1
|
Hu J, Volker B, Bogar M. Selective fluorescence sensors for Cu 2+ and Hg 2+ ions using acridinium-polymer complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125220. [PMID: 39357251 DOI: 10.1016/j.saa.2024.125220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
The photophysical properties of two acridinium derivatives, 9-phenyl-10-methylacridinium (Ph-Arc+) and 9-mesityl-10-methyl acridinium (Mes-Acr+) were investigated in aqueous solutions of poly(methacrylic acids) (PMAA) at various pH values with various polymer to dye (R/D) ratios. In acidic conditions, PMAA effectively turned on the emission of both acridinium derivatives. Micromolar concentrations of copper (II) ions can selectively turn off the emission of dye/PMAA mixtures with a linear response range from 0.50 to 10.0 µM and a detection limit as low as 0.38 µM. In near neutral conditions, Mes-Acr+ in PMAA solutions displayed extremely weak emission. However, trace amounts of Hg2+ ions can instantly turn on the emission with a low detection limit of 43.6 nM and a linear range between 1.0 to 10.0 µM. This analytical method is fast, cost-effective, and environmentally friendly, as it is conducted in 100 % aqueous solution with commercial acridinium derivatives and a biocompatible polymer.
Collapse
Affiliation(s)
- Jingqiu Hu
- West Chester University of Pennsylvania, 700 South High Street, West Chester, PA 19383, United States.
| | - Bryce Volker
- West Chester University of Pennsylvania, 700 South High Street, West Chester, PA 19383, United States
| | - Maima Bogar
- West Chester University of Pennsylvania, 700 South High Street, West Chester, PA 19383, United States
| |
Collapse
|
2
|
Wang J, Zhang Y, Zhou L, Gao Y, Li K, Sun S. Multiple effects of carbon, sulfur and iron on microbial mercury methylation in black-odorous sediments. ENVIRONMENTAL RESEARCH 2024; 263:120048. [PMID: 39313174 DOI: 10.1016/j.envres.2024.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Black-odorous sediments provide ideal conditions for microbial mercury methylation. However, the multiple effects of carbon, sulfur, and iron on the microbial methylmercury of mercury in black-odorous sediments remains unclear. In this study, we conducted mercury methylation experiments using sediments collected from organically contaminated water bodies, as well as black-odorous sediments simulated in the laboratory. The results showed that black-odorous sediments exhibit a high capacity for mercury methylation. By simulating the blackening and odorization process in sediments, it was confirmed that dissolved oxygen, organic matter and sulfide were the primary factors triggering the black-odorous phenomenon in sediments. Regarding the influence of key factors in sediments on methylmercury formation, the batch tests demonstrated that high concentrations of organics additions (above 200 mg/L) may reduce bacterial activity and weaken mercury methylation in sediments. Under five different iron-sulfur ratios, the concentrations of methylmercury in the black-odorous sediments showed an increasing trend, the ratio of 5.0 Fe/S exhibited the highest MeHg accumulation. The iron-sulfur ratio in the sediment had a significant effect on the mercury methylation process, which was mainly due to the competition between Fe2+ and Hg2+ for sulfide sites and the adsorption/coprecipitation of Hg2+ by FeS. These findings offer a potential avenue for further understanding and controlling mercury methylation, contributing to the mitigation of the potential threat of mercury pollution to the environment and human health.
Collapse
Affiliation(s)
- Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.
| | - Yan Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Kai Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China.
| |
Collapse
|
3
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2024:10.1007/s00204-024-03903-2. [PMID: 39567405 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
4
|
Alam MZ, Khan SA. A Review on Pyridine Based Colorimetric and Fluorometric Chemosensor for Detection of Hg 2+ ion. J Fluoresc 2024:10.1007/s10895-024-04005-z. [PMID: 39527360 DOI: 10.1007/s10895-024-04005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Pyridine, N-containing heterocyclic organic compound, displays strong coordination capabilities with various metal ions. It can be synthesized through various methods, such as Friedlander synthesis, heterocumulene synthesis, cross-coupling reactions, the Radziszewski reaction, Bonnemann cyclization, as well as cobalt-catalyzed synthesis. Experimental and spectroscopic analyses have demonstrated a strong binding affinity between pyridine and several heavy metal ions, including Pb2+, Hg2+, and Cd2+ ions. The escalating environmental pollution caused by the disposal of heavy metal ions in rivers, open air, and water reservoirs poses a significant threat to both ecosystem and human health. To address these environmental challenges, a cost-effective and easily synthesized chemosensor has been prepared for identifying toxic heavy metal ions in various samples. Pyridine's photophysical properties make it an effective sensor for detecting Hg2+ ions, displaying fluorescence quenching or enhancement in their presence. The coordination between pyridine and Hg2+ ions lead to shifts in the absorption spectra. The pyridine-based sensor has been evaluated for its sensitivity, selectivity, and detection limits under different experimental conditions. Pyridine's solubility and environmental stability make it applicable for real-time detection, making pyridine probes valuable tool for monitoring toxic Hg2+ ions in the environment. The results demonstrate that the pyridine-based chemosensor exhibits good selectivity and sensitivity for targeting Hg2+ ions, with detection limits within acceptable ranges. This review (from years 2011 to 2023) emphasizes the preparation of various substituted pyridine compounds as selective, sensitive, and specific sensors for real-time detection of Hg2+ ions.
Collapse
Affiliation(s)
- Md Zafer Alam
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Salman Ahmad Khan
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India.
| |
Collapse
|
5
|
Sosnowska M, Pitula E, Janik M, Bruździak P, Śmietana M, Olszewski M, Nidzworski D, Gromadzka B. Peptide-Based Rapid and Selective Detection of Mercury in Aqueous Samples with Micro-Volume Glass Capillary Fluorometer. BIOSENSORS 2024; 14:530. [PMID: 39589989 PMCID: PMC11591704 DOI: 10.3390/bios14110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Mercury, a toxic heavy metal produced through both natural and anthropogenic processes, is found in all of Earth's major systems. Mercury's bioaccumulation characteristics in the human body have a significant impact on the liver, kidneys, brain, and muscles. In order to detect Hg2+ ions, a highly sensitive and specific fluorescent biosensor has been developed using a novel, modified seven amino acid peptide, FY7. The tyrosine ring in the FY7 peptide sequence forms a 2:1 complex with Hg2+ ions that are present in the water-based sample. As a result, the peptide's fluorescence emission decreases with higher concentrations of Hg2+. The FY7 peptide's performance was tested in the presence of Hg2+ ions and other metal ions, revealing its sensitivity and stability despite high concentrations. Conformational changes to the FY7 structure were confirmed by FTIR studies. Simultaneously, we designed a miniaturized setup to support an in-house-developed micro-volume capillary container for volume fluorometry measurements. We compared and verified the results from the micro-volume system with those from the commercial setup. The micro-volume capillary system accommodated only 2.9 µL of sample volume, allowing for rapid, sensitive, and selective detection of toxic mercury (II) ions as low as 0.02 µM.
Collapse
Affiliation(s)
- Marta Sosnowska
- Department of Analysis and Chemical Synthesis, Institute of Biotechnology and Molecular Medicine, 80-180 Gdansk, Poland;
| | - Emil Pitula
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (E.P.); (M.J.); (M.Ś.)
| | - Monika Janik
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (E.P.); (M.J.); (M.Ś.)
| | - Piotr Bruździak
- Department of Physical Chemistry, Gdańsk University of Technology, 80-233 Gdansk, Poland;
| | - Mateusz Śmietana
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland; (E.P.); (M.J.); (M.Ś.)
- Department of Glass, Institute of Microelectronics and Photonics, Łukasiewicz Research Network, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Dawid Nidzworski
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, 80-180 Gdansk, Poland;
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, 80-180 Gdansk, Poland;
- NanoExpo®, 80-822 Gdansk, Poland
| |
Collapse
|
6
|
Mellingen RM, Rasinger JD, Nøstbakken OJ, Myrmel LS, Bernhard A. Dietary protein affects tissue accumulation of mercury and induces hepatic Phase I and Phase II enzyme expression after co-exposure with methylmercury in mice. J Nutr Biochem 2024; 133:109712. [PMID: 39094928 DOI: 10.1016/j.jnutbio.2024.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant, well known for its neurotoxic effects. MeHg can interact with several nutrients in the diet and affect nutrient metabolism, however the interaction between MeHg and dietary proteins has not been thoroughly investigated. Male BALB/c mice were fed diets based on either casein, cod or chicken as protein sources, which were or were not spiked with MeHg (3.5 mg Hg kg-1). Following 13 weeks of dietary exposure to MeHg, the animals accumulated mercury in a varying degree depending on the diet, where the levels of mercury were highest in the mice fed casein and MeHg, lower in mice fed cod and MeHg, and lowest in mice fed chicken and MeHg in all tissues assessed. Assessment of gut microbiota revealed differences in microbiota composition based on the different protein sources. However, the introduction of MeHg eliminated this difference. Proteomic profiling of liver tissue uncovered the influence of the dietary protein sources on a range of enzymes related to Phase I and Phase II detoxification mechanisms, suggesting an impact of the diet on MeHg metabolism and excretion. Also, enzymes linked to pathways including methionine and glycine betaine cycling, which in turn impact the production of glutathione, an important MeHg conjugation molecule, were up-regulated in mice fed chicken as dietary protein. Our findings indicate that dietary proteins can affect expression of hepatic enzymes that potentially influence MeHg metabolism and excretion, highlighting the relevance of considering the dietary composition in risk assessment of MeHg through dietary exposure.
Collapse
Affiliation(s)
- Ragnhild Marie Mellingen
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway; Department of Biomedicine, University of Bergen, Norway
| | - Josef Daniel Rasinger
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Ole Jakob Nøstbakken
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Lene Secher Myrmel
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway
| | - Annette Bernhard
- Department of Seafood, Nutrition and Environmental State, Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
7
|
Strachowski P, Mandava G, Lundqvist J, Bordes R, Abdollahi M. New Insight into Mercury Removal from Fish Meat Using a Single-Component Solution Containing cysteine. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400161. [PMID: 39545252 PMCID: PMC11557507 DOI: 10.1002/gch2.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Indexed: 11/17/2024]
Abstract
A novel approach for reducing mercury content in fish meat during post-packaging storage is developed to extend the margin of their safe consumption. It involves employing a single-component aqueous medium containing cysteine, as the active agent responsible for displacing mercury from fish proteins and its stabilization in the medium without the need for pH adjustments. The mercury removal efficiency depends on the cysteine concentration and its ratio to fish muscle. Using 1.2 wt% cysteine enables a reduction of mercury in canned Albacore tuna by 25-35%, depending on the fish product type and the exposure time of up to 2 weeks. The potential for the successful application of the developed method in active food packaging solutions is studied for the simultaneous or subsequent purification of the extraction solution through adsorption. Using thiolated silica could potentially enable the extraction process but it is shown that the presence of cysteine significantly hinders the adsorption.
Collapse
Affiliation(s)
- Przemysław Strachowski
- Department of Life Sciences ‐ Food and Nutrition ScienceChalmers University of TechnologyGothenburgSE 412 96Sweden
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health ‐ Swedish University of Agricultural SciencesUppsalaSE 750 07Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health ‐ Swedish University of Agricultural SciencesUppsalaSE 750 07Sweden
| | - Romain Bordes
- Department of Chemistry and Chemical Engineering ‐ Applied ChemistryChalmers University of TechnologyGothenburgSE 412 96Sweden
| | - Mehdi Abdollahi
- Department of Life Sciences ‐ Food and Nutrition ScienceChalmers University of TechnologyGothenburgSE 412 96Sweden
| |
Collapse
|
8
|
Sanderson BJ, Sims-West DJ, Macdonald SJ. Acute exposure to mercury drives changes in gene expression in Drosophila melanogaster. BMC Res Notes 2024; 17:279. [PMID: 39350189 PMCID: PMC11443822 DOI: 10.1186/s13104-024-06945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE We quantified the effect of acute exposure to a high dosage of inorganic mercury on gene expression in Drosophila melanogaster using RNA-sequencing of whole adult females. RESULTS We found 119 genes with higher gene expression following treatment (including all 5 Drosophila metallothionine genes and a number of heat shock protein genes), and 31 with lower expression (several of which are involved in egg formation). Our results highlight biological processes and genetic pathways impacted by exposure to this toxic metal, and provide motivation for future studies to understand the genetic basis of response to mercury.
Collapse
Affiliation(s)
- Brian J Sanderson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| | - Dylan J Sims-West
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
9
|
Zhao W, Gan R, Xian B, Wu T, Wu G, Huang S, Wang R, Liu Z, Zhang Q, Bai S, Fu M, Zhang Y. Overview of Methylation and Demethylation Mechanisms and Influencing Factors of Mercury in Water. TOXICS 2024; 12:715. [PMID: 39453135 PMCID: PMC11511217 DOI: 10.3390/toxics12100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Mercury, particularly in its methylated form, poses a significant environmental and health risk in aquatic ecosystems. While the toxicity and bioaccumulation of mercury are well documented, there remains a critical gap in our understanding of the mechanisms governing mercury methylation and demethylation in aquatic environments. This review systematically examines the complex interplay of chemical, biological, and physical factors that influence mercury speciation and transformation in natural water systems. We provide a comprehensive analysis of methylation and demethylation processes, specifically focusing on the dominant role of methanogenic bacteria. Our study highlights the crucial function of hgcAB genes in facilitating mercury methylation by anaerobic microorganisms, an area that represents a frontier in current research. By synthesizing the existing knowledge and identifying key research priorities, this review offers novel insights into the intricate dynamics of mercury cycling in aquatic ecosystems. Our findings provide a theoretical framework to inform future studies and guide pollution management strategies for mercury and its compounds in aquatic environments.
Collapse
Affiliation(s)
- Wenyu Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Runjie Gan
- Guangxi Beitou Environmental Protection & Water Group Co., Ltd., Nanning 530025, China
| | - Bensen Xian
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Tong Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Guoping Wu
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Shixin Huang
- Ecological Environment Monitoring Station of Shunde, Foshan 528399, China; (G.W.); (S.H.)
| | - Ronghua Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin 541100, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; (W.Z.); (B.X.); (T.W.); (Z.L.); (Q.Z.); (S.B.); (M.F.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
10
|
Guo J, Dong C, Zhang X, Liu Y, Leng Y, Wang G, Chen Z. Colorimetric sensors constructed with one dimensional PtNi nanowire and Pt nanowire nanozymes for Hg 2+ detection. Anal Chim Acta 2024; 1321:343039. [PMID: 39155104 DOI: 10.1016/j.aca.2024.343039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND In recent years, environmental pollution has attracted widespread global attention. Among them, environmental problems caused by heavy metal pollution pose a serious threat to human health and ecosystems. Mercury is a common heavy metal pollutant with high toxicity and wide distribution. Excessive intake of Hg2+ can cause permanent and severe damage to the nervous system, respiratory system, and kidneys in the human body. Therefore, developing both accurate and fast detection methods for Hg2+ is of great significance. RESULTS A sensitive Hg2+ colorimetric sensor is designed based on PtNi nanowires (NWs) and Pt NWs with peroxidase-mimetic activity. PtNi NWs and Pt NWs catalyze the reaction of 3,3', 5,5'-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) to produce blue oxidized TMB (oxTMB). The specific interaction of Pt-Hg significantly inhibits the peroxidase-mimetic activity of PtNi NW and Pt NW nanozymes, resulting in a lighter blue color. It is worth noting that compared with specific activity (SA) of Pt NWs (3.31 U/mg), PtNi NWs own superior SA (10.43 U/mg), which inevitably leads to a wider linear range of Hg2+ analysis (1 nM-200 μM) and a lower detection limit (0.6748 nM) for PtNi NWs-based colorimetric sensor, versus linear range (4 nM-5 μM) and LOD of 1.198 nM for Pt NWs-based colorimetric sensor, which are far below the Hg2+ threshold (10 nM) for drinking water set by the US Environmental Protection Agency. SIGNIFICANCE The two nanozyme colorimetric sensors have been successfully used for the evaluation of Hg2+ in complex river water and tap water. Due to the advantages of simple operation, fast response, and high sensitivity, colorimetric sensors have broad application prospects in environmental monitoring.
Collapse
Affiliation(s)
- Jingyuan Guo
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chenxin Dong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xiang Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yujia Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yumin Leng
- School of Mathematics and Physics, Research Center for Environmental Monitoring and Sensor Design, Anqing Normal University, Anqing, 246133, China.
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
11
|
Zhang H, Wang J, Zhang K, Shi J, Gao Y, Zheng J, He J, Zhang J, Song Y, Zhang R, Shi X, Jin L, Li H. Association between heavy metals exposure and persistent infections: the mediating role of immune function. Front Public Health 2024; 12:1367644. [PMID: 39104887 PMCID: PMC11298456 DOI: 10.3389/fpubh.2024.1367644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Persistent infections caused by certain viruses and parasites have been associated with multiple diseases and substantial mortality. Heavy metals are ubiquitous environmental pollutants with immunosuppressive properties. This study aimed to determine whether heavy metals exposure suppress the immune system, thereby increasing the susceptibility to persistent infections. Methods Using data from NHANES 1999-2016, we explored the associations between heavy metals exposure and persistent infections: Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis C Virus (HCV), Herpes Simplex Virus Type-1 (HSV-1), Toxoplasma gondii (T. gondii), and Toxocara canis and Toxocara cati (Toxocara spp.) by performing logistic regression, weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models. Mediation analysis was used to determine the mediating role of host immune function in these associations. Results Logistic regression analysis revealed positive associations between multiple heavy metals and the increased risk of persistent infections. In WQS models, the heavy metals mixture was associated with increased risks of several persistent infections: CMV (OR: 1.58; 95% CI: 1.17, 2.14), HCV (OR: 2.94; 95% CI: 1.68, 5.16), HSV-1 (OR: 1.25; 95% CI: 1.11, 1.42), T. gondii (OR: 1.97; 95% CI: 1.41, 2.76), and Toxocara spp. (OR: 1.76; 95% CI: 1.16, 2.66). BKMR models further confirmed the combined effects of heavy metals mixture and also identified the individual effect of arsenic, cadmium, and lead. On mediation analysis, the systemic immune inflammation index, which reflects the host's immune status, mediated 12.14% of the association of mixed heavy metals exposure with HSV-1 infection. Discussion The findings of this study revealed that heavy metals exposure may increase susceptibility to persistent infections, with the host's immune status potentially mediating this relationship. Reducing exposure to heavy metals may have preventive implications for persistent infections, and further prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lina Jin
- School of Public Health, Jilin University, Changchun, China
| | - Hui Li
- School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang Q, Wei Z, Jia X. Controllable detection threshold achieved through the toehold switch system in a mercury ion whole-cell biosensor. Biosens Bioelectron 2024; 256:116283. [PMID: 38608495 DOI: 10.1016/j.bios.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Due to the toxicity of mercury and its harmful effects on human health, it is essential to establish a low-cost, highly sensitive and highly specific monitoring method with a wide detection range, ideally with a simple visual readout. In this study, a whole-cell biosensor with adjustable detection limits was developed for the detection of mercury ions in water samples, allowing controllable threshold detection with an expanded detection range. Gene circuits were constructed by combining the toehold switch system with lactose operon, mercury-ion-specific operon, and inducible red fluorescent protein gene. Using MATLAB for design and selection, a total of eleven dual-input single-output sensing logic circuits were obtained based on the basic logic of gene circuit construction. Then, biosensor DTS-3 was selected based on its fluorescence response at different isopropyl β-D-Thiogalactoside (IPTG) concentrations, exhibiting the controllable detection threshold. At 5-20 μM IPTG, DTS-3 can achieve variable threshold detection in the range of 0.005-0.0075, 0.06-0.08, 1-2, and 4-6 μM mercury ion concentrations, respectively. Specificity experiments demonstrated that DTS-3 exhibits good specificity, not showing fluorescence response changes compared with other metal ions. Furthermore spiked sample experiments demonstrated its good resistance to interference, allowing it to distinguish mercury ion concentrations as low as 7.5 nM by the naked eye and 5 nM using a microplate reader. This study confirms the feasibility and performance of biosensor with controllable detection threshold, providing a new detection method and new ideas for expanding the detection range of biosensors while ensuring rapid and convenient measurements without compromising sensitivity.
Collapse
Affiliation(s)
- Qinglong Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Zixiang Wei
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
13
|
Sun X, Deng Y, Fang L, Ni M, Wang X, Zhang T, Chen Y, Cai G, Pan F. Association of Exposure to Heavy Metal Mixtures with Systemic Immune-Inflammation Index Among US Adults in NHANES 2011-2016. Biol Trace Elem Res 2024; 202:3005-3017. [PMID: 37817047 DOI: 10.1007/s12011-023-03901-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
In reality, people are often co-exposed to multiple heavy metals; however, current research has focused on the association between individual heavy metals and inflammation. Therefore, it is more relevant to explore the combined effects of multiple heavy metal exposure on inflammation. The study included data from the National Health and Nutrition Examination Survey (NHANES), 2011-2016. The systemic immune-inflammation index (SII) was used to reflect systemic immune-inflammation status. In this study, single variable models were used to assess the linear and non-linear relationships between single heavy metal exposures and SII. To analyze the combined effect of mixed heavy metals exposure on SII, we constructed three statistical models, including weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR). The single-exposure analysis found positive associations between multiple heavy metals and SII, while mercury in blood was negatively associated with SII, and U-shaped correlations were observed between blood lead, urine barium and strontium, and SII. In the WQS model, SII increased significantly with increasing concentrations of mixed heavy metals, while consistent results in the qgcomp model, but not statistically significant. In the BKMR model, exposure to heavy metal mixtures was positively associated with SII, with mercury, cadmium, and cobalt in urine contributing the most to the mixed exposure. In addition, synergistic and antagonistic effects between heavy metals on increasing SII were found in our study. In summary, our results reveal that combined exposure to multiple heavy metals is positively associated with SII in the US adults.
Collapse
Affiliation(s)
- Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Bothara SS, Parihar P, Patil R. Diagnostic and Therapeutic Challenges in Intravenous Mercury Poisoning: A Case Report. Cureus 2024; 16:e64383. [PMID: 39131007 PMCID: PMC11317114 DOI: 10.7759/cureus.64383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Intravenous mercury poisoning is a rare but severe medical emergency, often resulting from accidental exposure or intentional self-harm. We present the case of a 30-year-old male with a history of sickle cell anemia who presented with high-grade fever, vomiting, giddiness, and breathlessness following intravenous mercury self-administration. Diagnostic challenges included distinguishing symptoms of acute mercury toxicity from those of his chronic condition of sickle cell trait. Markedly elevated serum mercury levels confirmed the diagnosis, with high-resolution computed tomography (HRCT) imaging studies revealing mercury deposits and alveolar lung injury. Management involved antidote of mercury poisoning, including non-invasive ventilation and transfusions, with consultations from multiple specialties. The patient demonstrated significant clinical improvement and was discharged with scheduled follow-ups. This case underscores the complexity of diagnosing and managing intravenous mercury poisoning, highlighting the importance of a comprehensive multidisciplinary approach for optimal patient outcomes.
Collapse
Affiliation(s)
- Shivani S Bothara
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pratapsingh Parihar
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ravishankar Patil
- Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
15
|
Li S, Yin K, Wang Y, Tan L, Zhao J, Pan S, Yang L, He D. Integrating ICP-MS and Chemometrics for Profiling Inorganic Elements in Lianhua Qingwen Capsules and Evaluating Health Risk. Biol Trace Elem Res 2024:10.1007/s12011-024-04279-1. [PMID: 38926229 DOI: 10.1007/s12011-024-04279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Lianhua Qingwen capsule (LHQWC) is composed of 13 traditional Chinese herbs. In this study, we employed inductively coupled plasma mass spectrometry (ICP-MS) to quantify the concentrations of 26 inorganic elements (Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Hg, Tl, Pb, U) across 22 batches of LHQWC. These results were complemented with Chemometrics analysis and health risk assessment of selected hazardous elements. Chemometric analysis revealed significant quality variations among the 22 batches of LHQWC, identifying U, Cs, Tl, Rb, Mn, As, Mg, and Al as characteristic elements influencing formulation consistency. Moreover, the health risk assessment indicated that while levels of Cu, As, Cd, Pb, Cr, and Hg in LHQWC were within acceptable limits, concerns arose regarding vanadium levels in certain batches. These findings underscore the necessity of comprehensive elemental analysis and health risk assessment to ensure the safety and quality of LHQWC. Our study provides valuable insights for both quality evaluation and regulatory considerations in the production of LHQWC and similar herbal formulations.
Collapse
Affiliation(s)
- Shuya Li
- College of Pharmacy, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ke Yin
- College of Pharmacy, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yiwu Wang
- College of Pharmacy, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lihong Tan
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Jianing Zhao
- College of Pharmacy, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shuxiang Pan
- College of Pharmacy, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lin Yang
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Dan He
- College of Pharmacy, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
16
|
Arrighi S, Franceschini F, Petrini R, Fornasaro S, Ghezzi L. The Legacy of Hg Contamination in a Past Mining Area (Tuscany, Italy): Hg Speciation and Health Risk Assessment. TOXICS 2024; 12:436. [PMID: 38922116 PMCID: PMC11209415 DOI: 10.3390/toxics12060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The mercury cell manufacturing process, which has been extensively used in chlor-alkali plants to produce chlorine and caustic soda by electrolysis, represents a major source of Hg environmental pollution. At Saline di Volterra (Tuscany, Italy), solution mining by pumping water into halite deposits was applied to produce brines for a mercury-cell chlor-alkali plant. The Hg-contaminated, exhausted brines were pumped back at depth into the rock salt field in order to renew the available resources. Activities ceased in 1994, following the leakage dispersion of highly contaminated Hg(0)-bearing brines into the environment. The mercury content in the soil, measured during a survey conducted in 2000, reached 334 mg/kg, highlighting diffuse contamination in the floodplain. By 2009, the Hg concentration had generally decreased and was mostly confined to the topsoil layer. In order to evaluate the present Hg soil pollution, a geochemical survey was carried out in 2023, almost thirty years after the contamination event. The obtained data indicated the occurrence of legacy Hg, which reached 25.5 mg/kg in some soil samples. Speciation analysis for the most contaminated soil revealed that Hg(0) represented about 17.3% of the total Hg and that water-soluble and organic Hg fractions were negligible. These results suggest that the originally released metallic mercury has volatilized and likely oxidized, becoming practically immobile in the soil. A risk assessment, performed by applying Hg speciation analysis, indicated that the mercury in the soil does not carry a risk of non-cancerous effects for different exposure routes in case of subsequent use of the site and that the formerly contaminated area can now be converted into a leisure area.
Collapse
Affiliation(s)
- Simone Arrighi
- Department of Earth Science, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy; (S.A.); (R.P.); (L.G.)
| | - Fabrizio Franceschini
- Environmental Protection Agency of Tuscany (ARPAT), Via Vittorio Veneto, 56127 Pisa, Italy;
| | - Riccardo Petrini
- Department of Earth Science, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy; (S.A.); (R.P.); (L.G.)
| | - Silvia Fornasaro
- Department of Earth Science, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy; (S.A.); (R.P.); (L.G.)
| | - Lisa Ghezzi
- Department of Earth Science, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy; (S.A.); (R.P.); (L.G.)
| |
Collapse
|
17
|
Torres-Ruiz M, de Alba Gonzalez M, Cañas Portilla AI, Coronel R, Liste I, González-Caballero MC. Effects of nanomolar methylmercury on developing human neural stem cells and zebrafish Embryo. Food Chem Toxicol 2024; 188:114684. [PMID: 38663761 DOI: 10.1016/j.fct.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Exposure to mercury and its organic form methylmercury (MeHg), is of great concern for the developing nervous system. Despite available literature on MeHg neurotoxicity, there is still uncertainty about its mechanisms of action and the doses that trigger developmental effects. Our study combines two alternative methodologies, the human neural stem cells (NSC) and the zebrafish (ZF) embryo, to address the neurotoxic effects of early exposure to nanomolar concentrations of MeHg. Our results show linear or nonmonotonic (hormetic) responses depending on studied parameters. In ZF, we observed a hormetic response in locomotion and larval rotation, but a concentration-dependent response for sensory organ size and habituation. We also observed a possible delayed response as MeHg had greater effects on larval activity at 5 days than at 24 h. In NSC cells, some parameters show a clear dose dependence, such as increased apoptosis and differentiation to glial cells or decreased neuronal precursors; while others show a hormetic response: neuronal differentiation or cell proliferation. This study shows that the ZF model was more susceptible than NSC to MeHg neurotoxicity. The combination of different models has improved the understanding of the underlying mechanisms of toxicity and possible compensatory mechanisms at the cellular and organismal level.
Collapse
Affiliation(s)
- Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain.
| | - Mercedes de Alba Gonzalez
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Ana I Cañas Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain
| | - Raquel Coronel
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Madrid, Spain
| | - Isabel Liste
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid, 28220, Spain.
| |
Collapse
|
18
|
Anjum S, Kumari A. Bioaccumulation of Lead and Mercury in Water, Sediment, and Fish Samples of Baraila Lake, Vaishali, Bihar. Biol Trace Elem Res 2024:10.1007/s12011-024-04224-2. [PMID: 38763981 DOI: 10.1007/s12011-024-04224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
In the current study, a protected subtropical wetland in Bihar (India), Baraila Lake, was investigated for heavy metal (Pb and Hg) status. These metals tend to bioaccumulate in fish, posing a concern to human health. This study reported the concentration of lead and mercury in water, sediment, and fish muscles of Baraila Lake in the year 2022. The samples were collected from pre-monsoon and post-monsoon seasons at four sampling locations, i.e., Loma, Dhulwar, Chakaiya, and Kawai Baraila, and were analyzed in triplicates. Lead concentration in water samples of all four sites of Baraila Lake observed during pre-monsoon and post-monsoon season exceeded the permissible limit for drinking water, while the mercury concentration of all sites was under the permissible limit in both seasons as prescribed by WHO. The extent of elemental pollution was evaluated using the Geo-accumulation index (Igeo), contamination factor (CF), contamination degree (Cd), ecological risk factor (Er), and the potential ecological risk index (Ri). Lead concentration in fish muscles of both seasons exceeded the permissible limit, while the concentration of mercury exceeded in Xenentodon cancila (0.55 ± 0.07 µg/g) during the pre-monsoon season. Also, estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were calculated in different fish muscles to assess potential human health risks. A higher THQ value of 1.303 was observed in carnivore fish during the pre-monsoon season.
Collapse
Affiliation(s)
- Saima Anjum
- Department of Zoology, Patna University, Patna, Bihar, India
| | - Anupma Kumari
- Department of Zoology, Patna University, Patna, Bihar, India.
| |
Collapse
|
19
|
Sales MVS, Barros EDSS, Azevedo RDS, Cunha FAS, Santos JCC, Leite ACR. Does acute exposure to thimerosal, an organic mercury compound, affect the mitochondrial function of an infant model? J Trace Elem Med Biol 2024; 83:127399. [PMID: 38325180 DOI: 10.1016/j.jtemb.2024.127399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Thimerosal (TM) is a toxic, organometallic mercury compound (which releases ethyl-mercury-containing compounds in aqueous solutions) used as a preservative in vaccines. Mitochondria are organelle which are highly vulnerable to many chemical compounds, including mercury (Hg) and its derivatives. METHOD Wistar rats (at 21 days of age) were used to model a child's TM exposure following childhood vaccination, divided in two groups: TM exposed (20 μg/kg/day) and unexposed controls (saline solution), both for 24 h. Atomic Fluorescence Spectrometry was used to quantify the amounts of mercury in tissues. The electron transport chain (ETC) from isolated mitochondria was evaluated using an oxygen electrode. The mitochondrial membrane potential and H2O2 production were analyzed using selective fluorescence probes. The activity of some enzymes (SOD, CAT, GPx, and AChE) and secondary markers of oxidative stress (GSH, GSSG, total free thiol) were also examined in tissues. RESULTS Hg accumulation in the brain and liver was higher in exposed animals when compared to the control. Liver-isolated mitochondria showed that TM improved respiratory control by 23%; however, states 3 and 4 of the ETC presented a decrease of 16% and 37%, respectively. Furthermore, brain-isolated mitochondria presented an improvement of 61% in respiratory control. Brain enzyme activities were significantly impacted in TM-exposed rats compared to unexposed rats as follows: decreases in SOD (32%) and AChE (42%) and increases in GPx (79%) and CAT (100%). GPx enzyme activity in the liver was significantly increased (37%). Among secondary oxidative stress markers, the brain's total reduced thiol (SH) concentration was significantly increased (41%). CONCLUSION Acute TM treatment exposure in a Wistar rat model mimicking TM exposure in an infant following childhood vaccination significantly damaged brain bioenergetic pathways. This study supports the ability of TM exposure to preferentially damage the nervous system.
Collapse
Affiliation(s)
- Marcos V S Sales
- Universidade Federal de Alagoas (UFAL), Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | | | - Rafael D S Azevedo
- Universidade de Pernambuco (UPE), Campus Garanhuns, 55294-902 São José, Pernambuco, Brazil
| | - Francisco A S Cunha
- Instituto de Química, Universidade Federal da Bahia (UFBA), Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | | | - Ana C R Leite
- Universidade Federal de Alagoas (UFAL), Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil.
| |
Collapse
|
20
|
Mestanza-Ramón C, Jiménez-Oyola S, Cedeño-Laje J, Villamar Marazita K, Gavilanes Montoya AV, Castillo Vizuete DD, Mora-Silva D, Carrera Almendáriz LS, Logroño-Naranjo S, Mazón-Fierro G, Herrera-Chávez R, D’Orio G, Straface S. Risks to Human Health from Mercury in Gold Mining in the Coastal Region of Ecuador. TOXICS 2024; 12:323. [PMID: 38787102 PMCID: PMC11125909 DOI: 10.3390/toxics12050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Artisanal and small-scale gold mining (ASGM) plays a crucial role in global gold production. However, the adoption of poor mining practices or the use of mercury (Hg) in gold recovery processes has generated serious environmental contamination events. The focus of this study is assessing the concentration of Hg in surface waters within the coastal region of Ecuador. The results are used to conduct a human health risk assessment applying deterministic and probabilistic methods, specifically targeting groups vulnerable to exposure in affected mining environments. Between April and June 2022, 54 water samples were collected from rivers and streams adjacent to mining areas to determine Hg levels. In the health risk assessment, exposure routes through water ingestion and dermal contact were considered for both adults and children, following the model structures outlined by the U.S. Environmental Protection Agency. The results indicate elevated Hg concentrations in two of the five provinces studied, El Oro and Esmeraldas, where at least 88% and 75% of the samples, respectively, exceeded the maximum permissible limit (MPL) set by Ecuadorian regulations for the preservation of aquatic life. Furthermore, in El Oro province, 28% of the samples exceeded the MPL established for drinking water quality. The high concentrations of Hg could be related to illegal mining activity that uses Hg for gold recovery. Regarding the human health risk assessment, risk values above the safe exposure limit were estimated. Children were identified as the most vulnerable receptor. Therefore, there is an urgent need to establish effective regulations that guarantee the protection of river users in potentially contaminated areas. Finally, it is important to continue investigating the contamination caused by human practices in the coastal region.
Collapse
Affiliation(s)
- Carlos Mestanza-Ramón
- Research Group YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, Sede Orellana, El Coca EC-220001, Ecuador; (D.M.-S.); (S.L.-N.)
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy;
| | - Samantha Jiménez-Oyola
- Facultad de Ingeniería en Ciencias de la Tierra, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil EC-090101, Ecuador; (S.J.-O.); (J.C.-L.); (K.V.M.)
| | - Juan Cedeño-Laje
- Facultad de Ingeniería en Ciencias de la Tierra, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil EC-090101, Ecuador; (S.J.-O.); (J.C.-L.); (K.V.M.)
| | - Karla Villamar Marazita
- Facultad de Ingeniería en Ciencias de la Tierra, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo, km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil EC-090101, Ecuador; (S.J.-O.); (J.C.-L.); (K.V.M.)
| | - Alex Vinicio Gavilanes Montoya
- Faculty of Natural Resources, Escuela Superior Politécnica de Chimborazo, Panamericana Sur, Km 1 ½, Riobamba EC-060155, Ecuador; (A.V.G.M.); (D.D.C.V.)
| | - Danny Daniel Castillo Vizuete
- Faculty of Natural Resources, Escuela Superior Politécnica de Chimborazo, Panamericana Sur, Km 1 ½, Riobamba EC-060155, Ecuador; (A.V.G.M.); (D.D.C.V.)
| | - Demmy Mora-Silva
- Research Group YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, Sede Orellana, El Coca EC-220001, Ecuador; (D.M.-S.); (S.L.-N.)
| | | | - Santiago Logroño-Naranjo
- Research Group YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, Sede Orellana, El Coca EC-220001, Ecuador; (D.M.-S.); (S.L.-N.)
| | - Guido Mazón-Fierro
- Faculty of Business Administration, Escuela Superior Politécnica de Chimborazo, Panamericana Sur, Km 1 ½, Riobamba EC-060155, Ecuador;
| | - Renato Herrera-Chávez
- Facultad de Ciencias Políticas y Administrativas, Universidad Nacional del Chimborazo, Av. Antonio José de Sucre Km 1 ½ Vía a Guano, Riobamba EC-060155, Ecuador;
| | - Giovanni D’Orio
- Department of Economics, Statistics and Finance, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | - Salvatore Straface
- Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
21
|
An Y, Li B, Yu Y, Zhou Y, Yi J, Li L, Sun Y, Qiang Z, Liu Y, Wang P. A rapid and specific fluorescent probe based on aggregation-induced emission enhancement for mercury ion detection in living systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133331. [PMID: 38142657 DOI: 10.1016/j.jhazmat.2023.133331] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Mercury is a harmful heavy metal that seriously threatens the environment and organisms. In this study, we combined the aggregation-induced emission mechanism and the advantages of peptides to design a novel tetraphenylene (TPE)-based peptide fluorescent probe, TPE-Cys-Pro-Gly-His (TPE-CPGH), in which the sulfhydryl group of Cys in the peptide chain and the imidazolium nitrogen provided by His were used to mimic the Hg2+ binding site of metalloproteins. The β-fold formed by Pro-Gly was used to promote the spatial coordination of the probe with Hg2+ and the formation of the coordination complex aggregates, these changes led to the "turn on" response to Hg2+. The detection of Hg2+ by TPE-CPGH not only showed high specificity and sensitivity (LOD=46.2 nM), but also had the advantages of fast response and applicability for detection over a wide pH range. Additionally, TPE-CPGH effectively detected Hg2+ in environmental samples, living cells and organisms due to its low cytotoxicity, high water solubility and cell membrane permeability. More interestingly, TPE-CPGH was also mitigated Hg2+ exposure-induced oxidative stress toxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Yong An
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China; Gansu Pharmaceutical Industry Innovation Research Institute, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Bo Li
- Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China
| | - Yongzhi Yu
- Department of Musculoskeletal Tumor, Gansu Province Hospital, Lanzhou, Gansu 730000, PR China
| | - Yucen Zhou
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Jianfeng Yi
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Lepeng Li
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Yongqiang Sun
- The First School of Clinical Medical, Gansu University Of Chinese Medicine, Lanzhou, Gansu 730000, PR China
| | - Zhengze Qiang
- Gansu Pharmaceutical Industry Innovation Research Institute, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, PR China.
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, PR China.
| |
Collapse
|
22
|
Izadi S, Tashkhourian J, Alireza Hosseini Hafshejani S. Ecofriendly ratiometric colorimetric determination of mercury(II) ion in environmental water samples using gallic acid-capped gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123778. [PMID: 38134657 DOI: 10.1016/j.saa.2023.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Today, the monitoring and determination of heavy metal pollutants in the environment is an essential requirement for the environmental and research communities. Mercury ion is one of the most hazardous heavy metals, and scientists are trying to develop new methods for its detection. In this study, a new colorimetric sensor based on aggregation gallic acid-capped gold nanoparticles (GA-AuNPs) for the determination of mercury ions in environmental water samples was presented. The green synthesized GA-AuNPs exhibited a sharp surface plasmon resonance peak at 515 nm. The addition of mercury ions changed the surface properties of GA-AuNPs, resulting in the formation of a new peak near 670 nm due to the aggregation of GA-AuNPs, and an obvious color change from red to purple occurred. Thus, mercury ions were detected based on the change in the absorbance ratio (A670/A515). The developed sensor can determine the mercury ions in the concentration range of 78.0 nM to 8.3 µM with a detection limit of 5.5 nM. Based on the Environmental Protection Agency (EPA) and the World Health Organization (WHO) reports, the amount of Hg2+ ions in fresh water should be between 10.0 and 30.0 nM. The results indicate that the developed sensor can detect and determine trace amounts of Hg2+ ions in environmental water samples.
Collapse
Affiliation(s)
- Sepehr Izadi
- Department of Chemistry, Faculty of Science, Shiraz University, Shiraz, Iran
| | - Javad Tashkhourian
- Department of Chemistry, Faculty of Science, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
23
|
Huo M, Xu X, Mi K, Ma W, Zhou Q, Lin X, Cheng G, Huang L. Co-selection mechanism for bacterial resistance to major chemical pollutants in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169223. [PMID: 38101638 DOI: 10.1016/j.scitotenv.2023.169223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Bacterial resistance is an emerging global public health problem, posing a significant threat to animal and human health. Chemical pollutants present in the environment exert selective pressure on bacteria, which acquire resistance through co-resistance, cross-resistance, co-regulation, and biofilm resistance. Resistance genes are horizontally transmitted in the environment through four mechanisms including conjugation transfer, bacterial transformation, bacteriophage transduction, and membrane vesicle transport, and even enter human bodies through the food chain, endangering human health. Although the co-selection effects of bacterial resistance to chemical pollutants has attracted widespread attention, the co-screening mechanism and co-transmission mechanisms remain unclear. Therefore, this article summarises the current research status of the co-selection effects and mechanism of environmental pollutants resistance, emphasising the necessity of studying the co-selection mechanism of bacteria against major chemical pollutants, and lays a solid theoretical foundation for conducting risk assessment of bacterial resistance.
Collapse
Affiliation(s)
- Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Qin Zhou
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xudong Lin
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
24
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
25
|
Zábojníková L. Seasonal and age-dependent differences in mercury concentrations in Apodemus sp. in the north-western region of Slovakia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10521-10532. [PMID: 38200190 PMCID: PMC10850257 DOI: 10.1007/s11356-023-31802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Pollution of ecosystems by heavy metals such as mercury is currently a great concern. Mercury (Hg) can be released into the environment anthropogenically, but it is also naturally present in small quantities in all environmental compartments. Many different factors contribute to different rates of Hg deposition in animal bodies. The aim of this work is to describe how Hg concentrations in the bodies of small rodents change throughout the season at a site where massive anthropogenic pollution is not expected. Mice of the genus Apodemus were sampled during the whole year. Samples of blood, hair, liver, kidney, and brain were analyzed. Total Hg concentrations were measured by DMA-80. The mean Hg concentrations in examined organs were in the order hairs > kidney > liver > blood > brain, and their values decreased from 0.0500 to 0.0046 mg kg-1 dry weight. Males and females did not differ in contamination levels, but age-dependent differences in Hg concentrations were found. It was also identified how Hg concentrations in different organs correlate with each other. Different levels of seasonal variability were detected in Hg concentrations in blood, hair, and kidney.
Collapse
Affiliation(s)
- Lenka Zábojníková
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 059 56, Tatranská Javorina, Slovakia.
| |
Collapse
|
26
|
Dutta D, Show S, Pal A, Anifowoshe AT, Prasad Aj M, Nongthomba U. The association of cysteine to thiomersal attenuates its apoptosis-mediated cytotoxicity in zebrafish. CHEMOSPHERE 2024; 350:141070. [PMID: 38160945 DOI: 10.1016/j.chemosphere.2023.141070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Thiomersal (TM) is an excellent preservative that is used in a wide variety of products, like pharmaceuticals, cosmetics, and vaccines, etc. Its usage has been in decline because of safety concerns. Since vaccine production is on the rise, its use may increase further in low-income and developing countries, as a cost-effective vaccine preservative. Further, Thiomersal is still being used as an essential component in various pharmaceutical preparations. In this light, the present study addresses its mechanism of toxicity in zebrafish and unveils a novel strategy for lessening its negative effects by conjugating cysteine to it, while retaining its antibacterial efficacy. We show that the mitochondrial membrane potential is destabilised by TM, leading to the induction of apoptosis. Interestingly, TM-cysteine conjugate (at a ratio of 1:1) showed no toxicity in zebrafish, whereas TM alone was highly toxic. Importantly, assaying for the bactericidal activity, tested using Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA), revealed that the conjugate retains the antibacterial activity, demonstrating that the TM-cysteine conjugate is a safer alternative to TM as a vaccine preservative, and in all the other products that still use TM.
Collapse
Affiliation(s)
- Debanjan Dutta
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Sautan Show
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India; Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Center, Mysore-570016, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Abass Toba Anifowoshe
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Mahadesh Prasad Aj
- Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Center, Mysore-570016, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
27
|
Li L, Xue B, Lin H, Lan W, Wang X, Wei J, Li M, Li M, Duan Y, Lv J, Chen Z. The adsorption and release mechanism of different aged microplastics toward Hg(II) via batch experiment and the deep learning method. CHEMOSPHERE 2024; 350:141067. [PMID: 38163463 DOI: 10.1016/j.chemosphere.2023.141067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Aged microplastics are ubiquitous in the aquatic environment, which inevitably accumulate metals, and then alter their migration. Whereas, the synergistic behavior and effect of microplastics and Hg(II) were rarely reported. In this context, the adsorptive behavior of Hg(II) by pristine/aged microplastics involving polystyrene, polyethylene, polylactic acid, and tire microplastics were investigated via kinetic (pseudo-first and second-order dynamics, the internal diffusion model), Langmuir, and Freundlich isothermal models; the adsorption and desorption behavior was also explored under different conditions. Microplastics aged by ozone exhibited a rougher surface attached with abundant oxygen-containing groups to enhance hydrophilicity and negative surface charge, those promoted adsorption capacity of 4-20 times increment compared with the pristine microplastics. The process (except for aged tire microplastics) was dominated by a monolayer chemical reaction, which was significantly impacted by pH, salinity, fulvic acid, and co-existing ions. Furthermore, the adsorbed Hg(II) could be effectively eluted in 0.04% HCl, simulated gastric liquids, and seawater with a maximum desorption amount of 23.26 mg/g. An artificial neural network model was used to predict the performance of microplastics in complex media and accurately capture the main influencing factors and their contributions. This finding revealed that aged microplastics had the affinity to trap Hg(II) from freshwater, whereafter it released the Hg(II) once transported into the acidic medium, the organism's gastrointestinal system, or the estuary area. These indicated that aged microplastics could be the sink or the source of Hg(II) depending on the surrounding environment, meaning that aged microplastics could be the vital carrier to Hg(II).
Collapse
Affiliation(s)
- Lianghong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Bin Xue
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning, China.
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Beihai, Guangxi, China; Marine Environmental Monitoring Centre of Guangxi, Beihai, Guangxi, China.
| | - Xinyi Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Mingen Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Jiatong Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Zixuan Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
28
|
Webster AM, Pinion D, Pineda E, Aboueisha H, Hussein MH, Fawzy MS, Toraih EA, Kandil E. Elucidating the link between thyroid cancer and mercury exposure: a review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12841-12855. [PMID: 38273084 PMCID: PMC10881592 DOI: 10.1007/s11356-024-32031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a widely distributed and bioavailable metal of public health concern, with many known human toxicities, but data regarding mercury's influence on thyroid cancer (TC) is scarce. Mercury is known to impact several molecular pathways implicated in carcinogenesis, and its proclivity for bioaccumulation in the thyroid suggests a potential modulatory effect. We conducted a literature/systematic review of studies between 1995-2022 intending to define better and establish relationships between these two entities, congregate the evidence for mercury's potential role in thyroid carcinogenesis, and identify populations of interest for further study. Insufficient evidence precludes definitive conclusions on dietary mercury as a TC risk factor; however, several common mechanisms affected by mercury are crucial for TC development, including biochemical, endocrine, and reactive oxygen species effects. Quantitative analysis revealed associations between TC risk and mercury exposure. In three mercury studies, average urine levels were higher in TC patients, with a mean difference of 1.86 µg/g creatinine (95% CI = 0.32-3.41). In two studies investigating exposure to elevated mercury levels, the exposed group exhibited a higher risk of developing TC, with a relative risk of 1.90 (95% CI = 1.76-2.06). In three thyroid tissue studies, mercury levels (ppm) were higher in TC patients, averaging 0.14 (0.06-0.22) in cancerous cases (N = 178) and 0.08 (0.04-0.11) in normal thyroids (N = 257). Our findings suggest an association between mercury exposure and TC risk, implying a possible predisposing factor. Further research is necessary to reveal the clinical relevance of dietary and environmental mercury exposures in TC pathogenesis.
Collapse
Affiliation(s)
- Alyssa M Webster
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Dylan Pinion
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Eric Pineda
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hadeel Aboueisha
- Medical Education Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammad H Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Unit of Medical Research and Postgraduate Studies, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
29
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
30
|
Marrugo-Madrid S, Marrugo-Negrete J, Queralt I, Palet C, Díez S. Evaluation of novel biomass-derived materials as binding layers for determining labile mercury in water by diffusive gradient in thin-films technique. Talanta 2024; 267:125227. [PMID: 37826996 DOI: 10.1016/j.talanta.2023.125227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
In this work, several binding gels were successfully prepared in Diffusive Gradient in Thin-film (DGT) that targeted the inclusion of novel biomass-derived materials for the determination of the labile fraction of mercury (Hg) in water. First, five biomass-derived materials were tested and the descending order as a function of the average percentage of Hg removal in solution was feathers > biochar > cork > canola meal > rice husk. The best two materials were treated and pulverized into powder to be embedded in a hydrogel; and so, feathers were pyrolyzed preserving the sulfur contained in their keratin structure (FBC), and biochar (BC) was modified and pyrolyzed with sublimated sulfur (SBC) to increase the Hg sorption sites in its structure. Analysis by Energy Dispersive X-ray fluorescence (EDXRF) spectrometry confirmed that the different pyrolysis procedures increased sulfur absorption successfully. The efficiency of the new gels (BC, SBC and FBC) in agarose was evaluated by comparative Hg uptake tests, showing a larger efficacy in the following order: SBC > BC > FBC. To assess the suitability of their application in freshwater environments, novel DGT devices were also evaluated to determine their diffusion coefficients (D). This test was conducted under controlled laboratory conditions, with particular focus on the potential competence of trace elements (Mn, Cu, Zn, Ni, Pb, Cd and As), which are commonly present in natural waters affected by mining. A stronger linear relationship between the Hg uptake by binding layers and the deployment time were obtained for the DGT devices with SBC (R2 = 0.948) vs. BC (R2 = 0.885). Therefore, the D obtained for Hg were 8.94 × 10-6 cm2 s-1 for DGT-SBC and 5.12 × 10-6 cm2 s-1 for DGT-BC devices at 25 °C, both within the same order of magnitude reported by previous studies. The good performance obtained by DGT-SBC devices is a promising result and indicates the potential for valorization of waste materials in the DGT technique.
Collapse
Affiliation(s)
- Siday Marrugo-Madrid
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain; Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia
| | - José Marrugo-Negrete
- Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia
| | - Ignasi Queralt
- Department of Geosciences, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - Cristina Palet
- GTS-UAB Research Group, Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
31
|
Marushka L, Hu XF, Kenny TA, Batal M, Fediuk K, Sadik T, Golden CD, Cheung WWL, Salomon AK, Chan HM. Potential impacts of reduced seafood consumption on myocardial infarction among coastal First Nations in British Columbia, Canada. Facets (Ott) 2024; 9:1-13. [DOI: 10.1139/facets-2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The objective of this study is to examine the potential cardiovascular risk of climate-related declines in seafood consumption among First Nations in British Columbia by assessing the combined effects of reduced omega-3 fatty acids and mercury intake from seafood on the risk of myocardial infarction (MI) in 2050 relative to 2009. The data were derived from the First Nations Food, Nutrition, and Environment Study. Seafood consumption among 369 randomly selected participants was estimated, and hair mercury concentrations were measured. Declines in seafood consumption were modelled based on previously projected climate change scenarios, and the associated changes in nutrients and contaminants were used to estimate the cardiovascular risk. Reduced seafood consumption was projected to increase the risk of MI by 4.5%–6.5% among older individuals (≥50 years), by 1.9%–2.6% in men, and by 1.3%–1.8% in women under lower and upper climate change scenarios, respectively. Reduced seafood consumption may have profound cardiovascular implications. Effective strategies are needed to promote sustainable seafood harvests and access to seafood for coastal First Nations.
Collapse
Affiliation(s)
- Lesya Marushka
- Environmental Public Health Division, First Nations and Inuit Health Branch, Indigenous Services Canada, 200 Eglantine Driveway, Ottawa, ON K1A 0K9, Canada
| | - Xue Feng Hu
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Tiff-Annie Kenny
- Département de médecine sociale et préventive, Université Laval, Québec, QC G1V 0A6, Canada
| | - Malek Batal
- Département de nutrition, Faculté de Médecine, Université de Montréal, Pavillon Liliane de Stewart, CP 6128 succ. Centre-Ville, Montréal, QC H3T 1A8, Canada
- Centre de recherche en santé publique (CReSP), 7101 Avenue du Parc, Montréal, QC H3N 1X7, Canada
| | - Karen Fediuk
- First Nations Food, Nutrition and Environment Study, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
- The Firelight Group, Vancouver, BC V7T 1A2, Canada
| | - Tonio Sadik
- Assembly of First Nations, 55 Metcalfe Street, Suite 1600, Ottawa, ON K1P 6L5, Canada
| | - Christopher D. Golden
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William W. L. Cheung
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Anne K. Salomon
- School of Resource & Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Hing Man Chan
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
32
|
Chen W, Lin X, Yin X, Wang X, Xie D, Tang W, Dai C, Zeng R, Liu M. An aggregation-induced emission fluorescent probe for highly sensitive and selective detection and imaging of Hg 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123209. [PMID: 37542872 DOI: 10.1016/j.saa.2023.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Mercury ions (Hg2+), as one of heavy transition metals (HTM), is a highly toxic metal that is hazardous to human health. Here an aggregation-induced emission (AIE) fluorescent probe is designed for the highly sensitive and selective detection of Hg2+. The probe is engineered with a tetraphenylethene (TPE) derivative as the fluorophore and thiopropionic acid as the site of recognition for Hg2+. Due to the different solubilities of the probe AIE-COOH and its corresponding product after reaction with Hg2+. The probe demonstrates a maximum detection limit of 22 nM and a fast response time of ∼100 s. Simultaneously, AIE-COOH exhibits outstanding detectivity and hypersensitivity for the detection of Hg2+ in aqueous solutions. These characteristics demonstrate that AIE-COOH hold a great potential in environmental, food and biological systems. Moreover, we have also successfully applied it to Hg2+ fluorescence imaging in in living cells.
Collapse
Affiliation(s)
- Wen Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| | - Xiaoping Lin
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Xin Yin
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Xuanyuan Wang
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Dan Xie
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Wenqing Tang
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Cong Dai
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Rongying Zeng
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Mengqin Liu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| |
Collapse
|
33
|
Mishra S, Ghosh S, van Hullebusch ED, Singh S, Das AP. A Critical Review on the Recovery of Base and Critical Elements from Electronic Waste-Contaminated Streams Using Microbial Biotechnology. Appl Biochem Biotechnol 2023; 195:7859-7888. [PMID: 36988841 DOI: 10.1007/s12010-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Pollution by end-of-life electronics is a rapid ever-increasing threat and is a universal concern with production of million metric tons of these wastes per annum. Electronic wastes (E-waste) are rejected electric or electronic equipment which have no other applications. The aggrandized unproper land filling of E-waste may generate hazardous effects on living organisms and ecosystem. At present, millions of tons of E-waste await the advancement of more efficient and worthwhile recycling techniques. Recovery of base and critical elements from electronic scraps will not only reduce the mining of these elements from natural resources but also reduces the contamination caused by the hazardous chemicals (mostly organic micropollutants) released from these wastes when unproperly disposed of. Bioleaching is reported to be the most eco-friendly process for metal recycling from spent electronic goods. A detailed investigation of microbial biodiversity and a molecular understanding of the metabolic pathways of bioleaching microorganisms will play a vital function in extraction of valuable minerals from the end-of-life scraps. Bioleaching technique as an economic and green technology costs around 7 USD per kg for effective reusing of E-waste as compared to other physical and chemical techniques. This review provides a summary of worldwide scenario of electronic pollutants; generation, composition and hazardous components of electronic waste; recycling of valuable elements through bioleaching; mechanism of bioleaching; microorganisms involved in base and critical element recovery from E-waste; commercial bioleaching operations; and upcoming aspects of this eco-friendly technique.
Collapse
Affiliation(s)
- Sunanda Mishra
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | | | - Eric D van Hullebusch
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Shikha Singh
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India
| | - Alok Prasad Das
- Department of Life Sciences, Rama Devi Women's University, 751022, Bhubaneswar, Odisha, India.
| |
Collapse
|
34
|
Zhu D, Yao W, Ren A. A Reaction-Based ESIPT Fluorescent Probe for the Detection of Hg 2+ with Large Stokes Shift. J Fluoresc 2023:10.1007/s10895-023-03508-5. [PMID: 37987982 DOI: 10.1007/s10895-023-03508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
A novel reaction-based fluorescent probe 1 for Hg2+ was designed and synthesized. 1 was almost nonfluoresent due to inhibition of the ESIPT process between hydroxy group and imid carbonyl oxygen by diphenylphosphinothioate group. After reacting with Hg2+, the fluorescence intensity of 1 exhibited significant enhancement owing to recovery of the ESIPT process via Hg2+-promoted desulfurization-hydrolysis of the diphenylphosphinothioate moiety and cleavage of the P-O bond. 1 not only showed rapid response, high sensitivity, excellent selectivity for Hg2+ over other metal ions, but also could detect Hg2+ with large Stokes shift (165 nm), which was attributed to the ESIPT process. Moreover, the reaction mechanism was fully validated by absorption spectra, fluorescence spectra, fluorescence color as well as ESI-MS analysis. 1 is the reaction-based ESIPT fluorescent probe for the detection of Hg2+ with large Stokes shift, rapid response, high sensitivity and selectivity.
Collapse
Affiliation(s)
- Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Wenqin Yao
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545005, People's Republic of China
| | - Aishan Ren
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| |
Collapse
|
35
|
Fadhila AN, Pramono BA, Muniroh M. Mercury and cadmium-induced inflammatory cytokines activation and its effect on the risk of preeclampsia: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2023-0083. [PMID: 37978836 DOI: 10.1515/reveh-2023-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
During the last decade, there has been an increase in exposure to heavy metals that can affect human health and the environment, especially mercury (Hg) and cadmium (Cd). These exposures can pollute the rivers or oceans, then contaminating marine organisms. Humans as the last consumer of this food chain cycle can be a place for the bioaccumulation of Hg and Cd, especially for people living in coastal areas, including pregnant women. Exposure to heavy metals Hg and Cd can have a high risk of triggering blood vessel disorders, penetrating the blood-brain barrier (BBB) and the placental barrier, one of which can increase the risk of preeclampsia. Several immunological biomarkers such as some cytokines associated with Hg and Cd exposure are also involved in the pathophysiology of preeclampsia, which are the placental implantation process and endothelial dysfunction in pregnant women. Therefore, countries that have a high incidence of preeclampsia should be aware of the environmental factors, especially heavy metal pollution such as Hg and Cd.
Collapse
Affiliation(s)
- Alya N Fadhila
- Master Program of Biomedical Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Besari A Pramono
- Department of Obstetrics and Gynecology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Muflihatul Muniroh
- Department of Physiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
36
|
Ren A, Yao W, Zhu D. A mitochondrion-targeted fluorescent probe based on ESIPT phthalimide for the detection of Hg 2+ with large Stokes shift. Analyst 2023; 148:5882-5888. [PMID: 37917054 DOI: 10.1039/d3an01671d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A novel mitochondrion-targeted Hg2+-specific fluorescent probe 1 based on ESIPT phthalimide was designed and synthesized for the first time. Owing to the blockage of the ESIPT process between the hydroxy group and the carbonyl oxygen of the imide by the diphenylphosphinothioate group, 1 was almost nonfluorescent. After reacting with Hg2+, 1 exhibited a dramatic fluorescence enhancement due to the recovery of the ESIPT process through Hg2+-induced desulfurization-hydrolysis of the diphenylphosphinothioate moiety and the cleavage of the P-O bond. 1 showed a large Stokes shift, rapid response and high sensitivity and selectivity for Hg2+ over other metal ions. Moreover, 1 was successfully employed to image Hg2+ in the mitochondria of living cells.
Collapse
Affiliation(s)
- Aishan Ren
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
| | - Wenqin Yao
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545005, PR China
| | - Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China.
| |
Collapse
|
37
|
Tang M, Zhao Y, Zhai Y, Zhang Y, Liu Y, Liu T, Wu J, He L, Yao Y, Xue P, He M, Xu Y, Feng S, Qu W, Zhang Y. Mercury chloride activates the IFNγ-IRF1 signaling in myeloid progenitors and promotes monopoiesis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122583. [PMID: 37741541 DOI: 10.1016/j.envpol.2023.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Inorganic mercury (Hg2+) is a highly toxic heavy metal in the environment. To date, the impacts of Hg2+ on the development of monocytes, or monopoiesis, have not been fully addressed. The aim of the present study was to investigate the impact of Hg2+ on monopoiesis. In this study, we treated B10.S mice and DBA/2 mice with 10 μM or 50 μM HgCl2 via drinking water for 4 wk, and we then evaluated the development of monocytes. Treatment with 50 μM HgCl2, but not 10 μM HgCl2, increased the number of monocytes in the blood, spleen and bone marrow (BM) of B10.S mice. Accordingly, treatment with 50 μM HgCl2, but not 10 μM HgCl2, increased the number of common myeloid progenitors (CMP) and granulocyte-macrophage progenitors (GMP) in the BM. Functional analyses indicated that treatment with 50 μM HgCl2 promoted the differentiation of CMP and GMP to monocytes in the BM of B10.S mice. Mechanistically, treatment with 50 μM HgCl2 induced the production of IFNγ, which activated the Jak1/3-STAT1/3-IRF1 signaling in CMP and GMP and enhanced their differentiation potential for monocytes in the BM, thus likely leading to increased number of mature monocytes in B10.S mice. Moreover, the increased monopoiesis by Hg2+ was associated with the increased inflammatory status in B10.S mice. In contrast, treatment with 50 μM HgCl2 did not impact the monopoiesis in DBA/2 mice. Our study reveals the impact of Hg on the development of monocytes.
Collapse
Affiliation(s)
- Mengke Tang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yue Zhai
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yufan Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yalin Liu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Ting Liu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jiaojiao Wu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Leyi He
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, Shenyang, 110121, China
| | - Ye Yao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanyi Xu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
de Souza Prestes A, Vargas JLS, Dos Santos MM, Druzian GT, da Rocha JT, Aschner M, Barbosa NV. EtHg is more toxic than MeHg to human peripheral blood mononuclear cells: Involvement of apoptotic, mitochondrial, oxidative and proliferative parameters. Biochim Biophys Acta Gen Subj 2023; 1867:130446. [PMID: 37619690 DOI: 10.1016/j.bbagen.2023.130446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Methylmercury (MeHg) and ethylmercury (EtHg) are potent toxicants affecting the environment and human healthy. In this way, the present study aimed to investigate and compare the effects of MeHg and EtHg exposure on human peripheral blood mononuclear cells (PBMCs), which are critical components of the mammalian immune system. METHODS PBMCs were exposed to 2.5 μM MeHg or 2.5 μM EtHg. The number of cells and incubation times varied according to each assay. After exposures, the PBMCs were subjected to different evaluations, including cell viability, morphological aspects, cell cycle phases, indices of apoptosis and necrosis, reactive species (RS) production, and mitochondrial functionality. RESULTS PBMCs exposed to EtHg were characterized by decreased viability and size, increased granularity, RS production, and apoptotic indexes accompanied by an intensification of Sub-G1 and reduction in G0-G1 cell cycle phases. Preceding these effects, we found mitochondrial dysfunctions, namely a reduction in the electron transport system related to mitochondrial complex I. In contrast, PBMCs exposed to MeHg showed only reduced viability. By ICP-MS, we found that PBMCs treated with EtHg accumulated Hg + levels ∼1.8-fold greater than MeHg-exposed cells. CONCLUSIONS AND SIGNIFICANCE Taken together, our findings provide important insights about mercury immunotoxicity, showing that EtHg is more immunotoxic to human PBMCs than MeHg.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - João Luis Souza Vargas
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Matheus Mülling Dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - João Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nilda Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
39
|
Chen C, Zhang S, Yang T, Wang C, Han G. Associations between environmental heavy metals exposure and preserved ratio impaired spirometry in the U.S. adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108274-108287. [PMID: 37749472 PMCID: PMC10611825 DOI: 10.1007/s11356-023-29688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 09/27/2023]
Abstract
We examined 9556 individuals aged 18 to 79 years who had information on spirometry testing and heavy metals and used multivariable logistic or linear regression to evaluate associations between serum levels of cadmium, lead, and mercury and PRISm and lung function in U.S. adults, which were conducted first in all participants, and then separately in never/former smokers and current smokers. The overall prevalence of PRISm was 7.02%. High levels of serum cadmium were significantly associated with PRISm in all individuals, no matter in never/former smokers (quartile 4 vs 1, the OR = 2.517, 95% CI = 1.376-4.604, p-trend = 0.0077) and current smokers (quartile 4 vs 1, the OR = 2.201, 95% CI = 1.265-3.830, p-trend = 0.0020). Serum lead and mercury were not significantly correlated with PRISm, regardless of smoking status. Serum cadmium was strongly correlated with lower FEV1/FVC, regardless of smoking status. Besides, serum cadmium was also significantly related to lower FVC % predicted in never/former smokers and lower FEV1% predicted in current smokers. Serum lead was strongly correlated with lower FVC % predicted and FEV1/FVC in all individuals and never/former smokers. And serum mercury was significantly associated with decrements in FVC % predicted in all individuals and current smokers. These findings demonstrate that serum cadmium is associated with a higher risk of PRISm and lower lung function, with the most significant effect on FEV1/FVC in particular. Our results also indicate that exposure to lead and mercury negatively affects lung function in never/former smokers and current smokers, respectively.
Collapse
Affiliation(s)
- Chen Chen
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shunan Zhang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ting Yang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Chen Wang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guiling Han
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
40
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
41
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
42
|
Rodrigues PDA, de Pinho JV, Ramos-Filho AM, Neves GL, Conte-Junior CA. Mercury contamination in seafood from an aquatic environment impacted by anthropic activity: seasonality and human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85390-85404. [PMID: 37382820 DOI: 10.1007/s11356-023-28435-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Petroleum activity and the dumping of domestic and industrial sewage are important sources of mercury (Hg) contamination in the aquatic environment. Thus, this article aimed to biomonitor the Hg concentration in fish, mussels, and swimming crabs of commercial importance in southeastern Brazil. The quantifications were carried out over a year to verify the influence of seasonality. Finally, a risk assessment was applied to identify whether the concentrations found could lead to long-term damage to the population. Our results indicate that the contaminations were higher in spring, summer, and winter than in autumn, mainly among fish and swimming crabs. The results of quantification in the animal and estimated monthly intake, despite being below the limit established nationally and internationally, were indicative of risk for these two animals after calculating the Hazard quotient. The highest risk values were attributed to the infant population. Based on the data generated by this work, the consumption of mussels is encouraged throughout the year, to the detriment of the other types of seafood studied, especially during summer, spring, and winter. Our work reinforces the importance of risk assessment for a more reliable understanding of the impact of contaminants in seafood on the population's health.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil.
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
| | - Júlia Vianna de Pinho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Alexandre Mendes Ramos-Filho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Gustavo Lata Neves
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24220-000, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
43
|
Gautam A, Gailer J. More Effective Mobilization of Hg 2+ from Human Serum Albumin Compared to Cd 2+ by L-Cysteine at Near-Physiological Conditions. TOXICS 2023; 11:599. [PMID: 37505565 PMCID: PMC10383730 DOI: 10.3390/toxics11070599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Although chronic low-level exposure to Hg2+ and Cd2+ causes human nephrotoxicity, the bioinorganic processes that deliver them to their target organs are poorly understood. Since the plasma protein human serum albumin (HSA) has distinct binding sites for these metal ions, we wanted to gain insight into these translocation processes and have employed size-exclusion chromatography coupled on-line to an inductively coupled plasma atomic emission spectrometer using phosphate-buffered saline mobile phases. When HSA 'labeled' with Hg2+ and Cd2+ (1:0.1:0.1) using 300 μM of L-methionine was analyzed, the co-elution of a single C, S, Cd, and Hg peak was observed, which implied the intact bis-metalated HSA complex. Since human plasma contains small molecular weight thiols and sulfur-containing metabolites, we analyzed the bis-metalated HSA complex with mobile phases containing 50-200 µM of L-cysteine (Cys), D,L-homocysteine (hCys), or glutathione (GSH), which provided insight into the comparative mobilization of each metal from their respective binding sites on HSA. Interestingly, 50 µM Cys, hCys, or GSH mobilized Hg2+ from its HSA binding site but only partially mobilized Cd2+ from its binding site. Since these findings were obtained at conditions simulating near-physiological conditions of plasma, they provide a feasible explanation for the higher 'mobility' of Hg2+ and its concomitant interaction with mammalian target organs compared to Cd2+. Furthermore, 50 µM Cys resulted in the co-elution of similar-sized Hg and Cd species, which provides a biomolecular explanation for the nephrotoxicity of Hg2+ and Cd2+.
Collapse
Affiliation(s)
- Astha Gautam
- Department of Chemistry, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
44
|
Nyamato GS. Perspectives and prospects of chelation extraction of heavy metals from wastewater: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:47-61. [PMID: 37452533 PMCID: wst_2023_182 DOI: 10.2166/wst.2023.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Heavy metals' contamination of water resources is a global environmental issue due to their detrimental effects on human health. To safeguard humans and the environment, toxic heavy metals must be removed from contaminated water because they cannot be broken down. Diverse technologies are employed to reduce the levels of heavy metals in wastewater. However, these technologies suffer from being either costly or ineffective, particularly when the effluent has extremely low residual amounts. This review outlines the main accomplishments and promising future directions for solvent extraction as one of the potential methods of extracting heavy metals from water, utilizing literature reports. In addition to reviewing some of the commercial chelating reagents now in use, this article also discusses some of the obnoxious effects on human health that are associated with exposure to heavy metals.
Collapse
Affiliation(s)
- George Simba Nyamato
- Department of Physical Sciences, University of Embu, P.O. Box 6-60100, Embu, Kenya E-mail:
| |
Collapse
|
45
|
Guo YS, Zuo TT, Chen AZ, Wang Z, Jin HY, Wei F, Li P, Ma SC. Progress in quality control, detection techniques, speciation and risk assessment of heavy metals in marine traditional Chinese medicine. Chin Med 2023; 18:73. [PMID: 37328891 DOI: 10.1186/s13020-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
Marine traditional Chinese medicines (MTCMs) hold a significant place in the rich cultural heritage in China. It plays an irreplaceable role in addressing human diseases and serves as a crucial pillar for the development of China's marine economy. However, the rapid pace of industrialization has raised concerns about the safety of MTCM, particularly in relation to heavy metal pollution. Heavy metal pollution poses a significant threat to the development of MTCM and human health, necessitating the need for detection analysis and risk assessment of heavy metals in MTCM. In this paper, the current research status, pollution situation, detection and analysis technology, removal technology and risk assessment of heavy metals in MTCM are discussed, and the establishment of a pollution detection database and a comprehensive quality and safety supervision system for MTCM is proposed. These measures aim to enhance understanding of heavy metals and harmful elements in MTCM. It is expected to provide a valuable reference for the control of heavy metals and harmful elements in MTCM, as well as the sustainable development and application of MTCM.
Collapse
Affiliation(s)
- Yuan-Sheng Guo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - An-Zhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Ping Li
- China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
46
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|
47
|
Indurkar PD, Raj SK, Kulshrestha V. Multivariate modeling and process optimization of Hg(II) remediation using solvothermal synthesized 2D MX/Fe 3O 4 by response surface methodology: characteristics and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27687-7. [PMID: 37233927 DOI: 10.1007/s11356-023-27687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Two-dimensional MXene with layered structure has recently emerged as a nanomaterial with fascinating characteristics and applicability. Herein, we prepared the newly modified magnetic MXene (MX/Fe3O4) nanocomposite using solvothermal approach and investigated its adsorption behavior to study the removal efficiency of Hg(II) ions from aqueous solution. The effect of adsorption parameters such as adsorbent dose, time, concentration, and pH were optimized using response surface methodology (RSM). The experimental data fitted well with quadratic model to predict the optimum conditions for maximum Hg(II) ion removal efficiency which were found to be at adsorbent dose 0.871 g/L, time 103.6 min, concentration 40.17 mg/L, and 6.5 pH respectively. To determine the adequacy of the developed model, a statistical analysis of variance (ANOVA) was used, which demonstrated high agreement between the experimental data and the suggested model. According to isotherm result, the experimental data were following the best agreement with the Redlich-Peterson isotherm model. The results of the experiments revealed that the maximum Langmuir adsorption capacity of 699.3 mg/g was obtained at optimum conditions, which was closed to the experimental adsorption capacity of 703.57 mg/g. The adsorption phenomena was well represented by the pseudo-second-order model (R2 = 0.9983). On the whole, it was clear that MX/Fe3O4 has lot of potential as a Hg(II) ion impurity removal agent in aqueous solutions.
Collapse
Affiliation(s)
- Pankaj D Indurkar
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Savan K Raj
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India
- Department of Physics, The MK Bhavnagar University, Bhavnagar, 364 002, India
| | - Vaibhav Kulshrestha
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
48
|
González-Rubio JM, Domínguez-Morueco N, Pedraza-Díaz S, Cañas Portilla A, Lucena MÁ, Rodriguez A, Castaño A, Esteban-López M. A simple method for direct mercury analysis in dried blood spots (DBS) samples for human biomonitoring studies. ENVIRONMENT INTERNATIONAL 2023; 177:107958. [PMID: 37285712 DOI: 10.1016/j.envint.2023.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Human exposure to mercury can have serious health effects, especially in vulnerable groups such as children and fetuses. The use of dried blood spot (DBS) samples to collect capillary blood greatly facilitates sample collection and fieldwork, being a less invasive alternative to blood collection by venipuncture, needing a small volume of sample, and does not require specialized medical staff. Moreover, DBS sampling reduces logistical and financial barriers related to transport and storage of blood samples. We propose here a novel method to analyze total mercury in DBS samples in a Direct Mercury Analyzer (DMA) that allow the control of the volume of the DBS samples. This method has shown good results in terms of precision (<6% error), accuracy (<10% coefficient of variation) and recovery (75-106%). The applicability of the method in human biomonitoring (HBM) was demonstrated in a pilot study involving 41 adults aged 18-65. Mercury concentrations of DBS samples from capillary blood collected by finger prick (real DBS samples) were determined in the DMA and compared with those determined in whole blood (venous blood) by ICP-MS, the method usually used in HBM. The sampling procedure was also validated by comparison of real DBS samples and DBS generated artificially in the laboratory by depositing venous samples in cellulose cards (laboratory DBS). There were no statistically significant differences in the results obtained using both methodologies (DMA: Geometric Mean (confidence interval 95%) = 3.87 (3.12-4.79) µg/L; ICP-MS: Geometric Mean (confidence interval 95%) = 3.46 (2.80-4.27) µg/L). The proposed method is an excellent alternative to be applied in clinical settings as screening methodology for assessing mercury exposure in vulnerable groups, such us pregnant woman, babies and children.
Collapse
Affiliation(s)
| | | | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Cañas Portilla
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ángel Lucena
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Rodriguez
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Sarvestani MRJ, Madrakian T, Afkhami A, Ajdari B. Applicability of a synthesized melamine based covalent organic framework as a novel ionophore for the potentiometric determination of mercury (II): Computational and experimental studies. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
Wu Z, Xia T, Zhang D, Li S, Jia X, Zhang L. Incorporating soil mercury species and fractions into multi-objective risk assessment of a residue disposal site in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2149-2165. [PMID: 35838858 DOI: 10.1007/s10653-022-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Environmental problems in soil and water caused by solid waste dumps have become a growing concern. This study proposes an integrated risk assessment model aimed at multi-objectives including human, ecology and groundwater and develops remediation target values at different tiers associated with soil mercury species and fractions in a typical residue disposal site of China. The results show that the residue disposal site was severely contaminated with mercury, with the maximum mercury content in the soil reaching 579.14 mg/kg. The average concentration of vapour mercury, bioaccessible mercury, bioavailable mercury and leachable mercury tested in laboratory was 87.65 mg/kg, 3.15 mg/kg (intestinal phase), 1.654 mg/kg and 0.045 mg/L, respectively. The hazard index calculated using total mercury, bioaccessible mercury and vapour mercury was 7.43 E + 01, 4.42 E + 01, and the remediation target values were7.79 mg/kg and 13.1 mg/kg, respectively. The ecological risk for total mercury and bioavailable mercury was calculated using measured site soil mercury background values of 6390.92 and 94.52, and the remediation target was 0.7 mg/kg and 47.33 mg/kg, respectively. Under Class IV water conditions, the measured and three-phase equilibrium model simulations of leachable mercury resulted in remediation targets of 6 mg/kg and 10 mg/kg for soil mercury. Compared to total mercury, the remediation target values calculated using mercury species and fractions were significantly larger under human health protection, ecology protection and groundwater protection. This results in a reduction in the area of soil to be remediated by 20.3-85.7%, resulting in significant savings in remediation costs. It was concluded that when conducting risk assessment and reuse of mercury-contaminated sites, it is important to consider the species and fractions of mercury in the soil in order to reasonably determine the remediation criteria and scale of remediation to avoid over-remediation and incomplete remediation. At the same time, a comprehensive protection target remediation mechanism should be established by combining different receptors.
Collapse
Affiliation(s)
- Zhiyuan Wu
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Tianxiang Xia
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
| | - Dan Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Shuang Li
- Heilongjiang Academy of Environmental Sciences, Harbin, 150056, China
| | - Xiaoyang Jia
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Lina Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| |
Collapse
|