1
|
Helliwell R, Ewin I, Williams AD, Levine DT, Singer AC, Raman S, Morris C, Stekel DJ. Rethinking the words hostspot reservoir and pristine in the environmental dimensions of antimicrobial resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:11. [PMID: 39984758 PMCID: PMC11845593 DOI: 10.1038/s44259-025-00080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
We assess three words commonly used to represent the environmental dimensions of antimicrobial resistance (AMR) - 'hotspot', 'reservoir' and 'pristine' - through two questions: how are these terms used in published research; and how do these terms shape research being conducted? We advocate for the community to reflect on and improve its use of language, and suggest four potentially more productive and precise terms for AMR hazard: presence; transmission; evolution and connectivity.
Collapse
Affiliation(s)
- Richard Helliwell
- School of Geography, University of Nottingham, University Park Campus, Nottingham, UK
- Ruralis, University Centre Dragvoll, Trondheim, Norway
| | - Isabel Ewin
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, UK
| | - Alexander D Williams
- Laboratory of Data Discovery for Health Ltd, Hong Kong Science and Technology Park, Tai Po, Hong Kong, PR China
- School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Diane T Levine
- School of Criminology, Sociology and Social Policy, University of Leicester, Leicester, UK
- Centre for Social Development in Africa, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Andrew C Singer
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | - Sujatha Raman
- Centre for Public Awareness of Science, Australian National University, Linnaeus Way, Acton ACT 2601, Canberra, Australia
| | - Carol Morris
- School of Geography, University of Nottingham, University Park Campus, Nottingham, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, UK.
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park Kingsway Campus, Rossmore, Johannesburg, South Africa.
| |
Collapse
|
2
|
Sabença C, de la Rivière R, Barros P, Cabral JA, Sargo R, Sousa L, Dapkevicius MDLE, Silva F, Lopes F, Abrantes AC, Vieira-Pinto M, Caniça M, Igrejas G, Torres C, Poeta P. Assessment of Antibiotic Resistance Among Isolates of Klebsiella spp. and Raoultella spp. in Wildlife and Their Environment from Portugal: A Positive Epidemiologic Outcome. Pathogens 2025; 14:99. [PMID: 39861060 PMCID: PMC11768959 DOI: 10.3390/pathogens14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
One of the significant challenges facing modern medicine is the rising rate of antibiotic resistance, which impacts public health, animal health, and environmental preservation. Evaluating antibiotic resistance in wildlife and their environments is crucial, as it offers essential insights into the dynamics of resistance patterns and promotes strategies for monitoring, prevention, and intervention. Klebsiella and Raoultella genera isolates were recovered from fecal samples of wild animals and environmental samples using media without antibiotic supplementation. Antibiograms were performed for 15 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested by the double-disc synergy test, and one ESBL-producing K. pneumoniae isolate was screened by PCR and whole-genome sequencing. Biofilm production was analyzed using the microtiter plate method. A total of 23 Klebsiella spp. and 3 Raoultella spp. isolates were obtained from 312 fecal samples from wild animals, 9 Klebsiella spp. and 4 Raoultella spp. isolates were obtained from 18 river and stream water samples, and 4 Klebsiella spp. and 3 Raoultella spp. isolates from 48 soil samples. Regarding antibiotic resistance, only one isolate of K. pneumoniae from soil samples was an ESBL-producer and showed resistance to six antibiotics. This isolate harbored multiple β-lactams genes (blaCTX-M-15, blaTEM-1, blaSHV-28, and blaOXA-1), as well as genes of resistance to quinolones, sulfonamides, tetracycline, aminoglycosides, and chloramphenicol, and belonged to the lineage ST307. Most of the Klebsiella spp. and Raoultella spp. isolates were biofilm producers (except for one Klebsiella isolate), and 45.6% were weak biofilm producers, with the remaining being moderate to strong biofilm producers. We can conclude that antibiotic resistance is not widespread in these environment-associated isolates, which is a positive epidemiological outcome. However, identifying a single ESBL-K. pneumoniae isolate should serve as a warning of potential hotspots of resistance emergence.
Collapse
Affiliation(s)
- Carolina Sabença
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Rani de la Rivière
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal; (R.d.l.R.); (M.C.)
| | - Paulo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.B.); (J.A.C.)
- Fluvial and Terrestrial Ecology Laboratory (LEFT), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - João Alexandre Cabral
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (P.B.); (J.A.C.)
| | - Roberto Sargo
- CRAS-Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Luís Sousa
- CRAS-Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal
| | - Filipe Silva
- CRAS-Center for the Recovery of Wild Animals, Veterinary Hospital, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (R.S.); (L.S.); (F.S.)
| | - Filipa Lopes
- CERAS, Wildlife Study and Rehabilitation Centre, Quercus ANCN, Rua Tenente Valadim 19, 6000-284 Castelo Branco, Portugal;
| | - Ana Carolina Abrantes
- CECAV, Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
| | - Madalena Vieira-Pinto
- CECAV, Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal; (R.d.l.R.); (M.C.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain;
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- CECAV, Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.C.A.); (M.V.-P.)
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Erika E, Scarpellini R, Celli G, Marliani G, Zaghini A, Mondo E, Rossi G, Piva S. Wild birds as potential bioindicators of environmental antimicrobial resistance: A preliminary investigation. Res Vet Sci 2024; 180:105424. [PMID: 39357073 DOI: 10.1016/j.rvsc.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Antimicrobial resistance (AMR) is an issue of global concern that includes human, animal, and environmental health. To tackle this phenomenon, a One Health approach is required through the involvement of all these interconnected elements. The environment poses challenges for investigation, but wildlife animals, not directly exposed to antibiotic treatments and interacting with their habitats, can serve as indicators of AMR contamination. Specifically, wild birds could play a significant role in dissemination of AMR, as they can acquire AMR bacteria from wildlife reservoirs and disperse them through environments. This study aims to assess the prevalence of AMR in commensal bacteria isolated from wild birds and their role as bioindicators of environmental AMR. A total of 73 birds belonging to various species were sampled in the Emilia-Romagna region with buccal, cloacal and feather samplings. The samples were cultured on selective media, colonies were identified using MALDI-TOF technology and antimicrobial susceptibility to different drugs was assessed using the Kirby-Bauer method. The birds' data were statistically evaluated in relation to AMR percentages. In total, 117 bacterial strains were isolated, belonging to 23 genera and 46 different bacterial species. The highest non-susceptibility percentages were observed for tetracycline (12.2 %) and enrofloxacin (8.6 %) considering all bacterial isolates, as well as for oxacillin (46.8 %), clindamycin (29.3 %) and rifampicin (20.8 %), among Gram-positive isolates. In the statistical analysis, a higher AMR percentage was correlated with Gram-positive isolates from birds belonging to rural/urban habitat (p = 0.01). Among Gram-positives, a higher oxacillin non-susceptibility percentage was found to be associated with isolates from birds sampled in province of Bologna (p = 0.007), a higher enrofloxacin non-susceptibility percentage revealed an association with rural/urban habitat (p = 0.02), while a higher non-susceptibility percentage towards rifampicin resulted associated with isolates from migratory birds (p = 0.031). In conclusion, this preliminary study suggests a potential role of wild birds as bioindicators for monitoring AMR contamination in the environment.
Collapse
Affiliation(s)
- Esposito Erika
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy.
| | - Raffaele Scarpellini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Ginevra Celli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Giovanna Marliani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Elisabetta Mondo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Giuseppe Rossi
- Italian League for Bird Protection, Bologna, Modena Section, Via Canaletto 88, 41122 Modena, Italy
| | - Silvia Piva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| |
Collapse
|
4
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
5
|
Li X, Mowlaboccus S, Jackson B, Cai C, Coombs GW. Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Int J Antimicrob Agents 2024; 64:107251. [PMID: 38906487 DOI: 10.1016/j.ijantimicag.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed.
Collapse
Affiliation(s)
- Xing Li
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chang Cai
- School of Information Technology, College of Science, Technology, Engineering and Mathematics, Murdoch University, Perth, Australia
| | - Geoffrey Wallace Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia.
| |
Collapse
|
6
|
Watson E, Hamilton S, Silva N, Moss S, Watkins C, Baily J, Forster T, Hall AJ, Dagleish MP. Variations in antimicrobial resistance genes present in the rectal faeces of seals in Scottish and Liverpool Bay coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123936. [PMID: 38588972 DOI: 10.1016/j.envpol.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Antibiotic resistance genes originating from human activity are considered important environmental pollutants. Wildlife species can act as sentinels for coastal environmental contamination and in this study we used qPCR array technology to investigate the variety and abundance of antimicrobial resistance genes (ARGs), mobile genetic elements (MGEs) and integrons circulating within seal populations both near to and far from large human populations located around the Scottish and northwest English coast. Rectal swabs were taken from 50 live grey seals and nine live harbour seals. Nucleic acids were stabilised upon collection, enabling extraction of sufficient quality and quantity DNA for downstream analysis. 78 ARG targets, including genes of clinical significance, four MGE targets and three integron targets were used to monitor genes within 22 sample pools. 30 ARGs were detected, as well as the integrons intl1 and intl2 and tnpA transposase. Four β-lactam, nine tetracycline, two phenicol, one trimethoprim, three aminoglycoside and ten multidrug resistance genes were detected as well as mcr-1 which confers resistance to colistin, an important drug of last resort. No sulphonamide, vancomycin, macrolide, lincosamide or streptogramin B (MLSB) resistance genes were detected. Resistance genes were detected in all sites but the highest number of ARGs (n = 29) was detected in samples derived from grey seals on the Isle of May, Scotland during the breeding season, and these genes also had the highest average abundance in relation to the 16S rRNA gene. This pilot study demonstrates the effectiveness of a culture-independent workflow for global analysis of ARGs within the microbiota of live, free-ranging, wild animals from habitats close to and remote from human habitation, and highlights seals as a valuable indicator species for monitoring the presence, abundance and land-sea transference of resistance genes within and between ecosystems.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK.
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Nuno Silva
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Simon Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Craig Watkins
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Johanna Baily
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Thorsten Forster
- LifeArc, Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, Scotland, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| |
Collapse
|
7
|
Petakh P, Kamyshnyi O. AMR mechanisms in L. interrogans serovars: a comprehensive study. Front Cell Infect Microbiol 2024; 14:1384427. [PMID: 38681225 PMCID: PMC11045430 DOI: 10.3389/fcimb.2024.1384427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the global health challenges of the 21st century. Data regarding AMR mechanisms in Leptospira interrogans, the causative agents of leptospirosis, have been relatively limited. Therefore, our study aimed to identify resistance genes and explore potential resistance mechanisms specific to particular serovars. We conducted a comprehensive analysis of 98 Leptospira strains, representing 10 common serovars, using whole-genome sequencing (WGS) FASTA files. Employing the PATRIC tool from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), we scrutinized the genomes for AMR genes. Our investigation revealed 32 genes associated with AMR, with 20 key genes consistently prevalent across most strains. Notably, we identified unique efflux pump systems in serovar Pomona, indicating distinctive resistance mechanisms in this serovar. In summary, our findings shed light on the genetic landscape of AMR in Leptospira, uncovering both common and serovar-specific resistance elements. The presence of unique efflux pump systems in serovar Pomona introduces a novel dimension to our understanding of resistance mechanisms. These insights underscore the importance of tailored intervention strategies and collaborative efforts between human and veterinary healthcare professionals, as well as environmental scientists, to address the complex dynamics of leptospirosis and its implications for antibiotic resistance.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
8
|
Wyrsch ER, Hoye BJ, Sanderson-Smith M, Gorman J, Maute K, Cummins ML, Jarocki VM, Marenda MS, Dolejska M, Djordjevic SP. The faecal microbiome of the Australian silver gull contains phylogenetically diverse ExPEC, aEPEC and Escherichia coli carrying the transmissible locus of stress tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170815. [PMID: 38336047 DOI: 10.1016/j.scitotenv.2024.170815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jody Gorman
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Kimberly Maute
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Marc S Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic; CEITEC VETUNI, University of Veterinary Sciences Brno, Czech Republic; Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Czech Republic; Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Pilsen, Czech Republic
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
9
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
10
|
Dominguez JE, Rosario L, Juliana S, Redondo LM, Chacana PA, Regino C, Fernández Miyakawa ME. Rats as sources of multidrug-resistant Enterobacteriaceae in animal production environments. Zoonoses Public Health 2023; 70:627-635. [PMID: 37403535 DOI: 10.1111/zph.13071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Rattus norvegicus and Rattus rattus are commensal pest rodents, considered reservoirs and vectors of zoonotic pathogens. In livestock farms, the wide use of antimicrobials and their release into the environment lead to high long-term residual concentrations, which may in turn lead to the occurrence of antimicrobial resistance (AMR). Farm environments serve as AMR sources, resulting in the transmission of antimicrobial-resistant bacteria and their AMR genes of livestock origin into wildlife. This study aimed to analyse the profile of enterobacteria carrying AMR determinants in rats captured in livestock farms to determine their potential vectors as for the spread of AMR. To this end, 56 rats (52 R. norvegicus and 4 R. rattus) were live-trapped on 11 farms (pig, dairy, poultry and mixed farms) located in central Argentina, from spring 2016 to autumn 2017. From 50 of the R. norvegicus individuals and three of the R. rattus individuals found in 10 of the farms, we isolated 53 Escherichia coli and five Salmonella strains. Susceptibility to antimicrobials, genotypic profiles, minimal inhibitory concentration of colistin and the presence of mcr-1 and genes encoding extended-spectrum β-lactamase (ESBL) were determined. Of the 58 isolates not susceptible to different antimicrobial classes, 28 of the E. coli strains and two of the Salmonella strains were defined as multi-drug resistant (MDR). S. Westhampton and S. Newport recovered were not susceptible to ampicillin or all the cephems tested. One of the E. coli obtained showed resistance to colistin and harboured the mcr-1 gene, demonstrated by PCR and conjugation. In two ESBL-producing Salmonella isolated from rats, CTX-M-2 genes were responsible for the observed resistance to third-generation cephalosporins. The MDR E. coli isolates showed several different resistance patterns (23), although some of them were the same in different individuals and different farms, with six resistance patterns, evidencing the dispersion of strains. These findings suggest that rats play a role in the dissemination of AMR determinants between animal, humans and environmental reservoirs.
Collapse
Affiliation(s)
- Johana Elizabeth Dominguez
- Laboratorio de Bacteriologia General, Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IPVet), INTA-CONICET, William C. Morris, Argentina
| | - Lovera Rosario
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sánchez Juliana
- Laboratorio de Investigación y Desarrollo en Agrobiología, Centro de Bioinvestigaciones-CeBio, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Buenos Aires, Argentina
| | - Leandro Martin Redondo
- Laboratorio de Bacteriologia General, Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IPVet), INTA-CONICET, William C. Morris, Argentina
| | - Pablo Anibal Chacana
- Laboratorio de Bacteriologia General, Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IPVet), INTA-CONICET, William C. Morris, Argentina
| | - Cavia Regino
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariano Enrique Fernández Miyakawa
- Laboratorio de Bacteriologia General, Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IPVet), INTA-CONICET, William C. Morris, Argentina
| |
Collapse
|
11
|
Resci I, Cilia G. The use of honey bee (Apis mellifera L.) as biological monitors for pathogenic bacteria and antimicrobial resistance: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122120. [PMID: 37385360 DOI: 10.1016/j.envpol.2023.122120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The phenomenon of antimicrobial resistance (AMR) is an increasingly real and relevant health problem. It is essential to verify the spread of this phenomenon in the environment. The European honey bee, Apis mellifera L., is a globally managed pollinator continuously used for biomonitoring thanks to its morphological and behavioural characteristics. During their foraging activities, a large number of honey bees move in the area surrounding the hive within a 1.5 km of radius. Besides, their body covered with hair and bristles are able to intercept pollen and minute particles, such as atmospheric particles, contaminants and microorganisms. For these reasons, A. mellifera L. is widely used as an environmental sentinel, especially for detecting pollutants, pesticides, microorganisms, and AMR. This systematic review aimed to collect and summarize the role of honey bee colonies as a biological monitor of AMR pathogenic bacteria and the environmental spread of antimicrobial resistance genes (ARGs). From honey bees were isolated a wide range of pathogenic and environmental bacteria strains, harbouring AMR and ARGs. However, AMR and ARGs were detected not only in environmental bacteria but also in symbiotic bacteria colonizing the bee gut. This systematic review highlights the employment of potential use of honey bees as AMR sentinel helpful for ecosystem health to implement possible control measures for humans, animals and plants, in the context of the "One-Health" approach.
Collapse
Affiliation(s)
- Ilaria Resci
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy.
| |
Collapse
|
12
|
Chung HC, Foxx CL, Hicks JA, Stuber TP, Friedberg I, Dorman KS, Harris B. An accurate and interpretable model for antimicrobial resistance in pathogenic Escherichia coli from livestock and companion animal species. PLoS One 2023; 18:e0290473. [PMID: 37616210 PMCID: PMC10449230 DOI: 10.1371/journal.pone.0290473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Understanding the microbial genomic contributors to antimicrobial resistance (AMR) is essential for early detection of emerging AMR infections, a pressing global health threat in human and veterinary medicine. Here we used whole genome sequencing and antibiotic susceptibility test data from 980 disease causing Escherichia coli isolated from companion and farm animals to model AMR genotypes and phenotypes for 24 antibiotics. We determined the strength of genotype-to-phenotype relationships for 197 AMR genes with elastic net logistic regression. Model predictors were designed to evaluate different potential modes of AMR genotype translation into resistance phenotypes. Our results show a model that considers the presence of individual AMR genes and total number of AMR genes present from a set of genes known to confer resistance was able to accurately predict isolate resistance on average (mean F1 score = 98.0%, SD = 2.3%, mean accuracy = 98.2%, SD = 2.7%). However, fitted models sometimes varied for antibiotics in the same class and for the same antibiotic across animal hosts, suggesting heterogeneity in the genetic determinants of AMR resistance. We conclude that an interpretable AMR prediction model can be used to accurately predict resistance phenotypes across multiple host species and reveal testable hypotheses about how the mechanism of resistance may vary across antibiotics within the same class and across animal hosts for the same antibiotic.
Collapse
Affiliation(s)
- Henri C. Chung
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States of America
| | - Christine L. Foxx
- Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States of America
| | - Jessica A. Hicks
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States of America
| | - Tod P. Stuber
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States of America
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States of America
| | - Karin S. Dorman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States of America
- Department of Statistics, Iowa State University, Ames, IA, United States of America
| | - Beth Harris
- National Animal Health Laboratory Network, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States of America
| |
Collapse
|
13
|
Vittecoq M, Elguero E, Brazier L, Renaud N, Blanchon T, Roux F, Renaud F, Durand P, Thomas F. Antimicrobial-Resistant Bacteria Carriage in Rodents According to Habitat Anthropization. ECOHEALTH 2023:10.1007/s10393-023-01638-7. [PMID: 37140742 DOI: 10.1007/s10393-023-01638-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
It is increasingly suggested that the dynamics of antimicrobial-resistant bacteria in the wild are mostly anthropogenically driven, but the spatial and temporal scales at which these phenomena occur in landscapes are only partially understood. Here, we explore this topic by studying antimicrobial resistance in the commensal bacteria from micromammals sampled at 12 sites from a large heterogenous landscape (the Carmargue area, Rhone Delta) along a gradient of anthropization: natural reserves, rural areas, towns, and sewage-water treatment plants. There was a positive relationship between the frequency of antimicrobial-resistant bacteria and the level of habitat anthropization. Although low, antimicrobial resistance was also present in natural reserves, even in the oldest one, founded in 1954. This study is one of the first to support the idea that rodents in human-altered habitats are important components of the environmental pool of resistance to clinically relevant antimicrobials and also that a "One Health" approach is required to assess issues related to antimicrobial resistance dynamics in anthropized landscapes.
Collapse
Affiliation(s)
- Marion Vittecoq
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France.
| | - Eric Elguero
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Lionel Brazier
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Nicolas Renaud
- SYNLAB Midi, Parc 2000, 127 Rue Maurice Béjart, 34080, Montpellier, France
| | - Thomas Blanchon
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - François Roux
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - François Renaud
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Patrick Durand
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| | - Frédéric Thomas
- Laboratory Mivegec, CNRS, IRD UMR5290, CREES, University Montpellier, Montpellier, France
| |
Collapse
|
14
|
Rocha MFG, Diógenes EM, Carvalho VL, Marmontel M, da Costa MO, da Silva VMF, de Souza Amaral R, Gravena W, do Carmo NAS, Marigo J, Ocadaque CJ, Freitas AS, Pinheiro RM, de Lima-Neto RG, de Aguiar Cordeiro R, de Aquino Pereira-Neto W, de Melo Guedes GM, Sidrim JJC, de Souza Collares Maia Castelo-Branco D. Virulence factors of Gram-negative bacteria from free-ranging Amazon river dolphins (Inia geoffrensis). Antonie Van Leeuwenhoek 2023; 116:447-462. [PMID: 36841923 DOI: 10.1007/s10482-023-01812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/19/2023] [Indexed: 02/27/2023]
Abstract
Freshwater cetaceans play a significant role as sentinel animals, providing important data on animal species and aquatic ecosystem health. They also may serve as potential reservoirs of emerging pathogens and host virulence genes in their microbiota. In this study, we evaluated virulence factors produced by Gram-negative bacteria recovered from individuals belonging to two populations of free-ranging Amazon river dolphins (Inia geoffrensis). A total of 132 isolates recovered from the oral cavity, blowhole, genital opening and rectum of 21 river dolphins, 13 from Negro River and 8 from Tapajós River, Brazil, were evaluated for the production of virulence factors, such as biofilms and exoproducts (proteases, hemolysins and siderophores), in planktonic and biofilm forms. In planktonic form, 81.1% (107/132) of the tested bacteria of free-ranging Amazon river dolphins were able to produce virulence factors, with 44/132 (33.4%), 65/132 (49,2%) and 54/132 (40,9%) positive for protease, hemolysin and siderophore production, respectively. Overall, 57/132 (43.2%) of the isolates produced biofilms and, under this form of growth, 66/132 (50%), 88/132 (66.7%) and 80/132 (60.6%) of the isolates were positive for protease, hemolysin and siderophore production. In general, the isolates showed a higher release of exoproducts in biofilm than in planktonic form (P < 0.001). The present findings show that Amazon river dolphins harbor potentially pathogenic bacteria in their microbiota, highlighting the importance of monitoring the micro-organisms from wild animals, as they may emerge as pathogens for humans and other animals.
Collapse
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Expedito Maia Diógenes
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Vitor Luz Carvalho
- Associação de Pesquisa E Preservação de Ecossistemas Aquáticos (AQUASIS), Av. José Alencar, 150. Praia de Iparana, CEP. 61.627-210, Caucaia, Ceará, Brasil.
| | - Miriam Marmontel
- Mamirauá Sustainable Development Institute, Tefé, Amazonas, Brazil
| | | | - Vera M F da Silva
- National Institute of Amazon Research-Inpa/Aquatic Mammals Laboratory, Manaus, Amazon, Brazil
| | - Rodrigo de Souza Amaral
- Federal Institute of Education, Science and Technology of the Amazonas - IFAM, Amazonas, Brazil
| | - Waleska Gravena
- Federal University of Amazonas-UFAM, Campus Coari, Amazonas, Brazil
| | - Nívia A S do Carmo
- Federal University of Pará-UFPA, Belém, Pará, Brazil.,Brazilian Agricultural Research Corporation Eastern Amazon-EMBRAPA, Belém, Pará, Brazil
| | - Juliana Marigo
- Laboratory of Comparative Pathology of Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo (LAPCOM, FMVZ-USP), São Paulo, Brazil
| | - Crister José Ocadaque
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Alyne Soares Freitas
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Rodrigo Machado Pinheiro
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | | | - Rossana de Aguiar Cordeiro
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil. .,Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil.
| | - José Júlio Costa Sidrim
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil.,Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza, CEP: 60.430-275, FortalezaCeará, Brazil
| |
Collapse
|
15
|
Bats Are Carriers of Antimicrobial-Resistant Staphylococcaceae in Their Skin. Antibiotics (Basel) 2023; 12:antibiotics12020331. [PMID: 36830242 PMCID: PMC9952117 DOI: 10.3390/antibiotics12020331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Bats have emerged as potential carriers of zoonotic viruses and bacteria, including antimicrobial-resistant bacteria. Staphylococcaceae has been isolated from their gut and nasopharynx, but there is little information about Staphylococcaceae on bat skin. Therefore, this study aimed to decipher the Staphylococci species in bat skin and their antimicrobial susceptibility profile. One hundred and forty-seven skin swabs were collected from bats during the spring and summer of 2021 and 2022. Bats were captured in different areas of the Metropolitan Region of São Paulo, Brazil, according to the degree of anthropization: Area 1 (Forested), Area 2 (Rural), Area 3 (Residential-A), Area 4 (Slum-- up to two floors), Area 5 (Residential-B-condo buildings), and Area 6 (Industrial). Swabs were kept in peptone water broth at 37 °C for 12 h when bacterial growth was streaked in Mannitol salt agar and incubated at 37 °C for 24 h. The disc-diffusion test evaluated antimicrobial susceptibility. Staphylococcaceae were isolated from 42.8% of bats, mostly from young, from the rural area, and during summer. M. sciuri was the most frequent species; S. aureus was also isolated. About 95% of isolates were resistant to at least one drug, and most strains were penicillin resistant. Eight isolates were methicillin resistant, and the mecA gene was detected in one isolate (S. haemolyticus). Antimicrobial resistance is a One Health issue that is not evaluated enough in bats. The results indicate that bats are carriers of clinically meaningful S. aureus and antimicrobial-resistant bacteria. Finally, the results suggest that we should intensify action plans to control the spread of resistant bacteria.
Collapse
|
16
|
Lin Y, Zhang L, Wu J, Yang K. Wild birds-the sentinel of antibiotic resistance for urban river: Study on egrets and Jinjiang river in Chengdu, China. ENVIRONMENTAL RESEARCH 2023; 216:114566. [PMID: 36273597 DOI: 10.1016/j.envres.2022.114566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance has become a comprehensive and complicated environmental problem. It is of great importance to effectively determine the abundance of various antibiotic resistance genes (ARGs) in the environment. Here, we attempted to find a practical method for monitoring environmental antibiotic resistance. The results of culture-based analysis of antibiotic resistance and metagenomic sequencing indicate that egrets inhabiting along the urban river (Jinjiang River) can be used as the sentinel of environmental antibiotic resistance. The antibiotic resistance in the environment fluctuated with time, while that in the wild bird was relatively stable. The network analysis based on metagenomic sequencing data gave the co-occurrence pattern of ARGs. The overall situation of the antibiotic resistance in the river was determined by quantifying several module hub genes of the co-occurrence network in river sediments. The temporal and spatial distribution of ARGs in Jinjiang River is highly correlated with that of human gut-specific bacteriophage (crAssphage), which indicates that one main source of the antibiotic resistance in the river is likely to be municipal sewage. The mobility potential of ARGs varying among different niches suggests the transmission direction of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Yufei Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China; Patent Examination Cooperation Sichuan Center of the Patent Office, Chengdu, 610213, China
| | - Lihua Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
17
|
Jalil A, Gul S, Bhatti MF, Siddiqui MF, Adnan F. High Occurrence of Multidrug-Resistant Escherichia coli Strains in Bovine Fecal Samples from Healthy Cows Serves as Rich Reservoir for AMR Transmission. Antibiotics (Basel) 2022; 12:antibiotics12010037. [PMID: 36671238 PMCID: PMC9855024 DOI: 10.3390/antibiotics12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Antibiotics are valuable therapeutics. However, the unwarranted and excessive use of these antimicrobials in food animals and the consequent contamination of the environment have been associated with the emergence and spread of antimicrobial resistance. Continuous surveillance and monitoring of antimicrobial resistance among E. coli isolates is recommended, not only for bovine health but also for public health. This study aims to assess the antimicrobial resistance profile, virulence potential, and genetic characterization of fecal E. coli isolates from healthy cows. METHODOLOGY The in vitro, phenotypic antibiotic resistance of isolates was measured via the Kirby-Bauer disc-diffusion method against twenty-seven antibiotics. The β-lactamase enzymatic activities of the strains were also investigated. For the assessment of virulence potential, fecal E. coli isolates were subjected to several in vitro pathogenicity assays, including biofilm formation ability, blood hemolysis, complement resistance, and growth in human urine. Phylogroup determination and virulence-associated genes were detected via multiplex PCR. RESULTS In vitro antibiotic resistance profiling showed that 186/200 (93%) of the isolates were multidrug-resistant (MDR), with the highest resistance against penicillin, tetracycline, fluoroquinolone, and macrolide classes of antibiotics. Of particular concern was the phenotypic resistance to colistin in 52/200 isolates (26%), though 16% of the total isolates harbored mcr1, the genetic determinant of colistin. Despite the scarce use of fluoroquinolone, cephalosporin, and carbapenem in the agricultural sector, resistance to these classes was evident due to the presence of extended-spectrum β-lactamase (ESBL) in 41% of E. coli isolates. The β-lactamase genotyping of E. coli isolates showed that 47% of isolates harbored either blaCTX or blaTEM. Approximately 32% of isolates were resistant to serum complement, and their growth in human urine was evident in 18% of isolates, indicating a possible infection of these isolates in high nitrogenous condition. Phylogrouping showed that the most prevalent phylogenetic group among fecal E. coli isolates was phylogroup B1 (57%), followed by phylogroups A (33%), D (6%), and B2 (4%). The most prevalent virulence-associated genes in fecal E. coli were fimH, iss and tatT. Results showed that ten isolates (5%) harbored the stx1 gene, the genetic marker of enterohemorrhagic E. coli. This study provides insights into the antibiotic resistance and virulence profiling of the fecal E. coli isolates from healthy cows. These results emphasize the need for imposing regulations on the proper use of antibiotics and growth promoters in food-producing animals.
Collapse
Affiliation(s)
- Amna Jalil
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shabana Gul
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence:
| |
Collapse
|
18
|
Di Francesco A, Salvatore D, Bertelloni F, Ebani VV. Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Animals (Basel) 2022; 13:ani13010076. [PMID: 36611686 PMCID: PMC9817859 DOI: 10.3390/ani13010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Wild animals are less likely to be exposed directly to clinical antimicrobial agents than domestic animals or humans, but they can acquire antimicrobial-resistant bacteria through contact with humans, animals, and the environment. In the present study, 254 dead free-living birds belonging to 23 bird species were examined by PCR for the presence of tetracycline resistance (tet) genes. A fragment of the spleen was collected from each bird carcass. A portion of the intestine was also taken from 73 of the 254 carcasses. Extracted DNA was subjected to PCR amplification targeting the tet(L), tet(M), and tet(X) genes. In total, 114 (45%) of the 254 birds sampled belonging to 17 (74%) of the 23 bird species tested were positive for one or more tet genes. The tet(M) gene showed a higher frequency than the other tested genes, both in the spleen and in the intestine samples. These results confirm the potential role of wild birds as reservoirs, dispersers, or bioindicators of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- Antonietta Di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
- Correspondence:
| | - Daniela Salvatore
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | | |
Collapse
|
19
|
Devnath P, Karah N, Graham JP, Rose ES, Asaduzzaman M. Evidence of Antimicrobial Resistance in Bats and Its Planetary Health Impact for Surveillance of Zoonotic Spillover Events: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:243. [PMID: 36612565 PMCID: PMC9819402 DOI: 10.3390/ijerph20010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/16/2023]
Abstract
As a result of the COVID-19 pandemic, as well as other outbreaks, such as SARS and Ebola, bats are recognized as a critical species for mediating zoonotic infectious disease spillover events. While there is a growing concern of increased antimicrobial resistance (AMR) globally during this pandemic, knowledge of AMR circulating between bats and humans is limited. In this paper, we have reviewed the evidence of AMR in bats and discussed the planetary health aspect of AMR to elucidate how this is associated with the emergence, spread, and persistence of AMR at the human-animal interface. The presence of clinically significant resistant bacteria in bats and wildlife has important implications for zoonotic pandemic surveillance, disease transmission, and treatment modalities. We searched MEDLINE through PubMed and Google Scholar to retrieve relevant studies (n = 38) that provided data on resistant bacteria in bats prior to 30 September 2022. There is substantial variability in the results from studies measuring the prevalence of AMR based on geographic location, bat types, and time. We found all major groups of Gram-positive and Gram-negative bacteria in bats, which are resistant to commonly used antibiotics. The most alarming issue is that recent studies have increasingly identified clinically significant multi-drug resistant bacteria such as Methicillin Resistant Staphylococcus aureus (MRSA), ESBL producing, and Colistin resistant Enterobacterales in samples from bats. This evidence of superbugs abundant in both humans and wild mammals, such as bats, could facilitate a greater understanding of which specific pathways of exposure should be targeted. We believe that these data will also facilitate future pandemic preparedness as well as global AMR containment during pandemic events and beyond.
Collapse
Affiliation(s)
- Popy Devnath
- College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nabil Karah
- Department of Molecular Biology and Umeå Centre for Microbial Research, Umeå University, SE-901 87 Umeå, Sweden
| | - Jay P. Graham
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Elizabeth S. Rose
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Muhammad Asaduzzaman
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, 450 Oslo, Norway
- Planetary Health Alliance, Boston, MA 02115, USA
- Planetary Health Working Group, Be-Cause Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| |
Collapse
|
20
|
Elsby DT, Zadoks RN, Boyd K, Silva N, Chase-Topping M, Mitchel MC, Currie C, Taggart MA. Antimicrobial resistant Escherichia coli in Scottish wild deer: Prevalence and risk factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120129. [PMID: 36113642 DOI: 10.1016/j.envpol.2022.120129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial resistance (AMR) is a recognised threat to global health. Obtaining data on the prevalence of AMR in environmental bacteria is key to understanding drivers and routes of transmission. Here, 325 Shiga toxin negative deer faecal samples-gathered from across the Scottish mainland-were screened for the presence of AMR Escherichia coli and investigated for potential risk factors associated with AMR occurrence. E. coli with resistance to antimicrobials of clinical health concern, including carbapenems and 3rd generation cephalosporins, were targeted. Ninety-nine percent of samples yielded E. coli, and the prevalence of resistant E. coli at the level of faecal samples was 21.8% (n = 71) for tetracycline, 6.5% (n = 21) for cefpodoxime, 0.3% for ciprofloxacin (n = 1), with no recorded resistance to meropenem. Potential risk factors for tetracycline and cefpodoxime resistance were investigated. The presence of broadleaved woodlands was significantly associated with both AMR phenotypes, which may relate to land use within or around such woodlands. Associated risk factors varied across resistance phenotype and deer species, with proximity or density of horses an indicator of significantly decreased and increased risk, respectively, or tetracycline and cefpodoxime resistance in E. coli from roe deer, but not from red deer. Distance from wastewater treatment plants was a significant risk factor for tetracycline resistance in E. coli from red deer but not from roe deer. Data indicated that AMR E. coli can occur in wild deer populations that are not directly exposed to the selective pressure exerted by antimicrobial treatment. Overall, resistance to critically important antimicrobials was found to be low in the studied population, suggesting no immediate cause for concern regarding human health. Utilising existing culling frameworks, wild deer in Scotland could function well as a sentinel species for the surveillance of AMR in the Scottish environment.
Collapse
Affiliation(s)
- Derek T Elsby
- Environmental Research Institute, University of the Highland and Islands, Castle St, Thurso, KW14 7JD, United Kingdom.
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW, 2570, Australia; Moredun Research Institute, Pentland Science Park, Penicuik, EH26 0PZ, United Kingdom
| | - Kenneth Boyd
- Environmental Research Institute, University of the Highland and Islands, Castle St, Thurso, KW14 7JD, United Kingdom
| | - Nuno Silva
- Moredun Research Institute, Pentland Science Park, Penicuik, EH26 0PZ, United Kingdom
| | - Margo Chase-Topping
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mairi C Mitchel
- Moredun Research Institute, Pentland Science Park, Penicuik, EH26 0PZ, United Kingdom
| | - Carol Currie
- Moredun Research Institute, Pentland Science Park, Penicuik, EH26 0PZ, United Kingdom
| | - Mark A Taggart
- Environmental Research Institute, University of the Highland and Islands, Castle St, Thurso, KW14 7JD, United Kingdom
| |
Collapse
|
21
|
Dreyer S, Globig A, Bachmann L, Schütz AK, Schaufler K, Homeier-Bachmann T. Longitudinal Study on Extended-Spectrum Beta-Lactamase- E. coli in Sentinel Mallard Ducks in an Important Baltic Stop-Over Site for Migratory Ducks in Germany. Microorganisms 2022; 10:1968. [PMID: 36296245 PMCID: PMC9612239 DOI: 10.3390/microorganisms10101968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health threat with extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales as the most critical ones. Studies on AMR in wild birds imply a possible dissemination function and indicate their potential role as sentinel animals. This study aimed to gain a deeper insight into the AMR burden of wild waterfowl by sampling semi-wild mallard ducks used as sentinels and to identify if AMR bacteria could be recommended to be added to the pathogens of public health risks to be screened for. In total, 376 cloacal and pooled fecal samples were collected from the sentinel plant over a period of two years. Samples were screened for ESBL-carrying E. coli and isolates found further analyzed using antimicrobial susceptibility testing and whole-genome sequencing. Over the sampling period, 4.26% (16/376) of the samples were positive for ESBL-producing E. coli. BlaCTX-M-1 and blaCTX-M-32 were the most abundant CTX-M types. Although none of the top global sequence types (ST) could be detected, poultry-derived ST115 and non-poultry-related STs were found and could be followed over time. The current study revealed low cases of ESBL-producing E. coli in semi-wild mallard ducks, which proves the suitability of sentinel surveillance for AMR detection in water-associated wildlife.
Collapse
Affiliation(s)
- Sylvia Dreyer
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Lisa Bachmann
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - Anne K. Schütz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | |
Collapse
|
22
|
Laidoudi Y, Ngaiganam EP, Marié JL, Pagnier I, Rolain JM, Mouhamadou Diene S, Davoust B. Colistin Resistance Mechanism in Enterobacter hormaechei subsp. steigerwaltii Isolated from Wild Boar (Sus scrofa) in France. Pathogens 2022; 11:pathogens11091022. [PMID: 36145454 PMCID: PMC9504195 DOI: 10.3390/pathogens11091022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Wild animals may act as efficient antimicrobial-resistance reservoirs and epidemiological links between humans, livestock, and natural environments. By using phenotypic and genotypic characterization, the present study highlighted the occurrence of an antimicrobial-resistant (i.e., amoxicillin, amoxicillin–clavulanic acid, cephalothin, and colistin) Enterobacter hormaechei subsp. steigerwaltii strain in wild boar (Sus scrofa) from France. The molecular analysis conducted showed non-synonymous mutations in the pmrA/pmrB and phoQ/phoP operons and the phoP/Q regulator mgrB gene, leading to colistin resistance. The present data highlight the need for continuous monitoring of multidrug-resistant bacteria in wild animals to limit the spread of these threatening pathogens.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Edgarthe Priscilla Ngaiganam
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jean-Lou Marié
- Animal Epidemiology Expert Group, French Military Health Service, 37076 Tours, France
| | - Isabelle Pagnier
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Seydina Mouhamadou Diene
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Bernard Davoust
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
- Animal Epidemiology Expert Group, French Military Health Service, 37076 Tours, France
- Correspondence:
| |
Collapse
|
23
|
Ballash GA, Baesu A, Lee S, Mills MC, Mollenkopf DF, Sullivan SMP, Lee J, Bayen S, Wittum TE. Fish as sentinels of antimicrobial resistant bacteria, epidemic carbapenemase genes, and antibiotics in surface water. PLoS One 2022; 17:e0272806. [PMID: 36054112 PMCID: PMC9439226 DOI: 10.1371/journal.pone.0272806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
Surface waters, especially those receiving wastewater flows, can disseminate antimicrobial resistant bacteria (ARB), antimicrobial resistance genes (ARG), and antibiotics. In the Scioto River of central Ohio, United States, we evaluated fishes as potential sentinels of ARB and antimicrobial contamination and investigated the influence of antimicrobial exposure on the fish intestinal resistome. Seventy-seven fish were collected from river reaches receiving inputs from two wastewater treatment plants that serve the greater Columbus Metropolitan Area. Fish were screened for the presence of cephalosporin-resistant (CeRO) and carbapenem-resistant (CRO) organisms, epidemic carbapenemase genes, and antibiotic drugs and metabolites using culture methods, droplet digital PCR, and ultra-high performance liquid chromatography tandem mass spectroscopy (UHPLC-MS/MS). Nearly 21% of fish harbored a CeRO in their resistome, with 19.4% exhibiting bacteria expressing an AmpC genotype encoded by blaCMY, and 7.7% with bacteria expressing an extended-spectrum β-lactamase phenotype encoded by blaCTX-M.blaKPC and blaNDM were present in 87.7% (57/65) and 80.4% (37/46) of the intestinal samples at an average abundance of 104 copies. Three antibiotics–lincomycin (19.5%), azithromycin (31.2%) and sulfamethoxazole (3.9%)–were found in hepatic samples at average concentrations between 25–31 ng/g. Fish harboring blaCTX-M and those exposed to azithromycin were at greater odds of being downstream of a wastewater treatment plant. Fish that bioconcentrated antibiotics in their liver were not at greater odds of harboring CeRO, CRO, or epidemic carbapenemase gene copies in their resistome. Our findings confirm that fishes can be effective bioindicators of surface waters contaminated with ARB, ARG, and antibiotics. Moreover, our findings highlight the varying importance of different mechanisms that facilitate establishment of ARB in aquatic ecosystems.
Collapse
Affiliation(s)
- Gregory A. Ballash
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anca Baesu
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Seungjun Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Molly C. Mills
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | - Dixie F. Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - S. Mažeika P. Sullivan
- Schiermeier Olentangy River Wetland Research Park, School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Thomas E. Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Gil‐Molino M, Gonçalves P, Risco D, Martín‐Cano FE, García A, Rey J, Fernández‐Llario P, Quesada A. Dissemination of antimicrobial-resistant isolates of Salmonella spp. in wild boars and its relationship with management practices. Transbound Emerg Dis 2022; 69:e1488-e1502. [PMID: 35182450 PMCID: PMC9790216 DOI: 10.1111/tbed.14480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Antimicrobial resistance (AMR) is a global concern and controlling its spread is critical for the effectiveness of antibiotics. Members of the genus Salmonella are broadly distributed, and wild boar may play an important role in its circulation between peri-urban areas and the environment, due to its frequent interactions both with livestock or human garbage. As the population of these animals is rising due to management on certain hunting estates or the absence of natural predators, the aim of the present work is to identify the mechanisms of AMR present and/or expressed in Salmonella spp. from wild boar populations and to determine the possible role of management-related factors applied to different game estates located in central Spain. The detection of Salmonella spp. was carried out in 121 dead wild boar from 24 game estates, and antimicrobial resistance traits were determined by antibiotic susceptibility testing and screening for their genetic determinants. The effects of feeding supplementation, the proximity of livestock, the existence of a surrounding fence and the density of wild boar on the AMR of the isolates were evaluated. The predominant subspecies and serovar found were S. enterica subsp. enterica (n = 69) and S. choleraesuis (n = 33), respectively. The other subspecies found were S. enterica subsp. diarizonae, S. enterica subsp. salamae and S. enterica subsp. houtenae. AMR was common among isolates (75.2%) and 15.7% showed multi drug resistance (MDR). Resistance to sulphonamides was the most frequent (85.7%), as well as sul1 which was the AMR determinant most commonly found. Plasmids appeared in 38.8% of the isolates, with IncHI1 being the replicon detected with the highest prevalence. The AMR of the isolates increased when the animals were raised with feeding supplementation and enclosed by fences around the estates.
Collapse
Affiliation(s)
- María Gil‐Molino
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | - Pilar Gonçalves
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
| | - David Risco
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
- Neobeitar S.L. CáceresCáceresSpain
| | | | | | - Joaquín Rey
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | | | - Alberto Quesada
- Facultad de Veterinaria, Departamento de BioquímicaBiología Molecular y Genética, Universidad de ExtremaduraCáceresSpain
- INBIO G+CUniversidad de ExtremaduraCáceresSpain
| |
Collapse
|
25
|
Torres RT, Cunha MV, Araujo D, Ferreira H, Fonseca C, Palmeira JD. A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119367. [PMID: 35489528 DOI: 10.1016/j.envpol.2022.119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales have been classified as critical priority pathogens by the World Health Organization (WHO). ESBL are universally distributed and, in 2006, were firstly reported on a wild animal. Understanding the relative contributions of wild animals to ESBL circulation in the environment is urgently needed. In this work, we have conducted a nationwide study in Portugal to investigate the occurrence of bacteria carrying clinically significant antimicrobial resistance genes (ARG), using widely distributed wild ungulates as model species. A total of 151 antimicrobial resistant-Enterobacterales isolates were detected from 181 wild ungulates: 50% (44/88) of isolates from wild boar (Sus scrofa), 40.3% (25/62) from red deer (Cervus elaphus), 41.4% (12/29) from fallow deer (Dama dama) and 100% (2/2) from mouflon (Ovis aries subsp. musimon). Selected isolates showed a diversified resistance profile, with particularly high values corresponding to ampicillin (71.5%) and tetracycline (63.6%). Enterobacterales strains carried blaTEM, tetA, tetB, sul2, sul1 or dfrA1 ARG genes. They also carried blaCTX-M-type genes, which are prevalent in human infections, namely CTX-M-14, CTX-M-15 and CTX-M-98. Strikingly, this is the first report of CTX-M-98 in wildlife. Almost 40% (n = 59) of Enterobacterales were multi-drug resistant. The diversity of plasmids carried by ESBL isolates was remarkable, including IncF, K and P. This study highlights the potential role of wild ungulates as environmental reservoirs of CTX-M ESBL-producing E. coli and in the spill-over of AMR bacteria and their determinants. Our findings suggest that wild ungulates are useful as strategic sentinel species of AMR in terrestrial environments, especially in response to potential sources of anthropogenic pollution, providing early warning of potential risks to human, animal and environmental health.
Collapse
Affiliation(s)
- Rita Tinoco Torres
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Débora Araujo
- Faculty of Engineering of University of Porto, Porto, Portugal
| | - Helena Ferreira
- UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE - University of Porto, Porto, Portugal; Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Carlos Fonseca
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Josman Dantas Palmeira
- Departament of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
26
|
Antibiotic resistance of enterobacteria isolated from freshwater bodies of different climatic zones. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An important problem of our time is the resistance of bacteria to antimicrobial drugs. Surface water bodies accumulate all kinds of antibiotic-resistant bacteria found in the catchment area.The aim. To compare the antibiotic resistance of enterobacteria isolated from freshwater ecosystems of the Murmansk and Ryazan regions.Methods. Isolation was performed by the disk-diffusion method. For species identification, the “Rapid-entero 200 M” test system was used. Sensitivity was determined to 19 antibacterial drugs by the disk diffusion method in accordance with the requirements of MUK 4.2.1980-04 and Clinical guidelines (2014). Data interpretation was carried out using EUCAST v. 7.0 (2017) criteria and the WHONET software package.Results. In 2016, 771 isolates of enterobacteria were isolated from the water bodies of the Ryazan region, 323 isolates from the Murmansk region. The results showed that enterobacteria were found in all surveyed surface water bodies. Citrobacter (36 %), Escherichia coli (21 %) and Providencia (21 %) dominated in the Ryazan region, while Citrobacter (35 %) and Enterobacter (21 %) dominated in the Murmansk region. Enterobacteria resistant to one or more antimicrobials dominate in both regions. The phenotype of multiple drug resistance (MDR) was found in 82.62 % of isolates in Ryazan and 95.98 % in Murmansk regions. The extreme resistance phenotype (XDR) was more common among enterobacteria isolated from water bodies of the Ryazan region. In both districts, there was a fairly high level of resistance to beta-lactam antibiotics. In both regions, the quinolones were the most effective group for inhibiting the growth of enterobacteria.Conclusion. The results of the study show that the spread of antibiotic-resistant isolates of enterobacteria in freshwater ecosystems occurs everywhere, but in northern waters this process is slower.
Collapse
|
27
|
Mercato A, Cortimiglia C, Abualsha’ar A, Piazza A, Marchesini F, Milani G, Bonardi S, Cocconcelli PS, Migliavacca R. Wild Boars as an Indicator of Environmental Spread of ESβL-Producing Escherichia coli. Front Microbiol 2022; 13:838383. [PMID: 35432265 PMCID: PMC9011151 DOI: 10.3389/fmicb.2022.838383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) represents an increasing issue worldwide, spreading not only in humans and farmed animals but also in wildlife. One of the most relevant problems is represented by Extended-Spectrum Beta-Lactamases (ESβLs) producing Escherichia coli because they are the cause of important infections in human. Wild boars (Sus scrofa) as a source of ESβLs attracted attention due to their increasing density and their habits that lead them to be at the human-livestock-wildlife interface. The aim of this study was to increase the knowledge about the ESβLs E. coli strains carried by wild boars living in a particularly high-density area of Northern Italy. The analysis of 60 animals allowed to isolate 16 ESβL-producing E. coli strains (prevalence 23.3%), which were characterised from a phenotypical and molecular point of view. The overall analysis revealed that the 16 isolates were all not only ESβL producers but also multidrug resistant and carried different types of plasmid replicons. The genome analysis performed on a subset of isolates confirmed the heterogeneity observed with pulsed-field gel electrophoresis (PFGE) and highlighted the presence of two pandemic sequence types, ST131 and ST10, with different collections of virulence factors. The genomic context of ESβL genes further evidenced that all of them were surrounded by transposons and insertion sequences, suggesting the possibility to exchange AMR genes. Overall, this study shows the worrying dissemination of ESβL-producing E. coli in wild boars in Northern Italy, suggesting the role of these animals as a spreader of AMR and their inclusion in surveillance programmes, to shed light on the “One Health” complex interactions.
Collapse
Affiliation(s)
- Alessandra Mercato
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, Pavia, Italy
| | - Claudia Cortimiglia
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Aseel Abualsha’ar
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, Pavia, Italy
| | - Aurora Piazza
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, Pavia, Italy
| | - Federica Marchesini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, Pavia, Italy
| | - Giovanni Milani
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Silvia Bonardi
- Department of Veterinary Science, Unit of Food Inspection, University of Parma, Parma, Italy
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Piacenza, Italy
- *Correspondence: Pier Sandro Cocconcelli,
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, Pavia, Italy
| |
Collapse
|
28
|
Kalule JB, Nakintu VZ, SSendawula SP. Nasal carriage of Methicillin-Resistant Staphylococcus aureus among sympatric free-ranging domestic pigs and wild Chlorocebus pygerythrus in a rural African setting. BMC Vet Res 2022; 18:101. [PMID: 35296304 PMCID: PMC8925073 DOI: 10.1186/s12917-022-03212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methicillin Resistant Staphylococcus aureus (MRSA) nasal carriage in domestic pigs and vervet monkeys is a risk factor for subsequent severe infections in domestic pigs and for dissemination to the human population. This study assessed nasal carriage of MRSA in domestic pigs and sympatric vervet monkeys in a rural African village during an outbreak of a virus hemorrhagic fever suspected to be contracted from wild primates. This study was conducted during the 2012 Ebola outbreak to determine nasal carriage of MRSA in free-ranging domestic pigs and sympatric freely roaming vervet monkeys using conventional methods. Staphylococcus aureus (S. aureus) isolated from the anterior nares were tested for susceptibility to commonly used antibiotics and conventional PCR was used to confirm methicillin resistance. The MRSA strains were then genotyped using SCCmec typing. RESULTS Overall, there was a high level of resistance to tetracycline [90% (63/70) in pigs and 67% (10/15) in vervet monkeys], trimethoprim/sulphamethoxazole [90% (63/70) in pigs and 67% (10/15) in vervet monkeys], and penicillin [83% (58/70) in pigs and 67% (10/15) in vervet monkeys]. Most of the MRSA strains (91.6%, 11/12) were of the SCCmec type I [1B] genotype. CONCLUSION The nasal carriage of drug resistant S. aureus in freely roaming domestic and wild animals presents a risk for widespread environmental spread of antimicrobial resistance thus presenting a risk for treatment failure in domestic animals, wild animals, and humans.
Collapse
Affiliation(s)
- John Bosco Kalule
- College of Veterinary Medicine Animal Resources and Biosecurity. Department of Biotechnical and Diagnostic Sciences, Makerere University, Kampala, Uganda.
| | - Valeria Zalwango Nakintu
- College of Veterinary Medicine Animal Resources and Biosecurity. Department of Biotechnical and Diagnostic Sciences, Makerere University, Kampala, Uganda
| | - Simon Peter SSendawula
- College of Veterinary Medicine Animal Resources and Biosecurity. Department of Biotechnical and Diagnostic Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
29
|
Suzuki Y, Hiroki H, Xie H, Nishiyama M, Sakamoto SH, Uemura R, Nukazawa K, Ogura Y, Watanabe T, Kobayashi I. Antibiotic-resistant Escherichia coli isolated from dairy cows and their surrounding environment on a livestock farm practicing prudent antimicrobial use. Int J Hyg Environ Health 2022; 240:113930. [DOI: 10.1016/j.ijheh.2022.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
|
30
|
Ewbank AC, Fuentes-Castillo D, Sacristán C, Cardoso B, Esposito F, Fuga B, de Macedo EC, Lincopan N, Catão-Dias JL. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli survey in wild seabirds at a pristine atoll in the southern Atlantic Ocean, Brazil: First report of the O25b-ST131 clone harboring bla CTX-M-8. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150539. [PMID: 34852430 DOI: 10.1016/j.scitotenv.2021.150539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance is among the most serious public health threats of the 21st century, with great impact in terms of One Health. Among antimicrobial resistant bacteria (ARB), extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) represent major challenges to human healthcare. Wild birds have been commonly used as environmental bioindicators of ESBL-EC. Remote locations represent a unique opportunity to evaluate the occurrence, dissemination and epidemiology of ARB in the environment. Herein we surveyed ESBL-EC in 204 cloacal swabs from six nonsynanthropic seabird species at the pristine Rocas Atoll, Brazil. We identified ESBL-EC isolates in 2.4% (5/204) of the tested seabirds, all in magnificent frigatebirds (Fregata magnificens). We isolated strains of O25b-ST131-fimH22 harboring gene blaCTX-M-8 (3 clones), ST117 harboring gene blaSHV-12, and a novel ST11350 (clonal complex 349) harboring genes blaCTX-M-55 and fosA3. All the isolates presented Extraintestinal pathogenic E. coli (ExPEC) virulence profiles. We suggest that magnificent frigatebirds may act as "flying bridges", transporting ESBL-EC and ARGs from an anthropogenically-impacted archipelago geographically close to our pristine and remote study site. The characteristics of our isolates suggest zoonotic potential and, despite the apparent good health of all the evaluated birds, may represent a hypothetical potential threat to the avian population using the atoll. To our knowledge, this is the first description of: (1) the pandemic and public health relevant ST131-O25b harboring blaCTX-M-8 worldwide; (2) ST131-fimH22 in wild birds; and (3); fosA3 in wildlife. Our findings expand the current epidemiological knowledge regarding host and geographical distribution of ESBL-EC and ARGs in wild birds, and emphasize the disseminating characteristics and adaptability of ST131 and ST117 strains within the human-animal-interface. Herein we discuss the involvement of nonsynanthropic wild birds in the epidemiology of antimicrobial resistance and their potential as sentinels of ESBL E. coli in insular environments.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Danny Fuentes-Castillo
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Eduardo Cavalcante de Macedo
- Chico Mendes Institute for Biodiversity Conservation (ICMBio) - Brazilian Ministry of the Environment, Rocas Atol Biological Reserve, Rio Grande do Norte, Brazil.
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
31
|
Li F, Yang S, Zhang L, Qiao L, Wang L, He S, Li J, Yang N, Yue B, Zhou C. Comparative metagenomics analysis reveals how the diet shapes the gut microbiota in several small mammals. Ecol Evol 2022; 12:e8470. [PMID: 35136548 PMCID: PMC8809447 DOI: 10.1002/ece3.8470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The gut microbiomes of the host are large and complex communities, which helps to maintain homeostasis, improves digestive efficiency, and promotes the development of the immune system. The small mammals distributed in Sichuan Province are the most popular species for biodiversity research in Southwest China. However, the effects of different diets on the structure and function of the gut microbial community of these small mammals are poorly understood. In this study, whole-metagenome shotgun sequencing has been used to analyze the composition and functional structures of the gut microbiota of seven small mammals in Laojunshan National Nature Reserve, Sichuan Province, China. Taxonomic classification revealed that the most abundant phyla in the gut of seven small mammals were Bacteroides, Proteobacteria, and Firmicutes. Moreover, Hafnia, Lactobacillus, and Yersinia were the most abundant genus in the gut microbiomes of these seven species. At the functional level, we annotated a series of KEGG functional pathways, six Cazy categories, and 46,163 AROs in the gut microbiomes of the seven species. Comparative analysis found that the difference in the gut microbiomes between the Soricidea and Muridae concentrated on the increase in the F/B (Firmicutes/Bacteroides) ratio in the Soricidea group, probably driven by the high-fat and -calorie digestive requirements due to their insectivorous diet. The comparative functional profiling revealed that functions related to metabolism and carbohydrates were significantly more abundant in Muridae group, which may be attributed to their high carbohydrate digestion requirements caused by their herbivorous diet. These data suggested that different diets in the host may play an important role in shaping the gut microbiota, and lay the foundation for teasing apart the influences of heritable and environmental factors on the evolution of gut microbial communities.
Collapse
Affiliation(s)
- Fengjun Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Shengzhi Yang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Linwan Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lu Qiao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Lei Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Song He
- Laojunshan National Nature ReserveSichuan ProvincePingshanChina
| | - Jian Li
- Laojunshan National Nature ReserveSichuan ProvincePingshanChina
| | - Nan Yang
- Institute of Qinghai‐Tibetan PlateauSouthwest Minzu UniversityChengduChina
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| | - Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education)College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
32
|
Torres RT, Cunha MV, Araujo D, Ferreira H, Fonseca C, Palmeira JD. Emergence of colistin resistance genes (mcr-1) in Escherichia coli among widely distributed wild ungulates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118136. [PMID: 34530238 DOI: 10.1016/j.envpol.2021.118136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The environment is considered a major reservoir of antimicrobial resistant microorganisms (AMR) and antimicrobial resistance genes (ARG). Colistin, a "last resort" antibiotic, is used for the treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. The global dissemination of mobile colistin resistance genes (mcr) in natural and non-natural environments is a major setback in the fight against antimicrobial resistance. Hitherto, there is a limited number of studies screening this resistance determinant in bacteria from wildlife. In this study, we describe for the first time the detection of plasmid-mediated colistin resistance in Escherichia coli from wild ungulates in Portugal, which are also widely distributed across Europe. This information is critical to identify the importance of ungulates in the dissemination of resistant bacteria, and their corresponding genes, across the environment. Here, 151 resistant-Enterobacteriaceae isolated from 181 samples collected from different wild ungulate species throughout Portugal were screened for mcr genes. Four mcr-1-positive Escherichia coli were detected from four fallow deer individuals that were sampled in the same hunting ground. These four isolates harboured mcr-1-related IncP plasmids belonging to sequencing types ST155, ST533 and ST345 (n = 2), suggesting bacterial and/or plasmid circulation. All mcr-1-positive E. coli also showed other resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. All mcr-1-positive E. coli show additional resistance phenotypes, including MDR, including the B1 commensal phylogenetic profile. Our findings are upsetting, highlighting the global dissemination of colistin resistance genes in the whole ecosystem, which, under the One Health framework, emphasizes the urgent need for effective implementation of AMR surveillance and control in the human-animal-environment interfaces.
Collapse
Affiliation(s)
- Rita Tinoco Torres
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal; Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Débora Araujo
- Faculty of Engineering of University of Porto, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE - University of Porto, Porto, Portugal
| | - Helena Ferreira
- Faculty of Engineering of University of Porto, Porto, Portugal; Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Carlos Fonseca
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Josman Dantas Palmeira
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
33
|
Pettengill JB, Kase JA, Murray MH. The Population Genetics, Virulence, and Public Health Concerns of Escherichia coli Collected From Rats Within an Urban Environment. Front Microbiol 2021; 12:631761. [PMID: 34777266 PMCID: PMC8585510 DOI: 10.3389/fmicb.2021.631761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The co-existence of rats and humans in urban environments has long been a cause for concern regarding human health because of the potential for rats to harbor and transmit disease-causing pathogens. Here, we analyze whole-genome sequence (WGS) data from 41 Escherichia coli isolates collected from rat feces from 12 locations within the city of Chicago, IL, United States to determine the potential for rats to serve as a reservoir for pathogenic E. coli and describe its population structure. We identified 25 different serotypes, none of which were isolated from strains containing significant virulence markers indicating the presence of Shiga toxin-producing and other disease-causing E. coli. Nor did the E. coli isolates harbor any particularly rare stress tolerant or antimicrobial resistance genes. We then compared the isolates against a public database of approximately 100,000 E. coli and Shigella isolates of primarily food, food facility, or clinical origin. We found that only one isolate was genetically similar to genome sequences in the database. Phylogenetic analyses showed that isolates cluster by serotype, and there was little geographic structure (e.g., isolation by distance) among isolates. However, a greater signal of isolation by distance was observed when we compared genetic and geographic distances among isolates of the same serotype. This suggests that E. coli serotypes are independent lineages and recombination between serotypes is rare.
Collapse
Affiliation(s)
- J B Pettengill
- Division of Biostatistics and Bioinformatics, Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| | - J A Kase
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD, United States
| | - M H Murray
- Davee Center for Epidemiology and Endocrinology, Urban Wildlife Institute, Lincoln Park Zoo, Chicago, IL, United States
| |
Collapse
|
34
|
Santana JA, Colombo SA, Silva BA, Diniz AN, de Almeida LR, Oliveira Junior CA, Lobato FCF, de Souza Trindade G, Paglia AP, Silva ROS. Clostridioides difficile and multi-drug-resistant staphylococci in free-living rodents and marsupials in parks of Belo Horizonte, Brazil. Braz J Microbiol 2021; 53:401-410. [PMID: 34761356 DOI: 10.1007/s42770-021-00640-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The global emergence of antimicrobial resistance (AMR) has become a serious threat to human and animal health. Recent studies have shown that synanthropic animals can act as reservoirs and disseminators of pathogens and resistant bacteria. The aim of this study was to evaluate the frequency, distribution, and antimicrobial susceptibility of staphylococcal species and Clostridioides difficile isolated from the feces of free-living rodents and marsupials from two urban parks in Belo Horizonte, Brazil. During a 12-month period, fecal samples from 159 free-living animals, including 136 rodents and 23 marsupials, were collected from two urban parks in Belo Horizonte, Minas Gerais, Brazil. Staphylococcus spp. were more likely to be isolated from rodents than marsupials (p = 0.0164). Eight different staphylococcal species were isolated from 36 (26.5%) rodents and one marsupial (4.3%). S. saprophyticus (48.6%) was the most frequently isolated species, and almost a quarter of the isolates (24.3%) were resistant to at least one antimicrobial agent, four (10.8%) of which were multi-drug resistant (MDR). Two (5.4%) strains were resistant to cefoxitin and were then classified as methicillin-resistant staphylococci, and one also tested positive for the mecA gene. C. difficile was isolated from two rodents (1.5%), and one strain was toxigenic and classified as ribotype 064. One isolate was resistant to rifampicin, but both strains were susceptible to all other antimicrobials tested, including metronidazole and vancomycin. All C. difficile isolates and all staphylococcal strains resistant to antimicrobials were recovered from the same park. The present study suggests that free-living rodents in Belo Horizonte (Brazil) are mainly colonized by S. saprophyticus and may act as reservoirs of antimicrobial-resistant Staphylococcus spp. and C. difficile strains. This is the first study to evaluate the presence of staphylococci and C. difficile from free-living opossums and suggest a low fecal shedding of these organisms by these mammals.
Collapse
Affiliation(s)
- Jordana Almeida Santana
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Salene Angelini Colombo
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Brendhal Almeida Silva
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda Nádia Diniz
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Lara Ribeiro de Almeida
- Institute of Biological Sciences, Federal University of Minas Gerais, Antônio Carlos Avenue, Belo Horizonte, MG, 662731270-901, Brazil
| | - Carlos Augusto Oliveira Junior
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco Carlos Faria Lobato
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Giliane de Souza Trindade
- Institute of Biological Sciences, Federal University of Minas Gerais, Antônio Carlos Avenue, Belo Horizonte, MG, 662731270-901, Brazil
| | - Adriano Pereira Paglia
- Institute of Biological Sciences, Federal University of Minas Gerais, Antônio Carlos Avenue, Belo Horizonte, MG, 662731270-901, Brazil
| | - Rodrigo Otávio Silveira Silva
- Veterinary School, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
35
|
Rocha MFG, Diógenes EM, Carvalho VL, Marmontel M, da Costa MO, da Silva VMF, de Souza Amaral R, Gravena W, do Carmo NAS, Marigo J, Ocadaque CJ, Freitas AS, Pinheiro RM, de Lima-Neto RG, de Aguiar Cordeiro R, de Aquino Pereira-Neto W, de Melo Guedes GM, Sidrim JJC, de Souza Collares Maia Castelo-Branco D. One Health Implications of Antimicrobial Resistance in Bacteria from Amazon River Dolphins. ECOHEALTH 2021; 18:383-396. [PMID: 34709509 DOI: 10.1007/s10393-021-01558-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Studies on the microbiota of freshwater cetaceans are scarce and may provide important data on animal and environmental health. This study aimed to evaluate the antimicrobial susceptibility of Gram-negative bacteria recovered from two populations of free-ranging Amazon river dolphins (Inia geoffrensis). Twenty-one animals were captured and released, 13 from Negro River and 8 from Tapajós River, Brazil. Swab samples were obtained from the oral cavity, blowhole, genital opening and rectum and were cultured on MacConkey agar. Isolates were biochemically identified, and antimicrobial susceptibility was assessed by disk diffusion method. Overall, 132 isolates were recovered, of which 71 were recovered from animals from Negro River and 61 from Tapajós River. The most commonly recovered bacterial species were Enterobacter cloacae, Morganella morganii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Overall, 51.6% (63/122) of the isolates were not-susceptible (intermediate resistance and resistance), of which 28/122 (22.9%) were resistant to at least one antimicrobial. Cephalothin, cefuroxime and cefepime were the drugs to which more resistant and intermediate results were observed (P < 0.001). The results indicate that free-ranging Amazon river dolphins host resistant bacteria, contributing for their maintenance in the environment. This study highlights the importance of the One Health approach to monitor the emergence of antimicrobial resistance. Summary Gram-negative bacteria recovered from 21 free-ranging Amazon river dolphins (Inia geoffrensis) from the Negro River and the Tapajós River populations were evaluated for their antimicrobial susceptibility. Overall, 51.6% (63/122) of the isolates were not-susceptible (intermediate resistance and resistance), of which 28/122 (22.9%) were resistant to at least one antimicrobial. Cephalothin, cefuroxime and cefepime were the drugs to which more resistant and intermediate results were observed. Thus, free-ranging Amazon river dolphins, never treated with antimicrobials, host resistant bacteria, contributing for their maintenance in the environment and highlighting the importance of the One Health approach to monitor the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- Marcos Fábio Gadelha Rocha
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Expedito Maia Diógenes
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza60.430-275, Ceará, CEP, Brazil
| | - Vitor Luz Carvalho
- Associação de Pesquisa E Preservação de Ecossistemas Aquáticos (AQUASIS), Av. José Alencar, 150. Praia de IparanaCEP 61.627-210, Caucaia, Ceará, Brazil.
| | - Miriam Marmontel
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, Amazonas, Brazil
| | | | - Vera M F da Silva
- Instituto Nacional de Pesquisas da Amazônia -INPA/Laboratório de Mamíferos Aquáticos, Manaus, Amazonas, Brazil
- Associação Amigos Do Peixe-Boi-AMPA, Manaus, Amazonas, Brazil
| | - Rodrigo de Souza Amaral
- Associação Amigos Do Peixe-Boi-AMPA, Manaus, Amazonas, Brazil
- Instituto Federal de Educação, Ciência eTecnologia Do Amazonas - IFAMZona Leste - CMZL, Campus Manaus, Manaus, Amazonas, Brazil
| | - Waleska Gravena
- Associação Amigos Do Peixe-Boi-AMPA, Manaus, Amazonas, Brazil
- Universidade Federal do Amazonas - UFAM, Campus Coari, Amazonas, Brazil
| | - Nívia A S do Carmo
- Associação Amigos Do Peixe-Boi-AMPA, Manaus, Amazonas, Brazil
- Instituto Bioma, Pará, Brazil
| | - Juliana Marigo
- Laboratório de Patologia Comparada de Animais Selvagens, Faculdade de Medicina Veterinária E Zootecnia, Universidade de São Paulo (LAPCOM, FMVZ-USP), São Paulo, Brazil
| | - Crister José Ocadaque
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Rodrigo Machado Pinheiro
- Postgraduate Program in Veterinary Sciences, School of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Reginaldo Gonçalves de Lima-Neto
- Departamento de Medicina Tropical, Centro de Ciências da Saúde, Universidade Federal de Pernambuco. Avenida Professor Moraes Rêgo, Universitária - CEP:, S/N - Cidade, Recife, Pernambuco, 50670-901, Brazil
| | - Rossana de Aguiar Cordeiro
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza60.430-275, Ceará, CEP, Brazil.
| | - José Júlio Costa Sidrim
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Laboratory of Emerging and Reemerging Pathogens, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Group of Applied Medical Microbiology, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Rua Coronel Nunes de Melo, 1315. Fortaleza60.430-275, Ceará, CEP, Brazil
| |
Collapse
|
36
|
Comparison of Antimicrobial-Resistant Escherichia coli Isolates from Urban Raccoons and Domestic Dogs. Appl Environ Microbiol 2021; 87:e0048421. [PMID: 33990315 DOI: 10.1128/aem.00484-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wildlife can be exposed to antimicrobial-resistant bacteria (ARB) via multiple pathways. Spatial overlap with domestic animals is a prominent exposure pathway. However, most studies of wildlife-domestic animal interfaces have focused on livestock and little is known about the wildlife-companion animal interface. Here, we investigated the prevalence and phylogenetic relatedness of extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli from raccoons (Procyon lotor) and domestic dogs (Canis lupus familiaris) in the metropolitan area of Chicago, IL, USA. To assess the potential importance of spatial overlap with dogs, we explored whether raccoons sampled at public parks (i.e., parks where people and dogs could enter) differed in prevalence and phylogenetic relatedness of ESC-R E. coli to raccoons sampled at private parks (i.e., parks where people and dogs could not enter). Raccoons had a significantly higher prevalence of ESC-R E. coli (56.9%) than dogs (16.5%). However, the richness of ESC-R E. coli did not vary by host species. Further, core single-nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that isolates did not cluster by host species, and in some cases displayed a high degree of similarity (i.e., differed by less than 20 core SNPs). Spatial overlap analyses revealed that ESC-R E. coli were more likely to be isolated from raccoons at public parks than raccoons at private parks, but only for parks located in suburban areas of Chicago, not urban areas. That said, ESC-R E. coli isolated from raccoons did not genetically cluster by park of origin. Our findings suggest that domestic dogs and urban/suburban raccoons can have a diverse range of ARB, some of which display a high degree of genetic relatedness (i.e., differ by less than 20 core SNPs). Given the differences in prevalence, domestic dogs are unlikely to be an important source of exposure for mesocarnivores in urbanized areas. IMPORTANCE Antimicrobial-resistant bacteria (ARB) have been detected in numerous wildlife species across the globe, which may have important implications for human and animal health. Wildlife can be exposed to ARB via numerous pathways, including via spatial overlap with domestic animals. However, the interface with domestic animals has mostly been explored for livestock and little is known about the interface between wild animals and companion animals. Our work suggests that urban and suburban wildlife can have similar ARB to local domestic dogs, but local dogs are unlikely to be a direct source of exposure for urban-adapted wildlife. This finding is important because it underscores the need to incorporate wildlife into antimicrobial resistance surveillance efforts, and to investigate whether certain urban wildlife species could act as additional epidemiological pathways of exposure for companion animals, and indirectly for humans.
Collapse
|
37
|
François-Brazier C, Payebien A, Manson C, Lefaux B, Quintard B. PREVALENCE OF LAWSONIA INTRACELLULARIS INFECTION IN NONHUMAN PRIMATES AND PEST RODENTS IN A ZOOLOGICAL COLLECTION. J Zoo Wildl Med 2021; 52:680-688. [PMID: 34130411 DOI: 10.1638/2018-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
In 2016 and 2017, Lawsonia intracellularis was isolated from several pileated gibbons (Hylobates pileatus) presenting with diarrhea in Mulhouse Zoo (eastern France). To this day, infection with this bacterium has rarely been described in nonhuman primates (NHP) in captivity or in the wild and there are no data about the prevalence or transmission of the disease. This study focuses on finding the prevalence of this infection amongst Mulhouse Zoo's NHP collection and trying to identify a source of contamination responsible for this epizooty. Forty-eight real-time PCR were conducted on feces from all NHP species in the zoo and on small mammals trapped in the NHP housing structures. No NHP was experiencing symptoms at the time of the study, however test results showed that Lawsonia intracellularis can be found in 61.76% (21/34) of the group total (n = 34) and the prevalence even increases to 92.3% (12/13) in the Lemuriform infraorder (n = 13). In small mammals (n = 14), prevalence of the bacterium is 57.17% (8/14) including 77.78% in rodents (7/9). The results of this study show that several NHP species are healthy carriers and some species of small mammals can be considered as a potential source of contamination. Because of the difficulty encountered trying to isolate the bacterium, it is plausible that infections caused by Lawsonia intracellularis have been underdiagnosed to this day, and that it could be an emerging disease in Europe. Therefore, using real-time PCR to search for this bacterium seems essential in case of diarrhea occurring in nonhuman primates. Moreover, even though further studies on contamination sources need to be conducted, the issue of the presence of rodents in NHP housing structures has to be taken very seriously and tackled with the utmost care.
Collapse
Affiliation(s)
| | - Audrey Payebien
- Laboratoire vétérinaire départemental du Haut-Rhin, 68025 Colmar, France
| | - Christine Manson
- Laboratoire vétérinaire départemental du Haut-Rhin, 68025 Colmar, France
| | - Brice Lefaux
- Parc zoologique et botanique de Mulhouse, 68100 Mulhouse, France
| | - Benoît Quintard
- Parc zoologique et botanique de Mulhouse, 68100 Mulhouse, France
| |
Collapse
|
38
|
Grünzweil OM, Palmer L, Cabal A, Szostak MP, Ruppitsch W, Kornschober C, Korus M, Misic D, Bernreiter-Hofer T, Korath ADJ, Feßler AT, Allerberger F, Schwarz S, Spergser J, Müller E, Braun SD, Monecke S, Ehricht R, Walzer C, Smodlaka H, Loncaric I. Presence of β-Lactamase-producing Enterobacterales and Salmonella Isolates in Marine Mammals. Int J Mol Sci 2021; 22:ijms22115905. [PMID: 34072783 PMCID: PMC8199236 DOI: 10.3390/ijms22115905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Marine mammals have been described as sentinels of the health of marine ecosystems. Therefore, the aim of this study was to investigate (i) the presence of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Enterobacterales, which comprise several bacterial families important to the healthcare sector, as well as (ii) the presence of Salmonella in these coastal animals. The antimicrobial resistance pheno- and genotypes, as well as biocide susceptibility of Enterobacterales isolated from stranded marine mammals, were determined prior to their rehabilitation. All E. coli isolates (n = 27) were screened for virulence genes via DNA-based microarray, and twelve selected E. coli isolates were analyzed by whole-genome sequencing. Seventy-one percent of the Enterobacterales isolates exhibited a multidrug-resistant (MDR) pheno- and genotype. The gene blaCMY (n = 51) was the predominant β-lactamase gene. In addition, blaTEM-1 (n = 38), blaSHV-33 (n = 8), blaCTX-M-15 (n = 7), blaOXA-1 (n = 7), blaSHV-11 (n = 3), and blaDHA-1 (n = 2) were detected. The most prevalent non-β-lactamase genes were sul2 (n = 38), strA (n = 34), strB (n = 34), and tet(A) (n = 34). Escherichia coli isolates belonging to the pandemic sequence types (STs) ST38, ST167, and ST648 were identified. Among Salmonella isolates (n = 18), S. Havana was the most prevalent serotype. The present study revealed a high prevalence of MDR bacteria and the presence of pandemic high-risk clones, both of which are indicators of anthropogenic antimicrobial pollution, in marine mammals.
Collapse
Affiliation(s)
- Olivia M. Grünzweil
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Lauren Palmer
- Marine Mammal Care Center, Los Angeles, CA 90731, USA;
| | - Adriana Cabal
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Michael P. Szostak
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Christian Kornschober
- Austrian Agency for Health and Food Safety (AGES), National Reference Centre for Salmonella, 8010 Graz, Austria;
| | - Maciej Korus
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; (M.K.); (D.M.)
| | - Dusan Misic
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; (M.K.); (D.M.)
| | - Tanja Bernreiter-Hofer
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
- Department for Farm Animals and Veterinary Public Health, University Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Anna D. J. Korath
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Andrea T. Feßler
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, 1090 Vienna, Austria; (A.C.); (W.R.); (F.A.)
| | - Stefan Schwarz
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany; (A.T.F.); (S.S.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Hygiene, Technical University of Dresden, 01307 Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, 1160 Vienna, Austria;
- Health Program, Wildlife Conservation Society, Bronx, New York City, NY 10460, USA
| | - Hrvoje Smodlaka
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (O.M.G.); (M.P.S.); (T.B.-H.); (A.D.J.K.); (J.S.)
- Correspondence: ; Tel.: +43-125-077-2115
| |
Collapse
|
39
|
VinodhKumar OR, Karikalan M, Ilayaraja S, Sha AA, Singh BR, Sinha DK, Chandra Mohan S, Pruthvishree BS, Pawde AM, Sharma AK. Multi-drug resistant (MDR), extended spectrum beta-lactamase (ESBL) producing and carbapenem resistant Escherichia coli in rescued Sloth bears (Melursus ursinus), India. Vet Res Commun 2021; 45:163-170. [PMID: 34041662 DOI: 10.1007/s11259-021-09794-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
The study reports the multi-drug resistant (MDR), extended spectrum beta-lactamase (ESBL) producing and carbapenem resistant Escherichia coli (CRE) isolated from rescued sloth bear (Melursus ursinus), India. Non-duplicate faecal samples from 21 adult rescued sloth bears were collected at once during 2015-2016 and processed for isolation of E. coli and antibacterial susceptibility pattern. From 21 samples, 45 E. coli were isolated and on phenotypic screening, 23 were MDR, 17 were ESBL producers, and five were carbapenem-resistant (CR). Three E. coli isolates (6.67%, 3/45) showed no resistance, however 42 isolates (93.33%, 42/45) exhibited resistant to at least one antibiotics. The MDR isolates carried beta-lactamase, chloramphenicol, aminoglycosides, tetracycline, fluroquinolone, and sulphadimidine resistance genes. All the phenotypic ESBL producing isolates harbored blaCTX-M genes. On genotypic screening, three CRE (60.0%, 3/5) were positive for blaNDM carbapenemase gene and efflux pump-mediated carbapenem resistance was detected in two CRE isolates (40.0%, 2/5) which were negative for carbapenemase genes. The CRE isolates (n = 5) also co-harbored AMR genes like blaTEM-1, blaAmpC, qnrA, qnrB, qnrS, tetA, tetB and sulI. Virulence screening of the resistant isolates detected the presence of Stx1(n = 1), Stx2 (n = 3), eaeA (n = 4) and hlyA (n = 3) genes. Plasmid incompatibility (Inc) typing revealed that two isolates harboured blaNDM-5 gene on Incl1 and one isolate on IncF plasmid. Apart from the NDM gene, the plasmids also carried tetracycline, beta-lactamase and quinolone resistance genes. The plasmid multilocus sequence typing (pMLST) of the E. coli Incl1 plasmid showed the Sequence Type (ST) 297. This appears to be the first report of MDR, ESBL producing and blaNDM-5 genes on Incl1 and IncF plasmids from rescued sloth bear.
Collapse
Affiliation(s)
- O R VinodhKumar
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| | - M Karikalan
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S Ilayaraja
- Agra Bear Rescue Centre, Wildlife SOS, Keetham, Agra, Uttar Pradesh, India
| | - Arun A Sha
- Research &Veterinary Operations, Bannerghatta Bear Rescue Centre, Wildlife SOS, Bengaluru, India
| | - B R Singh
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - D K Sinha
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S Chandra Mohan
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - B S Pruthvishree
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - A M Pawde
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - A K Sharma
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
40
|
Lagerstrom KM, Hadly EA. The under-investigated wild side of Escherichia coli: genetic diversity, pathogenicity and antimicrobial resistance in wild animals. Proc Biol Sci 2021; 288:20210399. [PMID: 33849316 PMCID: PMC8059539 DOI: 10.1098/rspb.2021.0399] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
A striking paucity of information exists on Escherichia coli in wild animals despite evidence that they harbour pathogenic and antimicrobial-resistant E. coli in their gut microbiomes and may even serve as melting pots for novel genetic combinations potentially harmful to human health. Wild animals have been implicated as the source of pathogenic E. coli outbreaks in agricultural production, but a lack of knowledge surrounding the genetics of E. coli in wild animals complicates source tracking and thus contamination curtailment efforts. As human populations continue to expand and invade wild areas, the potential for harmful microorganisms to transfer between humans and wildlife increases. Here, we conducted a literature review of the small body of work on E. coli in wild animals. We highlight the geographic and host taxonomic coverage to date, and in each, identify significant gaps. We summarize the current understanding of E. coli in wild animals, including its genetic diversity, host and geographic distribution, and transmission pathways within and between wild animal and human populations. The knowledge gaps we identify call for greater research efforts to understand the existence of E. coli in wild animals, especially in light of the potentially strong implications for global public health.
Collapse
Affiliation(s)
| | - Elizabeth A. Hadly
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, USA
- Center for Innovation in Global Health, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Worsley-Tonks KEL, Miller EA, Anchor CL, Bender JB, Gehrt SD, McKenzie SC, Singer RS, Johnson TJ, Craft ME. Importance of anthropogenic sources at shaping the antimicrobial resistance profile of a peri-urban mesocarnivore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144166. [PMID: 33401044 DOI: 10.1016/j.scitotenv.2020.144166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenically derived antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARG) have been detected in wildlife. The likelihood of detecting ARB and ARG in wildlife increases with wildlife exposure to anthropogenic sources of antimicrobial resistance (AMR). Whether anthropogenic sources also increase the risk for AMR to spread in bacteria of wildlife is not well understood. The spread of AMR in bacteria of wildlife can be estimated by examining the richness of ARB and ARG, and the prevalence of ARB that have mobilizable ARG (i.e., ARG that can be transferred across bacteria via plasmids). Here, we investigated whether raccoons (Procyon lotor), with different exposures to anthropogenic sources, differed in prevalence and richness of extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli, richness of ARG present in ESC-R E. coli, and prevalence of ESC-R E. coli with plasmid-associated ARG. Sampling took place over the course of 10 months at seven sites in Chicago, USA. ESC-R E. coli were isolated from over half of the 211 raccoons sampled and were more likely to be isolated from urban than suburban raccoons. When examining the whole-genome sequences of ESC-R E. coli, 56 sequence types were identified, most of which were associated with the ARG blaCMY and blaCTX-M. A greater richness of ESC-R E. coli sequence types was found at sites with a wastewater treatment plant (WWTP) than without, but no difference was detected based on urban context. ARG richness in ESC-R E. coli did not significantly vary by urban context nor with presence of a WWTP. Importantly, ESC-R E. coli carrying plasmid-associated blaCTX-M and blaCMY ARG were more likely to be isolated from raccoons sampled at sites with a WWTP than without. Our findings indicate that anthropogenic sources may shape the AMR profile of wildlife, reinforcing the need to prevent dissemination of AMR into the environment.
Collapse
Affiliation(s)
- Katherine E L Worsley-Tonks
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, United States of America.
| | - Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, United States of America
| | - Chris L Anchor
- Forest Preserve District of Cook County, 28W040 IL-58, Elgin, IL 60120, United States of America
| | - Jeff B Bender
- School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, United States of America
| | - Stanley D Gehrt
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States of America
| | - Shane C McKenzie
- Max McGraw Wildlife Foundation, 14N322 IL-25, Dundee Township, IL 60118, United States of America
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, United States of America
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, United States of America
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, United States of America; Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, United States of America
| |
Collapse
|
42
|
The Role of Aquatic Ecosystems (River Tua, Portugal) as Reservoirs of Multidrug-Resistant Aeromonas spp. WATER 2021. [DOI: 10.3390/w13050698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The inappropriate use of antibiotics, one of the causes of the high incidence of antimicrobial-resistant bacteria isolated from aquatic ecosystems, represents a risk for aquatic organisms and the welfare of humans. This study aimed to determine the antimicrobial resistance rates among riverine Aeromonas spp., taken as representative of the autochthonous microbiota, to evaluate the level of antibacterial resistance in the Tua River (Douro basin). The prevalence and degree of antibiotic resistance was examined using motile aeromonads as a potential indicator of antimicrobial susceptibility for the aquatic environment. Water samples were collected from the middle sector of the river, which is most impacted area by several anthropogenic pressures. Water samples were plated on an Aeromonas-selective agar, with and without antibiotics. The activity of 19 antibiotics was studied against 30 isolates of Aeromonas spp. using the standard agar dilution susceptibility test. Antibiotic resistance rates were fosfomycin (FOS) 83.33%, nalidixic acid (NA) 60%, cefotaxime (CTX) 40%, gentamicin (CN) 26.67%, tobramycin (TOB) 26.67%, cotrimoxazole (SXT) 26.67%, chloramphenicol (C) 16.67%, and tetracycline (TE) 13.33%. Some of the nalidixic acid-resistant strains were susceptible to fluoroquinolones. Multiple resistance was also observed (83.33%). The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying antimicrobial resistance (AMR) in aquatic ecosystems. Aquatic environments may provide an ideal setting for the acquisition and dissemination of antibiotic resistance because anthropogenic activities frequently impact them. The potential risk of multi- and pan-resistant bacteria transmission between animals and humans should be considered in a “One Health—One World” concept.
Collapse
|
43
|
Espunyes J, Cabezón O, Dias-Alves A, Miralles P, Ayats T, Cerdà-Cuéllar M. Assessing the role of livestock and sympatric wild ruminants in spreading antimicrobial resistant Campylobacter and Salmonella in alpine ecosystems. BMC Vet Res 2021; 17:79. [PMID: 33588859 PMCID: PMC7885356 DOI: 10.1186/s12917-021-02784-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Livestock play an important role as reservoir of enteric pathogens and antimicrobial resistance (AMR), a health and economic concern worldwide. However, little is known regarding the transmission and maintenance of these pathogens at the wildlife-livestock interface. In this study, we assessed the occurrence, genetic diversity and AMR of Campylobacter spp. and Salmonella spp. shed by sympatric free-ranging livestock and a wild herbivore in an alpine ecosystem. Results Campylobacter spp. was isolated from 23.3 % of cattle and 7.7 % of sheep but was not isolated from horses nor Pyrenean chamois (Rupicapra pyrenaica). Campylobacter jejuni was the most frequent species. A high genetic diversity and certain host specificity of C. jejuni isolates was observed. The main AMR detected in Campylobacter isolates was to nalidixic acid (88.2 %), ciprofloxacin (82.4 %) and tetracycline (82.4 %); only 11.7 % of the isolates were pan-susceptible and 17.6 % were multi-resistant. Salmonella ser. Newport was isolated only from one Pyrenean chamois and was pan-susceptible. Conclusions Results show that free-ranging cattle and sheep are spreaders of Campylobacter as well as their AMR strains in the alpine environment. Therefore, contaminated alpine pastures or streams may constitute a source for the dissemination of AMR enteropathogens. However, apparently, alpine wild ungulates such as Pyrenean chamois play a negligible role in the epidemiology of zoonotic enteropathogens and AMR, and are not potential bioindicators of the burden of alpine environments.
Collapse
Affiliation(s)
- Johan Espunyes
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Research and Conservation Department, Zoo de Barcelona, Barcelona, Spain.
| | - Oscar Cabezón
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Andrea Dias-Alves
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pol Miralles
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Teresa Ayats
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marta Cerdà-Cuéllar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
44
|
Wild Boars Carry Extended-Spectrum β-Lactamase- and AmpC-Producing Escherichia coli. Microorganisms 2021; 9:microorganisms9020367. [PMID: 33673341 PMCID: PMC7917586 DOI: 10.3390/microorganisms9020367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) represent major healthcare concerns. The role of wildlife in the epidemiology of these bacteria is unclear. The purpose of this study was to determine their prevalence in wild boars in Germany and to characterize individual isolates. A total of 375 fecal samples and 439 nasal swabs were screened for the presence of ESBL-/AmpC-E. coli and MRSA, respectively. The associations of seven demographic and anthropogenic variables with the occurrence of ESBL-/AmpC-E. coli were statistically evaluated. Collected isolates were subjected to antimicrobial susceptibility testing, molecular typing methods, and gene detection by PCR and genome sequencing. ESBL-/AmpC-E. coli were detected in 22 fecal samples (5.9%) whereas no MRSA were detected. The occurrence of ESBL-/AmpC-E. coli in wild boars was significantly and positively associated with human population density. Of the 22 E. coli, 19 were confirmed as ESBL-producers and carried genes belonging to blaCTX-M group 1 or blaSHV-12. The remaining three isolates carried the AmpC-β-lactamase gene blaCMY-2. Several isolates showed additional antimicrobial resistances. All four major phylogenetic groups were represented with group B1 being the most common. This study demonstrates that wild boars can serve as a reservoir for ESBL-/AmpC-producing and multidrug-resistant E. coli.
Collapse
|
45
|
Plaza-Rodríguez C, Alt K, Grobbel M, Hammerl JA, Irrgang A, Szabo I, Stingl K, Schuh E, Wiehle L, Pfefferkorn B, Naumann S, Kaesbohrer A, Tenhagen BA. Wildlife as Sentinels of Antimicrobial Resistance in Germany? Front Vet Sci 2021; 7:627821. [PMID: 33585611 PMCID: PMC7873465 DOI: 10.3389/fvets.2020.627821] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of bacteria carrying antimicrobial resistance (AMR) genes in wildlife is an indicator that resistant bacteria of human or livestock origin are widespread in the environment. In addition, it could represent an additional challenge for human health, since wild animals could act as efficient AMR reservoirs and epidemiological links between human, livestock and natural environments. The aim of this study was to investigate the occurrence and the antibiotic resistance patterns of several bacterial species in certain wild animals in Germany, including wild boars (Sus scrofa), roe deer (Capreolus capreolus) and wild ducks (family Anatidae, subfamily Anatinae) and geese (family Anatidae, subfamily Anserinae). In the framework of the German National Zoonoses Monitoring Program, samples from hunted wild boars, roe deer and wild ducks and geese were collected nationwide in 2016, 2017, and 2019, respectively. Fecal samples were tested for the presence of Salmonella spp. (in wild boars and wild ducks and geese), Campylobacter spp. (in roe deer and wild ducks and geese), Shiga toxin-producing Escherichia (E.) coli (STEC), commensal E. coli and extended-spectrum beta-lactamase- (ESBL) or ampicillinase class C (AmpC) beta-lactamase-producing E. coli (in wild boars, roe deer and wild ducks and geese). In addition, the presence of methicillin-resistant Staphylococcus aureus (MRSA) was investigated in nasal swabs from wild boars. Isolates obtained in the accredited regional state laboratories were submitted to the National Reference Laboratories (NRLs) for confirmation, characterization and phenotypic resistance testing using broth microdilution according to CLSI. AMR was assessed according to epidemiological cut-offs provided by EUCAST. Salmonella spp. were isolated from 13 of 552 (2.4%) tested wild boar fecal samples, but absent in all 101 samples from wild ducks and geese. Nine of the 11 isolates that were submitted to the NRL Salmonella were susceptible to all tested antimicrobial substances. Campylobacter spp. were isolated from four out of 504 (0.8%) roe deer fecal samples, but not from any of the samples from wild ducks and geese. Of the two isolates received in the NRL Campylobacter, neither showed resistance to any of the substances tested. From roe deer, 40.2% of the fecal samples (144 of 358) yielded STEC compared to 6.9% (37 of 536) from wild boars. In wild ducks and geese, no STEC isolates were found. Of 150 STEC isolates received in the NRL (24 from wild boars and 126 from roe deer), only one from each animal species showed resistance. Of the 219 isolates of commensal E. coli from wild boars tested for AMR, 210 were susceptible to all 14 tested substances (95.9%). In roe deer this proportion was even higher (263 of 269, 97.8%), whereas in wild ducks and geese this proportion was lower (41 of 49, 83.7%). Nevertheless, selective isolation of ESBL-/AmpC-producing E. coli yielded 6.5% (36 of 551) positive samples from wild boars, 2.3% (13 of 573) from roe deer and 9.8% (10 of 102) from wild ducks and geese. Among the 25 confirmed ESBL-/AmpC-producing isolates from wild boars, 14 (56.0%) showed resistance up to five classes of substances. This proportion was lower in roe deer (3 of 12, 25%) and higher in wild ducks and geese (7 of 10, 70%). None of the 577 nasal swabs from wild boars yielded MRSA. Results indicate that overall, the prevalence of resistant bacteria from certain wild animals in Germany is low, which may reflect not only the low level of exposure to antimicrobials but also the low level of resistant bacteria in the areas where these animals live and feed. However, despite this low prevalence, the patterns observed in bacteria from the wild animals included in this study are an indicator for specific resistance traits in the environment, including those to highest priority substances such as 3rd generation cephalosporins, fluoroquinolones and colistin. Therefore, also continuous monitoring of the occurrence of such bacteria in wildlife by selective isolation is advisable. Furthermore, the possible role of wildlife as reservoir and disperser of resistant bacteria would need to be assessed, as wild animals, and in particular wild ducks and geese could become spreaders of resistant bacteria given their capacity for long-range movements.
Collapse
Affiliation(s)
- Carolina Plaza-Rodríguez
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katja Alt
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Mirjam Grobbel
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Alexandra Irrgang
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Istvan Szabo
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kerstin Stingl
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Elisabeth Schuh
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Wiehle
- Department Food, Feed, Consumer Goods, German Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Beatrice Pfefferkorn
- Department Food, Feed, Consumer Goods, German Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Steffen Naumann
- Department Food, Feed, Consumer Goods, German Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Annemarie Kaesbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
46
|
Gambino D, Vicari D, Vitale M, Schirò G, Mira F, Giglia ML, Riccardi A, Gentile A, Giardina S, Carrozzo A, Cumbo V, Lastra A, Gargano V. Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Microorganisms 2021; 9:203. [PMID: 33478101 PMCID: PMC7835999 DOI: 10.3390/microorganisms9010203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Wild environments and wildlife can be reservoirs of pathogens and antibiotic resistance. Various studies have reported the presence of zoonotic bacteria, resistant strains, and genetic elements that determine antibiotic resistance in wild animals, especially near urban centers or agricultural and zootechnical activities. The purpose of this study was the analysis, by cultural and molecular methods, of bacteria isolated from wild animals in Sicily, Italy, regarding their susceptibility profile to antibiotics and the presence of antibiotic resistance genes. Bacteriological analyses were conducted on 368 wild animals, leading to the isolation of 222 bacterial strains identified by biochemical tests and 16S rRNA sequencing. The most isolated species was Escherichia coli, followed by Clostridium perfringens and Citrobacter freundii. Antibiograms and the determination of resistance genes showed a reduced spread of bacteria carrying antibiotic resistance among wild animals in Sicily. However, since several wild animals are becoming increasingly close to residential areas, it is important to monitor their health status and to perform microbiological analyses following a One Health approach.
Collapse
Affiliation(s)
- Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Maria La Giglia
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Alessandra Riccardi
- Department of Veterinary Science, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy;
| | - Antonino Gentile
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Susanna Giardina
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Anna Carrozzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Valentina Cumbo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Antonio Lastra
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| | - Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi n. 3, 90129 Palermo, Italy; (D.G.); (M.V.); (G.S.); (F.M.); (M.L.G.); (A.G.); (S.G.); (A.C.); (V.C.); (A.L.); (V.G.)
| |
Collapse
|
47
|
Nowakiewicz A, Zięba P, Gnat S, Osińska M, Łagowski D, Kosior-Korzecka U, Puzio I, Król J. Analysis of the occurrence and molecular characteristics of drug-resistant strains of Enterococcus faecalis isolated from the gastrointestinal tract of insectivorous bat species in Poland: A possible essential impact on the spread of drug resistance? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116099. [PMID: 33272805 DOI: 10.1016/j.envpol.2020.116099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Bats are poorly understood as a reservoir of multidrug-resistant strains; therefore, the aim of this study was to determine molecular characterization of multidrug-resistant Enterococcus strains isolated from bat species from Poland. A multi-stage analysis based on targeted isolation of drug-resistant strains (selective media with tetracycline, chloramphenicol, gentamicin, streptomycin, and vancomycin), determination of the phenotypic profile of drug-susceptibility using the disc diffusion method, and amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) was used for the isolation and differentiation of strains. The applied strategy finally allowed identification of E. faecalis resistant to at least one antimicrobial in 47.2% of the single-animal group and in 46.9% of the pooled samples of bat's guano. Out of the 36 distinct isolates, 69% met the criteria of multi-drug resistance, with a dominant combination of resistance to tetracycline, erythromycin, and rifampicin. Simultaneously, 41.6% of the strains were high-level aminoglycoside resistant (HLAR). In most strains, phenotypic resistance was reflected in the presence of at least one gene encoding resistance to a given drug. Moreover, our research results show that some genes were detected simultaneously in the same strain statistically significantly more frequently. This may confirm that the spread of some genes (tetM and ermB or aph (3')-IIIa as well as gelE and aac (6')-Ie-aph (2″)-Ia or ant (6)-Ia) is associated with their common occurrence on the same mobile genetic element. To our knowledge, this is the first analysis of multidrug-resistance among E. faecalis isolated from bats. Our research demonstrates that the One Health concept is not associated exclusively with food-producing animals and humans, but other species of wildlife animals should be covered by monitoring programs as well. We confirmed for the first time that bats are an important reservoir of multi-resistant E. faecalis strains and could have a great impact on environmental resistance.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325, Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Urszula Kosior-Korzecka
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Pathophysiology, Akademicka 12, 20-033, Lublin, Poland
| | - Iwona Puzio
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Animal Physiology, Akademicka 12, 20-033, Lublin, Poland
| | - Jarosław Król
- Wrocław University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Pathology, Division of Microbiology, C. K. Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
48
|
Gwenzi W, Chaukura N, Muisa-Zikali N, Teta C, Musvuugwa T, Rzymski P, Abia ALK. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:antibiotics10010068. [PMID: 33445633 PMCID: PMC7826649 DOI: 10.3390/antibiotics10010068] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
This paper reviews the occurrence of antimicrobial resistance (AMR) in insects, rodents, and pets. Insects (e.g., houseflies, cockroaches), rodents (rats, mice), and pets (dogs, cats) act as reservoirs of AMR for first-line and last-resort antimicrobial agents. AMR proliferates in insects, rodents, and pets, and their skin and gut systems. Subsequently, insects, rodents, and pets act as vectors that disseminate AMR to humans via direct contact, human food contamination, and horizontal gene transfer. Thus, insects, rodents, and pets might act as sentinels or bioindicators of AMR. Human health risks are discussed, including those unique to low-income countries. Current evidence on human health risks is largely inferential and based on qualitative data, but comprehensive statistics based on quantitative microbial risk assessment (QMRA) are still lacking. Hence, tracing human health risks of AMR to insects, rodents, and pets, remains a challenge. To safeguard human health, mitigation measures are proposed, based on the one-health approach. Future research should include human health risk analysis using QMRA, and the application of in-silico techniques, genomics, network analysis, and ’big data’ analytical tools to understand the role of household insects, rodents, and pets in the persistence, circulation, and health risks of AMR.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount. Pleasant, Harare P.O. Box MP167, Zimbabwe
- Correspondence: or (W.G.); or (A.L.K.A.)
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Norah Muisa-Zikali
- Department of Environmental Sciences and Technology, School of Agricultural Sciences and Technology, Chinhoyi University of Technology, Private Bag, Chinhoyi 7724, Zimbabwe; or
| | - Charles Teta
- Future Water Institute, Faculty of Engineering & Built Environment, University of Cape Town, Cape Town 7700, South Africa;
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences, Sol Plaatje University, Kimberley 8300, South Africa;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Correspondence: or (W.G.); or (A.L.K.A.)
| |
Collapse
|
49
|
Massella E, Reid CJ, Cummins ML, Anantanawat K, Zingali T, Serraino A, Piva S, Giacometti F, Djordjevic SP. Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Antibiotics (Basel) 2020; 9:antibiotics9110782. [PMID: 33172096 PMCID: PMC7694828 DOI: 10.3390/antibiotics9110782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.
Collapse
Affiliation(s)
- Elisa Massella
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Cameron J. Reid
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Max L. Cummins
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Kay Anantanawat
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Tiziana Zingali
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
- Correspondence:
| |
Collapse
|
50
|
Bleichenbacher S, Stevens MJA, Zurfluh K, Perreten V, Endimiani A, Stephan R, Nüesch-Inderbinen M. Environmental dissemination of carbapenemase-producing Enterobacteriaceae in rivers in Switzerland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115081. [PMID: 32806462 DOI: 10.1016/j.envpol.2020.115081] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The aquatic environment takes on a key role in the dissemination of antimicrobial-resistant Enterobacteriaceae. This study assesses the occurrence of carbapenemase-producing Enterobacteriaceae (CPE) in freshwater samples from rivers, inland canals, and streams throughout Switzerland, and characterizes the isolated strains using phenotypic and NGS-based genotypic methods. CPE producing KPC-2 (n = 2), KPC-3 (n = 1), NDM-5 (n = 3), OXA-48 (n = 3), OXA-181 (n = 6), and VIM-1 (n = 2) were detected in 17/164 of the water samples. Seven Escherichia coli had sequence types (STs) that belonged to extra-intestinal pathogenic clonal lineages ST38, ST73, ST167, ST410, and ST648. The majority (16/17) of the carbapenemase genes were located on plasmids, including the widespread IncC (n = 1), IncFIIA (n = 1), and IncFIIB plasmids (n = 4), the epidemic IncL (n = 1) and IncX3 (n = 5) plasmids, a rare Col156 plasmid (n = 1), and the mosaic IncFIB, IncR, and IncQ plasmids (n = 3). Plasmids were composed of elements that were identical to those of resistance plasmids retrieved from clinical and veterinary isolates locally and worldwide. Our data show environmental dissemination of high-risk CPE clones in Switzerland. Epidemic and mosaic-like plasmids carrying clinically relevant carbapenemase genes are replicating and evolving pollutants of river ecosystems, representing a threat to public health and environmental integrity.
Collapse
Affiliation(s)
- Stephanie Bleichenbacher
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland.
| |
Collapse
|