1
|
Cunha M, Nardi A, Soares AMVM, Gil AM, Freitas R. Revealing hidden risks: in vitro analysis of PFAS hazards in Mytilus galloprovincialis gills and digestive gland. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136823. [PMID: 39694002 DOI: 10.1016/j.jhazmat.2024.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their persistence and bioaccumulation, leading to widespread environmental contamination. Despite their recognised environmental risks, particularly to aquatic wildlife, including marine invertebrates, detailed impact studies are limited. PFAS can be categorised according to the length of the compound chain, with short-chain PFAS announced as a safer alternative to the more commonly used long-chain PFAS. However, recent evidence suggests that also short-chain PFAS pose significant environmental risks. The present study evaluated the adverse effects of six PFAS compounds-two short-chain (PFHxA, 6:2 FTA) and four long-chain (PFUnDA, PFDoA, PFTriDA, PFTeDA)- on the digestive gland and gills of mussels, Mytilus galloprovincialis, using in vitro assays. The results showed organ-specific responses: the digestive gland was more sensitive to PFHxA, with increased catalase activity and decreased total antioxidant capacity, and cellular damage was observed only at higher concentrations of PFTriDA. Gills were more affected by PFDoA and PFTeDA, with inhibited antioxidant enzyme activity and increased oxidative stress. PFHxA and PFTriDA also showed inhibition of acetylcholinesterase activity. 6:2 FTA had the lowest effects for both organs, while PFHxA was the most harmful. These findings underscore the need for thorough risk assessments of PFAS, considering both chain length and organ-specific effects.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana M Gil
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
2
|
Schildroth S, Wesselink AK, Bethea TN, Claus Henn B, Friedman A, Fruh V, Coleman CM, Lovett SM, Vines AI, Sjodin A, Botelho JC, Calafat AM, Wegienka G, Weuve J, Baird DD, Wise LA. A prospective cohort study of persistent endocrine-disrupting chemicals and perceived stress. Am J Epidemiol 2024; 193:1729-1740. [PMID: 38803157 PMCID: PMC11637482 DOI: 10.1093/aje/kwae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Persistent endocrine-disrupting chemicals (EDCs) can dysregulate the stress response. We evaluated associations between persistent EDCs and perceived stress among participants in the Study of Environment, Lifestyle, and Fibroids (n = 1394), a prospective cohort study of Black women. Participants completed the Perceived Stress Scale 4 (PSS-4) at baseline and every 20 months through 60 months (score range: 0-16); higher scores indicate higher stress. Endocrine-disrupting chemicals, including per- and polyfluoroalkyl substances, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides, were quantified in plasma samples at baseline. We fit bayesian kernel machine regression and linear mixed-effects models to estimate associations of EDCs (as a mixture and individually) with PSS-4 scores at baseline and at each follow-up visit, respectively. Increasing percentiles of the mixture were not strongly associated with PSS-4 scores at baseline, and no interactions were observed among EDCs. Several individual EDCs (eg, perfluorodecanoic acid, PCB 118, PBDE 99) were associated with higher PSS-4 scores at baseline or follow-up, and other EDCs (eg PCB 138/158) were associated with lower PSS-4 scores at baseline or follow-up. The directionality of associations for individual EDCs was inconsistent across follow-up visits. In conclusion, specific EDCs may be associated with perceived stress in Black women. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States
| | - Traci N Bethea
- Office of Minority Health & Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Institute, Washington, DC 20003, United States
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, United States
| | - Alexa Friedman
- National Institute of Environmental Health Sciences, Durham, NC 27709, United States
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, United States
| | - Chad M Coleman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States
| | - Sharonda M Lovett
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States
| | - Anissa I Vines
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Andreas Sjodin
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | | | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States
| | - Donna D Baird
- National Institute of Environmental Health Sciences, Durham, NC 27709, United States
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States
| |
Collapse
|
3
|
Ojemaye CY, Abegunde A, Green L, Petrik L. The efficacy of wastewater treatment plant on removal of perfluoroalkyl substances and their impacts on the coastal environment of False Bay, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64772-64795. [PMID: 39556229 PMCID: PMC11624228 DOI: 10.1007/s11356-024-35509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), which have their origins in both industrial processes and consumer products, can be detected at all treatment stages in wastewater treatment plants (WWTPs). Quantifying the emissions of PFAS from WWTPs into the marine environment is crucial because of their potential impacts on receiving aquatic ecosystems. In this study, the levels of five PFAS were measured in both influent and effluent sewage water samples obtained from a municipal WWTP, the discharges of which flow into False Bay, on the Indian Ocean coast of Cape Town, South Africa. Additionally, seawater, sediment, and biota samples from eight sites along the False Bay coast were also analysed. Results showed high prevalence of PFAS in the different environmental matrices. Perfluorononanoic acid was most dominant in all these matrices with maximum concentration in wastewater, 10.50 ng/L; seawater, 18.76 ng/L; marine sediment, 239.65 ng/g dry weight (dw); invertebrates, 0.72-2.45 µg/g dw; seaweed, 0.36-2.01 µg/g dw. The study used the chemical fingerprint of five PFASs detected in WWTP effluents to track their dispersion across a large, previously pristine marine environment and examined how each chemical accumulated in different marine organisms. The study also demonstrates that primary and secondary wastewater treatment processes cannot fully remove such compounds. There is thus a need to improve effluent quality before its release into the environment and promote continuous monitoring focusing on the sources of PFAS, including their potential transformation products, their environmental fate and ecological risks, particularly in areas receiving effluents from WWTP.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa.
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Adeola Abegunde
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Lesley Green
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
4
|
Li J, Sun J, Chao L, Chen J, Huang L, Kang B. Exposure, spatial distribution, and health risks of perfluoroalkyl acids in commercial fish species in the Beibu Gulf. MARINE POLLUTION BULLETIN 2024; 209:117101. [PMID: 39413479 DOI: 10.1016/j.marpolbul.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
The global distribution, persistence, bioaccumulation, and toxicity of per- and polyfluoroalkyl substances (PFAS) have received significant attention. We determined the contents of major perfluoroalkyl acids (PFAAs) in various commercial fish species from different regions of the Beibu Gulf. We detected 14 out of 17 PFAAs across all species, with PFOS (Perfluorooctanesulphonate) showing the highest detection rate, followed by PFHxS (Perfluorohexanesulfonic acid), PFPeA (Perfluorovaleric acid), and PFTrDA (Perfluorotetradecanoic acid). The concentrations of ∑PFAAs ranged from 0.22 to 7.43 ng/g (ww). Additionally, PFCAs dominated the PFAA profile (70 %) in the southern Beibu Gulf in comparison with the northern (53 %) and central Beibu Gulf (48 %). PFOS was the most abundant compound, accounting for 41 % of total PFAAs, followed by PFUdA (Perfluoroundecanoic Acid) (14 %) and PFOA (Perfluorooctanoic Acid) (12 %). The estimated daily intakes and hazard ratios of PFOS and PFOS indicate that there is no significant health risk from people consuming these fish.
Collapse
Affiliation(s)
- Jintao Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Le Chao
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jingrui Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Bin Kang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China.
| |
Collapse
|
5
|
Abdullah M, Adhikary S, Bhattacharya S, Hazra S, Ganguly A, Nanda S, Rajak P. E-waste in the environment: Unveiling the sources, carcinogenic links, and sustainable management strategies. Toxicology 2024; 509:153981. [PMID: 39490727 DOI: 10.1016/j.tox.2024.153981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
E-waste refers to the electrical and electronic equipment discarded without the intent of reuse or at the end of its functional lifespan. In 2022, approximately 62 billion kg of e-waste, equivalent to 7.8 kg per capita, was generated globally. With an alarming annual growth of approximately 2 million metric tonnes, e-waste production may exceed 82 billion kg by 2030. Improper disposal of e-waste can be detrimental to human health and the entire biosphere. E-waste encompasses a wide range of materials, including heavy metals, Polychlorinated Biphenyls (PCBs), Per- and Polyfluoroalkyl Substances (PFAS), Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Dibenzo-dioxins and -furans (PCDD/Fs), Polybrominated Diphenyl Ethers (PBDEs), and radioactive elements. E-waste, when disposed inappropriately can directly contaminate the aquatic and terrestrial environment, leading to human exposure through ingestion, inhalation, dermal absorption, and trans-placental transfer. These detrimental contaminants can directly enter the human body from the environment and may fuel carcinogenesis by modulating cell cycle proteins, redox homeostasis, and mutations. Heavy metals such as cadmium, mercury, arsenic, lead, chromium, and nickel, along with organic pollutants like PAHs, PCBs, PBDEs, PFAS, and radioactive elements, play a crucial role in inducing malignancy. Effective collection, sorting, proper recycling, and appropriate disposal techniques are essential to reduce environmental contamination with e-waste-derived chemicals. Hence, this comprehensive review aims to unravel the global environmental burden of e-waste and its links to carcinogenesis in humans. Furthermore, it provides an inclusive discussion on potential treatment approaches to minimize environmental e-waste contamination.
Collapse
Affiliation(s)
- Md Abdullah
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Sudharani Hazra
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
6
|
Visciano P. Environmental Contaminants in Fish Products: Food Safety Issues and Remediation Strategies. Foods 2024; 13:3511. [PMID: 39517295 PMCID: PMC11544809 DOI: 10.3390/foods13213511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The intentional or accidental presence of environmental contaminants, such as persistent organic pollutants, metals, and microplastics, can harm the aquatic ecosystem and their living organisms, as well as consumers of seafood. This study provides an overview of marine pollution caused by various chemicals and their toxicity to both the environment and humans. In addition to regulatory limits established for some contaminants, monitoring and management policies should mandate activities such as bioremediation and the use of carbon-based composite photocatalysts to reduce or eliminate these compounds.
Collapse
Affiliation(s)
- Pierina Visciano
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
7
|
Petali JM, Pulster EL, McCarthy C, Pickard HM, Sunderland EM, Bangma J, Carignan CC, Robuck A, Crawford KA, Romano ME, Lohmann R, von Stackelburg K. Considerations and challenges in support of science and communication of fish consumption advisories for per- and polyfluoroalkyl substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1839-1858. [PMID: 38752651 PMCID: PMC11486601 DOI: 10.1002/ieam.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Federal, state, tribal, or local entities in the United States issue fish consumption advisories (FCAs) as guidance for safer consumption of locally caught fish containing contaminants. Fish consumption advisories have been developed for commonly detected compounds such as mercury and polychlorinated biphenyls. The existing national guidance does not specifically address the unique challenges associated with bioaccumulation and consumption risk related to per- and polyfluoroalkyl substances (PFAS). As a result, several states have derived their own PFAS-related consumption guidelines, many of which focus on one frequently detected PFAS, known as perfluorooctane sulfonic acid (PFOS). However, there can be significant variation between tissue concentrations or trigger concentrations (TCs) of PFOS that support the individual state-issued FCAs. This variation in TCs can create challenges for risk assessors and risk communicators in their efforts to protect public health. The objective of this article is to review existing challenges, knowledge gaps, and needs related to issuing PFAS-related FCAs and to provide key considerations for the development of protective fish consumption guidance. The current state of the science and variability in FCA derivation, considerations for sampling and analytical methodologies, risk management, risk communication, and policy challenges are discussed. How to best address PFAS mixtures in the development of FCAs, in risk assessment, and establishment of effect thresholds remains a major challenge, as well as a source of uncertainty and scrutiny. This includes developments better elucidating toxicity factors, exposures to PFAS mixtures, community fish consumption behaviors, and evolving technology and analytical instrumentation, methods, and the associated detection limits. Given the evolving science and public interests informing PFAS-related FCAs, continued review and revision of FCA approaches and best practices are vital. Nonetheless, consistent, widely applicable, PFAS-specific approaches informing methods, critical concentration thresholds, and priority compounds may assist practitioners in PFAS-related FCA development and possibly reduce variability between states and jurisdictions. Integr Environ Assess Manag 2024;20:1839-1858. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jonathan Michael Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, New Hampshire, USA
| | - Erin L Pulster
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | | | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Courtney C Carignan
- Department Food Science and Human Nutrition, Department of Pharmacology and Toxicology Michigan State University, East Lansing, Michigan, USA
| | - Anna Robuck
- Environmental Effects Research Laboratory, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Kathryn A Crawford
- Environmental Studies Programs, Middlebury College, Middlebury, Vermont, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Katherine von Stackelburg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Melnyk LJ, Lazorchak JM, Kusnierz DH, Perlman GD, Lin J, Venkatapathy R, Sundaravadivelu D, Thorn J, Durant J, Pugh K, Stover MA. One Health assessment of persistent organic chemicals and PFAS for consumption of restored anadromous fish. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:1035-1044. [PMID: 38102302 PMCID: PMC11541783 DOI: 10.1038/s41370-023-00620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Restoration efforts have led to the return of anadromous fish, potential source of food for the Penobscot Indian Nation, to the previously dammed Penobscot River, Maine. OBJECTIVE U.S. Environmental Protection Agency (EPA), Penobscot Indian Nation's Department of Natural Resources (PINDNR), and Agency for Toxic Substances and Disease Registry (ATSDR), measured contaminants in six species of anadromous fish. Fish tissue concentrations were then used, along with exposure parameters, to evaluate potential human and aquatic-dependent wildlife risk. METHODS PINDNR collected, filleted, froze, and shipped fish for analysis of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins/furans, and per- and polyfluoroalkyl substances (PFAS). Contaminant levels were compared to reference doses (where possible) and wildlife values (WVs). RESULTS Chemical concentrations ranged from 6.37 nanogram per gram (ng/g) wet weight (ww) in American Shad roe to 100 ng/g ww in Striped Bass for total PCBs; 0.851 ng/g ww in American Shad roe to 5.92 ng/g ww in large Rainbow Smelt for total PBDEs; and 0.037 ng/g ww in American Shad roe to 0.221 ng/g ww in Striped Bass for total dioxin/furans. PFAS concentrations ranged between 0.38 ng/g ww of PFBA in Alewife to 7.86 ng/g ww of PFUnA in Sea Lamprey. Dioxin/furans and PFOS levels indicated that there are potential human health risks. The WV for mink for total PCBs (72 ng/g) was exceeded in Striped Bass and the WV for Kestrel for PBDEs (8.7 ng/g) was exceeded in large Rainbow Smelt. Mammalian wildlife consuming Blueback Herring, Striped Bass, and Sea Lamprey may be at risk based on PFOS WVs from Canada. IMPACT Anadromous fish returning to the Penobscot River potentially could represent the restoration of a major component of tribal traditional diet. However, information about contaminant levels in these fish is needed to guide the tribe about consumption safety. Analysis of select species of fish and risk calculations demonstrated the need for a protective approach to consumption for both humans and wildlife. This project demonstrates that wildlife can also be impacted by contamination of fish and their risks can be as great or greater than those of humans. A One Health approach addresses this discrepancy and will lead to a healthier ecosystem.
Collapse
Affiliation(s)
- Lisa Jo Melnyk
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Cincinnati, OH, USA.
| | - James M Lazorchak
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Cincinnati, OH, USA
| | - Daniel H Kusnierz
- Penobscot Indian Nation, Department of Natural Resources, Indian Island, ME, USA
| | - Gary D Perlman
- Senior Environmental Employee Grantee, EPA, Region 1, Boston, MA, USA
| | - John Lin
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Cincinnati, OH, USA
| | | | | | | | - James Durant
- Agency for Toxic Substances and Disease Registry, Office of Community Health and Hazard Assessment, Atlanta, GA, USA
| | | | | |
Collapse
|
9
|
Soudani M, Hegg L, Rime C, Coquoz C, Grosjean DB, Danza F, Solcà N, Lucarini F, Staedler D. Determination of per- and polyfluoroalkyl substances (PFAS) in six different fish species from Swiss lakes. Anal Bioanal Chem 2024; 416:6377-6386. [PMID: 39349836 PMCID: PMC11541325 DOI: 10.1007/s00216-024-05524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants with bioaccumulation potential, particularly affecting aquatic ecosystems and human health also via fish consumption. There is therefore a need for reliable extraction methods and studies to accurately assess PFAS levels in fish, crucial for understanding bioaccumulation and potential toxicological effects on both fish and humans through consumption. This study investigated PFAS levels in freshwater fish from Swiss lakes, focusing on six common species: Coregonus wartmanni, Cyprinus carpio, Oncorhynchus mykiss, Perca fluviatilis, Salmo trutta, and Squalius cephalus. Utilizing an optimized QuEChERS extraction method, 15 PFAS were analyzed in 218 fish fillet samples using liquid chromatography-mass spectrometry (LC-MS/MS). The results were compared to EU regulations and EFSA guidelines for tolerable weekly intake (TWI), with a specific focus on correlations between fish size and PFAS concentration. Our findings reveal significant PFAS contamination, particularly in Perca fluviatilis with perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) levels often exceeding EU safety limits. TWI, calculated for a person of 70 kg body weight and an intake of 200 g of fish fillet, is exceeded in 95% of Coregonus wartmanni, 100% of Squalius cephalus, and in 55%, 50%, and 36% of the specimens Oncorhynchus mykiss, Salmo trutta, and Perca fluviatilis respectively. Correlation analysis between PFAS concentration and fish size in 121 Salmo trutta specimens revealed significant positive correlations for perfluorobutane sulfonic acid (PFBS), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS), and a negative correlation for perfluoropentanoic acid (PFPeA). These results underscore the critical need for continuous monitoring and regulatory efforts to mitigate PFAS exposure risks to both ecosystems and human health.
Collapse
Affiliation(s)
- Mylène Soudani
- TIBIO Suisse Romande, Chemin de Bérée 4C, 1010, Lausanne, Switzerland
| | - Lucie Hegg
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 2, 1066, Epalinges-Lausanne, Switzerland
| | - Camille Rime
- TIBIOLab Sàrl, Route d'Yverdon 34, 1373, Chavornay, Switzerland
| | - Camille Coquoz
- Département de La Mobilité, du Territoire Et de L'environnement (DMTE), Service de L'environnement (SEN), Avenue de La Gare 25, 1950, Sion, Switzerland
| | - Denise Bussien Grosjean
- Direction de L'environnement Industriel, Urbain Et Rural, Direction Générale de L'environnement, Etat de Vaud, Chemin Des Boveresses 155, 1066, Epalinges, Switzerland
| | - Francesco Danza
- Dipartimento del Territorio, Divisione Dell'Ambiente, Sezione Della Protezione Dell'aria Dell'acqua E del Suolo, Via Franco Zorzi 13, 6501, Bellinzona, Switzerland
| | - Nicola Solcà
- Dipartimento del Territorio, Divisione Dell'Ambiente, Sezione Della Protezione Dell'aria Dell'acqua E del Suolo, Via Franco Zorzi 13, 6501, Bellinzona, Switzerland
| | - Fiorella Lucarini
- TIBIO Suisse Romande, Chemin de Bérée 4C, 1010, Lausanne, Switzerland.
- School of Engineering and Architecture of Fribourg, Institute of Chemical Technology, HES-SO University of Applied Sciences and Arts of Western Switzerland, Boulevard de Pérolles 80, 1700, Fribourg, Switzerland.
| | - Davide Staedler
- TIBIO Suisse Romande, Chemin de Bérée 4C, 1010, Lausanne, Switzerland.
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 27, 1011, Lausanne, Switzerland.
| |
Collapse
|
10
|
David N, Ivantsova E, Konig I, English CD, Avidan L, Kreychman M, Rivera ML, Escobar C, Valle EMA, Sultan A, Martyniuk CJ. Adverse Outcomes Following Exposure to Perfluorooctanesulfonamide (PFOSA) in Larval Zebrafish ( Danio rerio): A Neurotoxic and Behavioral Perspective. TOXICS 2024; 12:723. [PMID: 39453143 PMCID: PMC11510739 DOI: 10.3390/toxics12100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Toxicity mechanisms of per- and polyfluoroalkyl substances (PFASs), a chemical class present in diverse ecosystems, as well as many of their precursors, have been increasingly characterized in aquatic species. Perfluorooctanesulfonamide (PFOSA, C8H2F17NO2S) is a common precursor of perfluorooctane sulfonic acid (PFOS), a long-chain PFAS. Here, we assessed sub-lethal endpoints related to development, oxidative stress, transcript levels, and distance moved in zebrafish embryos and larvae following continuous exposure to PFOSA beginning at 6 h post-fertilization (hpf). PFOSA decreased survival in fish treated with 1 µg/L PFOSA; however, the effect was modest relative to the controls (difference of 10%). Exposure up to 10 µg/L PFOSA did not affect hatch rate, nor did it induce ROS in 7-day-old larvae fish. The activity of larval fish treated with 100 µg/L PFOSA was reduced relative to the solvent control. Transcripts related to oxidative stress response and apoptosis were measured and BCL2-associated X, apoptosis regulator (bax), cytochrome c, somatic (cycs), catalase (cat), superoxide dismutase 2 (sod2) were induced with high concentrations of PFOSA. Genes related to neurotoxicity were also measured and transcript levels of acetylcholinesterase (ache), elav-like RNA binding protein 3 (elavl3), growth-associated protein 43 (gap43), synapsin II (syn2a), and tubulin 3 (tubb3) were all increased in larval fish with higher PFOSA exposure. These data improve our understanding of the potential sub-lethal toxicity of PFOSA in fish species.
Collapse
Affiliation(s)
- Nikita David
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Isaac Konig
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- Department of Chemistry, Federal University of Lavras (UFLA), Minas Gerais, Lavras 37203-202, Brazil
| | - Cole D. English
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Lev Avidan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Mark Kreychman
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Mario L. Rivera
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Camilo Escobar
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
| | - Eliana Maira Agostini Valle
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema 09972-270, Brazil
| | - Amany Sultan
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- Animal Health Research Institute, Agriculture Research Centre, Giza 3751254, Egypt
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (N.D.); (E.I.); (I.K.); (C.D.E.); (L.A.); (M.K.); (M.L.R.); (C.E.); (E.M.A.V.); (A.S.)
- UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Nobile M, Panseri S, Curci D, Chiesa LM, Ghidini S, Arioli F. Prevalence of perfluoroalkyl substances in paired batches of precooked and canned bovine meat and their implication on consumer safety. Food Chem Toxicol 2024; 192:114910. [PMID: 39121894 DOI: 10.1016/j.fct.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Meat is a highly nutritious food but there is a lot of significant evidence of negative health outcomes related to its excessive consumption, especially for processed one. Among the variety of emerging contaminants of concern for human health, a key role is played by poly- and per-fluoroalkyl substances (PFASs), which show adverse effects in humans who are exposed to them through diet. In the present study, for the first time, 70 paired batches of pre-cooked and canned bovine meat were analysed by Liquid Chromatography coupled to High Resolution Mass Spectrometry to evaluate the presence and concentration of 18 PFASs. These data were used to assess Italian consumers' health risks by performing the PFAS intake evaluation. PFBA and PFOS were detected in the precooked and canned meat samples, with PFBA mean concentration of 0.22 ± 0.36 ng g-1, and
Collapse
Affiliation(s)
- Maria Nobile
- Department of Veterinary Medicine and Animal Science, University of Milan, Via Dell'Universita' 6, 26900, Lodi, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via Dell'Universita' 6, 26900, Lodi, Italy
| | - Dalia Curci
- Department of Veterinary Medicine and Animal Science, University of Milan, Via Dell'Universita' 6, 26900, Lodi, Italy.
| | - Luca Maria Chiesa
- Department of Veterinary Medicine and Animal Science, University of Milan, Via Dell'Universita' 6, 26900, Lodi, Italy
| | - Sergio Ghidini
- Department of Veterinary Medicine and Animal Science, University of Milan, Via Dell'Universita' 6, 26900, Lodi, Italy
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Science, University of Milan, Via Dell'Universita' 6, 26900, Lodi, Italy
| |
Collapse
|
12
|
Blazer VS, Walsh HL, Smith CR, Gordon SE, Keplinger BJ, Wertz TA. Tissue distribution and temporal and spatial assessment of per- and polyfluoroalkyl substances (PFAS) in smallmouth bass (Micropterus dolomieu) in the mid-Atlantic United States. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59302-59319. [PMID: 39348015 PMCID: PMC11513725 DOI: 10.1007/s11356-024-35097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become an environmental issue worldwide. A first step to assessing potential adverse effects on fish populations is to determine if concentrations of concern are present in a region and if so, in which watersheds. Hence, plasma from adult smallmouth bass Micropterus dolomieu collected at 10 sites within 4 river systems in the mid-Atlantic region of the United States, from 2014 to 2019, was analyzed for 13 PFAS. These analyses were directed at better understanding the presence and associations with land use attributes in an important sportfish. Four substances, PFOS, PFDA, PFUnA, and PFDoA, were detected in every plasma sample, with PFOS having the highest concentrations. Sites with mean plasma concentrations of PFOS below 100 ng/ml had the lowest percentage of developed landcover in the upstream catchments. Sites with moderate plasma concentrations (mean PFOS concentrations between 220 and 240 ng/ml) had low (< 7.0) percentages of developed land use but high (> 30) percentages of agricultural land use. Sites with mean plasma concentrations of PFOS > 350 ng/ml had the highest percentage of developed land use and the highest number PFAS facilities that included military installations and airports. Four of the sites were part of a long-term monitoring project, and PFAS concentrations of samples collected in spring 2017, 2018, and 2019 were compared. Significant annual differences in plasma concentrations were noted that may relate to sources and climatic factors. Samples were also collected at two sites for tissue (plasma, whole blood, liver, gonad, muscle) distribution analyses with an expanded analyte list of 28 PFAS. Relative tissue distributions were not consistent even within one species of similar ages. Although the long-chained legacy PFAS were generally detected more frequently and at higher concentrations, emerging compounds such as 6:2 FTS and GEN X were detected in a variety of tissues.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA.
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Cheyenne R Smith
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | | | - Timothy A Wertz
- Pennsylvania Department of Environmental Protection, Harrisburg, PA, 17101, USA
| |
Collapse
|
13
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
14
|
Bian J, Xu J, Guo Z, Li X, Ge Y, Tang X, Lu B, Chen X, Lu S. Per- and polyfluoroalkyl substances in Chinese commercially available red swamp crayfish (Procambarus clarkii): Implications for human exposure and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124369. [PMID: 38876375 DOI: 10.1016/j.envpol.2024.124369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The extensive utilization of per- and polyfluoroalkyl substances (PFASs) has led to their pervasive presence in the environment, resulting in contamination of aquatic products. Prolonged exposure to PFASs has been linked to direct hepatic and renal damage, along with the induction of oxidative stress, contributing to a spectrum of chronic ailments. Despite the recent surge in popularity of red swamp crayfish as a culinary delicacy in China, studies addressing PFASs' exposure and associated health risks from their consumption remain scarce. To address this gap, our study investigated the PFASs' content in 85 paired edible tissue samples sourced from the five primary red swamp crayfish breeding provinces in China. The health risks associated with dietary exposure were also assessed. Our findings revealed widespread detection of PFASs in crayfish samples, with short-chain perfluoroalkyl carboxylic acids (PFCAs) exhibiting the highest concentrations. Notably, the total PFAS concentration in the hepatopancreas (median: 160 ng/g) significantly exceeded that in muscle tissue (5.95 ng/g), as did the concentration of every single substance. The hazard quotient of perfluorohexanesulfonic acid (PFHxS) via consuming crayfish during peak season exceeded 1. In this case, a potential total non-cancer health risk of PFASs, which is mainly from the hepatopancreas and associated with PFHxS, is also observed (hazard index>1). Thus, it is recommended to avoid consuming the hepatopancreas of red swamp crayfish. Greater attention should be paid to governance technology innovation and regulatory measure strengthening for short-chain PFASs.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
15
|
Eze CG, Okeke ES, Nwankwo CE, Nyaruaba R, Anand U, Okoro OJ, Bontempi E. Emerging contaminants in food matrices: An overview of the occurrence, pathways, impacts and detection techniques of per- and polyfluoroalkyl substances. Toxicol Rep 2024; 12:436-447. [PMID: 38645434 PMCID: PMC11033125 DOI: 10.1016/j.toxrep.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been used in industrial and consumer applications for ages. The pervasive and persistent nature of PFAS in the environment is a universal concern due to public health risks. Experts acknowledge that exposure to high levels of certain PFAS have consequences, including reduced vaccine efficacy, elevated cholesterol, and increased risk of high blood pressure. While considerable research has been conducted to investigate the presence of PFAS in the environment, the pathways for human exposure through food and food packaging/contact materials (FCM) remain unclear. In this review, we present an exhaustive overview of dietary exposure pathways to PFAS. Also, the mechanism of PFAS migration from FCMs into food and the occurrence of PFAS in certain foods were considered. Further, we present the analytical techniques for PFAS in food and food matrices as well as exposure pathways and human health impacts. Further, recent regulatory actions working to set standards and guidelines for PFAS in food packaging materials were highlighted. Alternative materials being developed and evaluated for their safety and efficacy in food contact applications, offering promising alternatives to PFAS were also considered. Finally, we reported on general considerations and perspectives presently considered.
Collapse
Affiliation(s)
- Chukwuebuka Gabriel Eze
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Biological Environmental and Rural Science Aberystwyth University, Wales, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Uttpal Anand
- CytoGene Research & Development LLP, K-51, UPSIDA Industrial Area, Kursi Road (Lucknow), Dist.– Barabanki, 225001, Uttar Pradesh, India
| | - Onyekwere Joseph Okoro
- Department of Zoology and Environment Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Elza Bontempi
- INSTM and INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, Brescia 25123, Italy
| |
Collapse
|
16
|
Mehdi Q, Griffin EK, Esplugas J, Gelsleichter J, Galloway AS, Frazier BS, Timshina AS, Grubbs RD, Correia K, Camacho CG, Bowden JA. Species-specific profiles of per- and polyfluoroalkyl substances (PFAS) in small coastal sharks along the South Atlantic Bight of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171758. [PMID: 38521272 DOI: 10.1016/j.scitotenv.2024.171758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have gained widespread commercial use across the globe in various industrial and consumer products, such as textiles, firefighting foams, and surface coating materials. Studies have shown that PFAS exhibit a strong tendency to accumulate within aquatic food webs, primarily due to their high bioaccumulation potential and resistance to degradation. Despite such concerns, their impact on marine predators like sharks remains underexplored. This study aimed to investigate the presence of 34 PFAS in the plasma (n = 315) of four small coastal sharks inhabiting the South Atlantic Bight of the United States (U.S). Among the sharks studied, bonnetheads (Sphyrna tiburo) had the highest ∑PFAS concentration (3031 ± 1674 pg g - 1 plasma, n = 103), followed by the Atlantic sharpnose shark (Rhizoprionodon terraenovae, 2407 ± 969 pg g - 1, n = 101), blacknose shark (Carcharhinus acronotus, 1713 ± 662 pg g - 1, n = 83) and finetooth shark (Carcharhinus isodon, 1431 ± 891 pg g - 1, n = 28). Despite declines in the manufacturing of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the long-chain (C8 - C13) perfluoroalkyl acids (PFAAs) were frequently detected, with PFOS, perfluorodecanoic acid (PFDA), and perfluorotridecanoic acid (PFTrDA) present as the most dominant PFAS. Furthermore, males exhibited significantly higher ∑PFAS concentrations than females in bonnetheads (p < 0.01), suggesting possible sex-specific PFAS accumulation or maternal offloading in some species. The results of this study underscore the urgency for more extensive biomonitoring of PFAS in aquatic/marine environments to obtain a comprehensive understanding of the impact and fate of these emerging pollutants on marine fauna.
Collapse
Affiliation(s)
- Qaim Mehdi
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Juliette Esplugas
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jim Gelsleichter
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | - Ashley S Galloway
- South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Bryan S Frazier
- South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, USA
| | - Alina S Timshina
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - R Dean Grubbs
- Coastal and Marine Laboratory, Florida State University 3618 Highway 98, St. Teresa, FL 32358, USA
| | - Keyla Correia
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Camden G Camacho
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
17
|
Sands M, Zhang X, Jensen T, La Frano M, Lin M, Irudayaraj J. PFAS assessment in fish - Samples from Illinois waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172357. [PMID: 38614344 DOI: 10.1016/j.scitotenv.2024.172357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) have been widely used in various industries, including pesticide production, electroplating, packaging, paper making, and the manufacturing of water-resistant clothes. This study investigates the levels of PFAS in fish tissues collected from four target waterways (15 sampling points) in the northwestern part of Illinois during 2021-2022. To assess accumulation, concentrations of 17 PFAS compounds were evaluated in nine fish species to potentially inform on exposure risks to local sport fishing population via fish consumption. At least four PFAS (PFHxA, PFHxS, PFOS, and PFBS) were detected at each sampling site. The highest concentrations of PFAS were consistently found in samples from the Rock River, particularly in areas near urban and industrial activities. PFHxA emerged as the most accumulated PFAS in the year 2022, while PFBS and PFOS dominated in 2021. Channel Catfish exhibited the highest PFAS content across different fish species, indicating its bioaccumulation potential across the food chain. Elevated levels of PFOS were observed in nearly all fish, indicating the need for careful consideration of fish consumption. Additional bioaccumulation data in the future years is needed to shed light on the sources and PFAS accumulation potential in aquatic wildlife in relation to exposures for potential health risk assessment.
Collapse
Affiliation(s)
- Mia Sands
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Xing Zhang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Tor Jensen
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Michael La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mindy Lin
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States.
| |
Collapse
|
18
|
Kreychman M, Ivantsova E, Lu A, Bisesi JH, Martyniuk CJ. A comparative review of the toxicity mechanisms of perfluorohexanoic acid (PFHxA) and perfluorohexanesulphonic acid (PFHxS) in fish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109874. [PMID: 38423199 DOI: 10.1016/j.cbpc.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Industrial and consumer goods contain diverse perfluoroalkyl substances (PFAS). These substances, like perfluorohexanoic acid (PFHxA) and perfluorohexanesulphonic acid (PFHxS), are under increased scrutiny due to their potential toxicity to aquatic organisms. However, our understanding of their biological impacts and mechanisms of action remains limited. The objectives of this review were to compare data for levels of PFHxA and PFHxS in aquatic environments and fish tissues, as well as toxicity mechanisms related to morphological, endocrine, metabolic, and behavioral endpoints. A computational assessment was also performed to identify putative mechanisms of toxicity and to characterize exposure biomarkers. Studies have shown that both PFHxA and PFHxS residues are present in diverse marine and freshwater fish tissues, suggesting the importance of monitoring these PFAS in aquatic organisms. In fish tissues, these chemicals have been reported to be as high as 37.5 ng/g for PFHxA and 1290 ng/g for PFHxS, but their persistence in aquatic environments and degradation in tissues requires further study. In terms of mechanisms of toxicity, both oxidative stress and endocrine disruption have been reported. Based on evidence for endocrine disruption, we modeled interactions of estrogen and androgen receptors of several fish species with PFHxA and PFHxS. Molecular docking revealed that PFHxS has a stronger affinity for interacting with the estrogen and androgen receptors of fish compared to PFHxA and that estrogen and androgen receptors of fathead minnow, zebrafish, Atlantic salmon, and largemouth bass show comparable binding affinities for each chemical except for salmon Esr2b, which was predicted to have lower affinity for PFHxA relative to Esr2a. While mechanistic data are lacking in fish in general for these chemicals, a computational approach revealed that PFHxA can perturb the endocrine system, nervous system, and is linked to changes in kidney and liver weight. Proteins associated with PFHxA and PFHxS exposures in fish include those related to lipid and glucose regulation, reproductive proteins like KISS metastasis suppressor, and proteins associated with the immune system (specifically RAG1, RAG2), all of which are potential biomarkers of exposure. Taken together, we synthesize current knowledge regarding the environmental fate and ecotoxicology of PFHxA/PFHxS in fish species.
Collapse
Affiliation(s)
- Mark Kreychman
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Emma Ivantsova
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Austin Lu
- Blind Brook High School, Rye Brook, NY 10573, USA
| | - Joseph H Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, USA.
| |
Collapse
|
19
|
Wei T, Leung JYS, Wang T. Can PFAS threaten the health of fish consumers? A comprehensive analysis linking fish consumption behaviour and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170960. [PMID: 38365019 DOI: 10.1016/j.scitotenv.2024.170960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Despite being phased out for decades, per- and polyfluoroalkyl substances (PFAS) are still widely detected in the environment and accumulated in many aquaculture organisms for human consumption. Thus, there is growing concern about whether fish consumption can cause PFAS-associated health impacts on humans since fish is a vital protein source for global populations. Here, we assess the potential driving factors of fish consumption by analysing the aquaculture, demographic and socio-economic data across 31 provinces/municipalities in China, followed by estimating the health risk of PFAS via fish consumption. We found that per capita fish consumption was primarily driven by fish production and total area for freshwater aquaculture, while urbanization rate and median age of consumers were also important. The health risk of PFAS was low (hazard quotient <1) in most provinces, while urban consumers were more prone to PFAS than rural consumers across all provinces. Since PFAS have been phased out worldwide, their health risk to humans through fish consumption would be lower than previously thought. To reduce PFAS intake for the high-risk populations, we recommend that fish should be well cooked before consumption, preferably using water-based cooking methods, and that alternative protein sources should be consumed more as the substitute for fish.
Collapse
Affiliation(s)
- Ting Wei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
20
|
Chung KW, Key PB, Tanabe P, DeLorenzo ME. Effects of Temperature and Salinity on Perfluorooctane Sulfonate (PFOS) Toxicity in Larval Estuarine Organisms. TOXICS 2024; 12:267. [PMID: 38668490 PMCID: PMC11053673 DOI: 10.3390/toxics12040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/29/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent contaminant that has been found globally within the environment. Key data gaps exist in the toxicity of PFOS to marine organisms, especially estuarine species that are crucial to the food web: fish, shrimp, and mollusks. This study developed toxicity thresholds for larval estuarine species, including grass shrimp (Palaemon pugio), sheepshead minnows (Cyprinodon variegatus), mysids (Americamysis bahia), and Eastern mud snails (Tritia obsoleta). Multiple abiotic stressors (salinity and temperature) were included as variables in testing the toxicity of PFOS. Acute 96 h toxicity testing under standard test conditions of 25 °C and 20 ppt seawater yielded LC50 values of 0.919 mg/L for C. variegatus, 1.375 mg/L for A. bahia, 1.559 mg/L for T. obsoleta, and 2.011 mg/L for P. pugio. The effects of increased temperature (32 °C) and decreased salinity (10 ppt) varied with test species. PFOS toxicity for the sheepshead minnows increased with temperature but was not altered by decreased salinity. For grass shrimp and mud snails, PFOS toxicity was greater under lower salinity. The combination of higher temperature and lower salinity was observed to lower the toxicity thresholds for all species. These data demonstrate that expanding toxicity testing to include a wider range of parameters will improve the environmental risk assessment of chemical contaminants, especially for species inhabiting dynamic estuarine ecosystems.
Collapse
Affiliation(s)
- Katy W. Chung
- National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC 29412, USA; (P.B.K.); (P.T.); (M.E.D.)
| | | | | | | |
Collapse
|
21
|
Aker A, Nguyen V, Ayotte P, Ricard S, Lemire M. Characterizing Important Dietary Exposure Sources of Perfluoroalkyl Acids in Inuit Youth and Adults in Nunavik Using a Feature Selection Tool. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47014. [PMID: 38683744 PMCID: PMC11057678 DOI: 10.1289/ehp13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥ 16 y of age residing in Nunavik (n = 1,193 ). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
| | - Vy Nguyen
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
22
|
Tang L, Yu X, Zhao W, Barceló D, Lyu S, Sui Q. Occurrence, behaviors, and fate of per- and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. WATER RESEARCH 2024; 252:121215. [PMID: 38309069 DOI: 10.1016/j.watres.2024.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a crucial environmental concern owing to their exceptional persistence, ability to bioaccumulate within ecosystems, and potential to adversely affect biota. Products and materials containing PFASs are usually discarded into municipal solid waste (MSW) at the end of their life cycle, and the fate of PFASs may differ when different disposal methods of MSWs are employed. To date, limited research has focus on the occurrence, behaviors, and fate of PFASs emitted from various MSW disposal sites. This knowledge gap may lead to an underestimation of the contribution of MSW disposal sites as a source of PFASs in the environment. In this review, we collated publications concerning PFASs from typical MSW disposal sites (i.e., landfills, incineration plants, and composting facilities) and explored the occurrence patterns and behaviors of PFASs across various media (e.g., landfill leachate/ambient air, incineration plant leachate/ash, and compost products) in these typical MSW disposal sites. In particular, this review highlighted ultrashort-chain perfluoroalkyl acids and "unknown"/emerging PFASs. Additionally, it meticulously elucidated the use of non-specific techniques and non-target analysis for screening and identifying these overlooked PFASs. Furthermore, the composition profiles, mass loads, and ecological risks of PFASs were compared across the three typical disposal methods. To the best of our knowledge, this is the first review regarding the occurrence, behaviors, and fate of PFASs in typical MSW disposal sites on a global scale, which can help shed light on the potential environmental impacts of PFASs harbored in MSWs and guide future waste management practices.
Collapse
Affiliation(s)
- Linfeng Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
23
|
Azhagiya Singam E, Durkin KA, La Merrill MA, Furlow JD, Wang JC, Smith MT. Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4487-4499. [PMID: 38422483 PMCID: PMC10938639 DOI: 10.1021/acs.est.3c05974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.
Collapse
Affiliation(s)
| | - Kathleen A. Durkin
- Molecular
Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michele A. La Merrill
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
| | - J. David Furlow
- Department
of Neurobiology, Physiology and Behavior, University of California, Davis California 95616, United States
| | - Jen-Chywan Wang
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, United States
| | - Martyn T. Smith
- Division
of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Riaz R, Abdur Rehman MY, Junaid M, Iqbal T, Khan JA, Dong Y, Yue L, Chen Y, Xu N, Malik RN. First insights into per-and polyfluoroalkyl substance contamination in edible fish species of the Indus water system of Pakistan. CHEMOSPHERE 2024; 349:140970. [PMID: 38114020 DOI: 10.1016/j.chemosphere.2023.140970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of emerging contaminants, that have a wide range of applications in industrial and commercial products. The direct discharge of untreated industrial and domestic wastewater into freshwater bodies is a common practice in developing countries, which are the main contributors to PFASs in the aquatic environment. The situation is further worsened due to poor wastewater treatment facilities and weak enforcement of environmental regulations in countries like Pakistan. The current study was designed to assess PFASs contamination in muscle tissues of edible fish species from major tributaries of the Indus System, including Head Panjnad (HP), Head Trimmu (HT), Chashma Barrage (CB), Head Blloki (HB) and Head Qadirabad (HQ). The analysis of target PFAS was performed using ultrahigh-performance liquid chromatography coupled with a quadrupole Orbitrap high-resolution mass spectrometry. The highest levels of ∑17PFASs were observed in S. seenghala, C. mirigala from HB, and C. mirigala from HQ with a mean value of 45.4 ng g-1, 43.7 ng g-1, and 40.8 ng g-1, respectively. Overall, the compositional profile of fish samples was predominated by long-chain PFASs such as PFOA, PFOS, PFHpS, and PFDS. The accumulation of PFASs in fish species is dependent on the physiochemical properties of PFASs, characteristics of the aquatic environment, and fish species. Significant associations of PFASs with isotopic composition (p < 0.05), feeding habits (p < 0.05), and zones (p < 0.05) indicate that dietary proxies could be an important predictor of PFASs distribution among species. The C7-C10 PFASs exhibited bio-accumulative tendency with an accumulation factor ranging from 0.5 to 3.4. However, none of the fish samples had sufficiently high levels of PFOS to cause human health risk (HR < 1). For future studies, it is s recommended to conduct seasonal monitoring and the bioaccumulation pattern along trophic levels of both legacy and emerging PFASs.
Collapse
Affiliation(s)
- Rahat Riaz
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Taimoor Iqbal
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawad Aslam Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yanran Dong
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yupeng Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
25
|
Nolen RM, Prouse A, Russell ML, Bloodgood J, Díaz Clark C, Carmichael RH, Petersen LH, Kaiser K, Hala D, Quigg A. Evaluation of fatty acids and carnitine as biomarkers of PFOS exposure in biota (fish and dolphin) from Galveston Bay and the northwestern Gulf of Mexico. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109817. [PMID: 38101762 DOI: 10.1016/j.cbpc.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant that elicits a wide range of toxic effects in exposed biota. Coastal zones in highly urbanized or industrial areas are particularly vulnerable to PFOS pollution. At present, information is lacking on biomarkers to assess PFOS effects on aquatic wildlife. This study investigated the efficacy of l-carnitine (or carnitine) and fatty acids as biomarkers of PFOS exposure in aquatic biota. The levels of PFOS, total and free carnitine, and 24 fatty acids (measured as fatty acid methyl esters or FAMEs) were measured in the liver, and muscle or blubber, of fish and dolphins sampled from Galveston Bay and the northern Gulf of Mexico (nGoM). Overall, bottlenose dolphins (Tursiops truncatus) had the highest hepatic PFOS levels. Galveston Bay fish, gafftopsail catfish (Bagre marinus), red drum (Sciaenops ocellatus), and spotted seatrout (Cynoscion nebulosus), had hepatic PFOS levels ∼8-13× higher than nGoM pelagic fish species, red snapper (Lutjanus campechanus) and yellowfin tuna (Thunnus albacares). The multivariate analysis of PFOS liver body-burdens and biomarkers found carnitine to be a more modal biomarker of PFOS exposure than FAMEs. Significant positive correlation of hepatic PFOS levels with total carnitine was evident for biota from Galveston Bay (fish only), and a significant correlation between PFOS and total and free carnitine was evident for biota from the nGoM (fish and dolphins). Given the essential role of carnitine in mediating fatty acid β-oxidation, our results suggest carnitine to be a likely candidate biomarker of environmental PFOS exposure and indicative of potential dyslipidemia effects.
Collapse
Affiliation(s)
- Rayna M Nolen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Mackenzie L Russell
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Jennifer Bloodgood
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA; Cornell Wildlife Health Lab, Cornell University College of Veterinary Medicine, 240 Farrier Rd, Ithaca, NY 14853, USA
| | - Cristina Díaz Clark
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Ruth H Carmichael
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA
| | - Lene H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Karl Kaiser
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| | - David Hala
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Ecology and Conservation Biology, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| |
Collapse
|
26
|
Takdastan A, Babaei AA, Jorfi S, Ahmadi M, Tahmasebi Birgani Y, Jamshidi B. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in water and edible fish species of Karun River, Ahvaz, Iran: spatial distribution, human health, and ecological risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:803-814. [PMID: 36709497 DOI: 10.1080/09603123.2023.2168630] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are environmental contaminants with unfavorable impacts on human health and nature. This study aimed to determine the PFOA and PFOS concentration in water and fish samples from Karun, the largest river in Iran. According to the results, the PFOA and PFOS in water samples were 5.81-69.26 ng/L and not detected (n.d.)-35.12 ng/L, respectively. The dry season displayed higher concentrations in water samples than in the wet season. The maximum PFOS concentration measured was related to Barbus barbules sp. (27.89 ng/g). The human health risk assessment indicated minor risks (hazard ratio, HR < 1) from PFOA and PFOS through consuming contaminated drinking water and fish. Only HR value of PFOS in downstream area exceeded slightly 1.0, indicating potential health risk due to consumption of the river fish. Considering the average PFASs concentration, the risk quotients (RQs) showed low ecological risk.
Collapse
Affiliation(s)
- Afshin Takdastan
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaser Tahmasebi Birgani
- Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Jamshidi
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Petroleum Industry Health Organization, NIOC, Ahvaz, Iran
| |
Collapse
|
27
|
Zhang J, Hu L, Xu H. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167945. [PMID: 37871818 DOI: 10.1016/j.scitotenv.2023.167945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), dubbed "forever chemicals", are widely present in the environment. Environmental contamination and food contact substances are the main sources of PFAS in food, increasing the risk of human dietary exposure. Numerous epidemiological studies have established the link between dietary exposure to PFAS and liver disease. Correspondingly, PFAS induced-hepatotoxicity (e.g., hepatomegaly, cell viability, inflammation, oxidative stress, bile acid metabolism dysregulation and glycolipid metabolism disorder) observed from in vitro models and in vivo rodent studies have been extensively reported. In this review, the pertinent literature of the last 5 years from the Web of Science database was researched. This study summarized the source and fate of PFAS, and reviewed the occurrence of PFAS in food system (natural and processed food). Subsequently, the characteristics of human dietary exposure PFAS (population characteristics, distribution trend, absorption and distribution) were mentioned. Additionally, epidemiologic evidence linking PFAS exposure and liver disease was alluded, and the PFAS-induced hepatotoxicity observed from in vitro models and in vivo rodent studies was comprehensively reviewed. Lastly, we highlighted several critical knowledge gaps and proposed future research directions. This review aims to raise public awareness about food PFAS contamination and its potential risks to human liver health.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330299, China.
| |
Collapse
|
28
|
Zhao A, Wang W, Zhang R, He A, Li J, Wang Y. Tracing the Bioaccessibility of Per- and Polyfluoroalkyl Substances in Fish during Cooking Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19066-19077. [PMID: 37984055 DOI: 10.1021/acs.jafc.3c06038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The effect of cooking on the contents of per- and polyfluoroalkyl substances (PFAS) in foods has been widely studied, but whether cooking-induced structural and chemical modifications in foods affect the oral bioaccessibility of PFAS remains largely unknown. In this study, three kinds of fishes with different fat contents were selected, and the bioaccessibility of PFAS during cooking treatment (steaming and frying) was evaluated using in vitro gastrointestinal simulation with gastric lipase addition. The results showed that related to their molecular structures, the bioaccessibility of an individual PFAS varied greatly, ranging from 26.0 to 108.1%. Cooking can reduce the bioaccessibility of PFAS, and steaming is more effective than oil-frying; one of the possible reasons for this result is that the PFAS is trapped in protein aggregates after heat treatment. Fish lipids and cooking oil ingested with meals exert different effects on the bioaccessibility of PFAS, which may be related to the state of the ingested lipid/oil and the degree of unsaturation of fatty acids. Gastric lipase boosted the release of long-chain PFAS during in vitro digestion, indicating that the degree of lipolysis considerably influences the bioaccessibility of hydrophobic PFAS. Estimated weekly PFAS intakes were recalibrated using bioaccessibility data, enabling more accurate and reliable dietary exposure assessments.
Collapse
Affiliation(s)
- Ailin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Anen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
29
|
Akhbarizadeh R, Dobaradaran S, Mazzoni M, Pascariello S, Nabipour I, Valsecchi S. Occurrence and risk characterization of per- and polyfluoroalkyl substances in seafood from the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124182-124194. [PMID: 37996593 DOI: 10.1007/s11356-023-31129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Potential exposure to 14 per- and polyfluoroalkyl substances (PFAS) through seafood consumption was investigated in widely consumed seafood (Platycephalus indicus, Lethrinus nebulosus, and Penaeus semisulcatus) from the Persian Gulf. A total of 61 samples of fish and prawns were purchased from local fishers at Bushehr port (Persian Gulf, South-West of Iran) and were analyzed for PFAS compounds. In addition, potential factors influencing factor of PFAS bioaccumulation in fish and invertebrates such as age, sex, and habitat, were investigated. ƩPFAS concentrations were in the range of 2.3- 6.1 ng/g-d.w (mean = 3.9 ± 1.9) in studied species which are equal to 0.46-1.2 ng/g-w.w according to their conversion factor. Perfluorooctane sulfonic acid (PFOS) was the most abundant perfluorinated compound in studied organisms and tissues. The results of correlation analysis showed that the bioaccumulation of PFAS in aquatic organisms is significantly correlated to the length of the compound's carbon chain, the identity of anionic group, and organism's age, sex, and habitant. The risk assessment using hazard index calculation and Monte-Carlo simulation indicated that weekly consumption of prawn and fish fillets does not pose a health risk to adults but might threaten children's health. However, the risk posed by PFAS exposure via entire fish or fish liver intake is an important issue for wild marine mammals (i.e., dolphins). So, accurate and routine monitoring of PFAS in aquatic environments seems mandatory to preserve wildlife and human health in the Persian Gulf.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Michela Mazzoni
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Simona Pascariello
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sara Valsecchi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| |
Collapse
|
30
|
Surma M, Sznajder-Katarzyńska K, Wiczkowski W, Piskuła M, Zieliński H. Detection of Per- and Polyfluoroalkyl Substances in High-Protein Food Products. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2589-2598. [PMID: 37671839 DOI: 10.1002/etc.5743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) belong to the emerging class of persistent organohalogenated contaminants in the environment. We determined the levels of 10 PFAS in selected samples representing different food types, with a special focus on those rich in protein such as fish, meat and meat preparations, liver, eggs, and leguminous vegetables. Such determinations were based on the Quick Easy Cheap Effective Rugged Safe extraction procedure followed by micro-high-performance liquid chromatography-tandem mass spectrometry. The most frequently found was perfluorooctanoic acid, in 84% of the food samples. However, its maximum measured concentration was 0.50 ng g-1 , in a herring sample. The highest concentrations were for perfluorobutanoic acid (35 ng g-1 measured in a pork liver sample) and perfluorooctane sulfonate (12 ng g-1 measured in a herring sample). Because these compounds may bioaccumulate in human tissues by dietary intake, further research into their impact on human health is called for. Environ Toxicol Chem 2023;42:2589-2598. © 2023 SETAC.
Collapse
Affiliation(s)
- Magdalena Surma
- Malopolska Centre of Food Monitoring, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | | | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariusz Piskuła
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
31
|
Andrews DQ, Stoiber T, Temkin AM, Naidenko OV. Discussion. Has the human population become a sentinel for the adverse effects of PFAS contamination on wildlife health and endangered species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165939. [PMID: 37769722 DOI: 10.1016/j.scitotenv.2023.165939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023]
Abstract
Global contamination with per- and polyfluoroalkyl substances (PFAS) poses a threat to both human health and the environment, with significant implications for ecological conservation policies. A growing list of peer-reviewed publications indicates that PFAS can harm wildlife health and that the adverse effects associated with PFAS exposure in wildlife are in concordance with human epidemiological studies. The correlation of cross-species data supports a unique perspective that humans can be regarded as a sentinel for PFAS effects in other species. The health harms due to PFAS are potentially most concerning for populations of endangered and threatened species that are simultaneously exposed to PFAS and other toxic pollutants, and also face threats to their survival due to habitat loss, degradation of ecosystems, and over-harvesting. Human epidemiological studies on the PFAS doses associated with health harm present a rich source of information about potential impacts on wildlife health due to PFAS. Our analysis suggests that national and international efforts to restrict the discharges of PFAS into the environment and to clean up PFAS-contaminated sites present an opportunity to protect wildlife from chemical pollution and to advance species conservation worldwide.
Collapse
Affiliation(s)
- David Q Andrews
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America.
| | - Tasha Stoiber
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| | - Alexis M Temkin
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| | - Olga V Naidenko
- Environmental Working Group, 1250 I Street NW Suite 1000, Washington DC 20005, United States of America
| |
Collapse
|
32
|
Marín-García M, Fàbregas C, Argenté C, Díaz-Ferrero J, Gómez-Canela C. Accumulation and dietary risks of perfluoroalkyl substances in fish and shellfish: A market-based study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 237:117009. [PMID: 37652217 DOI: 10.1016/j.envres.2023.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Since the 1940s, per- and polyfluoroalkyl substances (PFAS) have been widely produced and used in various applications due to their unique properties. Consequently, the principal exposure routes of PFAS have been broadly studied, leading to the conclusion that dietary exposure (more specifically, the consumption of fish and seafood) was one of their main contributors. Thus, developing an analytical method that determines the level of PFAS in fish and seafood has become a relevant subject. In this work, a previous analytical method has been optimized to determine 12 PFAS in fish muscle from salmon, tuna, cod, hake, sardine, anchovy, and sole, as well as in seven different seafood species (i.e., cuttlefish, octopus, squid, shrimp, Norway lobster, prawn, and mussel) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Subsequently, the PFAS profile of the different species was studied to determine if it was consistent with that previously reviewed in the literature and to know the most relevant contribution of PFAS for each species. Finally, human exposure to PFAS through their consumption was estimated by the daily intake for seven different age/gender groups. PFAS were obtained from 0.014 to 0.818 ng g-1 wet weight in fish samples. Sardines, anchovies, and soles presented the highest PFAS levels. However, cod samples also showed some PFAS traces. Regarding seafood, PFAS levels range from 0.03 to 36.7 ng g-1 dry weight for the studied species. A higher concentration of PFAS has been found in the cephalopods' spleens and the crustaceans' heads. PFOS and PFBS were the predominant compounds in each seafood species, respectively. On the other hand, in the case of mussels, which are the less polluted species of the study, contamination by longer-chained PFAS was also observed. Finally, the total intake of PFAS due to fish and shellfish consumption for the Spanish adult population was estimated at 17.82 ng day-1. Nevertheless, none of the analyzed samples exceeded the European Food Safety Authority (EFSA) risk value for the supervised PFAS in any age/gender group reviewed.
Collapse
Affiliation(s)
- Marc Marín-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Céline Fàbregas
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Carla Argenté
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
33
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
34
|
Plunk EC, Majewska AK. Invited Perspective: PFAS Effects on Brain Development-Are Microglia the Missing Link? ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:111303. [PMID: 37966803 PMCID: PMC10650440 DOI: 10.1289/ehp13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Affiliation(s)
- Elizabeth C. Plunk
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, New York, USA
- Environmental Health Science Center, University of Rochester Medical School, Rochester, New York, USA
| | - Ania K. Majewska
- Environmental Health Science Center, University of Rochester Medical School, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical School, Rochester, New York, USA
- Center for Visual Science, University of Rochester, Rochester, New York, USA
| |
Collapse
|
35
|
Bedi M, Sapozhnikova Y, Taylor RB, Ng C. Per- and polyfluoroalkyl substances (PFAS) measured in seafood from a cross-section of retail stores in the United States. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132062. [PMID: 37480610 DOI: 10.1016/j.jhazmat.2023.132062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Seafood is a dominant source of human exposure to per- and polyfluoroalkyl substances (PFAS). Existing studies on foodborne PFAS exposure have focused on only a subset of these compounds. Here, we conducted a pilot study to screen 33 PFAS in 46 seafood samples from a cross-section of national and local stores in the US. Low levels of 8 PFAS were measured in 74% of the samples, predominated by PFHxS (59%). Total PFAS ranged between 0.12 and 20 ng/g; highest levels were measured in Estonia-sourced smelt. The highest median levels were of PFOA (0.84 ng/g) with elevated concentrations found in Chinese clams (2.4 ng/g), which exceeds the EU established maximum limits (MLs). Measured levels of PFHxS, PFOA, and PFNA also exceeded MLs in 24%, 7%, and 5% of the samples, respectively. For average consumption levels, exposures were below the EU established tolerable weekly intakes (TWIs). However, for more frequent consumption of flounder, catfish, and cod, exposures exceeded regulations, which warrants identifying vulnerable high seafood consuming populations. Accidental PFBS cross contamination from sample storage bags resulted in 100% detection in samples, highlighting the problem with post-purchase food handling practices such as storage and cooking that could also have a substantial impact on human exposure, potentially in larger amounts than the (sea)food itself.
Collapse
Affiliation(s)
- Megha Bedi
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Raegyn B Taylor
- USDA, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
36
|
Torres FG, De-la-Torre GE. Per- and polyfluoroalkyl substances (PFASs) in consumable species and food products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2319-2336. [PMID: 37424586 PMCID: PMC10326201 DOI: 10.1007/s13197-022-05545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2022] [Accepted: 06/25/2022] [Indexed: 07/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of thousands of manmade chemicals widely used in consumer products and industrial processes. Toxicological studies have suggested that exposure to PFASs may lead to several adverse effects, including infertility and cancer development. In light of their widespread use, the contamination of food products has created health concerns in sites directly influenced by industrial and anthropogenic activity. In the present contribution, the current knowledge of PFAS contamination was systematically reviewed in order to provide with the knowledge gaps and main sources of contamination, as well as critically evaluate estimated dietary intake and relative risk values of the consulted studies. Legacy PFASs remain the most abundant despite their production restrictions. Edible species from freshwater bodies exhibit higher PFAS concentrations than marine species, probably due to low hydrodynamics and dilution in lentic ecosystems. Studies in food products from multiple sources, including aquatic, livestock, and agricultural, agree that the proximity to factories and fluorochemical industries rendered significantly higher and potentially hazardous PFAS contamination. Short-chain PFAS are suggested as chemicals of emerging concern to food security. However, the environmental and toxicological implications of short-chain congeners are not fully understood and, thus, much research is needed in this sense.
Collapse
Affiliation(s)
- Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, 15088 Lima, Perú
| | | |
Collapse
|
37
|
Xu W, Li S, Wang W, Sun P, Yin C, Li X, Yu L, Ren G, Peng L, Wang F. Distribution and potential health risks of perfluoroalkyl substances (PFASs) in water, sediment, and fish in Dongjiang River Basin, Southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99501-99510. [PMID: 37610541 DOI: 10.1007/s11356-023-29327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted worldwide attention due to their high stability, refractory degradation, and bioaccumulation. The Dongjiang River is one of the most important water sources in the Pearl River Delta region. It flows from Jiangxi Province to Guangdong Province and finally into the Pearl River, providing domestic water for cities such as Guangzhou, Shenzhen, and Hong Kong. In this study, 17 PFASs in water, sediment, and fish in the Dongjiang River Basin in southern China were investigated using high-performance liquid chromatography-mass spectrometry. Total PFAS concentrations ranged from 20.83 to 372.8 ng/L in water, from 1.050 to 3.050 ng/g in sediments, and from 12.28 to 117.4 ng/g in fish. Among six species of fish, Oreochromis mossambicus (mean: 68.55 ng/g) had the highest concentration of PFASs, while Tilapia zillii (36.90 ng/g) had the lowest concentration. Perfluorooctanoic acid (PFOA) predominates in water and sediments, while perfluorooctanesulfonic acid (PFOS) predominates in fish. Long-chain perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs) showed higher bioaccumulation, and the field-sourced sediment-water partition coefficients (Kd) and bioaccumulation factors (BAFs) of PFASs increased with the length of perfluorocarbon chains. PFAS concentration in the lower reaches (urban area) of the Dongjiang River is higher than that in the upper and middle reaches (rural area). The calculated hazard ratio (HR) of PFOS and PFOA levels in fish in the Dongjiang River Basin was far less than 1; hence, the potential risk to human health was limited.
Collapse
Affiliation(s)
- Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Shibo Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Weimin Wang
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Ping Sun
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Chunyang Yin
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Xuxia Li
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Liang Yu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Gang Ren
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
38
|
Hedgespeth ML, Taylor DL, Balint S, Schwartz M, Cantwell MG. Ecological characteristics impact PFAS concentrations in a U.S. North Atlantic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163302. [PMID: 37031936 PMCID: PMC10451026 DOI: 10.1016/j.scitotenv.2023.163302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
This is the first comprehensive study of per- and polyfluoroalkyl substances (PFAS) in a coastal food web of the U.S. North Atlantic, in which we characterize the presence and concentrations of 24 targeted PFAS across 18 marine species from Narragansett Bay, Rhode Island, and surrounding waters. These species reflect the diversity of a typical North Atlantic Ocean food web with organisms from a variety of taxa, habitat types, and feeding guilds. Many of these organisms have no previously reported information on PFAS tissue concentrations. We found significant relationships of PFAS concentrations with respect to various ecological characteristics including species, body size, habitat, feeding guild, and location of collection. Based upon the 19 PFAS detected in the study (5 were not detected in samples), benthic omnivores (American lobsters = 10.5 ng/g ww, winter skates = 5.77 ng/g ww, Cancer crabs = 4.59 ng/g ww) and pelagic piscivores (striped bass = 8.50 ng/g ww, bluefish = 4.30 ng/g ww) demonstrated the greatest average ∑PFAS concentrations across all species sampled. Further, American lobsters had the highest concentrations detected in individuals (∑PFAS up to 21.1 ng/g ww, which consisted primarily of long-chain PFCAs). The calculation of field-based trophic magnification factors (TMFs) for the top 8 detected PFAS determined that perfluorodecanoic acid (PFDA), perfluorooctane sulfonic acid (PFOS), and perfluorooctane sulfonamide (FOSA) associated with the pelagic habitat biomagnified, whereas perfluorotetradecanoic acid (PFTeDA) associated with the benthic habitat demonstrated trophic dilution in this food web (calculated trophic levels ranged from 1.65 to 4.97). While PFAS exposure to these organisms may have adverse implications for ecological impacts via toxicological effects, many of these species are also key recreational and commercial fisheries resulting in potential for human exposure via dietary consumption.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA.
| | - David L Taylor
- Department of Marine Biology, Roger Williams University, One Old Ferry Road, Bristol, RI 02809, USA
| | - Sawyer Balint
- ORISE Research Participant at the US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| | - Morgan Schwartz
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| | - Mark G Cantwell
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| |
Collapse
|
39
|
Brown AS, Yun X, McKenzie ER, Heron CG, Field JA, Salice CJ. Spatial and temporal variability of per- and polyfluoroalkyl substances (PFAS) in environmental media of a small pond: Toward an improved understanding of PFAS bioaccumulation in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163149. [PMID: 37011692 DOI: 10.1016/j.scitotenv.2023.163149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated compounds with many industrial applications, for instance as ingredients in fire-suppressing aqueous film-forming foams (AFFF). Several PFAS have been demonstrated to be persistent, bioaccumulative and toxic. This study better characterizes the bioaccumulation of PFAS in freshwater fish through a spatial and temporal analysis of surface water and sediment from a stormwater pond in a former Naval air station (NAS) with historic AFFF use. We sampled environmental media from four locations twice per week for five weeks and sampled fish at the end of the sampling effort. The primary PFAS identified in surface water, sediment, and biota were perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) followed by perfluorooctanoic acid (PFOA) in environmental media and perfluoroheptane sulfonate (PFHpS) in biota. We observed significant temporal variability in surface water concentrations at the pond headwaters following stochastic events such as heavy rainfall for many compounds, particularly PFHxS. Sediment concentrations varied most across sampling locations. In fish, liver tissue presented the highest concentrations for all compounds except PFHxS, which was highest in muscle tissue, suggesting the influence of fine-scale aqueous PFAS fluctuations on tissue distribution. Calculated log bioaccumulation factors (BAFs) ranged from 0.13 to 2.30 for perfluoroalkyl carboxylates (PFCA) and 0.29-4.05 for perfluoroalkane sulfonates (PFSA) and fluctuated greatly with aqueous concentrations. The variability of PFAS concentrations in environmental media necessitates more frequent sampling efforts in field-based studies to better characterize PFAS contamination in aquatic ecosystems as well as exercising caution when considering single time-point BAFs due to uncertainty of system dynamics.
Collapse
Affiliation(s)
- Abbi S Brown
- Environmental Science and Studies Program, Towson University, Towson, MD, USA
| | - Xiaoyan Yun
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Erica R McKenzie
- Civil and Environmental Engineering Department, Temple University, Philadelphia, PA, USA
| | - Christopher G Heron
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
40
|
Rhee J, Barry KH, Huang WY, Sampson JN, Hofmann JN, Silverman DT, Calafat AM, Botelho JC, Kato K, Purdue MP, Berndt SI. A prospective nested case-control study of serum concentrations of per- and polyfluoroalkyl substances and aggressive prostate cancer risk. ENVIRONMENTAL RESEARCH 2023; 228:115718. [PMID: 36958379 PMCID: PMC10239560 DOI: 10.1016/j.envres.2023.115718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent organic pollutants detectable in the serum of most U.S. adults. Some studies of highly-exposed individuals have suggested an association between PFAS and prostate cancer, but evidence from population-based studies is limited. We investigated the association between pre-diagnostic serum PFAS concentrations and aggressive prostate cancer risk in a large prospective study. We measured pre-diagnostic serum concentrations of eight PFAS, including perfluorooctanoate (PFOA), for 750 aggressive prostate cancer cases and 750 individually matched controls within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. We assessed the reproducibility of PFAS concentrations in serial samples collected up to six years apart among 60 controls using intraclass correlation coefficients (ICCs). Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association with prostate cancer, adjusting for other PFAS and potential confounders. Concentrations of most PFAS were consistent (ICC>0.7) across the serial samples over time. We observed an inverse association between PFOA and aggressive prostate cancer (ORcontinuous = 0.79, 95% CI = 0.63, 0.99), but the association was limited to cases diagnosed ≤3 years after blood collection and became statistically non-significant for cases diagnosed with later follow-up (>3 years, ORcontinuous = 0.90, 95% CI = 0.79, 1.03). Other PFAS were not associated with aggressive prostate cancer risk. Although we cannot rule out an increased risk at higher levels, our findings from a population with PFAS serum concentrations comparable to the general population do not support an association with increased risk of aggressive prostate cancer.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Kathryn H Barry
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kayoko Kato
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA.
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA.
| |
Collapse
|
41
|
Carrizo JC, Munoz G, Vo Duy S, Liu M, Houde M, Amé MV, Liu J, Sauvé S. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163103. [PMID: 36972881 DOI: 10.1016/j.scitotenv.2023.163103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada; CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
42
|
Li Y, Yao J, Pan Y, Dai J, Tang J. Trophic behaviors of PFOA and its alternatives perfluoroalkyl ether carboxylic acids (PFECAs) in a coastal food web. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131353. [PMID: 37030227 DOI: 10.1016/j.jhazmat.2023.131353] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
With the increasing restrictions and concerns about legacy poly- and perfluoroalkyl substances (PFAS), the production and usage of alternatives, i.e., perfluoroalkyl ether carboxylic acids (PFECAs), have risen recently. However, there is a knowledge gap regarding the bioaccumulation and trophic behaviors of emerging PFECAs in coastal ecosystems. The bioaccumulation and trophodynamics of perfluorooctanoic acid (PFOA) and its substitutes (PFECAs) were investigated in Laizhou Bay, which is located downstream of a fluorochemical industrial park in China. Hexafluoropropylene oxide trimer acid (HFPO-TrA), perfluoro-2-methoxyacetic acid (PFMOAA) and PFOA constituted the dominant compounds in the ecosystem of Laizhou Bay. PFMOAA was dominant in invertebrates, whereas the long-chain PFECAs preferred to accumulate in fishes. The PFAS concentrations in carnivorous invertebrates were higher than those in filter-feeding species. Considering migration behaviors, the ∑PFAS concentrations followed the order oceanodromous fish < diadromous fish < non-migratory fish. The trophic magnification factors (TMFs) of long-chain PFECAs (HFPO-TrA, HFPO-TeA and PFO5DoA) were >1, suggesting trophic magnification potential, while biodilution for short-chain PFECAs (PFMOAA) was observed. The intake of PFOA in seafood may constitute a great threat to human health. More attention should be given to the impact of emerging hazardous PFAS on organisms for the health of ecosystems and human beings.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong KeyLaboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China; School of Resources and Environment, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong KeyLaboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
43
|
Delatour T, Theurillat X, Eriksen B, Mujahid C, Mottier P. Inadequate definition of the limit of quantification used for the analysis of perfluoroalkyl substances in food by liquid chromatography-tandem mass spectrometry may compromise the reliability of the data requested by the European regulation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9507. [PMID: 36951453 DOI: 10.1002/rcm.9507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widespread technology used for the quantitative determination of per- and polyfluoroalkyl substances (PFAS) in foodstuff. Specifically, LC-MS/MS offers an attractive performance by combining the sensitivity and selectivity required by the European Union for testing perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorononanoic acid, and perfluorohexane sulfonic acid with maximum limits of quantification (LOQ) in the sub-parts-per-billion (μg/kg) or the parts-per-trillion (ng/kg) domains. In this article, we highlight the important diversity in LOQ definitions applied in LC-MS/MS methods described in the literature that raise concerns about the capability of some of those to generate reliable data requested by the European regulation. Here, we point out the risk of false response or misquantification if the criteria for assessing LOQ suffer from a lack of rigor. We emphasize the need to use PFAS-free samples spiked with the analyte(s) of interest and the application of identification criteria according to official documents for a sound measurement of the LOQ.
Collapse
Affiliation(s)
- Thierry Delatour
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | | | - Bjørn Eriksen
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Claudia Mujahid
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| | - Pascal Mottier
- Société des Produits Nestlé S.A., Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
44
|
Chen Z, Zhan X, Zhang J, Diao J, Su C, Sun Q, Zhou Y, Zhang L, Bi R, Ye M, Wang T. Bioaccumulation and risk mitigation of legacy and novel perfluoroalkyl substances in seafood: Insights from trophic transfer and cooking method. ENVIRONMENT INTERNATIONAL 2023; 177:108023. [PMID: 37301048 DOI: 10.1016/j.envint.2023.108023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have widespread application in industrial and civil areas due to their unique physical and chemical properties. With the increasingly stringent regulations of legacy PFAS, various novel alternatives have been developed and applied to meet the market demand. Legacy and novel PFAS pose potential threats to the ecological safety of coastal areas, however, little is known about their accumulation and transfer mechanism, especially after cooking treatment. This study investigated the biomagnification and trophic transfer characteristics of PFAS in seafood from the South China Sea, and assessed their health risks after cooking. Fifteen target PFAS were all detected in the samples, of which perfluorobutanoic acid (PFBA) was dominant with concentrations ranging from 0.76 to 4.12 ng/g ww. Trophic magnification factors (TMFs) > 1 were observed for perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (F-53B), indicating that these compounds experienced trophic magnification in the food web. The effects of different cooking styles on PFAS occurrence were further explored and the results suggested that ΣPFAS concentrations increased in most organisms after baking, while ΣPFAS amounts decreased basically after boiling and frying. Generally, there is a low health risk of exposure to PFAS when cooked seafood is consumed. This work provided quantitative evidence that cooking methods altered PFAS in seafood. Further, suggestions to mitigate the health risks of consuming PFAS-contaminated seafood were provided.
Collapse
Affiliation(s)
- Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinyi Zhan
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jingru Zhang
- Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Zhang
- Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Mai Ye
- Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
45
|
Diao J, Chen Z, Su C, Wang J, Zheng Z, Sun Q, Wang L, Bi R, Wang T. Legacy and novel perfluoroalkyl substances in major economic species of invertebrates in South China Sea: Health implication from consumption. MARINE POLLUTION BULLETIN 2023; 192:115112. [PMID: 37276713 DOI: 10.1016/j.marpolbul.2023.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Continuously release of perfluoroalkyl substances (PFASs) would pose non-negligible impacts on environment, organisms, and human health. In present study, 18 PFASs in 7 typical economic invertebrates and their habitats were investigated from the South China Sea. The higher concentrations of PFASs in the nearshore water (6.61-15.54 ng/L) and sediment (0.82-8.84 ng/g) obviously due to frequent human activities. Long-chain PFASs have tendency to accumulate in sediment, however, short-chain PFASs dominated in biota. The acute reference dose (%ARfD) and hazard ratios (HR) of major PFASs in biota were all <100 %, and also below 1, respectively, which means that consumption of PFASs from seafood does not pose risk and threat to human health. However, it should be taken into account that the HR of PFHxA in Mimachlamys nobilis reached 0.82. Potential adverse effects toward human health induced by short-chain PFASs (such as <6 C) via invertebrate seafood consumption should be concerned.
Collapse
Affiliation(s)
- Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jianwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhixin Zheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lin Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
46
|
Ekperusi AO, Bely N, Pollono C, Mahé K, Munschy C, Aminot Y. Prevalence of per- and polyfluoroalkyl substances (PFASs) in marine seafood from the Gulf of Guinea. CHEMOSPHERE 2023:139110. [PMID: 37270038 DOI: 10.1016/j.chemosphere.2023.139110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
PFASs are ubiquitous in the global environment due to their wide use, persistence and bioaccumulation, and are of concern for human health. This study investigated the levels of PFASs in seafood with a view to provide knowledge on the occurrence of PFASs in marine resources and to evaluate seafood safety and human health risk via dietary exposure to coastal communities in the Gulf of Guinea, where there is currently very little data. The sum of targeted PFASs was between 91 and 1510 pg g-l ww (mean 465 ± 313 pg g-l ww), with PFOS and long-chain PFCAs prevailing. The concentrations of PFASs in the three species of croakers were species- and location-dependent, with habitat and anthropogenic pressure as likely drivers of the differences. Significantly higher contamination levels were found in male croakers. The trophic transfer and biomagnification of PFASs from shrimps to croakers was evidenced for PFOS and long-chain PFCAs (with a significant increase of contaminants from the prey to the predator). The calculated estimated daily intakes (EDIs) and hazard ratio (HR) for PFOS in croakers (whole fish and muscles) and shrimp were lower than the European Food and Safety Agency's recommended level for PFOS (1.8 ng kg-1 day-1) and below the HR safety threshold value of 1. From the results, based on present safety limits, PFOS levels in croakers and shrimps from the Gulf of Guinea do not pose immediate health risks to the human population. This study provides the first insight regarding the distribution of PFASs in seafood from the tropical NE Atlantic region of the Gulf of Guinea and highlights the need for further monitoring across the Gulf.
Collapse
|
47
|
Tran-Lam TT, Quan TC, Pham PT, Phung ATT, Bui MQ, Dao YH. Occurrence, distribution, and risk assessment of halogenated organic pollutants (HOPs) in marine fish muscle: The case study of Vietnam. MARINE POLLUTION BULLETIN 2023; 192:114986. [PMID: 37163792 DOI: 10.1016/j.marpolbul.2023.114986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Halogenated organic pollutants (HOPs), including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and chlorophenols (CPs), were identified in three marine fish species in Vietnam. Total PCBs, OCPs, and CPs concentrations ranged from 4.5 to 711.6 ng g-1 lipid weight (lw), 69.9-2360 ng g-1 lw, and 208.1-3941.2 ng g-1 lw, respectively. CPs were the most frequently detected pollutants in the marine environment of Vietnam of the three HOPs studied, followed by OCPs and PCBs. There are significant differences in HOPs between three types of seafood in Vietnam, including yellowstripe scad, Indian mackerel, and silver pomfret in this study. Notably, the types and amounts of HOPs found in the fish were differently influenced by the economic and industrial activities of the sampled areas. Despite these findings, the consumption of HOP-contaminated fish from the study areas was found not to pose any significant health risks to Vietnam's coastal population.
Collapse
Affiliation(s)
- Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam; Institute of Mechanics and Applied Informatics, VAST, 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City 70000, Viet Nam
| | - Thuy Cam Quan
- Viet Tri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho 75000, Viet Nam
| | - Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Anh-Tuyet Thi Phung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam.
| | - Yen Hai Dao
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam.
| |
Collapse
|
48
|
Petre VA, Chiriac FL, Lucaciu IE, Paun I, Pirvu F, Iancu VI, Novac L, Gheorghe S. Tissue Bioconcentration Pattern and Biotransformation of Per-Fluorooctanoic Acid (PFOA) in Cyprinus carpio (European Carp)—An Extensive In Vivo Study. Foods 2023; 12:foods12071423. [PMID: 37048244 PMCID: PMC10093588 DOI: 10.3390/foods12071423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The perfluoroalkyl substances (PFAS) represent a persistent class of synthetic chemicals that spread in the environment as a result of industrialization. Due to their bioaccumulative and endocrine disruption implications, these chemicals can affect food quality and human health, respectively. In the present study, the bioconcentration and biotransformation of perfluorooctanoic acid (PFOA) in common carp (Cyprinus carpio) were evaluated in a biphasic system (exposure and depuration). Carp were continuously exposed, under laboratory conditions, to 10 (Experiment 1) and 100 (Experiment 2) µg/L PFOA for 14 weeks, followed by a wash out period of 3 weeks. Fish organs and tissues were collected at 8, 12, 14 weeks of exposure and at week 17, after the depuration period. The results obtained from the LC-MS/MS analysis showed the presence of PFOA in all studied organs. The highest values of PFOA were identified in the gallbladder (up to 2572 ng/g d.w.) in Experiment 1 and in the gallbladder (up to 18,640 ng/g d.w.) and kidneys (up to 13,581 ng/g d.w.) in Experiment 2. The average BCF varied between 13.4 and 158 L/Kg in Experiment 1 and between 5.97 and 80.3 L/Kg in Experiment 2. Four biotransformation products were identified and quantified in all organs, namely: PFBA, PFPeA, PFHxA, and PFHpA. PFBA was proven to be the dominant biotransformation product, with the highest values being determined after 8 weeks of exposure in the kidney, gallbladder, brain, liver, and gonads in both experiments. Because freshwater fish are an important food resource for the human diet, the present study showed the fishes’ capacity to accumulate perfluoroalkyl substances and their metabolites. The study revealed the necessity of monitoring and risk studies of new and modern synthetic chemicals in aquatic resources.
Collapse
|
49
|
Wen ZJ, Wei YJ, Zhang YF, Zhang YF. A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS). Arch Toxicol 2023; 97:1195-1245. [PMID: 36947184 DOI: 10.1007/s00204-023-03477-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Cardiovascular disease (CVD) poses the leading threats to human health and life, and their occurrence and severity are associated with exposure to environmental pollutants. Per- and polyfluoroalkyl substances (PFAS), a group of widely used industrial chemicals, are characterized by persistence, long-distance migration, bioaccumulation, and toxicity. Some PFAS, particularly perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS), have been banned, leaving only legacy exposure to the environment and human body, while a number of novel PFAS alternatives have emerged and raised concerns, such as polyfluoroalkyl ether sulfonic and carboxylic acid (PFESA and PFECA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). Overall, this review systematically elucidated the adverse cardiovascular (CV) effects of legacy and emerging PFAS, emphasized the dose/concentration-dependent, time-dependent, carbon chain length-dependent, sex-specific, and coexposure effects, and discussed the underlying mechanisms and possible prevention and treatment. Extensive epidemiological and laboratory evidence suggests that accumulated serum levels of legacy PFAS possibly contribute to an increased risk of CVD and its subclinical course, such as cardiac toxicity, vascular disorder, hypertension, and dyslipidemia. The underlying biological mechanisms may include oxidative stress, signaling pathway disturbance, lipid metabolism disturbance, and so on. Various emerging alternatives to PFAS also play increasingly prominent toxic roles in CV outcomes that are milder, similar to, or more severe than legacy PFAS. Future research is recommended to conduct more in-depth CV toxicity assessments of legacy and emerging PFAS and explore more effective surveillance, prevention, and treatment strategies, accordingly.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Jing Wei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
50
|
Jain RB. Co-variate adjusted associations between serum concentrations of selected perfluoroalkyl substances and urinary concentrations of selected arsenic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34750-34759. [PMID: 36520294 DOI: 10.1007/s11356-022-24745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2011-2012 were used to estimate associations of the serum concentrations of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluoroundecanoic acid (PFUnDA), and 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (Me-PFOSA) with urinary concentrations of total arsenic (UAS), inorganic arsenic (IAS), arsenobetaine (UAB), and dimethyl arsinic acid (UDMA) among US adults aged > = 20 years. Concentrations of PFNA were positively associated with all four arsenic variables but statistical significance was observed for IAS only (β = 0.33364, P = 0.04). Concentrations of PFDA were positively associated with UAS (β = 0.20688, P = 0.01), IAS (β = 0.23712, P = 0.02), and UAB (β = 0.26049, P = 0.02). Concentrations of PFUnDA were positively associated with UAS (β = 0.49946, P < 0.01), IAS (β = 0.51782, P < 0.01), UAB (β = 0.62924, P < 0.01), and UDMA (β = 0.26375, P < 0.01). Concentrations of Me-PFOSA with PFAS were inversely associated with every PFAS but statistical significance was observed for UDMA only (β = - 0.05613, P = 0.03). PFOA, PFHxS, and PFOS were, in general, negatively associated with concentrations of all four arsenic variables but without reaching statistical significance. Positive associations of PFDA, PFNA, and PFUnDA with arsenic necessitate investigation about impact of the co-exposure of these PFAS with arsenic and their impact on health. Fluorinated carbon chain length > 8 as opposed to ≤ 8 may have a role in defining associations of PFAS with arsenic.
Collapse
Affiliation(s)
- Ram B Jain
- 4331 Kendrick Circle, Loganville, GA, 30052, USA.
| |
Collapse
|