1
|
Rodrigues MDB, da Silva CAM, Chong-Silva DC, Chong-Neto HJ. Pesticides and human health. J Pediatr (Rio J) 2024:S0021-7557(24)00161-X. [PMID: 39719018 DOI: 10.1016/j.jped.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVES to review scientific evidence on the impacts of pesticides on child health, addressing prenatal and postnatal exposures, acute and chronic effects. DATA SOURCE narrative literature review, using databases such as PubMed, SciELO and Google Scholar. The inclusion criteria involved studies published between 2000 and 2023 that analyzed the relationship between pesticides and child health, including systematic reviews, cohort studies, case-control studies and clinical trials. The descriptors used were "pesticides," "child health," "prenatal exposure," "environmental health," and "developmental toxicity." DATA SYNTHESIS In this review, an association was observed between exposure to pesticides and the development of neurological and endocrinological diseases, childhood cancer and immunological diseases. CONCLUSIONS Pesticides represent a significant risk to children's health, with impacts ranging from neurological alterations to chronic diseases. It is essential to promote regulatory changes and encourage agricultural practices that are less dependent on chemical substances, in addition to investing in research that explores long-term impacts and mitigation strategies.
Collapse
Affiliation(s)
| | - Carlos Augusto Mello da Silva
- Board Certification in Medical Toxicology - Departamento Científico de Toxicologia e Saúde Ambiental da Sociedade Brasileira de Pediatria, Brazil
| | | | | |
Collapse
|
2
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Latifi AM, Abdi F, Miri M, Ashtari S, Ghalandarpoor-Attar SN, Mohamadzadeh M, Imani Fooladi AA, Uddin S, Vahedian-Azimi A. Association between maternal exposure to polycyclic aromatic hydrocarbons and birth anthropometric outcomes: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117290. [PMID: 39536563 DOI: 10.1016/j.ecoenv.2024.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Previous research has proposed that exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy could potentially lead to a higher risk of adverse birth anthropometric outcomes. However, the current evidence on this connection remains inconclusive, as various studies have presented conflicting results. OBJECTIVE This systematic review and meta-analysis seeks to synthesize the available research on the potential link between maternal PAHs exposure and birth anthropometric outcomes. METHODS A comprehensive search of Scopus, PubMed/MEDLINE, Web of Science, and the Cochrane Library up to July 1, 2024, was conducted to identify studies investigating the impact of maternal PAHs exposure during pregnancy on birth anthropometric measures, including small gestational age (SGA), low birth weight (LBW), birth weight (BW), birth length (BL), birth head circumference (BHC), and birth chest circumference (BCC). Quality assessment was performed using the Newcastle-Ottawa Scale (NOS) and the GRADE framework, and a random-effects meta-analysis was conducted to consolidate association estimates. RESULTS Out of 5499 articles initially screened, 27 studies were included in the review. The meta-analysis revealed no significant association between maternal PAHs exposure and LBW (OR: 1.02, 95 % CI: 0.96-1.08), with moderate heterogeneity (I²: 25.8 %, P=0.37). Notably, PAHs exposure was significantly associated with BW (β: -9.79 g, 95 % CI: -16.71 to -2.87), along with high heterogeneity (I²: 99.9 %, P<0.001), and shorter BL (β: -0.04 cm, 95 % CI: -0.07 to -0.01), also with high heterogeneity (I²: 84.3 %, P<0.001). Additionally, a borderline significant decrease in BHC was observed (β: -0.01 cm, 95 % CI: -0.02 to -0.00) with no significant heterogeneity among studies. The results SGA were inconsistent across the studies. CONCLUSION Maternal exposure to PAHs was associated with adverse birth anthropometric outcomes, particularly lower BW and BL. The borderline significant reduction in BHC suggests a potential impact worth further investigation, although this finding remains inconclusive and not yet actionable. Results for SGA varied significantly among studies, underscoring the complexity of these associations. Collectively, these findings highlight the necessity for additional research to elucidate the effects of specific PAH metabolites on birth anthropometric outcomes and to explore potential interventions aimed at mitigating the identified risks.
Collapse
Affiliation(s)
- Ali Mohammad Latifi
- Medical Biotechnology, Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Abdi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Miri
- Environmental Health Engineering, Department of Environmental Health, School Of Health, Non-communicable Diseases Research Center, Sabzevar University oF Medical Sciences, Sabzevar, Iran.
| | - Sara Ashtari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Milad Mohamadzadeh
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Doha 3050, Qatar, Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar.
| | - Amir Vahedian-Azimi
- Nursing care research center, Clinical sciences institute, Nursing faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fang Y, Yin W, He C, Shen Q, Xu Y, Liu C, Zhou Y, Liu G, Zhao Y, Zhang H, Zhao K. Adverse impact of phthalate and polycyclic aromatic hydrocarbon mixtures on birth outcomes: A metabolome Exposome-Wide association study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124460. [PMID: 38945193 DOI: 10.1016/j.envpol.2024.124460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
It has been well-investigating that individual phthalates (PAEs) or polycyclic aromatic hydrocarbons (PAHs) affect public health. However, there is still a gap that the mixture of PAEs and PAHs impacts birth outcomes. Through innovative methods for mixtures in epidemiology, we used a metabolome Exposome-Wide Association Study (mExWAS) to evaluate and explain the association between exposure to PAEs and PAHs mixtures and birth outcomes. Exposure to a higher level of PAEs and PAHs mixture was associated with lower birth weight (maximum cumulative effect: 143.5 g) rather than gestational age. Mono(2-ethlyhexyl) phthalate (MEHP) (posterior inclusion probability, PIP = 0.51), 9-hydroxyphenanthrene (9-OHPHE) (PIP = 0.53), and 1-hydroxypyrene (1-OHPYR) (PIP = 0.28) were identified as the most important compounds in the mixture. In mExWAS, we successfully annotated four overlapping metabolites associated with both MEHP/9-OHPHE/1-OHPYR and birth weight, including arginine, stearamide, Arg-Gln, and valine. Moreover, several lipid-related metabolism pathways, including fatty acid biosynthesis and degradation, alpha-linolenic acid, and linoleic acid metabolism, were disturbed. In summary, these findings may provide new insights into the underlying mechanisms by which PAE and PAHs affect fetal growth.
Collapse
Affiliation(s)
- Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian district, Beijing, 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, China
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563060, China
| | - Guotao Liu
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450000, China.
| |
Collapse
|
5
|
Yalçin SS, Güneş B, Arikan K, Balçik O, Kara Ö, Yalçin S. Exploring the levels of persistent organic pollutants in umbilical cord blood and their connection to gestational age and birth weights in Şanlıurfa, Turkey. BMC Pregnancy Childbirth 2024; 24:501. [PMID: 39054456 PMCID: PMC11270763 DOI: 10.1186/s12884-024-06677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Controversy surrounds the impact of persistent organic pollutants (POPs) on fetal development. This study aimed to investigate levels of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in umbilical cord blood from Şanlıurfa mothers in Turkey, exploring associations with gestational age and birth weight. METHODS Participants included voluntary mothers pregnant with a single fetus, providing details on maternal factors. Cord blood samples were collected immediately after delivery. Samples were extracted with a modified QuEChERS method, and OCPs (17 pesticides) and PCBs (11 congeners) compound levels were analyzed with a gas chromatograph/mass spectrometry. Detection frequencies and levels of POPs by single pollutant type and pollutant groups were calculated and compared according to gestational duration and birth weight. We used partial least squares discriminant analysis to identify the key chemicals and distinguish their respective statuses. RESULTS Among 120 infants, 35 were preterm but appropriate for gestational age, 35 were term but small for gestational age (SGA), and 50 were term and appropriate for gestational age (AGA). Beta HCH, Oxy-Chlordan, and PCB 28, were not detected in cord blood samples. Half of the samples contained at least 4 types of OCPs, with a median OCP level of 38.44 ng/g. Among the DDT, 2,4'-DDE was found at the highest concentration in cord plasma samples. The PCB congeners with a frequency exceeding 50% were ranked in the following order: 151, 149, 138, 146. The median level of ∑PCBs was 5.93 ng/g. Male infants born at term with SGA status exhibited lower levels of ∑DDTs, ∑OCPs compared to male infants born preterm or at term with AGA status. Di-ortho-substituted PCBs and hexachlorinated PCBs were higher in male infants born at term with SGA status than male infants born preterm with AGA status. CONCLUSION Overall, exposure to DDT and PCBs demonstrates varying effects depending on gestational duration and birth weight, with exposure levels also differing by gender. This underscores the necessity for studies across diverse populations that investigate the combined effects of multiple pollutant exposures on gestational age, birth weight, and gender simultaneously.
Collapse
Affiliation(s)
- Sıddika Songül Yalçin
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Bülent Güneş
- Child Health and Disease Service, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Kalender Arikan
- Department of Biology Education, Faculty of Education, Hacettepe University, Ankara, Turkey
- Pesticide Research and Reference Laboratory, Hacettepe University, Ankara, Turkey
| | - Orhan Balçik
- Gynecology and Obstetrics Clinic, Private Şan Med Hospital, Şanlıurfa, Turkey
| | - Özcan Kara
- Gynecology and Obstetrics Clinic, Private Şan Med Hospital, Şanlıurfa, Turkey
| | - Suzan Yalçin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
6
|
Eick SM, Tan Y, Taibl KR, Barry Ryan P, Barr DB, Hüls A, Eatman JA, Panuwet P, D'Souza PE, Yakimavets V, Lee GE, Brennan PA, Corwin EJ, Dunlop AL, Liang D. Prenatal exposure to persistent and non-persistent chemical mixtures and associations with adverse birth outcomes in the Atlanta African American Maternal-Child Cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:570-580. [PMID: 36841843 PMCID: PMC10450095 DOI: 10.1038/s41370-023-00530-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND African Americans (AAs) experience higher rates of preterm birth and fetal growth restriction relative to other pregnant populations. Differential in utero exposure to environmental chemicals may partially explain these health disparities, as AAs are disproportionately exposed to environmental hazards. OBJECTIVE We examined the individual and mixture effects of non-persistent chemicals and persistent organic pollutants (POPs) on gestational age at birth and birthweight for gestational age z-scores within a prospective cohort of pregnant AAs. METHODS First-trimester serum and urine samples obtained from participants within the Atlanta African American Maternal-Child cohort were analyzed for 43 environmental chemicals, including per-and polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides, pyrethroid insecticides, phthalates, bisphenol A, nicotine, and the primary metabolite of delta-9-tetrahydrocannabinol. Linear regression was used to estimate individual associations between chemicals and gestational age and birthweight z-scores (N ranging from 107 to 523). Mixture associations were estimated using quantile g-computation, principal component (PC) analyses, and hierarchical Bayesian kernel machine regression among complete cases (N = 86). RESULTS Using quantile g-computation, increasing all chemical exposures by one quantile was modestly associated with a reduction in gestational age (mean change per quartile increase = -0.47, 95% CI = -1.56, 0.61) and birthweight z-scores (mean change per quartile increase = -0.49, 95% CI = -1.14, 0.15). All PCs were associated with a reduction in birthweight z-scores; associations were greatest in magnitude for the two PCs reflecting exposure to combined tobacco, insecticides, PBDEs, and phthalates. In single pollutant models, we observed inconsistent and largely non-significant associations. SIGNIFANCE We conducted multiple targeted exposure assessment methods to quantify levels of environmental chemicals and leveraged mixture methods to quantify their joint effects on gestational age and birthweight z-scores. Our findings suggest that prenatal exposure to multiple classes of persistent and non-persistent chemicals is associated with reduced gestational age and birthweight z-scores in AAs. IMPACT African Americans (AAs) experience higher rates of preterm birth and fetal growth restriction relative to other pregnant populations. Differential in utero exposure to environmental chemicals may partially explain these health disparities, as AAs are disproportionately exposed to environmental hazards. In the present study, we analyzed serum and urine samples for levels of 43 environmental chemicals. We used quantile g-computation, principal component analysis, and BKMR to assess associations between chemical exposure mixtures and adverse birth outcomes. Our findings suggest that prenatal exposure to multiple classes of chemicals is associated with reduced birthweight z-scores, a proxy for fetal growth, in AAs.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anke Hüls
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Epidemiology. Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jasmin A Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Priya E D'Souza
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Grace E Lee
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | | | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Li Y, Baumert BO, Costello E, Chen JC, Rock S, Stratakis N, Goodrich JA, Zhao Y, Eckel SP, Walker DI, Valvi D, La Merrill MA, McConnell R, Cortessis VK, Aung M, Wu H, Baccarelli A, Conti D, Chatzi L. Per- and polyfluoroalkyl substances, polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers and dysregulation of MicroRNA expression in humans and animals-A systematic review. ENVIRONMENTAL RESEARCH 2024; 244:117832. [PMID: 38056610 DOI: 10.1016/j.envres.2023.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.
Collapse
Affiliation(s)
- Yijie Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth Costello
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiawen Carmen Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yinqi Zhao
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria K Cortessis
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Gomes J, Begum M, Kumarathasan P. Polybrominated diphenyl ether (PBDE) exposure and adverse maternal and infant health outcomes: Systematic review. CHEMOSPHERE 2024; 347:140367. [PMID: 37890790 DOI: 10.1016/j.chemosphere.2023.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants found in ambient environment and are measured in humans. There are reports on general PBDE toxicity, including endocrine disrupting properties. Studies on adverse maternal and infant outcomes and underlying toxicity mechanisms needs to be understood. The objective of this study was to conduct a systematic review to examine the state of science on the relationship between PBDE and adverse maternal/infant health outcomes and related maternal biomarker changes. This literature review was conducted using PubMed, Scopus, Embase and Web of Science for published articles from January 2005-February 2022. Article quality was assessed using Newcastle-Ottawa Scale. Of the 1518 articles, only 54 human observational studies were screened in for this review. A second reviewer examined the validity of these articles. Reports on associations between PBDE and maternal health outcomes included gestational hypertension/preeclampsia (N = 2) and gestational diabetes mellitus/glycemic index (N = 6). Meanwhile, reports on PBDE and infant outcomes (N=32) included effects on infant birth weight, birth length and cephalic perimeter, preterm birth, fetal growth restriction and APGAR scores. Although findings on PBDE exposure and adverse infant outcomes showed inconsistencies across studies, in general, negative correlations between maternal PBDEs and infant birth weight, birth length and cephalic perimeter were seen, in few cases, after stratification by sex. Association between maternal PBDE and maternal biomarkers (N=18) suggested negative impact of PBDE exposure on markers relevant to neuro-endocrine system and inflammatory processes. The review findings identified potential associations between maternal PBDE and adverse maternal/infant health outcomes. Furthermore, PBDE-related biomarker changes suggest disturbances in maternal mechanisms relevant to endocrine disrupting properties of PBDEs. The observed study heterogeneity can be attributed to factors namely, sample size, study design and statistical analysis. Overall review findings imply the necessity for further research to validate PBDE exposure-related adverse maternal/infant health effects and to validate underlying toxicity mechanisms.
Collapse
Affiliation(s)
- J Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - M Begum
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - P Kumarathasan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Environmental Health Science and Research Bureau, HECS, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
11
|
MoghaddamHosseini V, Ebrahimi Aval H, Lari Najafi M, Lotfi H, Heydari H, Miri M, Dadvand P. The association between exposure to polycyclic aromatic hydrocarbons and birth outcomes: A systematic review and meta-analysis of observational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166922. [PMID: 37699478 DOI: 10.1016/j.scitotenv.2023.166922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to adverse birth outcomes; however, to date, the available studies on such relations, with the exception of birth weight, has not been systematically synthesized. We conducted a systematic review and meta-analysis of the available observational studies on the association of maternal exposure to PAHs and their metabolites during pregnancy with indicators of fetal growth and gestational age at delivery. We searched Web of Science, PubMed and Scopus systematically for all relevant published papers in English until 13 January 2023. Random effects meta-analysis was applied to synthesize the association estimates. Publication bias was assessed using Egger's regression. A total of 31 articles were included in our review (n = 703,080 participants). Our quality assessment of reviewed papers showed that 19 research had excellent, nine had good, and three had fair quality. Most of the reviewed studies on exposure to PAHs and their metabolites with gestational age and preterm birth (seven studies) reported no statistically significant association. Eight studies were eligible for our meta-analysis. Results of the meta-analysis indicated that higher levels of maternal urinary 1-OHP was associated with lower birth weight, birth length and head circumference and a higher risk of low birth weight (LBW). However, these associations were not statistically significant. Similarly, the combined association between maternal urinary 1-OHP and newborn's Ponderal index (PI) and Cephalization index were not statistically significant. Overall, our systematic review and meta-analysis suggested a potential adverse impact of exposure to PAHs on LBW, HC, and CC; however, further studies are required to be able to draw concrete conclusions on such associations.
Collapse
Affiliation(s)
- Vahideh MoghaddamHosseini
- Health of the Elderly Research Center, Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hamideh Ebrahimi Aval
- Student Research Committee, Department of Health Education and Promotion, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Lotfi
- Leishmaniasis Research Center, Department of Microbiology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hafez Heydari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Miri
- Leishmaniasis Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
12
|
Pumarega J, Gasull M, Koponen J, Campi L, Rantakokko P, Henríquez-Hernández LA, Aguilar R, Donat-Vargas C, Zumbado M, Villar-García J, Rius C, Santiago-Díaz P, Vidal M, Jimenez A, Iglesias M, Dobaño C, Moncunill G, Porta M. Prepandemic personal concentrations of per- and polyfluoroalkyl substances (PFAS) and other pollutants: Specific and combined effects on the incidence of COVID-19 disease and SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2023; 237:116965. [PMID: 37652221 DOI: 10.1016/j.envres.2023.116965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To investigate the specific and combined effects of personal concentrations of some per- and polyfluoroalkyl substances (PFAS), other persistent organic pollutants (POPs), and chemical elements -measured in individuals' blood several years before the pandemic- on the development of SARS-CoV-2 infection and COVID-19 disease in the general population. METHODS We conducted a prospective cohort study in 240 individuals from the general population of Barcelona. PFAS, other POPs, and chemical elements were measured in plasma, serum, and whole blood samples, respectively, collected in 2016-2017. PFAS were analyzed by liquid chromatography-triple quadrupole mass spectrometry. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or antibody serology in blood samples collected in 2020-2021. RESULTS No individual PFAS nor their mixtures were significantly associated with SARS-CoV-2 seropositivity or COVID-19 disease. Previously identified mixtures of POPs and elements (Porta et al., 2023) remained significantly associated with seropositivity and COVID-19 when adjusted for PFAS (all OR > 4 or p < 0.05). Nine chemicals comprised mixtures associated with COVID-19: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, other DDT-related compounds, manganese, tantalum, and aluminium. And nine chemicals comprised the mixtures more consistently associated with SARS-CoV-2 seropositivity: thallium, ruthenium, lead, benzo[b]fluoranthene, DDD, gold, and (protectively) selenium, indium, and iron. CONCLUSIONS The PFAS studied were not associated with SARS-CoV-2 seropositivity or COVID-19. The results confirm the associations between personal blood concentrations of some POPs and chemical elements and the risk of COVID-19 and SARS-CoV-2 infection in what remains the only prospective and population-based cohort study on the topic. Mixtures of POPs and chemical elements may contribute to explain the heterogeneity in the risks of SARS-CoV-2 infection and COVID-19 in the general population.
Collapse
Affiliation(s)
- José Pumarega
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Magda Gasull
- Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jani Koponen
- Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Laura Campi
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Panu Rantakokko
- Finnish Institute for Health and Welfare (THL), Kuopio, Finland
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Carolina Donat-Vargas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; ISGlobal, Campus Mar, Barcelona, Spain; Cardiovascular and Nutritonal Epidemiology Unit, Institut of Enviornmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | | | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Mar Iglesias
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Miquel Porta
- School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Hospital del Mar Research Institute, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Castro-Ramirez I, Rocha-Amador DO, Ruiz-Vera T, Alegría-Torres JA, Cruz-Jiménez G, Enciso-Donis I, Costilla-Salazar R. Environmental and biological monitoring of organochlorine pesticides in the city of Salamanca, Mexico. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2839-2856. [PMID: 36066703 DOI: 10.1007/s10653-022-01368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
The former Tekchem Industrial Unit located in the city of Salamanca, Mexico, constitutes an environmental liability in which the presence of high levels of organochlorine pesticides (OCPs) has been reported. In the present study, levels of OCPs were quantified using gas chromatography-mass spectrometry in 52 soil samples and in 88 blood samples from school-age children in the city of Salamanca. A median concentration of 70.6 ng/g (6.93-3299) was obtained for total OCPs in soil, while for the total sum of dichlorodiphenyltrichloroethane (DDT) the value was 49.6 ng/g (6.93-3276). In children, the median level of the total sum of OCPs was 390 ng/g lipid (7.34-14,895), and for the total sum of DDT was 175 ng/g lipid (< LOD-14,802). The OCPs that resulted in highest concentrations in soil were DDT and its metabolites, as well as aldrin and heptachlor epoxide, while in blood the highest levels corresponded to 4,4'-dichlorodiphenyltrichloroethane (4,4'-DDT) and its metabolites, followed by heptachlor and heptachlor epoxide. The spatial distribution of the concentrations of OCPs in soil shows that the facilities of Tekchem may be a significant potential source for the dispersion of these compounds toward the metropolitan area of Salamanca. The results obtained in the present study demonstrate the presence of OCPs in soil and in child population, providing important bases to study the problem from a broader perspective, while reiterating the importance of continuing efforts to generate resolute and precautionary measures with respect to the environmental liability of Tekchem.
Collapse
Affiliation(s)
- Israel Castro-Ramirez
- DICIVA, Environmental Science Department, University of Guanajuato, Irapuato, Mexico
| | | | - Tania Ruiz-Vera
- DICIVA, Environmental Science Department, University of Guanajuato, Irapuato, Mexico
| | | | | | | | | |
Collapse
|
14
|
Porta M, Pumarega J, Gasull M, Aguilar R, Henríquez-Hernández LA, Basagaña X, Zumbado M, Villar-García J, Rius C, Mehta S, Vidal M, Jimenez A, Campi L, Lop J, Pérez Luzardo OL, Dobaño C, Moncunill G. Individual blood concentrations of persistent organic pollutants and chemical elements, and COVID-19: A prospective cohort study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 223:115419. [PMID: 36740154 PMCID: PMC9898057 DOI: 10.1016/j.envres.2023.115419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is wide, largely unexplained heterogeneity in immunological and clinical responses to SARS-CoV-2 infection. Numerous environmental chemicals, such as persistent organic pollutants (POPs) and chemical elements (including some metals, essential trace elements, rare earth elements, and minority elements), are immunomodulatory and cause a range of adverse clinical events. There are no prospective studies on the effects of such substances on the incidence of SARS-CoV-2 infection and COVID-19. OBJECTIVE To investigate the influence of blood concentrations of POPs and elements measured several years before the pandemic on the development of SARS-CoV-2 infection and COVID-19 in individuals from the general population. METHODS We conducted a prospective cohort study in 154 individuals from the general population of Barcelona. POPs and elements were measured in blood samples collected in 2016-2017. SARS-CoV-2 infection was detected by rRT-PCR in nasopharyngeal swabs and/or by antibody serology using eighteen isotype-antigen combinations measured in blood samples collected in 2020-2021. We analyzed the associations between concentrations of the contaminants and SARS-CoV-2 infection and development of COVID-19, taking into account personal habits and living conditions during the pandemic. RESULTS Several historically prevalent POPs, as well as arsenic, cadmium, mercury, and zinc, were not associated with COVID-19, nor with SARS-CoV-2 infection. However, DDE (adjusted OR = 5.0 [95% CI: 1.2-21]), lead (3.9 [1.0-15]), thallium (3.4 [1.0-11]), and ruthenium (5.0 [1.8-14]) were associated with COVID-19, as were tantalum, benzo(b)fluoranthene, DDD, and manganese. Thallium (3.8 [1.6-8.9]), and ruthenium (2.9 [1.3-6.7]) were associated with SARS-CoV-2 infection, and so were lead, gold, and (protectively) iron and selenium. We identified mixtures of up to five substances from several chemical groups, with all substances independently associated to the outcomes. CONCLUSIONS Our results provide the first prospective and population-based evidence of an association between individual concentrations of some contaminants and COVID-19 and SARS-CoV-2 infection. POPs and elements may contribute to explain the heterogeneity in the development of SARS-CoV-2 infection and COVID-19 in the general population. If the associations are confirmed as causal, means are available to mitigate the corresponding risks.
Collapse
Affiliation(s)
- Miquel Porta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - José Pumarega
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Magda Gasull
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Luis A Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Xavier Basagaña
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal - PSMar - PRBB, Barcelona, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Cristina Rius
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Agència de Salut Pública de Barcelona, Barcelona, Spain
| | - Sneha Mehta
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; Columbia Mailman School of Public Health, New York, USA
| | - Marta Vidal
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jimenez
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Campi
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Lop
- Hospital del Mar Medical Research Institute (IMIM PSMar), Barcelona, Spain
| | - Octavio L Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences, Department of Clinical Sciences, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain; CIBER de Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Carlota Dobaño
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal - Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
15
|
Szczęsna D, Wieczorek K, Jurewicz J. An exposure to endocrine active persistent pollutants and endometriosis - a review of current epidemiological studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13974-13993. [PMID: 36564686 PMCID: PMC9908711 DOI: 10.1007/s11356-022-24785-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Widespread exposure to persistent pollutants can disrupt the bodies' natural endocrine functions and contribute to reproductive diseases like endometriosis. In this review, we focus at the relationship between endocrine-disrupting chemicals (EDCs), including metals and trace elements, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), poly-brominated diphenyl ethers (PBDEs), polychlorinated dibenzodioxin (PCDDs), polychlorinated dibenzofurans (PCDFs), and per- and polyfluoroalkyl substances (PFAS) exposure and risk of endometriosis. Relevant studies from the last 10 years by November 2022 were identified by searching Pubmed, Web of Science, and Scopus. The cohort and case-control studies that reported effect size with 95% confidence intervals (CIs) of EDC exposure and endometriosis were selected. Twenty three articles examining the relationship between endometriosis and exposure to persistent EDCs were considered. Most of the studies indicated association with exposure to persistent chemicals and development of endometriosis. The consistent results were found in case of lead, PCB-28, PCB-138, PCB-153, PCB-180, PCB-201, 1,2,3,7,8 - PeCDD, 2,3,4,7,8 - PeCDF and all described OCPs, showing the increased risk of endometriosis. These results support that exposure to certain EDCs, including OCPs, PCBs, PBBs, PBDEs, PFAS, and lead increase the risk of endometriosis.
Collapse
Affiliation(s)
- Dorota Szczęsna
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, St. Teresa Street 8, 91-348, Lodz, Poland.
| | - Katarzyna Wieczorek
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, St. Teresa Street 8, 91-348, Lodz, Poland
| | - Joanna Jurewicz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1A Street, 90-151, Lodz, Poland
| |
Collapse
|
16
|
Tang B, Zheng J, Xiong SM, Cai FS, Li M, Ma Y, Gao B, Du DW, Yu YJ, Mai BX. The accumulation of organic contaminants in hair with different biological characteristics. CHEMOSPHERE 2023; 312:137064. [PMID: 36334734 DOI: 10.1016/j.chemosphere.2022.137064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Human hair has increasingly been used as a noninvasive biomonitoring matrix for assessment of human exposure to various organic contaminants (OCs). However, the accumulation processes of OCs in hair remains unclear thus far, which raised concerns on the reliability of hair analysis results for OCs. Herein, Chinese population was selected as the study subject, the effects of changes in hair biological characteristics, including length and color, on the accumulation of OCs in hair was investigated. With the growing of hair shaft and the increased distance from the scalp, a significant increasing trend was found for levels of polychlorinated biphenyls (PCBs) and organophosphate flame retardants (PFRs) along the hair shafts (p < 0.05). Source identification using Chemical Mass Balance model indicated that PCBs in hair were mainly from exogenous sources (air and dust). The accumulation rates of PCB and PFR individuals in the hair shaft decreased with increasing of log Kow values. Additionally, the levels of OCs in hair decreased with the change in color from black to white, probably because of the loss of melanin in white hair. The ratios (R) of Cblack/Cwhite were significantly correlated with the log Kow values for individual chemicals (p < 0.05), implying that OCs with high log Kow values tend to accumulate more readily in black hair. The results of this study demonstrated the growth and change in colors of hair, as well as the physicochemical properties of chemicals, play vital roles in the accumulation of OCs in hair. The present study provides fundamental basis for the precise assessment of human exposure to OCs using hair as a biomonitoring matrix in future studies.
Collapse
Affiliation(s)
- Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China.
| | - Shi-Mao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bo Gao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Dong-Wei Du
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| |
Collapse
|
17
|
Alberghini L, Truant A, Santonicola S, Colavita G, Giaccone V. Microplastics in Fish and Fishery Products and Risks for Human Health: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:789. [PMID: 36613111 PMCID: PMC9819327 DOI: 10.3390/ijerph20010789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023]
Abstract
In recent years, plastic waste has become a universally significant environmental problem. Ingestion of food and water contaminated with microplastics is the main route of human exposure. Fishery products are an important source of microplastics in the human diet. Once ingested, microplastics reach the gastrointestinal tract and can be absorbed causing oxidative stress, cytotoxicity, and translocation to other tissues. Furthermore, microplastics can release chemical substances (organic and inorganic) present in their matrix or previously absorbed from the environment and act as carriers of microorganisms. Additives present in microplastics such as polybrominated diphenyl ethers (PBDE), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP), and potentially toxic elements can be harmful for humans. However, to date, the data we have are not sufficient to perform a reliable assessment of the risks to human health. Further studies on the toxicokinetics and toxicity of microplastics in humans are needed.
Collapse
Affiliation(s)
- Leonardo Alberghini
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Alessandro Truant
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Serena Santonicola
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Valerio Giaccone
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| |
Collapse
|
18
|
Tang J, Zhu Y, Xiang B, Li Y, Tan T, Xu Y, Li M. Multiple pollutants in groundwater near an abandoned Chinese fluorine chemical park: concentrations, correlations and health risk assessments. Sci Rep 2022; 12:3370. [PMID: 35232998 PMCID: PMC8888542 DOI: 10.1038/s41598-022-07201-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Contamination and adverse effects from various pollutants often appear in abandoned industrial regions. Thus, nine groundwater samples were collected from the vicinity of the fluorochemical industry in Fuxin City, Liaoning Province, to determine concentrations of the ten heavy metals arsenic (As), chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), manganese (Mn), zinc (Zn), iron (Fe) and mercury(Hg), as well as those of fluorine (F−) and eighteen poly- and perfluorinated substances (PFASs), analyse correlation relationships, and assess the health risks for different age groups. The results showed that the levels of fluorine (F−) (0.92–4.42 mg·L−1), Mn (0.0005–4.91 mg·L−1) and Fe (1.45–5.61 mg·L−1) exceeded the standard limits for drinking water. Short chain perfluorobutanoic acid (PFBA) (4.14–2501.42 ng·L−1), perfluorobutane sulfonate (PFBS) (17.07–51,818.61 ng·L−1) and perfluorohexanoic acid (PFHxA) (0.47–936.32 ng·L−1) were the predominant substances from the PFASs group. No individual PFASs levels had significant relationships with F− or heavy metal contents. There was a positive relationship between short chain PFASs concentrations and water depth and a negative relationship between long chain PFASs concentration and water depth. The hazard quotient (HQ) decreased in the order F− > heavy metals > PFASs and also decreased for older age groups. In addition, As, Fe, Mn and perfluorooctanoic acid (PFOA) were the main sources of risk from the heavy metal and PFASs groups, respectively.
Collapse
Affiliation(s)
- Jiaxi Tang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China. .,Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Yongle Zhu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Biao Xiang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yu Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ting Tan
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ying Xu
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Mengxue Li
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
19
|
Understanding the Role of Persistent Organic Pollutants and Stress in the Association between Proximity to the World Trade Center Disaster and Birth Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042008. [PMID: 35206202 PMCID: PMC8871981 DOI: 10.3390/ijerph19042008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
Fetal growth is affected by exposure to both prenatal stress and environmental contaminants. The attacks on the World Trade Center (WTC) resulted in exposure to chemicals and psychological stress amongst New York City residents. We measured prenatal maternal stress and exposure to persistent organic pollutants (polybrominated diphenyl ethers, polychlorinated biphenyls, and polychlorinated dibenzo-p-dioxins (PCDDs)) in 108 participants from a Columbia University WTC birth cohort. Principal component (PC) analyses were conducted to characterize the mixture of exposure to the three groups of chemicals. We evaluated the associations between geographical exposures (proximity to the WTC disaster) and both chemical exposures (PCs) and stress (demoralization). We then evaluated the effect these exposures (PCs and stress) had on previously reported associations between geographical WTC exposure and birth outcomes (birth weight and birth length) in this study population to understand their individual roles in the observed associations. Geographical exposure via proximity to the WTC was associated with the PC reflecting higher PCDD exposure (PC3) (β = 0.60, 95% CI: 0.03, 1.18 for living/working within 2 miles of the WTC; and β = 0.73, 95% CI = 0.08, 1.38 for living within 2 miles of WTC). Previously reported reductions in birth weight and length associated with WTC proximity (β = −215.2, 95% CI: −416.2, −14.3 and β = −1.47, 95% CI: −2.6, −0.34, respectively) were attenuated and no longer significant for birth weight (β = −156.4, 95% CI: −358.2, 45.4) after adjusting for PC3, suggesting that PCDDs may act as partial mediators in this previously observed association. The results of this study can help focus future research on the long-term health effects of these prenatally exposed populations.
Collapse
|
20
|
Yin XF, Wang QY, Ren FZ, Pang GF, Zhang XX, Li YX. Efficiency and mechanism of C 18-functionalized magnetic nanoparticles for extracting weakly polar pesticides from human serum determined by UHPLC-QTOF-MS and molecular dynamics simulations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118489. [PMID: 34780754 DOI: 10.1016/j.envpol.2021.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Detecting pesticide residues in human serum is a challenging process due to trace-level chronic exposure. Several methods using magnetic adsorbents have been developed for analyzing pesticide residue levels in human serum, but it is still difficult to achieve lower quantitative levels, and the adsorption mechanism for extracting pesticides is unclear. Herein, we propose a feasibility concept of using C18-functionalized magnetic nanoparticles for the adsorption of target pesticides, focusing on the extensively used weakly polar pesticides based on molecular dynamics (MD) simulations. To support this, the facilitated target nanoparticles of Fe3O4@SiO2-C18 were synthesized at a size of 12-13 nm with a magnetic saturation of 40 emu/g. After optimizing and establishing the extraction conditions (1.8 mL C18 modifier, 10 mg sorbents, 3 min adsorption time, 1000 μL ACN for desorption eluent at pH 3.8 and 5 min desorption time), which exhibited recovery = 72.3%-118.3% with RSDs = 0.03-6.57, linearity at 0.01-10 ng/mL with R2 = 0.9561-0.9993, and LODs = 0.01-0.30 ng/mL for the 11 weakly polar pesticides in human serum. Furthermore, the mechanism by which the C18 group selectively extracts weakly polar pesticides was confirmed by binding van der Waals and electrostatic interactions under stable and strong binding energy. The extraction process of efficient adsorption and desorption with C18 functional magnetite nanoparticles suggests a simple method for detecting weakly polar pesticides. The concept may lead to a general approach to analyzing multiple pesticide residues in human serum at trace levels.
Collapse
Affiliation(s)
- Xue-Feng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qing-Yu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiao-Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
21
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
22
|
Polachova A, Gramblicka T, Bechynska K, Parizek O, Parizkova D, Dvorakova D, Honkova K, Rossnerova A, Rossner P, Sram RJ, Topinka J, Pulkrabova J. Biomonitoring of 89 POPs in blood serum samples of Czech city policemen. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118140. [PMID: 34555793 DOI: 10.1016/j.envpol.2021.118140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In this biomonitoring study, we evaluated the concentrations of 8 polychlorinated biphenyls (PCBs), 11 organochlorinated pesticides (OCPs), 33 brominated flame retardants (BFRs), 7 novel brominated and chlorinated flame retardants (novel FRs) and 30 per- and polyfluoroalkylated substances (PFAS) in human serum samples (n = 274). A total of 89 persistent organic pollutants (POPs) were measured in blood serum samples of city policemen living in three large cities and their adjacent areas (Ostrava, Prague, and Ceske Budejovice) in the Czech Republic. All samples were collected during the year 2019 in two sampling periods (spring and autumn). The identification/quantification of PCBs, OCPs, BFRs, novel FRs and PFAS was performed by means of gas chromatography coupled to (tandem) mass spectrometry (GC-MS/(MS)) and ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). The most frequently detected pollutants were perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), 2,2',3,4,4',5'-hexachlorobiphenyl (CB 138), 2,2',4,4',5,5'-hexachlorobiphenyl (CB 153), 2,2',3,3',4,4',5-heptachlorobiphenyl (CB 170), 2,2',3,4,4',5,5'-heptachlorobiphenyl (CB 180), hexachlorobenzene (HCB), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) quantified in 100% of serum samples. In the serum samples, the concentrations of determined POPs were in the range of 0.108-900 ng g-1 lipid weight (lw) for PCBs, 0.106-1016 ng g-1 lw for OCPs, <0.1-618 ng g-1 lw for FRs and <0.01-18.3 ng mL-1 for PFAS, respectively. Locality, sampling season, and age were significantly associated with several POP concentrations. One of the important conclusions was that within the spring sampling period, statistically significant higher concentrations of CB 170 and CB 180 were observed in the samples from Ostrava (industrial area) compared to Prague and Ceske Budejovice. Older policemen had higher concentrations of five PCBs and two OCPs in blood serum.
Collapse
Affiliation(s)
- Andrea Polachova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Kamila Bechynska
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Ondrej Parizek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Denisa Parizkova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Katerina Honkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Rossner
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Nanotoxicology and Molecular Epidemiology Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Radim J Sram
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Genetic Toxicology and Epigenetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
23
|
Pinos H, Carrillo B, Merchán A, Biosca-Brull J, Pérez-Fernández C, Colomina MT, Sánchez-Santed F, Martín-Sánchez F, Collado P, Arias JL, Conejo NM. Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137170. [PMID: 34281107 PMCID: PMC8295932 DOI: 10.3390/ijerph18137170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.
Collapse
Affiliation(s)
- Helena Pinos
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- Correspondence: (H.P.); (N.M.C.)
| | - Beatriz Carrillo
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Ana Merchán
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - María Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Fernando Martín-Sánchez
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- National School of Public Health, Institute of Health Carlos III, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), 28029 Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nélida M. Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
- Correspondence: (H.P.); (N.M.C.)
| |
Collapse
|
24
|
Validation of a Method Scope Extension for the Analysis of POPs in Soil and Verification in Organic and Conventional Farms of the Canary Islands. TOXICS 2021; 9:toxics9050101. [PMID: 34063303 PMCID: PMC8147449 DOI: 10.3390/toxics9050101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Persistent organic pollutants (POPs) are among the most relevant and dangerous contaminants in soil, from where they can be transferred to crops. Additionally, livestock animals may inadvertently consume relatively high amounts of soil attached to the roots of the vegetables while grazing, leading to indirect exposure to humans. Therefore, periodic monitoring of soils is crucial; thus, simple, robust, and powerful methods are needed. In this study, we have tested and validated an easy QuEChERS-based method for the extraction of 49 POPs (8 PBDEs, 12 OCPs, 11 PAHs, and 18 PCBs) in soils and their analysis by GC-MS/MS. The method was validated in terms of linearity, precision, and accuracy, and a matrix effect study was performed. The limits of detection (LOD) were established between 0.048 and 3.125 ng g−1 and the limits of quantification (LOQ) were between 0.5 and 20 ng g−1, except for naphthalene (50 ng g−1). Then, to verify the applicability of the validated method, we applied it to a series of 81 soil samples from farms dedicated to mixed vegetable cultivation and vineyards in the Canary Islands, both from two modes of production (organic vs. conventional) where residues of OCPs, PCBs, and PAHs were found.
Collapse
|
25
|
Henríquez-Hernández LA, Ortiz-Andrelluchi A, Álvarez-Pérez J, Acosta-Dacal A, Zumbado M, Martínez-González MA, Boada LD, Salas-Salvadó J, Luzardo OP, Serra-Majem L. Human biomonitoring of persistent organic pollutants in elderly people from the Canary Islands (Spain): A temporal trend analysis from the PREDIMED and PREDIMED-Plus cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 758:143637. [PMID: 33248780 DOI: 10.1016/j.scitotenv.2020.143637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
The population of the Canary Islands has been exposed to high levels of persistent organic pollutants (POPs). Biomonitoring studies are essential to know the temporal trend in residue levels, particularly of substances banned decades ago. The purpose of this study was to analyze the distribution of plasma concentrations of 59 POPs in 175 participants from the PREDIMED-Plus trial (2014-2016), and to compare them with the distribution of these POPs in 343 participants in the PREDIMED trial (2006-2009). All participants had metabolic syndrome. No difference in the distribution of age, gender or BMI was observed between trials. POPs were determined by gas chromatography-mass spectrometry. Density plots -POP Geoffrey Rose curves- were used to represent the full population distribution of each compound. Three out of 59 POPs were detected and quantified in ≥95% of the samples (p,p'-DDE, median = 694.7 ng/g lipid; HCB, median = 57.0 ng/g lipid; and β-HCH, median = 75.7 ng/g lipid). PCB congeners 138, 153 and 180 were detected in 64.6, 40.0 and 88.0% of the samples. Females showed highest concentrations of organochlorine pesticides and those subjects who lost ˃ 5 kg showed significant higher plasma concentrations of POPs. In a range of 6-14 years, plasma concentrations of POPs decreased 3.3-21.6 fold, being notable the decrease of 28.7-fold observed for HCB among women. Despite this sharp decline, levels of POPs are still higher than those reported in other regions, since one third of the subjects included in the present report had high concentration of more than three pollutants. Continuous biomonitoring studies are required to know the evolution of the levels of residues and to evaluate the effectiveness of environmental policies.
Collapse
Affiliation(s)
- L A Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - A Ortiz-Andrelluchi
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - J Álvarez-Pérez
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - A Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - M Zumbado
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - M A Martínez-González
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University of Navarra, Department of Preventive Medicine and Public Health, IDISNA, 31008 Pamplona, Spain; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - L D Boada
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - J Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Human Nutrition Unit, Biochemistry and Biotechnology Department, IISPV, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - O P Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - L Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Preventive Medicine Service, Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas, Spain; Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
26
|
Abstract
Endocrine-disrupting compounds (EDCs) are environmental contaminants that modulate estrogen, androgen, and thyroid hormone receptor signaling and it has been hypothesized that human exposures to EDCs induce multiple adverse health effects. Some of these responses include male and female reproductive tract problems, obesity, and neurological/neurobehavior deficits. Extensive laboratory animal and some human studies support the EDC hypothesis. However, there is a debate among scientists and regulators regarding the adverse human health impacts of EDCs and this review highlights and gives examples of some of the concerns.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, Texas, USA
| |
Collapse
|
27
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Yin X, Fang B, Zhang X, Li J, Li Y. Salt‐assisted acetonitrile extraction and HPLC‐QTOF‐MS/MS detection for residues of multiple classes of pesticides in human serum samples. J Sep Sci 2020; 43:3534-3545. [DOI: 10.1002/jssc.201901223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Xue‐feng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural University Beijing P. R. China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural University Beijing P. R. China
| | - Xiao‐xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural University Beijing P. R. China
| | - Jin‐wang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural University Beijing P. R. China
| | - Yi‐xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural University Beijing P. R. China
| |
Collapse
|
29
|
Ren M, Jia X, Shi J, Yan L, Li Z, Lan C, Chen J, Li N, Li K, Huang J, Wu S, Lu Q, Li Z, Wang B, Liu J. Simultaneous analysis of typical halogenated endocrine disrupting chemicals and metal(loid)s in human hair. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137300. [PMID: 32097838 DOI: 10.1016/j.scitotenv.2020.137300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Hair analysis has been an important approach in evaluating population exposure to various environmental factors. To meet the requirements of human environmental epidemiology studies, we aimed to develop an efficient method for simultaneous analysis of various metal(loid)s and some typical environmental halogenated endocrine disrupting chemicals (hEDCs) (i.e., polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides, as well as some of their hydroxyl substituted metabolites) in a single hair sample. The hair was washed successively with surfactant solutions, methanol solvent, and deionized water to remove impurities attached to the hair surface. Efficiency was comprehensively compared among various washing strategies. The hair sample was further pulverized into fine powder with a median diameter (25th-75th percentile) of 8.6 (5.9-13.5) μm. The hair organic components were extracted by acetonitrile solvent and compared with the microwave-assisted extraction method. The hEDCs in the supernatant acetonitrile phase were quantified by gas chromatography-mass spectrometry, and the metal(loid)s in the precipitate hair were further analyzed by inductively coupled plasma mass spectrometry. Our developed method was further applied to analyze the hair samples of 165 pregnant women. The results showed that particles attached to the surface of the hair could not be washed off completely. However, we proposed a protocol framework to wash hair with relatively high efficience, which includes warm water incubation, and use of surfactant and organic solvent. The recoveries of the concerned hEDCs and metal(loid)s were overall in the range of 80% to 120%. For the women population, the method can efficiently recognize the typical exposure characteristics of the concerned hEDCs and metal(loid)s. Our study significantly ameliorated the deficiencies of the traditional hair washing strategy and developed an efficient method for simultaneous analysis of various metal(loid)s and hEDCs in a single hair sample. This method will provide important support for population complex exposure analysis and facilitate environmental exposome studies.
Collapse
Affiliation(s)
- Mengyuan Ren
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiazhang Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China
| | - Zewu Li
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Changxin Lan
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Junxi Chen
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Nan Li
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Kexin Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, PR China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China; Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, PR China
| | - Shaowei Wu
- Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, PR China; Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital,Beijing 100044, PR China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Jianmeng Liu
- Institute of Reproductive and Child Health, Peking University, Beijing 100191, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
30
|
Hauptman M, Wylie BJ. The Legacy of Environmental Policies-Are We Doing Enough? JAMA Pediatr 2020; 174:126-128. [PMID: 31886835 DOI: 10.1001/jamapediatrics.2019.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Marissa Hauptman
- Pediatric Environmental Health Center, Division of General Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Cabrera-Rodríguez R, Luzardo OP, Almeida-González M, Boada LD, Zumbado M, Henríquez-Hernández LA. Database of persistent organic pollutants in umbilical cord blood: Concentration of organochlorine pesticides, PCBs, BDEs and polycyclic aromatic hydrocarbons. Data Brief 2019; 28:104918. [PMID: 31879698 PMCID: PMC6920329 DOI: 10.1016/j.dib.2019.104918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 11/01/2022] Open
Abstract
Persistent organic pollutants (POPs) have been banned over the last decades for being damaged to the environment and to the health of humans and animals. However, due to their lipophilic nature and resistance to degradation, they are frequently detected in biological samples. Its presence has been associated with the increased risk of suffering from different diseases in human series, being newborns and children especially sensitive. The present data reports umbilical cord blood levels of twenty organochlorine pesticides (aldrin, dieldrin, endrin, o,p'-DDD, p,p'-DDD, o,p'-DDE, p,p'-DDE, o,p'-DDT, p,p'-DDT, endosulfan alfa, endosulfan beta, endosulfan sulphate, heptachlor, HCB, αHCH, βHCH, δHCH, lindane, methoxychlor and mirex), eighteen polychlorinated biphenyls (congeners 28, 52, 77, 81, 101, 105, 114, 118, 123, 126, 138, 153, 156, 157, 167, 169, 180 and 189), eight bromodiphenyl ethers (congeners 28, 47, 85, 99, 100, 153, 154 and 183), and sixteen polycyclic aromatic hydrocarbons (acenaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorine, indene(1,2,3-cd)pyrene, naphthalene, phenanthrene and pyrene). A total of 447 samples, representing 86.6% of the total births during the recruited period (March 1, 2015, to April 30, 2016), were available for POP analyses. POPs were determined in a Gas Chromatography (GC) system equipped with an automated sampler (Models 7890B and 7693; Agilent Technologies, Palo Alto, CA, USA) for gas chromatographic separations. The detection of the analytes was performed using a Triple Quad 7010 mass spectrometer (Agilent Technologies). All of the measurements were performed as triplicate measurements, and the means were used for the calculations. Data are reported in ng/mL. The present data also includes birth parameters, including weight, length, cranial perimeter, Apgar score and congenital malformations, and data referred to mothers (harmful habits, chronic diseases, and anthropometric/demographic characteristics).
Collapse
Affiliation(s)
- Raúl Cabrera-Rodríguez
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain.,Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Maira Almeida-González
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain.,Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain.,Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016, Las Palmas de Gran Canaria, Spain.,Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| |
Collapse
|
32
|
Naviaux RK. Perspective: Cell danger response Biology-The new science that connects environmental health with mitochondria and the rising tide of chronic illness. Mitochondrion 2019; 51:40-45. [PMID: 31877376 DOI: 10.1016/j.mito.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023]
Abstract
This paper is written for non-specialists in mitochondrial biology to provide access to an important area of science that has broad implications for all people. The cell danger response (CDR) is a universal response to environmental threat or injury. Once triggered, healing cannot be completed until the choreographed stages of the CDR are returned to an updated state of readiness. Although the CDR is a cellular response, it has the power to change human thought and behavior, child development, physical fitness and resilience, fertility, and the susceptibility of entire populations to disease. Mitochondria regulate the CDR by monitoring and responding to the physical, chemical, and microbial conditions within and around the cell. In this way, mitochondria connect cellular health to environmental health. Over 7,000 chemicals are now made or imported to the US for industrial, agricultural, and personal care use in amounts ranging from 25,000 to over 1 million pounds each year, and plastic waste now exceeds 83 billion pounds/year. This chemical load creates a rising tide of manmade pollutants in the oceans, air, water, and food chain. Fewer than 5% of these chemicals have been tested for developmental toxicity. In the 1980s, 5-10% of children lived with a chronic illness. As of 2018, 40% of children, 50% of teens, 60% of adults under age 65, and 90% of adults over 65 live with a chronic illness. Several studies now report the presence of dozens to hundreds of manmade chemicals and pollutants in placenta, umbilical cord blood, and newborn blood spots. New methods in metabolomics and exposomics allow scientists to measure thousands of chemicals in blood, air, water, soil, and the food chain. Systematic measurements of environmental chemicals can now be correlated with annual and regional patterns of childhood illness. These data can be used to prepare a prioritized list of molecules for congressional action, ranked according to their impact on human health.
Collapse
Affiliation(s)
- Robert K Naviaux
- Professor of Genetics, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson Street, Building CTF, Room C107, San Diego, CA 92103, USA.
| |
Collapse
|
33
|
Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, Tong W, Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4361. [PMID: 31717330 PMCID: PMC6888492 DOI: 10.3390/ijerph16224361] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Persistent organic pollutants (POPs) present in foods have been a major concern for food safety due to their persistence and toxic effects. To ensure food safety and protect human health from POPs, it is critical to achieve a better understanding of POP pathways into food and develop strategies to reduce human exposure. POPs could present in food in the raw stages, transferred from the environment or artificially introduced during food preparation steps. Exposure to these pollutants may cause various health problems such as endocrine disruption, cardiovascular diseases, cancers, diabetes, birth defects, and dysfunctional immune and reproductive systems. This review describes potential sources of POP food contamination, analytical approaches to measure POP levels in food and efforts to control food contamination with POPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huixiao Hong
- U.S. Food & Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA; (W.G.); (B.P.); (S.S.); (G.Y.); (W.G.); (W.Z.); (W.T.)
| |
Collapse
|
34
|
Luo Y, Yang R, Li Y, Wang P, Zhu Y, Yuan G, Zhang Q, Jiang G. Accumulation and fate processes of organochlorine pesticides (OCPs) in soil profiles in Mt. Shergyla, Tibetan Plateau: A comparison on different forest types. CHEMOSPHERE 2019; 231:571-578. [PMID: 31152937 DOI: 10.1016/j.chemosphere.2019.05.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Previous work documented that forest plays an important role in the deposition of persistent organic pollutants (POPs) in the southeast Tibetan Plateau (TP) due to the "forest filter effect". However, forest types in the southeast TP are entirely different and the influence on POPs fate and forest filter effect by different forests remains unclear. This study focused on the distribution and transfer of organochlorine pesticides (OCPs) in soil of different forest types (quercus, birch, fir, and spruce dominated forests) in Mt. Shergyla, southeast TP under similar environmental and meteorological conditions. Total levels of ∑HCHs, ∑DDTs and HCB in soils ranged from < LOD to 2.25 ng/g dry weight (dw), < LOD-10.2 ng/g dw, and < LOD-0.95 ng/g dw, respectively. Concentrations of OCPs in humus layers were significantly higher than those in mineral layers in the four forest types. Relatively higher ∑DDTs concentrations were found in soil profile of broadleaved birch forest, while higher concentrations of ∑HCHs and HCB were found in soil profile of coniferous fir forest, and the same trend was observed in fresh leaf samples. Air-to-ground fluxes and mobility of OCPs in the four forest types were also evaluated. Relatively higher fluxes were found in fir forests than in other forest types, suggesting that fir forest could be more effective to transfer OCPs from the air into soil in the southeast TP. The findings in this study would be helpful for improving model simulation of POPs fate in different forest ecosystem.
Collapse
Affiliation(s)
- Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoli Yuan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|