microplastics/nanoplastics and neurological health: An overview of neurological defects and mechanisms. Toxicology 2024; 511:154030. [PMID: 39653181 DOI: 10.1016/j.tox.2024.154030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The widespread use of plastic products worldwide has brought about serious environmental issues. In natural environments, it's difficult for plastic products to degrade completely, and so they exist in the form of micro/nanoplastics (M/NPs), which have become a new type of pollutant. Prolonged exposure to M/NPs can lead to a series of health problems in humans, particularly toxicity to the nervous system, with consequences including neurodevelopmental abnormalities, neuronal death, neurological inflammation, and neurodegenerative diseases. Although direct evidence from humans is still limited, model organisms and organoids serve as powerful tools to provide important insights. This article summarizes the effects of M/NPs on the nervous system, focusing on cognitive function, neural development, and neuronal death. Mechanisms such as neurotransmitter synthesis and release, inflammatory responses, oxidative stress, the gut-brain axis, and the liver-brain axis are covered. The neurotoxicity induced by M/NPs may exacerbate or directly trigger neurodegenerative diseases and neurodevelopmental disorders. We particularly emphasize potential therapeutic agents that may counteract the neurotoxic effects induced by M/NPs, highlighting a novel future research direction. In summary, this paper cites evidence and provides mechanistic perspectives on the effects of M/NPs on neurological health, providing clues for eliminating M/NP hazards to human health in the future.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Qiongxia Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Jiawei Yang
- Department of Neurology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226000, China
| | - Yanfei Dai
- Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
7
|
Xie J, Ji J, Sun Y, Ma Y, Wu D, Zhang Z. Blood-brain barrier damage accelerates the accumulation of micro- and nanoplastics in the human central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136028. [PMID: 39366047 DOI: 10.1016/j.jhazmat.2024.136028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The widespread use of plastics has led to increased micro- and nanoplastics (MNPs) pollution, resulting in significant environmental challenges and concerns about potential harm to human health. This study investigated whether certain types of MNPs can accumulate in the human central nervous system (CNS) and trigger inflammatory responses, particularly after CNS infection. Our analysis of 28 cerebrospinal fluid (CSF) samples from 28 patients with or without CNS infection revealed that only polystyrene (PS), polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) were capable of selectively entering the human CNS. Concentrations of PP and PE were positively correlated with the CSF albumin index. The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were significantly increased in patients with CNS infections. However, concentrations of MNPs were not significantly associated with CSF levels of IL-6 or IL-8. Overall, these findings suggest that specific MNPs can penetrate the human CNS, especially after impairment of the blood-brain barrier. Notably, MNPs derived from commonly used plastics did not significantly induce or exacerbate inflammation in the human CNS.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jiale Ji
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yun Sun
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yifan Ma
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Di Wu
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Zhijun Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210009, China; Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences of Shenzhen University of Advanced Technology, The Brain Cognition and Brain Disease institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Shi L, Teng X, Wu C, Zhang T, Jin X, Wang L, Tian P, Shang KX, Zhao J, Rao C, Wang G. Lactic acid bacteria reduce polystyrene micro- and nanoplastics-induced toxicity through their bio-binding capacity and gut environment repair ability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125288. [PMID: 39638230 DOI: 10.1016/j.envpol.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/10/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
Microplastics and nanoplastics (MNPs) are emerging environmental contaminants that have received significant attention in recent years. Currently, there are more studies on the toxic effects of MNPs exposure on animals (especially aquatic organisms and mammals), but data on the reduction of toxic effects caused by MNPs exposure are still very limited. Lactic acid bacteria (LAB), recognized as safe food-grade microorganisms, possess the capability to bioconjugate harmful substances. In this experiment, we chose lactic acid bacteria (LAB) with different binding capacities to MNPs in vitro to intervene in MNPs-exposed mice to investigate the reducing effect on the toxicity caused by MNPs exposure. Our study showed that LAB with a high intercalation capacity with MNPs in vitro were more effective in alleviating the toxicity caused by MNPs exposure. Notably, Lactobacillus plantarum DT22, despite its low inter-adsorption with MNPs, played a pivotal role in upregulating the relative expression of tight junction proteins and modulating the intestinal microbiota. Thus, LAB strains' mitigation of MNPs toxicity extends beyond bio-binding; their capacity to repair the damaged gut environment is also crucial. LAB strains are proposed as a dietary intervention to reduce MNPs-induced toxicity.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xin Teng
- Bluepha Co., Ltd., Shanghai, 200434, PR China
| | - Changyin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | | | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Ke-Xin Shang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China
| | - Chitong Rao
- Bluepha Co., Ltd., Shanghai, 200434, PR China.
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| |
Collapse
|
9
|
Hou Y, Bian D, Xiao Y, Huang J, Liu J, Xiao E, Li Z, Yan W, Li Y. MRI-based microplastic tracking in vivo and targeted toxicity analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176743. [PMID: 39378947 DOI: 10.1016/j.scitotenv.2024.176743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) as an emerging pollutant have raised significant concerns in environmental health. However, elucidating the distribution of MPs in living organisms remains challenging due to their trace residue and tough detection problems. In this study, a novel magnetic resonance imaging (MRI)-based tracking method was employed to monitor functionalized MPs biodistribution in vivo. Our results identified that the liver is the primary accumulation site of polystyrene microplastics (PS-MPs) in biological systems through continuous in vivo monitoring spanning 21 days. Biochemical tests were performed to assess the toxicological effects of functionalized MPs on the liver tissue, revealing hepatocyte death, inflammatory cell infiltration, and alterations in alkaline phosphatase levels. Notably, positively charged MPs exhibited more severe effects. A combined metabolomics-proteomics analysis further revealed that PS-MPs interfered with hepatic metabolic pathways, particularly bile secretion and ABC transporters. Overall, this study effectively assessed the distribution of functionalized MPs in vivo utilizing MRI technology, validated toxicity in targeted organ, and conducted an in-depth study on underlying biotoxicity mechanism. These findings offer crucial scientific insights into the potential impact of MPs in the actual environment on human health.
Collapse
Affiliation(s)
- Yuanyuan Hou
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dujun Bian
- Radiology Department, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yunmu Xiao
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jian Huang
- Obstetrics & Gynecology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiayi Liu
- Radiology Department, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Enhua Xiao
- Radiology Department, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziqian Li
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wende Yan
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yong Li
- National Engineering Laboratory of Applied Technology for Forestry & Ecology in South China, Laboratory of Urban Forest Ecology of Hunan Province, China; Department of Life and Environmental Science, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
10
|
Lu T, Yuan X, Sui C, Yang C, Li D, Liu H, Zhang G, Li G, Li S, Zhang J, Zhou L, Xu M. Exposure to Polypropylene Microplastics Causes Cardiomyocyte Apoptosis Through Oxidative Stress and Activation of the MAPK-Nrf2 Signaling Pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:5371-5381. [PMID: 39248137 DOI: 10.1002/tox.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/23/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Microplastics are a growing concern as pollutants that impact both public health and the environment. However, the toxic effects of polypropylene microplastics (PP-MPs) are not well understood. This study aimed to investigate the effects of PP-MPs on cardiotoxicity and its underlying mechanisms. The cardiotoxicity of exposure to different amounts of PP-MPs were investigated in both ICR mice and H9C2 cells. Our results demonstrated that sub-chronic exposure to 5 and 50 mg/L PP-MPs led to myocardial structural damage, apoptosis, and fibrosis in mice cardiomyocytes. Flow cytometry analysis revealed that PP-MPs could decrease mitochondrial membrane potential and induce apoptosis in H9C2 cells. Western blotting revealed decreased expression of Bcl-2, poly(ADP-ribose) polymerase (PARP) and caspase 3 and increased expression of Bax, cleaved-PARP, and cleaved-caspase 3 in PP-MPs-treated cardiac tissue and H9C2 cells. These results confirmed the apoptotic effects induced by PP-MPs. Moreover, PP-MPs treatment triggered oxidative stress, as evidenced by the increased levels of malondialdehyde; reduction in glutathione peroxidase, superoxide dismutase, and catalase activities in mice cardiac tissues; and increased reactive oxygen species levels in H9C2 cells. Finally, western blotting demonstrated that exposure to PP-MPs significantly reduced the expression levels of Nrf2 and p-ERK proteins associated with MAPK-Nrf2 pathway in both cardiac tissue and H9C2 cells. Overall, our findings indicate that PP-MPs can induce cardiomyocyte apoptosis through MAPK-Nrf2 signaling pathway, which is triggered by oxidative stress. This study provides a foundation for determining the effects of PP-MPs on cardiotoxicity and their underlying mechanisms.
Collapse
Affiliation(s)
- Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Changbai Sui
- Department of Neurology, Yantaishan Hospital, Affiliated to Binzhou Medical University, YanTai, ShanDong, China
| | - Chen Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Guozhi Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Song Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Jiayu Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy, Binzhou Medical University, YanTai, ShanDong, China
| |
Collapse
|
11
|
Kuai Y, Chen Z, Xie K, Chen J, He J, Gao J, Yu C. Long-term exposure to polystyrene microplastics reduces macrophages and affects the microbiota-gut-brain axis in mice. Toxicology 2024; 509:153951. [PMID: 39265698 DOI: 10.1016/j.tox.2024.153951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The remarkably increase in plastic use has led to worldwide pollution involving microplastics (MPs), which have been shown to be potentially hazardous substances. Although several studies have focused on the effects of small MPs on the brain and behavior of aquatic species, their effects on the mouse brain and the underlying mechanisms remain unclear. Our study's aim was to investigate the effects of long-term oral ingestion of different sizes of MPs (0.1, 5, and 50 μm) on mouse colon tissue. Of these sizes, the smallest (0.1 μm) had the greatest effect. Pre-administration of MP promotes colitis but reduces tumor growth in a colitis-associated colorectal cancer (CAC) mouse mode. MPs can increase inflammation in mice via activation of the very late antigen 4-vascular cell adhesion molecule 1 (VLA4-VCAM1) signaling pathway in macrophages, while also inducing macrophage reduction in the late phase of inflammation. In the microbiota-gut-brain axis, polystyrene MP treatment altered bile acid and carbohydrate metabolism in the intestine, inhibited intestinal motility, reduced water reabsorption, and led to a certain degree of depression in mice. These findings suggest that small MPs can induce macrophage reduction, thereby affecting the physical and mental health by modulating the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yue Kuai
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Zhuoneng Chen
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Kai Xie
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Jiannan He
- The Department of Anesthesiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
| | - Jianguo Gao
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Chaohui Yu
- The Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
12
|
Zhou J, Li D, Xu M, Zhu T, Li Z, Fu Z, Wang M, Li S, Gu D. Interactions between polycyclic aromatic hydrocarbons and genetic variants in the cGAS-STING pathway affect the risk of colorectal cancer. Arch Toxicol 2024; 98:4117-4129. [PMID: 39287666 DOI: 10.1007/s00204-024-03862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The cGAS-STING pathway plays an essential role in the activation of tumor immune cells. Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with potential carcinogenicity, and their exposure is associated with the development of colorectal cancer. However, the impacts of genetic factors in the cGAS‒STING pathway and gene‒environment interactions on colorectal cancer remain understudied. We used logistic regression models and interaction analysis to evaluate the impact of genetic variants on colorectal cancer risk and gene‒environment interactions. We analysed the expression patterns of candidate genes based on the RNA-seq data. Molecular biology experiments were performed to investigate the impact of PAHs exposure on candidate gene expression and the progression of colorectal cancer. We identified the susceptibility locus rs3750511 in the cGAS‒STING pathway, which is associated with colorectal cancer risk. A negative interaction between TRAF2 rs3750511 and PAHs exposure was also identified. Single-cell RNA-seq analysis revealed significantly elevated expression of TRAF2 in colorectal cancer tissues compared with normal tissues, especially in T cells. BPDE exposure increased TRAF2 expression and the malignant phenotype of colorectal cancer cells. The treatment also further increased the expression of the TRAF2 downstream gene NF-κB and decreased the expression of Caspase8. Our results suggest that the genetic variant of rs3750511 affects the expression of TRAF2, thereby increasing the risk of colorectal cancer through interaction with PAHs. Our study provides new insights into the influence of gene‒environment interactions on the risk of developing colorectal cancer.
Collapse
Affiliation(s)
- Jieyu Zhou
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Dongzheng Li
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianru Zhu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengyi Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
13
|
Li P, Miyamoto D, Adachi T, Hara T, Soyama A, Matsushima H, Imamura H, Kanetaka K, Gu W, Eguchi S. Mitigation of polystyrene microplastic-induced hepatotoxicity in human hepatobiliary organoids through bile extraction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117330. [PMID: 39571255 DOI: 10.1016/j.ecoenv.2024.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND & AIMS Polystyrene microplastics (PS-MPs) are pervasive in our daily life and can be ingested by the human body through bioaccumulation, causing organ damage, especially liver damage. However, the effect of PS-MPs bioaccumulation on human hepatotoxicity and their metabolism remains unclear. Recent studies have demonstrated that PS-MPs cause lipid and bile acid metabolism disorders. The human hepatobiliary organoids (HBOs) regenerated from chemically induced liver progenitor cells converted by mature hepatocytes and the bile duct provides a bioengineering model for liver disease and hepatic metabolism. APPROACH & RESULTS Exposure of HBOs to PS-MPs with a diameter of 1 µm for 48 h causes hepatotoxicity, hepatocyte damage, and changes in bile acid metabolism. PS-MPs could be accumulated into the bile ducts of HBOs, which can be promoted by ursodeoxycholic acid, increasing bile flow and volume by activating the bile transporter of BSEP in a dose-dependent manner along with MRP-2. The accumulation of PS-MPs in the bile duct was able to be inhibited by the bile transporter inhibitor of troglitazone that could inhibit the transporters of BSEP and MRP-2, which increased the hepatotoxicity caused by PS-MPs. CONCLUSIONS This study provides insights into the metabolic pathways of PS-MPs in the liver and suggests potential therapeutic strategies to reduce MP-induced liver damage.
Collapse
Affiliation(s)
- Peilin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan; Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan
| | - Weili Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan.
| |
Collapse
|
14
|
Bora SS, Gogoi R, Sharma MR, Anshu, Borah MP, Deka P, Bora J, Naorem RS, Das J, Teli AB. Microplastics and human health: unveiling the gut microbiome disruption and chronic disease risks. Front Cell Infect Microbiol 2024; 14:1492759. [PMID: 39669275 PMCID: PMC11635378 DOI: 10.3389/fcimb.2024.1492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Microplastics (MPs), defined as plastic particles smaller than 5 mm, are increasingly recognized as environmental contaminants with potential health risks. These emerge as breakdown products of larger plastics and are omnipresent in marine, freshwater, and terrestrial ecosystems. They are primarily composed of polymers such as polyethylene, polypropylene, polystyrene, and additives that enhance their performance. MPs also adsorb harmful environmental chemicals like persistent organic pollutants and heavy metals, posing risks to human and environmental health. Human exposure to MPs occurs mainly through ingestion and inhalation, with MPs detected in food products, water, and even the air. MPs have been shown to accumulate in the gastrointestinal tract, disrupting the gut microbiome, and causing dysbiosis-a harmful imbalance between beneficial and harmful bacteria. This disruption has been linked to various health issues, including gastrointestinal disorders, systemic inflammation, and chronic diseases. Furthermore, the gut-brain axis may be affected, with potential neuroinflammatory consequences. As research continues to unravel the health impacts of MP exposure, understanding the mechanisms of accumulation and the broader implications on human health is crucial. This review highlights the effects of MPs on human health, emphasizing their impact on the gut microbiome. We discuss the potential connections between MP exposure and cardiometabolic and inflammatory diseases, and disorders related to the Gut-Brain Axis. By synthesizing the latest research, this work sheds light on the silent yet pervasive threat posed by MPs and underscores the importance of further studies to understand their health impacts fully.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Rahul Gogoi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhurjya Ranjan Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Anshu
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhurjya Protim Borah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| | - Priyadarshini Deka
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Jitul Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
| | - Jugabrata Das
- College of Horticulture and Farming System Research, Assam Agricultural University, Nalbari, Assam, India
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, India
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat, Assam, India
| |
Collapse
|
15
|
Liu N, Du J, Ge J, Liu SB. DNA damage-inducing endogenous and exogenous factors and research progress. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-33. [PMID: 39540885 DOI: 10.1080/15257770.2024.2428436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The substances that cause abnormal DNA structures are known as DNA damage-inducing factors, and their resulting DNA damage has been extensively studied and proven to be closely related to cancer, neurodegenerative diseases, and aging. Prolonged exposure to DNA damage-inducing factors can lead to a variety of difficult-to-treat diseases, yet these factors have not been well summarized. It is crucial to use a combination of environmental science and life science to gain a deep understanding of the environmental sources and biological consequences of DNA damage-inducing factors for mechanistic research and prevention of diseases such as cancer. This article selected 14 representative carcinogenic exogenous DNA damage-inducing factors and summarized them through a literature search, including both exogenous and endogenous DNA damage factors, and explored the types of DNA damage caused by the relevant damage factors.
Collapse
Affiliation(s)
- Nian Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Jiani Ge
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
16
|
Zangene S, Morovvati H, Anbara H, Hye Khan MA, Goorani S. Polystyrene microplastics cause reproductive toxicity in male mice. Food Chem Toxicol 2024; 194:115083. [PMID: 39521238 DOI: 10.1016/j.fct.2024.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are a common environmental pollutant that disrupts the reproductive system of living organisms. We investigated the reproductive toxicity of 2 μm polystyrene microplastics (PS-MPs) in mice and treated them with PS-MPs for 6 weeks. We demonstrated that PS-MPs decreased the gonadosomatic index and the serum concentration of pituitary-testicular axis hormones (Follicle-stimulating hormone, Luteinizing hormone, and testosterone). The PS-MPs treatment also reduced viable epididymal sperm number and sperm motility. Our results also demonstrated a marked decrease in tubular differentiation index, spermatogenesis index, repopulation index, and steroidogenic foci. The PS-MPs treated mice demonstrated marketed tissue damage in the testis. We also found that reproductive abnormality in PS-MPs treated mice accompanied by reduced antioxidant capacity elevated oxidative stress, and, elevated apoptotic signaling. It was observed that Endoplasmic reticulum (ER) stress markers, including GRP78 and Chop, were upregulated. Based on these findings, oxidative stress and endoplasmic reticulum stress may contribute to the decline in the steroidogenic function of Leydig cells with PS-MPs treated.
Collapse
Affiliation(s)
- Somaye Zangene
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Hojat Anbara
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Md Abdul Hye Khan
- Department of Anesthesiology & Preoperative Medicine, University of Missouri, Columbia, USA.
| | - Samaneh Goorani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Lee SH, Lin TA, Yan YH, Chien CC, Cheng TJ. Hepatic and metabolic outcomes induced by sub-chronic exposure to polystyrene microplastics in mice. Arch Toxicol 2024; 98:3811-3823. [PMID: 39183192 DOI: 10.1007/s00204-024-03847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Microplastics (MPs) have attracted significant attention due to their global distribution in living environments. Although some studies have reported MP-induced hepatotoxicity in mouse models, a systematic approach to MP-mediated liver toxicity was still lacking. Therefore, we used a mouse model to study the sub-chronic effects of MP exposure on the liver. Female C57BL/6 mice, aged 6 weeks, received an oral administration of 0.3 mg of Nile Red-labeled polystyrene (PS) microplastics, with particle sizes of 0.5 µm (submicron) and 5 µm (micron), via gavage, while control mice received vehicle only. Each mouse was exposed to MPs twice a week for 12 weeks. After sacrifice, the levels of MP accumulation, oxidative stress, inflammation, and pathological changes were measured in the mouse liver, and blood samples were collected for serum biochemistry analysis. Our results demonstrated that 0.5 µm PS-MPs were accumulated in mouse livers post-MP exposure, but not in the 5 µm MP exposure group. Simultaneously, increased levels of glucose, triglyceride, alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase, 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), interleukin-6, and lipid droplets were found in the 0.5 µm MP exposure group, while the fewer responses, including elevated liver weight index, glucose, high-density lipoprotein, AST, and decreased HNE-MA were observed in 5 µm MP exposure group. These results indicate that sub-chronic exposure to submicron MPs causes MP deposition in mouse livers, which further induces oxidative stress, increases inflammatory cytokines and perturbs glucose and lipid homeostasis, which might trigger more severe metabolic dysfunction or non-alcoholic steatohepatitis-like hepatotoxicity.
Collapse
Affiliation(s)
- Sheng-Han Lee
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ting-An Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Yuan-Horng Yan
- Department of Endocrinology and Metabolism, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
| |
Collapse
|
18
|
Abd El-Hack ME, Ashour EA, AlMalki F, Khafaga AF, Moustafa M, Alshaharni MO, Youssef IM, Elolimy AA, Świątkiewicz S. Harmful impacts of microplastic pollution on poultry and biodegradation techniques using microorganisms for consumer health protection: A review. Poult Sci 2024; 104:104456. [PMID: 39546917 DOI: 10.1016/j.psj.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Microplastics (MPs) are small plastic particles less than five millimeters in size. Microplastic pollution poses a serious threat to ecosystems, affecting both biotic and abiotic components. Current techniques used to eliminate microplastics include recycling, landfilling, incineration, and biodegradation. Microplastics have been detected in various animal species, including poultry, fish, mammals, and invertebrates, indicating widespread exposure and potential bioaccumulation. In the Middle East, MPs contamination was discovered in chicken purchased from food shops, chain supermarkets, and open markets. The contamination levels ranged from 0.03±0.04 to 1.19±0.72 particles per gram of chicken meat. In poultry, microplastics negatively affect production and harm vital organs such as the kidneys, spleen, and lungs. In humans, exposure to microplastics can lead to inflammation, immune responses, metabolic disturbances, DNA damage, neurological damage, and even cancer upon contact with mucosal membranes or absorption into the body. Several studies have explored the use of microorganisms, including bacteria, fungi, and algae, to degrade microplastics, offering an economical and environmentally friendly solution. Different polymers were cultured with strains of Bacillus spp. (SB-14 and SC-9) and Streptococcus spp. (SC-56) for a duration of 40 days. Degradation rates for LDPE were 11.8 %, 4.8 %, and 9.8 %. The rates of deterioration for HDPE were 11.7 %, 3.8 %, and 13.7 %. Rates for polyester beads were 17.3 %, 9.4 %, and 5.8 %. This review focuses on the effects of microorganisms in removing microplastic pollution, the detrimental impact of microplastics on poultry production, and the connection between microplastic pollution and human health.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Fatemah AlMalki
- Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra Universit, Al Quwaiiyah 19257, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates; Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt.
| | | |
Collapse
|
19
|
Conti I, Brenna C, Passaro A, Neri LM. Bioaccumulation Rate of Non-Biodegradable Polystyrene Microplastics in Human Epithelial Cell Lines. Int J Mol Sci 2024; 25:11101. [PMID: 39456886 PMCID: PMC11508641 DOI: 10.3390/ijms252011101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environment plastic accumulation has been attracting the attention of both political and scientific communities, who wish to reduce global pollution. Plastic items have been detected everywhere, from oceans to the air, raising concerns about the fate of plastics within organisms. Leaked plastics are ingested by animals, entering the food chain and eventually reaching humans. Although a lot of studies focused on the evaluation of plastic particles in the environment and living organisms have already been published, the behavior of plastic at the cellular level is still missing. Here, we analyzed the bioaccumulation and extrusion trend of two differently sized plastic particles (1 and 2 µm), testing them on three human epithelial cell lines (liver, lung, and gut) that represent epithelial sites mainly exposed to plastic. A different behavior was detected, and the major plastic uptake was shown by liver cells, where the 1 µm beads accumulated with a dose-dependent profile. Moreover, a 60% reduction in the content of 1 µm particles in cells was evaluated after plastic removal. Finally, the viability and proliferation of the three human cell lines were not significantly affected by both the 1 and 2 µm beads, suggesting that cells might have a defense mechanism against plastic exposure risk.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (C.B.); (A.P.)
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (C.B.); (A.P.)
- Laboratory for Technologies of Advanced Therapies “LTTA”—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (C.B.); (A.P.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (C.B.); (A.P.)
- Laboratory for Technologies of Advanced Therapies “LTTA”—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Ma Y, Zeng Y, Sun M, Ding R, Yu Y, Duan J. Untargeted lipidomics uncover hepatic lipid signatures induced by long-term exposure to polystyrene microplastics in vivo. Toxicol Lett 2024; 400:49-57. [PMID: 39084329 DOI: 10.1016/j.toxlet.2024.07.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE This study evaluated the effects of long-term polystyrene microplastics (PS-MPs) exposure on hepatic lipid metabolism in vivo by lipidomics. RESULTS H&E staining showed long-term PS-MPs exposure could trigger the hepatic inflammatory cell infiltration and hepatic steatosis in SD rats, indicating long-term PS-MPs exposure caused hepatoxicity. Lipidomics revealed that the concentrations of 8 lipid metabolites in the liver were altered after exposure to PS-MPs for both 6 and 12 months, namely LdMePE (16:0), LPC (18:1), LPC (18:2), LPC (20:4), PC (17:0_20:4), PC (18:2_22:6), PC (22:6_13:0) and SM (d18:1_24:0), which were all statistically different from the control groups detected at both time points after PS-MPs exposure, suggesting the mainly metabolic pathway was glycerolipid metabolism. CONCLUSION This study showed chronic exposure to PS-MPs could cause hepatotoxicity and induce hepatic lipidomics alterations in vivo, which could provide an essential clue for the safety assessment of PS-MPs.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yao Zeng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
21
|
Guraka A, Souch G, Duff R, Brown D, Moritz W, Kermanizadeh A. Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure. CHEMOSPHERE 2024; 364:143032. [PMID: 39111678 DOI: 10.1016/j.chemosphere.2024.143032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Nano and microplastics are defined as particles smaller than 100 nm and 5 mm respectively. The widespread production and use of plastics in everyday life has resulted in significant accumulation of plastic debris in the environment. Over the last two decades there are increased concerns regarding the potential entry and accumulation of plastics in the human body with ingestion being one of the most important routes of exposure. However, the magnitude and nature of potential toxic effects of plastic exposure to human health is not yet fully understood. The liver is the body's principal detoxification organ and critically to this study recognized as the main accumulation site for particulates. In this study as the first of its kind the health impacts of long term low repeated polystyrene microplastics (1 and 5 μm) exposure was investigated in a functionally active 3D liver microtissue model, composed of primary human hepatocytes, Kupffer cells, sinusoidal endothelial cells and hepatic stellate cells. The highlight from the data includes microplastic-induced dose (3.125-25 μg/ml) and time dependent (up to 504 h) increase in cell death and inflammation manifested by enhanced release of IL6, IL8 and TNF-α. The exposure to repeated dosing of the plastics also resulted in notable pathology manifested as aberrant tissue architecture, such as dilated bile canaliculi and large lipid droplets inside the hepatic cells. This toxicity matched extremely well to the accumulation of the materials with the cells of microtissue predominately in the organ macrophages. This study highlights the real issue and danger of microplastic exposure with potential for long-term accumulation and adverse effects of non-biodegradable plastics within the liver.
Collapse
Affiliation(s)
- Asha Guraka
- University of Derby, College of Science and Engineering, Derby, UK
| | - Graham Souch
- University of Derby, College of Science and Engineering, Derby, UK
| | - Richard Duff
- University of Derby, College of Science and Engineering, Derby, UK
| | - David Brown
- Heriot Watt University, School of Engineering and Physical Sciences, Edinburgh, UK
| | | | - Ali Kermanizadeh
- University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
22
|
Zha H, Han S, Tang R, Cao D, Chang K, Li L. Polylactic acid micro/nanoplastic-induced hepatotoxicity: Investigating food and air sources via multi-omics. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100428. [PMID: 38800715 PMCID: PMC11127520 DOI: 10.1016/j.ese.2024.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Micro/nanoplastics (MNPs) are detected in human liver, and pose significant risks to human health. Oral exposure to MNPs derived from non-biodegradable plastics can induce toxicity in mouse liver. Similarly, nasal exposure to non-biodegradable plastics can cause airway dysbiosis in mice. However, the hepatotoxicity induced by foodborne and airborne biodegradable MNPs remains poorly understood. Here we show the hepatotoxic effects of biodegradable polylactic acid (PLA) MNPs through multi-omics analysis of various biological samples from mice, including gut, fecal, nasal, lung, liver, and blood samples. Our results show that both foodborne and airborne PLA MNPs compromise liver function, disrupt serum antioxidant activity, and cause liver pathology. Specifically, foodborne MNPs lead to gut microbial dysbiosis, metabolic alterations in the gut and serum, and liver transcriptomic changes. Airborne MNPs affect nasal and lung microbiota, alter lung and serum metabolites, and disrupt liver transcriptomics. The gut Lachnospiraceae_NK4A136_group is a potential biomarker for foodborne PLA MNP exposure, while nasal unclassified_Muribaculaceae and lung Klebsiella are potential biomarkers for airborne PLA MNP exposure. The relevant results suggest that foodborne PLA MNPs could affect the "gut microbiota-gut-liver" axis and induce hepatoxicity, while airborne PLA MNPs could disrupt the "airway microbiota-lung-liver" axis and cause hepatoxicity. These findings have implications for diagnosing PLA MNPs-induced hepatotoxicity and managing biodegradable materials in the environment. Our current study could be a starting point for biodegradable MNPs-induced hepatotoxicity. More research is needed to verify and inhibit the pathways that are crucial to MNPs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
de Oliveira RB, Pelepenko LE, Masaro DA, Lustosa GMMM, de Oliveira MC, Roza NAV, Marciano MA, Dos Reis LM, Kamel S, Louvet L, Mazon T. Effects of microplastics on the kidneys: a narrative review. Kidney Int 2024; 106:400-407. [PMID: 38901606 DOI: 10.1016/j.kint.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and nanoplastics are small synthetic organic polymer particles (<5 mm and <1 μm, respectively) that originate directly from plastic compounds or result from the degradation of plastic. These particles are a global concern because they are widely distributed in water, air, food, and soil, and recent scientific evidence has linked MPs to negative biological effects. Although these particles are difficult to detect in humans, MPs have been identified in different biological fluids and tissues, such as the placenta, lung, intestines, liver, blood, urine, and kidneys. Human exposure to MPs can occur by ingestion, inhalation, or dermal contact, potentially causing metabolic alterations. Data from experimental and clinical studies have revealed that the ability of MPs to promote inflammation, oxidative stress, and organ dysfunction and negatively affect clinical outcomes is associated with their accumulation in body fluids and tissues. Although evidence of the putative action of MPs in the human kidney is still scarce, there is growing interest in studying MPs in this organ. In addition, chronic kidney disease requires investigation because this condition is potentially prone to MP accumulation. The purpose of the present article is (i) to review the general aspects of MP generation, available analytic methods for identification, and the main known biological toxic effects; and (ii) to describe and critically analyze key experimental and clinical studies that support a role of MPs in kidney disease.
Collapse
Affiliation(s)
- Rodrigo Bueno de Oliveira
- Internal Medicine Department, Nephrology Division, Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), University of Campinas (UNICAMP), School of Medical Sciences, Campinas - São Paulo, Brazil.
| | - Lauter E Pelepenko
- Department of Restorative Dentistry, University of Campinas (UNICAMP), School of Dentistry of Piracicaba (FOP-UNICAMP), Piracicaba - São Paulo, Brazil
| | - Daniela A Masaro
- Internal Medicine Department, Nephrology Division, Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), University of Campinas (UNICAMP), School of Medical Sciences, Campinas - São Paulo, Brazil
| | - Glauco M M M Lustosa
- Centro de Tecnologia da Informação (CTI) Renato Archer, Campinas - São Paulo, Brazil
| | - Mariana C de Oliveira
- Internal Medicine Department, Nephrology Division, Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), University of Campinas (UNICAMP), School of Medical Sciences, Campinas - São Paulo, Brazil
| | - Noemí A V Roza
- Internal Medicine Department, Nephrology Division, Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), University of Campinas (UNICAMP), School of Medical Sciences, Campinas - São Paulo, Brazil; Centro de Tecnologia da Informação (CTI) Renato Archer, Campinas - São Paulo, Brazil
| | - Marina A Marciano
- Department of Restorative Dentistry, University of Campinas (UNICAMP), School of Dentistry of Piracicaba (FOP-UNICAMP), Piracicaba - São Paulo, Brazil
| | - Luciene M Dos Reis
- LIM 16-Laboratório de Fisiopatologia Renal, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Saïd Kamel
- Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, Unité de recherche (UR) 7517 Université de Picardie Jules Verne (UPJV), Amiens, France; Department of Biochemistry, Amiens-Picardie University Medical Center, Amiens, France
| | - Loïc Louvet
- Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, Unité de recherche (UR) 7517 Université de Picardie Jules Verne (UPJV), Amiens, France
| | - Talita Mazon
- Centro de Tecnologia da Informação (CTI) Renato Archer, Campinas - São Paulo, Brazil
| |
Collapse
|
24
|
Wang Y, Zhao X, Tang H, Wang Z, Ge X, Hu S, Li X, Guo S, Liu R. The size-dependent effects of nanoplastics in mouse primary hepatocytes from cells to molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124239. [PMID: 38810687 DOI: 10.1016/j.envpol.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Houquan Tang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Zaifeng Wang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Xuan Ge
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
25
|
Liu Y, Li X, Xiong Y. Chronic Polystyrene Microplastic Exposure Reduces Testosterone Levels in Mice through Mitochondrial Oxidative Stress and BAX/BCL2-Mediated Apoptosis. TOXICS 2024; 12:561. [PMID: 39195663 PMCID: PMC11359750 DOI: 10.3390/toxics12080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Microplastics (MPs) have emerged as a major environmental issue. They have been found to cause significant reproductive toxicity and lower testosterone levels in adult males, though the exact mechanisms remain unclear. In this study, C57bl/6 mice were orally exposed to saline or varying doses (0.25, 0.5, and 1 mg/day) of 5 μm polystyrene MPs (PS-MPs) for 4 weeks, and TM3 mouse Leydig cells were treated with different concentrations of PS-MPs. Our results found that exposure to PS-MPs significantly reduced testosterone levels and impaired the synthesis function of testicular steroids. In vitro, PS-MPs reduced steroid synthesis in Leydig cells. Treatment with PS-MPs significantly increased the apoptosis rate and BAX/BCL2 ratio in Leydig cells. Additionally, GSH-px and SOD activities decreased, while MDA levels increased, along with a rise in mitochondrial ROS. In conclusion, chronic PS-MP exposure reduced testosterone levels in mice through mitochondrial oxidative stress and BAX/BCL2-mediated apoptosis. This study offers new insights into the health risks posed by MPs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Li
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Ying Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
26
|
Zhang KK, Wan JY, Chen YC, Cheng CH, Zhou HQ, Zheng DK, Lan ZX, You QH, Sun J. Polystyrene nanoplastics exacerbate aflatoxin B1-induced hepatic injuries by modulating the gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173285. [PMID: 38772488 DOI: 10.1016/j.scitotenv.2024.173285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Dietary pollution of Aflatoxin B1 (AFB1) poses a great threat to global food safety, which can result in serious hepatic injuries. Following the widespread use of plastic tableware, co-exposure to microplastics and AFB1 has dramatically increased. However, whether microplastics could exert synergistic effects with AFB1 and amplify its hepatotoxicity, and the underlying mechanisms are still unelucidated. Here, mice were orally exposed to 100 nm polystyrene nanoplastics (NPs) and AFB1 to investigate the influences of NPs on AFB1-induced hepatic injuries. We found that exposure to only NPs or AFB1 resulted in colonic inflammation and the impairment of the intestinal barrier, which was exacerbated by combined exposure to NPs and AFB1. Meanwhile, co-exposure to NPs exacerbated AFB1-induced dysbiosis of gut microbiota and remodeling of the fecal metabolome. Moreover, NPs and AFB1 co-exposure exhibited higher levels of systemic inflammatory factors compared to AFB1 exposure. Additionally, NPs co-exposure further exacerbated AFB1-induced hepatic fibrosis and inflammation, which could be associated with the overactivation of the TLR4/MyD88/NF-κB pathway. Notably, Spearman's correlation analysis revealed that the exacerbation of NPs co-exposure was closely associated with microbial dysbiosis. Furthermore, microbiota from NPs-exposed mice (NPsFMT) partly reproduced the exacerbation of NPs on AFB1-induced systemic and hepatic inflammation, but not fibrosis. In summary, our findings indicate that gut microbiota could be involved in the exacerbation of NPs on AFB1-induced hepatic injuries, highlighting the health risks of NPs.
Collapse
Affiliation(s)
- Kai-Kai Zhang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Yuan Wan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu-Chuan Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chang-Hao Cheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - He-Qi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - De-Kai Zheng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhi-Xian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qiu-Hong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
27
|
Tsuchida K, Imoto Y, Saito T, Hara J, Kawabe Y. A novel and simple method for measuring nano/microplastic concentrations in soil using UV-Vis spectroscopy with optimal wavelength selection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116366. [PMID: 38806335 DOI: 10.1016/j.ecoenv.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/30/2024]
Abstract
A simple method for measuring the concentration of nano/microplastics (N/MPs) in soil, which is difficult owing to the size of the filter mesh and the resolution of the measuring instrument, was investigated. A spectrophotometer was used for the measurements and polystyrene particles were used as the N/MP samples. When measuring N/MP concentrations in soil suspensions, absorbance was measured at two wavelengths, and the best combination of wavelengths for measurement was extracted because soil particles and leached components interfere with N/MP absorbance. A wavelength combination of 220-260 nm and 280-340 nm was found to be suitable for a variety of soils. As N/MPs are adsorbed on the surface of soil particles and precipitate with soil particles in suspension, a calibration curve was created between the concentration of N/MPs in the soil suspension and the N/MP content in the soil. The calibration curve showed a linear relationship, allowing for the estimation of the concentration of N/MPs in the soil. Although other N/MP materials, such as polyethylene and polyethylene terephthalate, must also still be considered and tested, this simple method has the potential to measure N/MPs in various types of soil.
Collapse
Affiliation(s)
- Kyouhei Tsuchida
- National Institute of Advanced Industrial Science and Technology (AIST) Central7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Yukari Imoto
- National Institute of Advanced Industrial Science and Technology (AIST) Central7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Takeshi Saito
- National Institute of Advanced Industrial Science and Technology (AIST) Central7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Junko Hara
- National Institute of Advanced Industrial Science and Technology (AIST) Central7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Yoshishige Kawabe
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
28
|
He J, Xiong S, Zhou W, Qiu H, Rao Y, Liu Y, Shen G, Zhao P, Chen G, Li J. Long-term polystyrene nanoparticles exposure reduces electroretinal responses and exacerbates retinal degeneration induced by light exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134586. [PMID: 38776811 DOI: 10.1016/j.jhazmat.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.
Collapse
Affiliation(s)
- Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China.
| |
Collapse
|
29
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
30
|
Sun J, Su F, Chen Y, Wang T, Ali W, Jin H, Xiong L, Ma Y, Liu Z, Zou H. Co-exposure to PVC microplastics and cadmium induces oxidative stress and fibrosis in duck pancreas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172395. [PMID: 38608882 DOI: 10.1016/j.scitotenv.2024.172395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangyu Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hengqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
31
|
Zhang J, Du J, Liu D, Zhuo J, Chu L, Li Y, Gao L, Xu M, Chen W, Huang W, Xie L, Chen J, Meng X, Zou F, Cai S, Dong H. Polystyrene microplastics induce pulmonary fibrosis by promoting alveolar epithelial cell ferroptosis through cGAS/STING signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116357. [PMID: 38677073 DOI: 10.1016/j.ecoenv.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Polystyrene microplastics (PS-MPs) are new types of environmental pollutant that have garnered significant attention in recent years since they were found to cause damage to the human respiratory system when they are inhaled. The pulmonary fibrosis is one of the serious consequences of PS-MPs inhalation. However, the impact and underlying mechanisms of PS-MPs on pulmonary fibrosis are not clear. In this study, we studied the potential lung toxicity and PS-MPs-developed pulmonary fibrosis by long-term intranasal inhalation of PS-MPs. The results showed that after exposing to the PS-MPs, the lungs of model mouse had different levels of damage and fibrosis. Meanwhile, exposing to the PS-MPs resulted in a markedly decrease in glutathione (GSH), an increase in malondialdehyde (MDA), and iron overload in the lung tissue of mice and alveolar epithelial cells (AECs). These findings suggested the occurrence of PS-MP-induced ferroptosis. Inhibitor of ferroptosis (Fer-1) had alleviated the PS-MPs-induced ferroptosis. Mechanically, PS-MPs triggered cell ferroptosis and promoted the development of pulmonary fibrosis via activating the cGAS/STING signaling pathway. Inhibition of cGAS/STING with G150/H151 attenuated pulmonary fibrosis after PS-MPs exposure. Together, these data provided novel mechanistic insights of PS-MPs-induced pulmonary fibrosis and a potential therapeutic paradigm.
Collapse
Affiliation(s)
- Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqun Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Respiratory and Critical Care Medicine, Ganzhou people's Hospital, Ganzhou, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wufeng Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingyan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junwei Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Park KY, Kim MS, Oh N. Cytotoxicity of amine-modified polystyrene MPs and NPs on neural stem cells cultured from mouse subventricular zone. Heliyon 2024; 10:e30518. [PMID: 38770330 PMCID: PMC11103427 DOI: 10.1016/j.heliyon.2024.e30518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are found in various environments such as aquatic, terrestrial, and aerial areas. Once ingested and inhaled, these tiny plastic debris damaged the digestive and respiratory organ systems in animals. In humans, the possible connection between MPs and various diseases such as lung diseases has been raised. Yet, the impact of MPs on the human nervous system has been unclear. Previous research using animals and cultured cells showed possible neurotoxicity of MPs and NPs. In this study, we used neural stem cells cultured from mouse subventricular zone to examine the effects of polystyrene (PS) NPs and MPs with sizes of 0.1 μm, 1 μm, and 2 μm on the cell proliferation and differentiation. We observed that only positively charged NPs and MPs, but not negatively charged ones, decreased cell viability and proliferation. These amine-modified NPs and MPs decreased both neurogenesis and oligodendrogenesis. Finally, fully differentiated neurons and oligodendrocytes were damaged and removed by the application of NPs and MPs. All these effects varied among different sizes of NPs and MPs, with the greatest effects from 1 μm and the least effects from 2 μm. These results clearly demonstrate the cytotoxicity and neurotoxicity of PS-NPs and MPs.
Collapse
Affiliation(s)
- Ki-Youb Park
- Department of Chemistry and Biology, Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 47162, South Korea
| | - Man Su Kim
- College of Pharmacy, Inje University, Gimhae, 50834, South Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, 105-47 Baegyanggwanmun-ro, Busanjin-Gu, Busan, 47162, South Korea
| |
Collapse
|
33
|
Han W, Cui J, Sun G, Miao X, Pufang Z, Nannan L. Nano-sized microplastics exposure induces skin cell senescence via triggering the mitochondrial localization of GSDMD. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123874. [PMID: 38552769 DOI: 10.1016/j.envpol.2024.123874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Nano-sized microplastic pollution is distributed worldwide. Nano-sized microplastics can enter the blood through the digestive tract, and then transported to various tissues and organs of the body, resulting in a series of toxicological effects. In addition, nano-sized microplastics can penetrate the skin barrier. However, the toxicological effects of nano-sized microplastics on the skin are still not completely understood. Two skin cell lines were used as in vitro models to investigate the toxicological effects of nano-sized microplastics on skin cells and their potential molecular mechanisms. First, cellular behavioral research results showed that nano-sized microplastics can be internalized into skin cells in a time- and dose-dependent manner. Further experiments using western blotting, indirect immunofluorescence, and ELISA assays demonstrated that nano-sized microplastics cause an increase in skin cell inflammation levels. Additionally, our research showed that nano-sized microplastics caused skin cell senescence damage by evaluating aging-marker molecules such as p16 and p21. Subsequently, we studied the potential molecular mechanism by which nano-sized microplastics cause pathological skin injury and found that they induce mitochondrial oxidative stress, depolarize the mitochondrial membrane potential, and recruit GSDMD to the mitochondria. Subsequently, mtDNA enters the cytoplasm via GSDMD pores, which then activates the AIM2 Inflammasome. Ultimately, it causes a series of biochemical reactions such as inflammation and aging in cells. In an in vivo model, we tested the effect of nano-sized microplastics on skin regeneration and found that they acted as an inhibitor to skin regeneration and aggravated the inflammatory reaction of the skin. Overall, our results provide new evidence of the skin toxicity of nano-sized microplastics. This study provides a theoretical foundation for further research on the potential toxicological effects of nano-sized microplastics on the skin.
Collapse
Affiliation(s)
- Wang Han
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jiayue Cui
- Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Gao Sun
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiao Miao
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhang Pufang
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Nannan
- The First Department of Oral and Maxillofacial Surgery & Oral Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
34
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
35
|
Wang Y, Huang Y, Fu L, Wang X, Chen L. Evaluation of nanoplastics-induced redox imbalance in cells, larval zebrafish, and daphnia magna with a superoxide anion radical fluorescent probe. CHEMOSPHERE 2024; 356:141829. [PMID: 38548081 DOI: 10.1016/j.chemosphere.2024.141829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Nanoplastics (NPs) is a novel plastic contaminant that could be taken up by cells and lead to severe biotoxicity toxicity, NPs in cells can cause oxidant damage by inducing reactive oxygen species (ROS) production and lead to acute inflammation. As a major ROS which related to many kinds of physiological and pathological processes, superoxide anion radical (O2•-) could be utilized as a signal of oxidant damage effected by NPs exposure in vivo. To detect the toxic damage mechanism of NPs, a fluorescence probe Bcy-OTf has been developed to monitor O2•- fluctuations content in cells and aquatic organisms after exposure to NPs. The probe has a high sensitivity (LOD = 20 nM) and a rapid responsive time (within 6 min), and it has high selectivity and low cytotoxicity to analysis the levels of the endogenous O2•-. Endogenous O2•- induced by NPs in living cells, Daphnia magna and larval zebrafish were analyzed. Moreover, the results confirmed the key role of MAPK and NF-κB pathway in NPs stimulation mechanisms in cells. This study indicated that Bcy-OTf can precisely assess the fluctuations of endogenous O2•-, which has potential for applying in further analysis mechanisms of NPs biological risks.
Collapse
Affiliation(s)
- Yicheng Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Lili Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
36
|
Rehman A, Huang F, Zhang Z, Habumugisha T, Yan C, Shaheen U, Zhang X. Nanoplastic contamination: Impact on zebrafish liver metabolism and implications for aquatic environmental health. ENVIRONMENT INTERNATIONAL 2024; 187:108713. [PMID: 38703446 DOI: 10.1016/j.envint.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuyi Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Uzma Shaheen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China.
| |
Collapse
|
37
|
Boccia P, Mondellini S, Mauro S, Zanellato M, Parolini M, Sturchio E. Potential Effects of Environmental and Occupational Exposure to Microplastics: An Overview of Air Contamination. TOXICS 2024; 12:320. [PMID: 38787098 PMCID: PMC11125735 DOI: 10.3390/toxics12050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Microplastics (MPs) are now ubiquitous environmental contaminants that lead to unavoidable human exposure; they have received increasing attention in recent years and have become an emerging area of research. The greatest concern is the negative impacts of MPs on marine, fresh-water, and terrestrial ecosystems, as well as human health, to the extent that the World Health Organization (WHO) calls for increased research and standardized methods to assess exposure to MPs. Many countries and international organizations are implementing or proposing legislation in this regard. This review aims to summarize the current state of legislation, indoor and outdoor contamination, and potential human health risk due to exposure to airborne MPs, considering that occupational exposure to MPs is also becoming a growing area of concern. Even though research regarding MPs has continuously increased in the last twenty years, the effects of MPs on human health have been scarcely investigated, and toxicity studies are still limited and not directly comparable, due to the lack of standardized studies in this field.
Collapse
Affiliation(s)
- Priscilla Boccia
- INAIL—Istituto Nazionale per L’Assicurazione Contro gli Infortuni sul Lavoro, Dit, 38/40 Via Roberto Ferruzzi, 00143 Rome, Italy; (M.Z.); (E.S.)
| | - Simona Mondellini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy; (S.M.); (M.P.)
| | - Simona Mauro
- Chemistry Department, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Miriam Zanellato
- INAIL—Istituto Nazionale per L’Assicurazione Contro gli Infortuni sul Lavoro, Dit, 38/40 Via Roberto Ferruzzi, 00143 Rome, Italy; (M.Z.); (E.S.)
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milan, Italy; (S.M.); (M.P.)
| | - Elena Sturchio
- INAIL—Istituto Nazionale per L’Assicurazione Contro gli Infortuni sul Lavoro, Dit, 38/40 Via Roberto Ferruzzi, 00143 Rome, Italy; (M.Z.); (E.S.)
| |
Collapse
|
38
|
Winiarska E, Chaszczewska-Markowska M, Ghete D, Jutel M, Zemelka-Wiacek M. Nanoplastics Penetrate Human Bronchial Smooth Muscle and Small Airway Epithelial Cells and Affect Mitochondrial Metabolism. Int J Mol Sci 2024; 25:4724. [PMID: 38731941 PMCID: PMC11083782 DOI: 10.3390/ijms25094724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.
Collapse
Affiliation(s)
- Ewa Winiarska
- Department of Clinical Immunology, Wroclaw Medical University, 51-616 Wroclaw, Poland; (E.W.)
| | - Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Daniel Ghete
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 51-616 Wroclaw, Poland; (E.W.)
- ALL-MED Medical Research Institute, 53-201 Wroclaw, Poland
| | | |
Collapse
|
39
|
Kuang Q, Gao L, Feng L, Xiong X, Yang J, Zhang W, Huang L, Li L, Luo P. Toxicological effects of microplastics in renal ischemia-reperfusion injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2350-2362. [PMID: 38156432 DOI: 10.1002/tox.24115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
The widespread presence of microplastics (MPs) in the environment poses a significant threat to biological survival and human health. However, our understanding of the toxic effects of MPs on the kidneys remains limited. This study aimed to investigate the underlying mechanism of the toxic effects of MPs on the kidneys using an ischemia-reperfusion (IR) mouse model. Four-week-old ICR mice were exposed to 0.5 μm MPs for 12 weeks prior to IR injury. The results showed that MPs exposure could aggravate the IR-induced damage to renal tubules and glomeruli. Although there were no significant changes in blood urea nitrogen and serum creatinine levels 7 days after IR, MPs treatment resulted in a slight increase in both parameters. In addition, the expression levels of inflammatory factors (MCP-1 and IL-6) at the mRNA level, as well as macrophage markers (CD68 and F4/80), were significantly higher in the MPs + IR group than in the Sham group after IR. Furthermore, MPs exposure exacerbated IR-induced renal fibrosis. Importantly, the expression of pyroptosis-related genes, including NLRP3, ASC, GSDMD, cleaved caspase-1, and IL-18, was significantly upregulated by MPs, indicating that MPs exacerbate pyroptosis in the context of renal IR. In conclusion, our findings suggest that MPs exposure can aggravate renal IR-induced pyroptosis by activating NLRP3-GSDMD signaling.
Collapse
Affiliation(s)
- Qihui Kuang
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan, China
| | - Xi Xiong
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of science and Technology, Wuhan, China
| | - Jun Yang
- Department of Urology, Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Wei Zhang
- Department of Urology, Department of Urology, Wuhan Third Hospital, Wuhan, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital and Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Sun Y, Deng Q, Zhang Q, Zhou X, Chen R, Li S, Wu Q, Chen H. Hazards of microplastics exposure to liver function in fishes: A systematic review and meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106423. [PMID: 38442589 DOI: 10.1016/j.marenvres.2024.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microplastics (5 mm - 1 μm) have become one of the major pollutants in the environment. Numerous studies have shown that microplastics can have negative impacts on aquatic organisms, affecting their liver function levels. However, the extent of these effects and their potential toxicological mechanisms are largely unknown. In this study, a meta-analysis and systematic review were conducted to assess the effects of microplastics on fish liver function and summarize the potential toxicological mechanisms of microplastic-induced liver toxicity. The meta-analysis results indicate that compared to the control group, exposure to microplastics significantly affects fish liver indicators: aspartate aminotransferase (AST) (p < 0.001), alanine aminotransferase (ALT) (p < 0.001), alkaline phosphatase (ALP) (p < 0.001), total protein (TP) (p < 0.001), and lactate dehydrogenase (LDH) (p < 0.001), including oxidative stress indicators: superoxide dismutase (SOD) (p < 0.001), glutathione S-transferase (GST) (p < 0.001), glutathione (GSH) (p < 0.001), and malondialdehyde (MDA) (p < 0.001) in fish liver. For fish living in different environments, the potential toxicological mechanisms of microplastics exposure on fish liver may exhibit some differences. For freshwater fish, the mechanism may be that microplastics exposure causes overproduction of reactive oxygen species (ROS) in fish hepatocyte mitochondria. ROS promotes the expression of toll-like receptor 2 (TLR2) and activates downstream molecules myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) of the TLR2 signaling pathway, leading to phosphorylation of NF-κB p65. This leads to the release of inflammatory factors and oxidative stress and inflammation in fish liver. In addition, for seawater fish, the mechanism may be that microplastics exposure can cause damage or death of fish hepatocytes, leading to continuous pathological changes, inflammation, lipid and energy metabolism disorders, thereby causing significant changes in liver function indexes.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China
| | - Qing Wu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Innovation Laboratory, The Third Experiment Middle School, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
41
|
De Boever S, Devisscher L, Vinken M. Unraveling the micro- and nanoplastic predicament: A human-centric insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170262. [PMID: 38253106 DOI: 10.1016/j.scitotenv.2024.170262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Micro- and nanoplastics are vast anthropogenic pollutants in our direct surroundings with a robust environmental stability and a potential for a long-lasting and increasing global circulation. This has raised concerns among the public and policy makers for human health upon exposure to these particles. The micro- and nanoplastic burden on humans is currently under debate, along with criticism on the experimental approaches used in hazard assessment. The present review presents an overview of the human-relevant aspects associated with the current micro-and nanoplastic burden. We focus on environmental circulation and the estimation of exposure quantities to humans, along with a state-of-the-art overview of particle accumulation in over 15 human organs and other specimen. Additionally, data regarding particle characteristics used in toxicity testing was extracted from 91 studies and discussed considering their environmental and human relevance.
Collapse
Affiliation(s)
- Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Centre Ghent, Faculty of Medicine and Health Sciences, Universiteit Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
42
|
Chiang CC, Yeh H, Shiu RF, Chin WC, Yen TH. Impact of microplastics and nanoplastics on liver health: Current understanding and future research directions. World J Gastroenterol 2024; 30:1011-1017. [PMID: 38577182 PMCID: PMC10989496 DOI: 10.3748/wjg.v30.i9.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hsuan Yeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Ruei-Feng Shiu
- Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chun Chin
- Department of Materials Science and Engineering, University of California Merced, Merced, CA 95343, United States
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
43
|
Wang K, Du Y, Li P, Guan C, Zhou M, Wu L, Liu Z, Huang Z. Nanoplastics causes heart aging/myocardial cell senescence through the Ca 2+/mtDNA/cGAS-STING signaling cascade. J Nanobiotechnology 2024; 22:96. [PMID: 38448951 PMCID: PMC10918962 DOI: 10.1186/s12951-024-02375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Nanoplastics (NPs) are now a new class of pollutants widely present in the soil, atmosphere, freshwater and marine environments. Nanoplastics can rapidly penetrate cell membranes and accumulate in human tissues and organs, thus posing a potential threat to human health. The heart is the main power source of the body. But up to now, the toxicological effects of long-term exposure to nanoplastics on the heart has not been revealed yet. RESULTS We evaluated the effects of long term exposure of nanoplastics on cardiac cell/tissue in vitro and in vivo model. Furthermore, we explored the molecular mechanism by which nanoplastics exposure causes myocardial cell senescence. Immunohistochemistry, indirect immunofluorescence and ELISA were performed to detect the effects of nanoplastics on heart aging. We found that nanoplastics were able to induce significant cardiac aging through a series of biochemical assays in vivo. In vitro, the effects of nanoplastics on cardiac cell were investigated, and found that nanoplastics were able to internalize into cardiomyocytes in time and dose-dependant manner. Further biochemical analysis showed that nanoplastics induces cardiomyocytes senescence by detecting a series of senescence marker molecules. Molecular mechanism research shows that nanoplastics may cause mitochondrial destabilization by inducing oxidative stress, which leads to the leakage of mtDNA from mitochondria into the cytoplasm, and then cytoplasm-localized mt-DNA activates the cGAS-STING signaling pathway and promotes inflammation response, ultimately inducing cardiomyocytes senescence. CONCLUSIONS In this work, we found that nanoplastics exposure induces premature aging of heart. Current research also reveals the molecular mechanism by which nanoplastics induces cardiomyocyte senescence. This study laid the foundation for further studying the potential harm of nanoplastics exposure on heart.
Collapse
Affiliation(s)
- Kaihao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yipeng Du
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peixin Li
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chang Guan
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lanlan Wu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zengfu Liu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
44
|
Li G, Liu X, Sun X, Huang L, Kuang W, Ou J, Zhang J, Zhang Z, Li H, Tang H, Feng C, Gu L, Yang C, Peili W, Wang J. Polystyrene microplastics induce anxiety via HRAS derived PERK-NF-κB pathway. ENVIRONMENT INTERNATIONAL 2024; 185:108543. [PMID: 38452464 DOI: 10.1016/j.envint.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Exposure to environmentally hazardous substances is recognized as a significant risk factor for neurological associated disorders. Among these substances, polystyrene microplastics (PS-MPs), widely utilized in various consumer products, have been reported to exhibit neurotoxicity. However, the potential association of PS-MPs with abnormal anxiety behaviors, along with the underlying molecular mechanisms and key proteins involved, remains insufficiently explored. Here, we delineated the potential mechanisms of PS-MPs-induced anxiety through proteomics and molecular investigations. We characterized the PS-MPs, observed their accumulation in the brain, leading to anxiety-like behavior in mice, which is correlated with microglia activation and pro-inflammatory response. Consistent with these findings, our studies on BV2 microglia cells showed that PS-MPs activated NF-κB-mediated inflammation resulting in the upregulation of pro-inflammatory cytokines such as TNFα and IL-1β. Of particular significance, HRAS was identified as a key factor in the PS-MPs induced pro-inflammatory response through whole proteomics analysis, and knockdown of H-ras effectively inhibited PS-MPs induced PERK-NF-κB activation and associated pro-inflammatory response in microglia cells. Collectively, our findings highlight that PS-MPs induce anxiety of mice via the activation of the HRAS-derived PERK-NF-κB pathway in microlglia. Our results contribute valuable insights into the molecular mechanisms of PS-MPs-induced anxiety, and may offer implications for addressing neurotoxicity and prevention the adverse effects of environmentally hazardous substances, including microplastics.
Collapse
Affiliation(s)
- Guanjun Li
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Wenhua Kuang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Jinhuan Ou
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziyue Zhang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Huiying Li
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenran Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chuanbin Yang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Wang Peili
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jigang Wang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
45
|
Shen Q, Liu YJ, Qiu TT, Loon K S, Zhou D. Microplastic-induced NAFLD: Hepatoprotective effects of nanosized selenium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:115850. [PMID: 38290310 DOI: 10.1016/j.ecoenv.2023.115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Polystyrene microplastics (MPs) are persistent environmental pollutants commonly encountered in daily human life. Numerous studies have demonstrated their ability to induce liver damage, including oxidative stress, inflammation, and lipid accumulation. However, limited information exists regarding preventive measures against this issue. In our study, we investigated the potential preventive role of selenium nanoparticles (YC-3-SeNPs) derived from Yak-derived Bacillus cereus, a novel nanobiomaterial known for its antioxidant properties and lipid metabolism regulation. Using transcriptomic and metabolomic analyses, we identified key genes and metabolites associated with oxidative stress and lipid metabolism imbalance induced by MPs. Upregulated genes (Scd1, Fasn, Irs2, and Lpin) and elevated levels of arachidonic and palmitic acid accumulation were observed in MP-exposed mice, but not in those exposed to SeNPs. Further experiments confirmed that SeNPs significantly attenuated liver lipid accumulation and degeneration caused by MPs. Histological results and pathway screening validated our findings, revealing that MPs suppressed the Pparα pathway and Nrf2 pathway, whereas SeNPs activated both pathways. These findings suggest that MPs may contribute to the development of nonalcoholic fatty liver disease (NAFLD), while SeNPs hold promise as a future nanobio-product for its prevention.
Collapse
Affiliation(s)
- Qi Shen
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - Yun Jie Liu
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - Tian Tian Qiu
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - San Loon K
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China
| | - DongHai Zhou
- Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei Province, PR China.
| |
Collapse
|
46
|
Guo M, Li Y, Niu S, Zhang R, Shen X, Ma Y, Wu L, Wu T, Zhang T, Tang M, Xue Y. Oxidative stress-activated Nrf2 remitted polystyrene nanoplastic-induced mitochondrial damage and inflammatory response in HepG2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104385. [PMID: 38340909 DOI: 10.1016/j.etap.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Generated from plastics, microplastics (MPs) and nanoplastics (NPs) are difficult to completely degrade in the natural environment, which can accumulate in almost all lives. Liver is one of the main target organs. In this study, HepG2 and L02 cells were exposed to 0-50 μg/mL polystyrene (PS)-NPs to investigate the mechanism of mitochondrial damage and inflammation. The results showed mitochondria damage and inflammatory caused by NPs, and it can be inhibited by N-acetyl-L-cysteine (NAC). In addition, reactive oxygen species (ROS) activated nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway. Nrf2 siRNA exacerbated the injury, suggesting Nrf2 plays a protective role. Moreover, p62 siRNA increased ROS and mitochondrial damage by inhibiting Nrf2, but didn't affect the inflammation. In conclusion, Nrf2 was activated by ROS and played a protective role in PS-NPs-mediated hepatotoxicity. This study supplemented the data of liver injury caused by PS-NPs, providing a basis for the safe disposal of plastics.
Collapse
Affiliation(s)
- Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China; Jinan Center For Disease Control and Prevention, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xin Shen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yu Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Liqing Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
47
|
Chen Z, Li Y, Xia H, Wang Y, Pang S, Ma C, Bi L, Wang F, Song M, Jiang G. Chronic exposure to polystyrene microplastics increased the chemosensitivity of normal human liver cells via ABC transporter inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169050. [PMID: 38065500 DOI: 10.1016/j.scitotenv.2023.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in environmental compartments and consumer products. Although liver is frequently reported to be a target organ of MP accumulation in mammals, few studies have focused on MP hepatoxicity in humans. In this study, we used normal human liver cells, THLE-2, to assess the acute and chronic toxicity of polystyrene (PS) MPs with sizes of 0.1 and 1 μm. The results showed that after 48 h of exposure, both kinds of PS MPs could enter THLE-2 cells and cause no obviously acute cytotoxicity at <20 μg/mL. In contrast, metabolomic analysis revealed that 90 days of PS MPs exposure at environmentally relevant dose (0.2 μg/mL) could significantly alter the metabolic profiles of the cells, especially the nanosized MPs. KEGG pathway analysis showed that the ATP-binding cassette (ABC) transporter pathway was the most significantly changed pathway. Cell functional tests confirmed that chronic PS MP treatment could inhibit the activity of the ABC efflux transporter and further increase the cytotoxicity of arsenic, indicating that the PS MPs had a chemosensitizing effect. These findings underline the chronic risk of MPs to human liver.
Collapse
Affiliation(s)
- Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghuan Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168946. [PMID: 38043812 DOI: 10.1016/j.scitotenv.2023.168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.
Collapse
Affiliation(s)
- Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Palizhati Rehati
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
49
|
Naidu G, Nagar N, Poluri KM. Mechanistic Insights into Cellular and Molecular Basis of Protein-Nanoplastic Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305094. [PMID: 37786309 DOI: 10.1002/smll.202305094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Plastic waste is ubiquitously present across the world, and its nano/sub-micron analogues (plastic nanoparticles, PNPs), raise severe environmental concerns affecting organisms' health. Considering the direct and indirect toxic implications of PNPs, their biological impacts are actively being studied; lately, with special emphasis on cellular and molecular mechanistic intricacies. Combinatorial OMICS studies identified proteins as major regulators of PNP mediated cellular toxicity via activation of oxidative enzymes and generation of ROS. Alteration of protein function by PNPs results in DNA damage, organellar dysfunction, and autophagy, thus resulting in inflammation/cell death. The molecular mechanistic basis of these cellular toxic endeavors is fine-tuned at the level of structural alterations in proteins of physiological relevance. Detailed biophysical studies on such protein-PNP interactions evidenced prominent modifications in their structural architecture and conformational energy landscape. Another essential aspect of the protein-PNP interactions includes bioenzymatic plastic degradation perspective, as the interactive units of plastics are essentially nano-sized. Combining all these attributes of protein-PNP interactions, the current review comprehensively documented the contemporary understanding of the concerned interactions in the light of cellular, molecular, kinetic/thermodynamic details. Additionally, the applicatory, economical facet of these interactions, PNP biogeochemical cycle and enzymatic advances pertaining to plastic degradation has also been discussed.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
50
|
Peng M, Vercauteren M, Grootaert C, Catarino AI, Everaert G, Rajkovic A, Janssen C, Asselman J. Bioenergetic effects of pristine and ultraviolet-weathered polydisperse polyethylene terephthalate and polystyrene nanoplastics on human intestinal Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168267. [PMID: 37918727 DOI: 10.1016/j.scitotenv.2023.168267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The ubiquitous human exposure to nanoplastics (NPs) increasingly raises concerns regarding impact on our health. However, little is known on the biological effects of complex mixtures of weathered NPs with heterogenous size and irregular shape present in the environment. In this study, the bioenergetic effects of four such NPs mixtures on human intestinal Caco-2 cells were investigated. To this aim, Caco-2 cells were exposed to polydisperse nanoPET (<800 nm) and nanoPS (mixture of 100 and 750 nm) samples with and without ultraviolet (UV) weathering at low concentration range (102-107 particles/mL) for 48 h. Mitochondrial respiration, glycolytic functions and ATP production rates of exposed cells were measured by Seahorse XFe96 Analyzer. Among four NPs samples, polydisperse nanoPET with irregular shapes induced significant stimulation of mitochondrial respiration, glycolysis and ATP production rates in Caco-2 cells. Spherical nanoPS caused significant stimulation on glycolytic functions of Caco-2 cells at the highest concentration used (106 particles/mL). ATR-FTIR spectra and carbonyl index indicated formation of carbonyl groups in nanoPET and nanoPS after UV weathering. UV weathering could alleviate bioenergetic stress caused by NPs in Caco-2 cells and even shifted the energy pathways from mitochondrial respiration to glycolysis due to electrostatic repulsion between negatively charged UV-aged NPs and cell membranes. This research is the first to study in-vitro bioenergetic responses of NPs samples with multidimensional features (polymer type, irregular shape, heterogenous size, UV-weathering) on human health. It highlights that effects between pristine and weathered NPs are different at a bioenergetic level, which has important implications for the risk assessment of NPs on human health.
Collapse
Affiliation(s)
- Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Maaike Vercauteren
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ana Isabel Catarino
- Ocean and Human Health Division, Flanders Marine Institute, Jacobsenstraat 1, B-8400 Ostend, Belgium
| | - Gert Everaert
- Ocean and Human Health Division, Flanders Marine Institute, Jacobsenstraat 1, B-8400 Ostend, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Colin Janssen
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|