1
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
3
|
Barandiaran LN, Taylor VF, Karagas MR. Exposure to iodine, essential and non-essential trace element through seaweed consumption in humans. Sci Rep 2024; 14:13698. [PMID: 38871780 PMCID: PMC11176391 DOI: 10.1038/s41598-024-64556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans. Concentrations of total arsenic, cobalt, copper, cadmium, iodine, molybdenum, selenium, and zinc were measured in urine samples before and following seaweed consumption. Elements concentrations were also measured in the seaweeds provided for the study. Descriptive analysis for each element were conducted and we used quantile g-computation approach to assess the association between the 8-element mixture and seaweed consumption. Differences in urine element concentrations and seaweed consumption were analyzed using generalized estimating equations (GEE). Urinary concentrations of iodine and total arsenic increased after seaweed consumption. When we analyze the 8-element mixture, the largest weight was observed for iodine after Kombu consumption while for total arsenic was observed after Wakame consumption. Similar results were observed when we compared the mean differences between the elements before and after seaweed consumption through the GEE. Seaweed consumption relates with increased urinary iodine and total arsenic concentrations, particularly after Kombu and Wakame consumption.
Collapse
Affiliation(s)
- Leyre Notario Barandiaran
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755-1404, USA.
| | - Vivien F Taylor
- Department of Earth Science, Dartmouth College, 6105 Sherman Fairchild Hall, Hanover, NH, 03755, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755-1404, USA
| |
Collapse
|
4
|
TatahMentan M, Nyachoti S, Godebo TR. Elemental composition of toxic and essential elements in rice-based baby foods from the United States and other countries: A probabilistic risk analysis. Food Chem Toxicol 2024; 188:114677. [PMID: 38641042 DOI: 10.1016/j.fct.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Consumption of rice-based foods provides essential nutrients required for infants and toddlers' growth. However, they could contain toxic and excess essential elements that may affect human health. The study aims to determine the composition of rice-based baby foods in the USA and outside and conduct a multiple-life stages probabilistic exposure and risk assessment of toxic and essential elements in children. Elemental concentrations were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in thirty-three rice-based baby foods. This includes 2 infant formulas, 11 rice baby cereals, and 20 rice snacks produced primarily in the United States, China, and other countries. A probabilistic risk assessment was conducted to assess risks of adverse health effects. Results showed that infant formula had higher median concentrations of selenium (Se), copper (Cu), zinc (Zn), sodium (Na), magnesium (Mg), calcium (Ca), and potassium (K) compared to rice baby cereal and rice snacks. On the contrary, rice snacks had the highest median concentration of Arsenic (As) (127 μg/kg) while rice baby cereals showed the highest median concentration of Cd (7 μg/kg). A higher lifetime estimated daily intake was observed for samples manufactured in the USA compared to those from China and other countries. Hazard quotient (HQ < 1) values were suggestive of minimal adverse health effects. However, lifetime carcinogenic risk analysis based on total As indicated an unacceptable cancer risk (>1E-04). These findings show a need for ongoing monitoring of rice-based foods consumed by infants and toddlers as supplementary and substitutes for breast milk or weaning food options. This can be useful in risk reduction and mitigation of early life exposure to improve health outcomes.
Collapse
Affiliation(s)
- Mom TatahMentan
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Syprose Nyachoti
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| | - Tewodros Rango Godebo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
5
|
Kou X, Canals J, Bulló M, Becerra-Tomás N, Jardí C, Arija V. Association of Prenatal Dietary Toxicants and Inorganic Arsenic Exposure with Children's Emotional and Behavioral Problems: ECLIPSES Study. TOXICS 2024; 12:398. [PMID: 38922078 PMCID: PMC11209564 DOI: 10.3390/toxics12060398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Prenatal exposure to dietary toxicants is linked to neurocognitive issues, but its effect on early emotional and behavioral development in children is less clear. To explore the relationship between prenatal intake of As, iAs, Cd, MeHg, Pb, PCDD/Fs, DL-PCBs, and NDL-PCBs and emotional and behavioral issues in four-year-old children. This study included 192 mother-child pairs from the ECLIPSES study, assessing prenatal dietary toxicant exposure through a food-frequency questionnaire and Catalan Food Safety Agency data. Children's emotional and behavioral scores were evaluated using the Child Behavior Checklist for ages 1.5-5 years. Multivariable regression and logistic models were used, focusing on iAs after finding significant preliminary associations. Increased prenatal dietary intake of iAs was associated with internalizing, externalizing, and attention-deficit/hyperactivity problems. Higher iAs levels (>4.16 μg/day) significantly increased the risk of total problems (OR = 2.94) and specific issues like anxious/depressed (OR = 4.88), anxiety (OR = 3.27), and oppositional defiant problems (OR = 4.30). High iAs consumption correlated with the intake of meat, eggs, cereals, tubers, fruits, and pulses Prenatal dietary iAs exposure is associated with various emotional and behavioral problems in children. Monitoring and reducing iAs levels in food are crucial for public health.
Collapse
Affiliation(s)
- Xiruo Kou
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain (J.C.); (N.B.-T.); (C.J.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain (J.C.); (N.B.-T.); (C.J.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- Centre de Recerca en Avaluació i Mesura de la Conducta (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT), Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Monica Bulló
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain
| | - Nerea Becerra-Tomás
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain (J.C.); (N.B.-T.); (C.J.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
| | - Cristina Jardí
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain (J.C.); (N.B.-T.); (C.J.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain (J.C.); (N.B.-T.); (C.J.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT), Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Collaborative Research Group on Lifestyles, Nutrition and Smoking (CENIT), Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43003 Tarragona, Spain
| |
Collapse
|
6
|
Oncina-Cánovas A, Vioque J, Riutort-Mayol G, Soler-Blasco R, Irizar A, Barroeta Z, Fernández-Somoano A, Tardón A, Vrijheid M, Guxens M, Carey M, Meharg C, Ralphs K, McCreanor C, Meharg A, Signes-Pastor AJ. Pro-vegetarian dietary patterns and essential and heavy metal exposure in children of 4-5-years from the INfancia y medio Ambiente cohort (INMA). Int J Hyg Environ Health 2024; 257:114344. [PMID: 38430670 DOI: 10.1016/j.ijheh.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Dietary patterns provide a comprehensive assessment of food consumption, including essential nutrients and potential exposure to environmental contaminants. While pro-vegetarian (PVG) dietary patterns have shown health benefits in adults, their effects on children are less well studied. This study aims to explore the association between children's adherence to the most common PVG dietary patterns and their exposure to metals, assessed through urine concentration. In our study, we included a population of 723 children aged 4-5-years from the INfancia y Medio Ambiente (INMA) cohort in Spain. We calculated three predefined PVG dietary patterns, namely general (gPVG), healthful (hPVG), and unhealthful (uPVG), using dietary information collected through a validated Food Frequency Questionnaire. Urinary concentrations of various essential and heavy metals (Co, Cu, Zn, Se, Mo, Pb, and Cd) were measured using mass spectrometry. Additionally, urinary arsenic speciation, including arsenobetaine (AsB), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic arsenic (iAs), was measured. The sum of urinary MMA and iAs was used to assess iAs exposure. We estimated primary (PMI) and secondary iAs methylation (SMI) indices. To explore the association between PVG dietary patterns in quintiles and metal exposure, we utilized multiple-adjusted linear regression models and the quantile g-computation approach. Compared with the lowest quintile, participants in the highest quintile of gPVG showed a 22.7% lower urinary Co (95% confidence interval (CI): -38.7; -1.98) and a 12.6% lower Se (95%CI: -22.9; -1.00) concentrations. Second quintile of adherence to hPVG was associated with a 51.7% lower urinary iAs + MMA concentrations (95%CI: -74.3; -8.61). Second quintile of adherence to an uPVG was associated with a 13.6% lower Se levels (95%CI: -22.9; -2.95) while the third quintile to this pattern was associated with 17.5% lower Mo concentrations (95%CI: -29.5; -2.95). The fourth quintile of adherence to gPVG was associated with a 68.5% higher PMI and a 53.7% lower SMI. Our study showed that adherence to a gPVG dietary pattern in childhood may modestly reduce the intakes of some essential metals such as Co and Se. Further investigations are warranted to explore any potential health implications.
Collapse
Affiliation(s)
- Alejandro Oncina-Cánovas
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain.
| | - Jesús Vioque
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Raquel Soler-Blasco
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Health Research Institute, Biodonostia, Donostia-San Sebastian, Spain
| | - Ziortza Barroeta
- Health Research Institute, Biodonostia, Donostia-San Sebastian, Spain
| | - Ana Fernández-Somoano
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Institute of Health Research of the Principality of Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| | - Adonina Tardón
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; University Institute of Oncology of the Principality of Asturias (IUOPA), Department of Medicine, University of Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Institute of Health Research of the Principality of Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| | - Martine Vrijheid
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Mònica Guxens
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Manus Carey
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Caroline Meharg
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Kathryn Ralphs
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Coalain McCreanor
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Andrew Meharg
- Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Antonio J Signes-Pastor
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), 03010, Alicante, Spain; Unidad de Epidemiología de la Nutrición, Departamento de Salud Pública, Historia de la Ciencia y Ginecología, Universidad Miguel Hernández (UMH), 03550, Alicante, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28034, Madrid, Spain.
| |
Collapse
|
7
|
Notario-Barandiaran L, Signes-Pastor AJ, Laue HE, Abuawad A, Jackson BP, Madan JC, Karagas MR. Association between Mediterranean diet and metal mixtures concentrations in pregnant people from the New Hampshire Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169127. [PMID: 38070554 PMCID: PMC10842702 DOI: 10.1016/j.scitotenv.2023.169127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Diet is a primary source of nutrients but also toxic metal exposure. In pregnancy, balancing essential metal exposure while reducing non-essential ones is vital for fetal and maternal health. However, the effect of metal mixtures from diets like the Mediterranean, known for health benefits, remains unclear. This study aimed to explore the association between Mediterranean diet adherence and metals exposure, both individually and as mixtures. The study involved 907 pregnant participants from the New Hampshire Birth Cohort Study. We calculated the relative Mediterranean diet score (rMED) through a validated food frequency questionnaire, which includes 8 traditional Mediterranean dietary components. Also, at ~24-28 weeks of gestation, we used ICP-MS to measure speciation of Al, Cd, Co, Cu, Fe, Hg, Mo, Ni, Sb, Se, Sn, Zn, and As in urine, as well as Pb, Hg, As, Ni, and Se in toenails. We used multiple linear regression and Weighted Quantile Sum regression to analyze the association between rMED and metal mixtures. The models were adjusted for age, pre-pregnancy BMI, smoking during pregnancy, and educational level. High adherence to the Mediterranean diet was associated with increased urinary Al (® = 0.26 (95 % confidence interval (CI) = 0.05; 0.46)), Cd (β = 0.12 (95%CI = 0.00; 0.24)), Mo (β = 0.10 (95%CI = 0.00; 0.20)), and AsB (β = 0.88 (95%CI = 0.49; 1.27)) as well as toenail Hg (β = 0.44 (95%CI = 0.22; 0.65)), Ni (β = 0.37 (95%CI = 0.06; 0.67)), and Pb (β = 0.22 (95%CI = 0.03; 0.40)) compared to those with low adherence. The intake of fruits and nuts, fish and seafood, legumes, cereals, meat, and olive oil were found to be related to the metal biomarkers within the rMED. In conclusion, the Mediterranean diet enhances essential metal intake but may also increase exposure to harmful ones.
Collapse
Affiliation(s)
- L Notario-Barandiaran
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.
| | - A J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante 03550, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
| | - H E Laue
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - A Abuawad
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - B P Jackson
- Trace Element Analysis Laboratory, Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - J C Madan
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; Department of Psychiatry and Pediatrics, Children's Hospital at Dartmouth, Lebanon, NH 03756, USA
| | - M R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
8
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
9
|
Notario-Barandiaran L, Irizar A, Begoña-Zubero M, Soler-Blasco R, Riutort-Mayol G, Fernández-Somoano A, Tardón A, Casas M, Vrijheid M, Meharg A, Carey M, Meharg C, Ralphs K, McCreanor C, Grimalt JO, Vioque J, Signes-Pastor AJ. Association between mediterranean diet and metal(loid) exposure in 4-5-year-old children living in Spain. ENVIRONMENTAL RESEARCH 2023; 233:116508. [PMID: 37392824 DOI: 10.1016/j.envres.2023.116508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Even relatively low levels of metals exposure may impact health, particularly among vulnerable populations such as infants and young children. However, little is known about the interplay between simultaneous metal exposures, common in real-life scenarios, and their association with specific dietary patterns. In this study, we have evaluated the association between adherence to Mediterranean diet (MD) and urinary metal concentrations individually and as an exposure mixture in 713 children aged 4-5-years from the INMA cohort study. We used a validated food frequency questionnaire to calculate two MD indexes scores: aMED and rMED. These indexes gather information on various food groups within the MD and score differently. To measure urinary concentrations of cobalt, copper, zinc, molybdenum, selenium, lead, and cadmium as exposure biomarkers, we used inductively coupled plasma mass spectrometry (ICP-MS), coupled with an ion chromatography (IC) equipment for arsenic speciation analysis. We applied linear regression and quantile g-computation, adjusted for confounders, to analyse the association between MD adherence and exposure to the metal mixture. High adherence to MD such as the quintile (Q) 5 MD was associated with higher urinary arsenobetaine (AsB) levels than Q1, with β values of 0.55 (confidence interval - CI 95% 0.01; 1.09) for aMED and 0.73 (CI 95% 0.13; 1.33) for rMED. Consumption of fish was associated with increased urinary AsB but reduced inorganic arsenic concentrations. In contrast, the aMED vegetables consumption increased urinary inorganic arsenic content. A moderate level of adherence to MD (Q2 and Q3) was associated with lower copper urinary concentrations than Q1, with β values of -0.42 (CI 95% -0.72; -0.11) for Q2 and -0.33 (CI 95% -0.63; -0.02) for Q3, but only with aMED. Our study, conducted in Spain, revealed that adhering to the MD reduces exposure to certain metals while increasing exposure to others. Specifically, we observed increase in exposure to non-toxic AsB, highlighting the significance of consuming fish/seafood. However, it is crucial to emphasize the necessity for additional efforts in reducing early-life exposure to toxic metals, even when adhering to certain food components of the MD.
Collapse
Affiliation(s)
- L Notario-Barandiaran
- Unidad de Epidemiología de La Nutrición, Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - A Irizar
- Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain
| | - M Begoña-Zubero
- Biodonostia, Health Research Institute, Donostia, Gipuzkoa, Spain; Preventive Medicine and Public Health Department, University of the Basque Country, Leioa, Bizkaia, Spain
| | - R Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Department of Nursing, Universitat de València, Valencia, Spain
| | - G Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - A Fernández-Somoano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), Departamento de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), 33001, Oviedo, Spain
| | - A Tardón
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), Departamento de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), 33001, Oviedo, Spain
| | - M Casas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Vrijheid
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A Meharg
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - M Carey
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - C Meharg
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - K Ralphs
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - C McCreanor
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - J O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street, 18-26, 08034, Barcelona, Cataluña, Spain
| | - J Vioque
- Unidad de Epidemiología de La Nutrición, Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - A J Signes-Pastor
- Unidad de Epidemiología de La Nutrición, Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
10
|
Butler EE, Karagas MR, Demidenko E, Bellinger DC, Korrick SA. In utero arsenic exposure and early childhood motor development in the New Hampshire Birth Cohort Study. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1139337. [PMID: 38455900 PMCID: PMC10910989 DOI: 10.3389/fepid.2023.1139337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 03/09/2024]
Abstract
Introduction High-level prenatal and childhood arsenic (As) exposure characteristic of several regions in Asia (e.g., Bangladesh), may impact motor function. However, the relationship between lower-level arsenic exposure (characteristic of other regions) and motor development is largely unstudied, despite the potential for deficient motor skills in childhood to have adverse long-term consequences. Thus, we sought to investigate the association between prenatal As exposure and motor function among 395 children in the New Hampshire Birth Cohort Study, a rural cohort from northern New England. Methods Prenatal exposure was estimated by measuring maternal urine speciated As at 24-28 weeks of gestation using high-performance liquid chromatography (HPLC) inductively coupled plasma mass spectrometry (ICP-MS) and summing inorganic As, monomethylarsonic acid, and dimethylarsinic acid to obtain total urinary As (tAs). Motor function was assessed with the Bruininks-Oseretsky Test of Motor Proficiency, 2nd Edition (BOT-2) at a mean (SD) age of 5.5 (0.4) years. Results Children who completed this exam were largely reported as white race (97%), born to married mothers (86%) with a college degree or higher (67%). The median (IQR) gestational urine tAs concentration was 4.0 (5.0) µg/L. Mean (SD) BOT-2 scores were 48.6 (8.4) for overall motor proficiency and 48.2 (9.6) for fine manual control [standard score = 50 (10)], and were 16.3 (5.1) for fine motor integration and 12.5 (4.1) for fine motor precision [standard score = 15 (5)]. We found evidence of a non-linear dose response relationship and used a change-point model to assess the association of tAs with overall motor proficiency and indices of fine motor integration, fine motor precision, and their composite, fine manual control, adjusted for age and sex. In models adjusted for potential confounders, each doubling of urine tAs decreased overall motor proficiency by -3.3 points (95% CI: -6.1, -0.4) for tAs concentrations greater than the change point of 9.5 µg/L and decreased fine motor integration by -4.3 points (95% CI: -8.0, -0.6) for tAs concentrations greater than the change point of 17.0 µg/L. Discussion In summary, we found that levels of prenatal As exposure above an empirically-derived threshold (i.e., the change point) were associated with decrements in childhood motor development in a US population.
Collapse
Affiliation(s)
- Erin E. Butler
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Children’s Environmental Health and Disease Prevention Research Center, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - David C. Bellinger
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Susan A. Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
El Youssfi M, Sifou A, Ben Aakame R, Mahnine N, Arsalane S, Halim M, Laghzizil A, Zinedine A. Trace elements in Foodstuffs from the Mediterranean Basin-Occurrence, Risk Assessment, Regulations, and Prevention strategies: A review. Biol Trace Elem Res 2023; 201:2597-2626. [PMID: 35754061 DOI: 10.1007/s12011-022-03334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Trace elements (TEs) are chemical compounds that naturally occur in the earth's crust and in living organisms at low concentrations. Anthropogenic activities can significantly increase the level of TEs in the environment and finally enter the food chain. Toxic TEs like cadmium, lead, arsenic, and mercury have no positive role in a biological system and can cause harmful effects on human health. Ingestion of contaminated food is a typical route of TEs intake by humans. Recent data about the occurrence of TEs in food available in the Mediterranean countries are considered in this review. Analytical methods are also discussed. Furthermore, a discussion of existing international agency regulations will be given. The risk associated with the dietary intake of TEs was estimated by considering consumer exposure and threshold values such as Benchmark dose lower confidence limit and provisional tolerable weekly intake established by the European Food Safety Authority and the Joint FAO/WHO Expert Committee on Food Additives, respectively. Finally, several remediation approaches to minimize TE contamination in foodstuffs were discussed including chemical, biological, biotechnological, and nanotechnological methods. The results of this study proved the occurrence of TEs contamination at high levels in vegetables and fish from some Mediterranean countries. Lead and cadmium are more abundant in foodstuffs than other toxic trace elements. Geographical variations in TE contamination of food crops clearly appear, with a greater risk in developing countries. There is still a need for the regular monitoring of these toxic element levels in food items to ensure consumer protection.
Collapse
Affiliation(s)
- Mourad El Youssfi
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Aicha Sifou
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Rachid Ben Aakame
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Naima Mahnine
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Said Arsalane
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Mohammed Halim
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Abdelaziz Laghzizil
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
| | - Abdellah Zinedine
- BIOMARE Laboratory, Chouaib Doukkali University, Faculty of Sciences, Route Ben Maachou, PO Box 20, 24000, El Jadida, Morocco.
| |
Collapse
|
12
|
Li D, Qin Q, Xia Y, Cheng S, Zhang J, Duan X, Qin X, Tian X, Mao L, Qiu J, Jiang X, Zou Z, Chen C. Heterozygous disruption of beclin 1 alleviates neurotoxicity induced by sub-chronic exposure of arsenite in mice. Neurotoxicology 2023; 94:11-23. [PMID: 36374725 DOI: 10.1016/j.neuro.2022.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Arsenite is a well-documented neurotoxicant that widely exists in the environment. However, the detailed mechanisms of arsenite neurotoxicity are not fully clarified. Autophagy has been reported to be involved in many neurological problems induced by arsenite. Since beclin 1 is an essential mediator of autophagy, we herein used both adult wild-type (beclin 1+/+) and heterozygous disruption of beclin 1 (beclin 1+/-) mice for chronic administration of 50 mg/L arsenite via drinking water for 3 months. Our results demonstrated that exposure of arsenite caused the working memory deficit, anxiety-like behavior and motor coordination disorder in beclin 1+/+ mice, accompanied with pathological changes in morphology and electrophysiology in the cortical tissues. This treatment of arsenite significantly reduced the number of neuronal cells and induced microglia activation and synaptic transmission disorders in the wild-type mice as compared with vehicle controls. Intriguingly, by using beclin 1+/- mice, we found that heterozygous disruption of beclin 1 profoundly attenuated these neurotoxic effects induced by arsenite, mainly manifested by improvements in the neurobehavioral impairments, abnormal electrophysiologic alterations as well as dysregulation of synaptic transmission. These findings together indicate that regulation of autophagy via beclin 1 would be a potential strategy for treatment against arsenite neurotoxicity.
Collapse
Affiliation(s)
- Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qizhong Qin
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
13
|
Zhao Q, Pan W, Li J, Yu S, Liu Y, Zhang X, Qu R, Zhang Q, Li B, Yan X, Ren X, Qiu Y. Effects of neuron autophagy induced by arsenic and fluoride on spatial learning and memory in offspring rats. CHEMOSPHERE 2022; 308:136341. [PMID: 36087721 DOI: 10.1016/j.chemosphere.2022.136341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
There are numerous studies showing that exposure to arsenic (As) or fluoride (F) damages the nervous system, but there is no literature investigating the effects of combined As and F exposure to induce autophagy on neurotoxicity in the offspring. In this study, we developed a rat model of As and/or F exposure through drinking water from before pregnancy to 90 days postnatal. The offspring rats were randomly divided into nine groups. Sodium arsenite (NaAsO2) (0, 35, 70 mg/L) and Sodium fluoride (NaF) (0, 50, 100 mg/L) were designed according to 3 × 3 factorial design. Our results suggested that the presence of F might antagonize the excretion of total As in urine, and As-F co-exposure led to severe pathological damage in brain tissue and reduced spatial learning and memory ability. At the same time, the experiments showed that As and F increased Beclin1 expression and LC3B ratio to activate autophagy; both P62 and Lamp2 expression were increased, suggesting that autophagy lysosomal degradation was blocked; SYN and JIP1 expression were significantly decreased, disrupting synaptic structure and function. Axonal autophagosome reverse transport regulation might be affected by combined As-F exposure, exacerbating neuronal synaptic damage and inducing neurotoxicity. Further analysis showed that there was an interaction between As and F exposure-induced changes in autolysosome-related proteins in the hippocampus, which showed antagonism, and the antagonism of the high As combined exposure groups were stronger than that of the low As combined exposure groups. In conclusion, our study showed that combined As and F exposure might induce reverse transport impairment of autophagy on axons, leading to autophagy defects, which in turn led to disruption of synaptic morphology and function, induced neurotoxicity, and there was an interaction between As and F, the type of its combined effect was antagonism.
Collapse
Affiliation(s)
- Qiuyi Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Weizhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Jia Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Shengnan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Yan Liu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xiaoli Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, China.
| | - Ruodi Qu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Qian Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Ben Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
14
|
Xue S, He X, Jiang X, Pan W, Li W, Xia L, Wu C. Arsenic biotransformation genes and As transportation in soil-rice system affected by iron-oxidizing strain (Ochrobactrum sp.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120311. [PMID: 36181941 DOI: 10.1016/j.envpol.2022.120311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) biotransformation in soil affects As biogeochemical cycling and is associated with As accumulation in rice. After inoculation with 1% iron-oxidizing bacteria (FeOB) in paddy soil, As speciation, As biotransformation genes in soil, As/Fe in Fe plaques, and As accumulation in rice were characterized. Compared with the control, the available As concentrations in soils decreased while amorphous and poorly crystalline Fe-Al oxidized As and crystalline Fe-Al oxidized As fractions increased of F (FeOB) and RF (rice and FeOB) treatments. Fe concentrations increased and positively correlated with As concentrations in Fe plaques on the rice root surface (***P < 0.001). Compared with R (rice), Monomethyl As (MMA), dimethyl As (DMA), arsenate (As(V)), and arsenite (As(III)) concentrations in rice plants showed a downwards trend of RF treatment. The As concentration in grains was below the National Standard for Food Safety (GB 2762-2017). A total of 16 As biotransformation genes in rhizosphere soils of different treatments (CK, F, R and RF were quantified by high-throughput qPCR (HT-qPCR). Compared with the control, the As(V) reduction and As transport genes abundance in other treatments increased respectively by 54.54%-69.17% and 54.63%-73.71%; the As(III) oxidation and As (de) methylation genes did not change significantly; however, several As(III) oxidation genes (aoxA, aoxB, aoxS, and arsH) increased. These results revealed that FeOB could reduce, transport As, and maybe also oxidize As. In addition, As(III) oxidation gene (aoxC) in rhizosphere soil was more abundant than in non-rhizosphere soil. It indicated that radial oxygen loss (ROL) promoted As(III) oxidation in rhizosphere soils. The results provide evidence for As biotransformation by ROL and FeOB in soil-rice system. ROL affects As oxidation and immobilization, and FeOB affects As reduction, transportation and may also affect As oxidation.
Collapse
Affiliation(s)
- Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xuan He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Xingxing Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Weisong Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Administrative Region, Hong Kong, PR China
| | - Libing Xia
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China; Department of Science and Environmental Studies, The Education University of Hong Kong, Administrative Region, Hong Kong, PR China.
| |
Collapse
|
15
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
16
|
Junqué E, Tardón A, Fernandez-Somoano A, Grimalt JO. Environmental and dietary determinants of metal exposure in four-year-old children from a cohort located in an industrial area (Asturias, Northern Spain). ENVIRONMENTAL RESEARCH 2022; 214:113862. [PMID: 35850295 DOI: 10.1016/j.envres.2022.113862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Urine samples from four-year-old children located in a heavily industrialized zone in Asturias (Spain) were collected between 2009 and 2012 (n = 334). Vanadium (V; median 54 μg/g creatinine), cobalt (Co; 1.0 μg/g c.), nickel (Ni; 3.8 μg/g c.), copper (Cu; 22 μg/g c.), zinc (Zn; 590 μg/g c.), arsenic (As; 64 μg/g c.), selenium (Se; 49 μg/g c.), molybdenum (Mo; 110 μg/g c.), cadmium (Cd; 0.27 μg/g c.), antimony (Sb; 1.0 μg/g c.), cesium (Cs; 14 μg/g c.), barium (Ba; 2.6 μg/g c.), thallium (Tl; 0.55 μg/g c.) and lead (Pb; 1.9 μg/g c.) were analysed. Comparison with children from other sites showed that this Asturias cohort was characterized by high levels of V, As, Sb, Cs and Tl. The concentrations of Co, Ni, Zn, Cu, Mo, Se, Cd, Ba and Pb were within the range of other cohorts. Terrestrial dietary items were most strongly related to increased urinary concentrations of metals in children, e.g., red meat with Ba and Ni, pasta/cereal with Ni and Zn, sweets with Zn, Co, and Cu, eggs with Mo, Cd, and Cs, and dairy products with Co and Sb. Seafood was the second group of dietary items significantly related to increased metals, e.g., shellfish with Ba, Cs, Pb, and V, fatty fish with As, and lean fish with As and Se. In contrast, higher fruit intake was significantly associated with decreased Cu and Sb, and higher legume intake with decreased Cu, Se and Cs. Higher intakes of other dietary items also led to significant decreases in some metals, such as vegetables and lower concentrations of Se and Mo, and dairy products with decreases in Cu and As. These negative correlations implied very low concentrations of the mentioned metals in these foods. Higher exposure to traffic was associated with higher concentrations of Ba, present in brake components. Children living outside urban areas had higher concentrations of Se. No association of metals with smoking in the family was found.
Collapse
Affiliation(s)
- Eva Junqué
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; University of Birmingham, Birmingham, United Kingdom
| | - Adonina Tardón
- IUOPA-Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Institute of Health Research of the Principality of Asturias-Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Oviedo, Asturias, Spain
| | - Ana Fernandez-Somoano
- IUOPA-Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Institute of Health Research of the Principality of Asturias-Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Oviedo, Asturias, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
Kordas K, Cantoral A, Desai G, Halabicky O, Signes-Pastor AJ, Tellez-Rojo MM, Peterson KE, Karagas MR. Dietary Exposure to Toxic Elements and the Health of Young Children: Methodological Considerations and Data Needs. J Nutr 2022; 152:2572-2581. [PMID: 36774123 PMCID: PMC10157815 DOI: 10.1093/jn/nxac185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Concerns have been raised regarding toxic-element (arsenic, cadmium, lead, and mercury) contamination of commercially available infant foods around the world. Young children are vulnerable to the effects of toxic elements, based on higher absorption levels and potentially poorer detoxification capacities. Toxic-element exposures in early life exact high societal costs, but it is unclear how much dietary exposure to these elements contributes to adverse health outcomes. Well-designed epidemiological studies conducted in different geographical and socioeconomic contexts need to estimate dietary toxicant exposure in young children and to determine whether causal links exist between toxicants in children's diets and health outcomes. This commentary outlines the methodological considerations and data needs to advance such research.
Collapse
Affiliation(s)
- Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo NY, USA.
| | | | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo NY, USA
| | - Olivia Halabicky
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Antonio J Signes-Pastor
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
18
|
Saeed M, Rehman MYA, Farooqi A, Malik RN. Arsenic and fluoride co-exposure through drinking water and their impacts on intelligence and oxidative stress among rural school-aged children of Lahore and Kasur districts, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3929-3951. [PMID: 34751868 DOI: 10.1007/s10653-021-01141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As), and fluoride (F-) are potent contaminants with established carcinogenic and non-carcinogenic impacts on the exposed populations globally. Despite elevated groundwater As and F- levels being reported from various regions of Pakistan no biomonitoring study has been reported yet to address the co-exposure impact of As and F- among school children. We aimed to investigate the effects of these two contaminants on dental fluorosis and intelligence quotient (IQ) along with the induction of oxidative stress in rural children under co-exposed conditions. A total of 148 children (5 to 16 years old) from the exposed and control group were recruited in the current study from endemic rural areas of Lahore and Kasur districts, Pakistan having elevated As and F- levels in drinking water than permissible limits. We monitored malondialdehyde and its probable association with antioxidants activity (SOD, CAT, and GR) as a biomarker of oxidative stress. GSTM1/T1 polymorphisms were measured to find the impact of As on health parameters. Mean urinary concentrations of As (2.70 vs. 0.016 µg/L, P < 0.000) and F- (3.27 vs. 0.24 mg/L, P < 0.000) as well as the frequency of dental fluorosis were found elevated among the exposed group. The cases of children with lower IQ were observed high in the exposed group. Additionally, lower concentrations of antioxidants (SOD, CAT, and GR) were found suggesting high susceptibility to F- toxicity. The findings suggest that F- accounted for high variations in health parameters of children under the co-exposure conditions with As.
Collapse
Affiliation(s)
- Muhammad Saeed
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abida Farooqi
- Environmental Geochemistry Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Health and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
19
|
Ventre S, Desai G, Roberson R, Kordas K. Toxic metal exposures from infant diets: Risk prevention strategies for caregivers and health care professionals. Curr Probl Pediatr Adolesc Health Care 2022; 52:101276. [PMID: 36266220 DOI: 10.1016/j.cppeds.2022.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concerns are growing regarding the presence of toxic elements such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in the ingredients and prepared foods for infants and young children. There are few clear, evidence-based, guidelines on the maximum tolerable limits of toxicants in foods and little understanding of toxicant exposure or adverse health effects attributable to dietary exposure. Caregivers are faced with the burden of making decisions about which foods to select, how often to feed them to their children, and what foods to limit. This article reviews the current literature and existing recommendations on dietary exposure to toxic elements in children under 2 years of age, and their health effects in early childhood-focusing on growth, neurodevelopment, and immune function. The article also outlines best practices for healthcare providers to address the concerns of toxic element exposure through the diet in young children. Several foods consistently appear in the literature as potential sources of toxic element exposure. Contaminated drinking and cooking water, including water used to prepare infant formula, could also be a major exposure source. In the absence of stronger evidence on effects of dietary modification, exclusive breastfeeding until six months of age, followed by a diverse diet are some strategies to reduce dietary toxic element exposure while ensuring an adequate and balanced nutrient intake. Healthcare providers can support families by sharing information and encouraging blood Pb testing, the only element for which such testing is currently recommended.
Collapse
Affiliation(s)
- Sarah Ventre
- Department of Pediatrics, University at Buffalo, USA; New York State Children's Environmental Health Center, USA.
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | | | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| |
Collapse
|
20
|
Signes-Pastor AJ, Díaz-Coto S, Martinez-Camblor P, Carey M, Soler-Blasco R, García-Villarino M, Fernández-Somoano A, Julvez J, Carrasco P, Lertxundi A, Santa Marina L, Casas M, Meharg AA, Karagas MR, Vioque-Lopez J. Arsenic exposure and respiratory outcomes during childhood in the INMA study. PLoS One 2022; 17:e0274215. [PMID: 36083997 PMCID: PMC9462567 DOI: 10.1371/journal.pone.0274215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ingested inorganic arsenic (iAs) is a human carcinogen that is also linked to other adverse health effects, such as respiratory outcomes. Yet, among populations consuming low-arsenic drinking water, the impact of iAs exposure on childhood respiratory health is still uncertain. For a Spanish child study cohort (INfancia y Medio Ambiente—INMA), low-arsenic drinking water is usually available and ingestion of iAs from food is considered the major source of exposure. Here, we explored the association between iAs exposure and children’s respiratory outcomes assessed at 4 and 7 years of age (n = 400). The summation of 4-year-old children’s urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) was used as a biomarker of iAs exposure (∑As) (median of 4.92 μg/L). Children’s occurrence of asthma, eczema, sneeze, wheeze, and medication for asthma and wheeze at each assessment time point (i.e., 4- and 7-year) was assessed with maternal interviewer-led questionnaires. Crude and adjusted Poisson regression models using Generalized Estimating Equation (GEE) were performed to account for the association between natural logarithm transformed (ln) urinary ∑As in μg/L at 4 years and repeated assessments of respiratory symptoms at 4 and 7 years of age. The covariates included in the models were child sex, maternal smoking status, maternal level of education, sub-cohort, and children’s consumption of vegetables, fruits, and fish/seafood. The GEE—splines function using Poisson regression showed an increased trend of the overall expected counts of respiratory symptoms with high urinary ∑As. The adjusted expected counts (95% confidence intervals) at ln-transformed urinary ∑As 1.57 (average concentration) and 4.00 (99th percentile concentration) were 0.63 (0.36, 1.10) and 1.33 (0.61, 2.89), respectively. These exploratory findings suggest that even relatively low-iAs exposure levels, relevant to the Spanish and other populations, may relate to an increased number of respiratory symptoms during childhood.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- * E-mail:
| | - Susana Díaz-Coto
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Pablo Martinez-Camblor
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Manus Carey
- Institute for Global Food Security, School of Biological Sciences Building, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Miguel García-Villarino
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)–Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Ana Fernández-Somoano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)–Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Jordi Julvez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Paula Carrasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
- Department of Medicine, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitana Lertxundi
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, UPV/EHU, Leioa, Basque Country, Spain
- Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
| | - Loreto Santa Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
- Department of Health of the Basque Government, Public Health Division of Gipuzkoa, Donostia-San Sebastián, Spain
| | - Maribel Casas
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrew A. Meharg
- Institute for Global Food Security, School of Biological Sciences Building, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Margaret R. Karagas
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Jesús Vioque-Lopez
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
21
|
Abu Bakar N, Wan Ibrahim WN, Che Abdullah CA, Ramlan NF, Shaari K, Shohaimi S, Mediani A, Nasruddin NS, Kim CH, Mohd Faudzi SM. Embryonic Arsenic Exposure Triggers Long-Term Behavioral Impairment with Metabolite Alterations in Zebrafish. TOXICS 2022; 10:493. [PMID: 36136458 PMCID: PMC9502072 DOI: 10.3390/toxics10090493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 05/10/2023]
Abstract
Arsenic trioxide (As2O3) is a ubiquitous heavy metal in the environment. Exposure to this toxin at low concentrations is unremarkable in developing organisms. Nevertheless, understanding the underlying mechanism of its long-term adverse effects remains a challenge. In this study, embryos were initially exposed to As2O3 from gastrulation to hatching under semi-static conditions. Results showed dose-dependent increased mortality, with exposure to 30-40 µM As2O3 significantly reducing tail-coiling and heart rate at early larval stages. Surviving larvae after 30 µM As2O3 exposure showed deficits in motor behavior without impairment of anxiety-like responses at 6 dpf and a slight impairment in color preference behavior at 11 dpf, which was later evident in adulthood. As2O3 also altered locomotor function, with a loss of directional and color preference in adult zebrafish, which correlated with changes in transcriptional regulation of adsl, shank3a, and tsc1b genes. During these processes, As2O3 mainly induced metabolic changes in lipids, particularly arachidonic acid, docosahexaenoic acid, prostaglandin, and sphinganine-1-phosphate in the post-hatching period of zebrafish. Overall, this study provides new insight into the potential mechanism of arsenic toxicity leading to long-term learning impairment in zebrafish and may benefit future risk assessments of other environmental toxins of concern.
Collapse
Affiliation(s)
- Noraini Abu Bakar
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wan Norhamidah Wan Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- The Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nurul Farhana Ramlan
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Centre for Craniofacial Diagnostics, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Siti Munirah Mohd Faudzi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
22
|
Signes-Pastor AJ, Romano ME, Jackson B, Braun JM, Yolton K, Chen A, Lanphear B, Karagas MR. Associations of maternal urinary arsenic concentrations during pregnancy with childhood cognitive abilities: The HOME study. Int J Hyg Environ Health 2022; 245:114009. [PMID: 35947921 PMCID: PMC9500348 DOI: 10.1016/j.ijheh.2022.114009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
Arsenic exposure during pregnancy may increase the risk for intellectual deficits in children, but limited data exist from prospective epidemiologic studies, particularly at low arsenic exposure levels. We investigated the association between prenatal maternal urinary arsenic concentrations and childhood cognitive abilities in the Health Outcomes and Measures of the Environment (HOME) Study. We used anion exchange chromatography coupled with inductively coupled plasma mass spectrometry detection to measure arsenic species content in pregnant women's urine. The summation of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) refers to ∑As. We assessed children's cognitive function (n = 260) longitudinally at 1-, 2-, and 3-years using Bayley Scales of Infant and Toddler Development, at 5 years using Wechsler Preschool and Primary Scale of Intelligence, and at 8 years using Wechsler Intelligence Scale for Children. We observed a modest decrease in mental development index and full-scale intelligence quotient at ages 3 and 5 years with each doubling of ∑As with estimated score (ß) differences and 95% confidence interval (CI) of -1.8 from -4.1 to 0.5 and -2.5 from -5.1 to 0.0, respectively. This trend was stronger and reached statistical significance among children whose mothers had lower iAs methylation capacity and low urinary arsenobetaine concentrations. Our findings suggest that arsenic exposure levels relevant to the general US population may affect children's cognitive abilities.
Collapse
Affiliation(s)
- Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA; Unidad de Epidemiología de la Nutrición. Universidad Miguel Hernández, Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain.
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA.
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bruce Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA
| |
Collapse
|
23
|
Knappett PSK, Farias P, Miller GR, Hoogesteger J, Li Y, Mendoza‐Sanchez I, Woodward RT, Hernandez H, Loza‐Aguirre I, Datta S, Huang Y, Carrillo G, Roh T, Terrell D. A Systems Approach to Remediating Human Exposure to Arsenic and Fluoride From Overexploited Aquifers. GEOHEALTH 2022; 6:e2022GH000592. [PMID: 35799913 PMCID: PMC9250112 DOI: 10.1029/2022gh000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 05/14/2023]
Abstract
In semiarid agricultural regions, aquifers have watered widespread economic development. Falling water tables, however, drive up energy costs and can make the water toxic for human consumption. The study area is located in central Mexico, where arsenic and fluoride are widely present at toxic concentrations in well water. We simulated the holistic outcomes from three pumping scenarios over 100 years (2020-2120); (S1) pumping rates increase at a similar rate to the past 40 years, (S2) remain constant, or (S3) decrease. Under scenario S1, by 2120, the depth to water table increased to 426 m and energy consumption for irrigation increased to 4 × 109 kWh/yr. Arsenic and fluoride concentrations increased from 14 to 46 μg/L and 1.0 to 3.6 mg/L, respectively. The combined estimated IQ point decrements from drinking untreated well water lowered expected incomes in 2120 by 27% compared to what they would be with negligible exposure levels. We calculated the 100-year Net Present Value (NPV) of each scenario assuming the 2020 average crop value to water footprint ratio of 0.12 USD/m3. Without drinking water mitigation, S1 and S3 yielded relative NPVs of -5.96 × 109 and 1.51 × 109 USD, respectively, compared to the base case (S2). The relative NPV of providing blanket reverse osmosis treatment, while keeping pumping constant (S2), was 11.55 × 109 USD and this gain increased when combined with decreased pumping (S3). If a high value, low water footprint crop was substituted (broccoli, 1.51 USD/m3), the net gains from increasing pumping were similar in size to those of implementing blanket drinking water treatment.
Collapse
Affiliation(s)
| | - P. Farias
- Environmental HealthInstituto Nacional de Salud PúblicaCuernavacaMéxico
| | - G. R. Miller
- Civil & Environmental EngineeringTexas A&M UniversityCollege StationTXUSA
| | - J. Hoogesteger
- Water Resources ManagementWageningen UniversityWageningenThe Netherlands
| | - Y. Li
- Mines, Metallurgy and Geology EngineeringUniversity of GuanajuatoGuanajuatoMéxico
| | | | - R. T. Woodward
- Agricultural EconomicsTexas A&M UniversityCollege StationTXUSA
| | - H. Hernandez
- Geomatic and Hydraulic EngineeringUniversity of GuanajuatoGuanajuatoMéxico
| | - I. Loza‐Aguirre
- Mines, Metallurgy and Geology EngineeringUniversity of GuanajuatoGuanajuatoMéxico
| | - S. Datta
- Geological SciencesUniversity of Texas at San AntonioSan AntonioTXUSA
| | - Y. Huang
- Geology & GeophysicsTexas A&M UniversityCollege StationTXUSA
| | - G. Carrillo
- Public HealthTexas A&M UniversityCollege StationTXUSA
| | - T. Roh
- Public HealthTexas A&M UniversityCollege StationTXUSA
| | - D. Terrell
- Caminos de AguaSan Miguel de AllendeMéxico
| |
Collapse
|
24
|
Signes-Pastor AJ, Sayarath V, Jackson B, Cottingham KL, Punshon T, Karagas MR. Dietary Exposure to Essential and Non-essential Elements During Infants' First Year of Life in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2022; 15:269-279. [PMID: 36873246 PMCID: PMC9971144 DOI: 10.1007/s12403-022-00489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 06/18/2023]
Abstract
Even the low levels of non-essential elements exposure common in the US may have health consequences especially early in life. However, little is known about the infant's dynamic exposure to essential and non-essential elements. This study aims to evaluate exposure to essential and non-essential elements during infants' first year of life and to explore the association between the exposure and rice consumption. Paired urine samples from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) were collected at approximately 6 weeks (exclusively breastfed) and at 1 year of age after weaning (n = 187). A further independent subgroup of NHBCS infants with details about rice consumption at 1 year of age also was included (n = 147). Urinary concentrations of 8 essential (Co, Cr, Cu, Fe, Mn, Mo, Ni, and Se) and 9 non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, V, and U) elements were determined as a measure of exposure. Several essential (Co, Fe, Mo, Ni, and Se) and non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, and V) elements had higher concentrations at 1 year than at 6 weeks of age. The highest increases were for urinary As and Mo with median concentrations of 0.20 and 1.02 µg/L at 6 weeks and 2.31 and 45.36 µg/L at 1 year of age, respectively. At 1 year of age, As and Mo urine concentrations were related to rice consumption. Further efforts are necessary to minimize exposure to non-essential elements while retaining essential elements to protect and promote children's health. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-022-00489-x.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Vicki Sayarath
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH USA
| | | | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel Medical School at Dartmouth College, Lebanon, NH USA
| |
Collapse
|
25
|
Jiang CB, Kao CS, Chien LC, Chen YJ, Liao KW. Associations among prenatal and postnatal arsenic, lead, and cadmium exposures and motor development in 3-year-old children: a longitudinal birth cohort study in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43191-43200. [PMID: 35091938 DOI: 10.1007/s11356-021-18321-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Prenatal and postnatal exposures to heavy metals have been suggested to interfere with neurodevelopment, but the neurotoxicity of lead (Pb), arsenic (As), and cadmium (Cd) is still unclear. In this study, we aimed to assess the associations between the levels of As, Cd, and Pb and children's neurodevelopment. A total of 299 mother-infant pairs were recruited in this study and their meconium were collected. After three years, 53 children underwent the Bayley Scales of Infant and Toddler Development (Bayley-III) examinations and provided hair and fingernail specimens. The levels of As, Cd, and Pb in the meconium, hair, and fingernail were measured by inductively coupled plasma mass spectrometry; the median levels were the following: meconium, 42.7, 5.57, and 25.6 ng/g, respectively; hair, 0.19, 0.05, and 3.61 μg/g, respectively; and fingernail, 0.29, 0.04, and 0.84 μg/g, respectively. After adjusting for potential confounding factors, we found that the log-transformed levels of As in the hair samples was negatively associated with gross motor development (β = - 0.032; 95% confidence interval: - 0.061 to - 0.004). We conclude that postnatal exposure to As is a crucial period for gross motor development in children, while the effects of Cd and Pb on neurodevelopment are less clear.
Collapse
Affiliation(s)
- Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chi-Sian Kao
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Jhen Chen
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, Taiwan.
| |
Collapse
|
26
|
García-Villarino M, Signes-Pastor AJ, Karagas MR, Riaño-Galán I, Rodríguez-Dehli C, Grimalt JO, Junqué E, Fernández-Somoano A, Tardón A. Exposure to metal mixture and growth indicators at 4-5 years. A study in the INMA-Asturias cohort. ENVIRONMENTAL RESEARCH 2022; 204:112375. [PMID: 34785205 PMCID: PMC8671344 DOI: 10.1016/j.envres.2021.112375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to toxic and non-toxic metals impacts childhood growth and development, but limited data exists on exposure to metal mixtures. Here, we investigated the effects of exposure to individual metals and a mixture of barium, cadmium, cobalt, lead, molybdenum, zinc, and arsenic on growth indicators in children 4-5 years of age. METHODS We used urine metal concentrations as biomarkers of exposure in 328 children enrolled in the Spanish INMA-Asturias cohort. Anthropometric measurements (arm, head, and waist circumferences, standing height, and body mass index) and parental sociodemographic variables were collected through face-to-face interviews by trained study staff. Linear regressions were used to estimate the independent effects and were adjusted for each metal in the mixture. We applied Bayesian kernel machine regression to examine non-linear associations and potential interactions. RESULTS In linear regression, urinary levels of cadmium were associated with reduced arm circumference (βadjusted = -0.44, 95% confidence interval [CI]: -0.73, -0.15), waist circumference (βadjusted = -1.29, 95% CI: -2.10, -0.48), and standing height (βadjusted = -1.09, 95% CI: -1.82, -0.35). Lead and cobalt concentrations were associated with reduced standing height (βadjusted = -0.64, 95% CI: -1.20, -0.07) and smaller head circumference (βadjusted = -0.29, 95% CI: -0.49, -0.09), respectively. However, molybdenum was positively associated with head circumference (βadjusted = 0.22, 95% CI: 0.01, 0.43). BKMR analyses showed strong linear negative associations of cadmium with arm and head circumference and standing height. BKMR analyses also found lead and cobalt in the metal mixture were related to reduce standing height and head circumference, and consistently found molybdenum was related to increased head circumference. CONCLUSION Our findings suggest that exposure to metal mixtures impacts growth indicators in children.
Collapse
Affiliation(s)
- Miguel García-Villarino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| | - Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA; Department of Public Health. Universidad Miguel Hernández, Avenida de Alicante KM 87, 03550, Sant Joan D'Alacant, Spain
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Roma Avenue S/n, 33001, Oviedo, Asturias, Spain
| | | | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Eva Junqué
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain.
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| |
Collapse
|
27
|
Ramírez V, Gálvez-Ontiveros Y, González-Domenech PJ, Baca MÁ, Rodrigo L, Rivas A. Role of endocrine disrupting chemicals in children's neurodevelopment. ENVIRONMENTAL RESEARCH 2022; 203:111890. [PMID: 34418446 DOI: 10.1016/j.envres.2021.111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental stressors, like endocrine disrupting chemicals (EDC), are considered important contributors to the increased rates of neurodevelopmental dysfunctions. Considering the cumulative research on adverse neurodevelopmental effects associated with prenatal exposure to EDC, the purpose of this study was to review the available limited literature about the effects of postnatal exposure to EDC on child neurodevelopment and behaviour. Despite widespread children's exposure to EDC, there are a limited number of epidemiological studies on the association of this exposure with neurodevelopmental disorders, in particular in the postnatal period. The available research suggests that postnatal EDC exposure is related to adverse neurobehavioral outcomes in children; however the underlying mechanisms of action remain unclear. Timing of exposure is a key factor determining potential neurodevelopmental consequences, hence studying the impact of multiple EDC co-exposure in different vulnerable life periods could guide the identification of sensitive subpopulations. Most of the reviewed studies did not take into account sex differences in the EDC effects on children neurodevelopment. We believe that the inclusion of sex in the study design should be considered as the role of EDC on children neurodevelopment are likely sex-specific and should be taken into consideration when determining susceptibility and potential mechanisms of action.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, University of Granada, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Pablo José González-Domenech
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain; Department of Psychiatry, University of Granada, Granada, Spain
| | | | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, Granada, Spain.
| | - Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
28
|
Additive and Interactive Associations of Environmental and Sociodemographic Factors with the Genotypes of Three Glutathione S-Transferase Genes in Relation to the Blood Arsenic Concentrations of Children in Jamaica. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010466. [PMID: 35010728 PMCID: PMC8745014 DOI: 10.3390/ijerph19010466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Arsenic (As) is a metalloid that has been classified as a xenobiotic with toxic effects on human beings, especially on children. Since the soil in Jamaica contains As, dietary intake is considered the main source of As exposure in Jamaicans. In addition, glutathione S-transferase (GST) genes, including GSTT1, GSTP1, and GSTM1, play an important role in the metabolism of xenobiotics including As in humans. Using data from 375 typically developing children (2–8 years) in Jamaica, we investigated the environmental and sociodemographic factors, as well as their possible interactions with the children’s genotype for GST genes in relation to having a detectable level of blood As concentration (i.e., >1.3 μg/L). Using multivariable logistic regression, we have identified environmental factors significantly associated with blood As concentrations that include a child’s age, parental education levels, and the consumption of saltwater fish, cabbage, broad beans, and avocado (all p < 0.01). Based on the multivariable analysis including gene x environment interactions, we found that among children with the Ile/Ile genotype for GSTP1 Ile105Val, children who consumed avocado had higher odds of having a detectable blood As concentration compared to children who did not eat avocado.
Collapse
|
29
|
Biswas B, Chakraborty A, Chatterjee D, Pramanik S, Ganguli B, Majumdar KK, Nriagu J, Kulkarni KY, Bansiwal A, Labhasetwar P, Bhowmick S. Arsenic exposure from drinking water and staple food (rice): A field scale study in rural Bengal for assessment of human health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113012. [PMID: 34837872 DOI: 10.1016/j.ecoenv.2021.113012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a well-known carcinogen with emerging reports showing a range of health outcomes even for low to moderate levels of exposure. This study deals with arsenic exposure and associated increased lifetime cancer risk for populations in arsenic-endemic regions of rural Bengal, where arsenic-safe drinking water is being supplied at present. We found a median total exposure of inorganic arsenic to be 2. 9 μg/Kg BW/day (5th and 95th percentiles were 1.1 μg/Kg BW/day and 7.9 μg/Kg BW/day); with major contribution from cooked rice intake (2.4 µg/Kg BW/day). A significant number of households drank arsenic safe water but used arsenic-rich water for rice cooking. As a result, 67% participants had inorganic arsenic intake above the JEFCA threshold value of 3 μg/Kg BW/day for cancer risk from only rice consumption when arsenic contaminated water was used for cooking (median: 3.5 μg/Kg BW/day) compared to 29% participants that relied on arsenic-free cooking water (median: 1.0 µg/kg BW/day). Arsenic in urine samples of study participants ranged from 31.7 to 520 µg/L and was significantly associated with the arsenic intake (r = 0.76); confirming the preponderance of arsenic exposure from cooked rice. The median arsenic attributable cancer risks from drinking water and cooked rice were estimated to be 2.4 × 10-5 and 2.7 × 10-4 respectively, which further emphasized the importance of arsenic exposure from staple diet. Our results show that any mitigation strategy should include both drinking water and local staple foods in order to minimize the potential health risks of arsenic exposure.
Collapse
Affiliation(s)
- Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bhaswati Ganguli
- Department of Statistics, University of Calcutta, 35 Bullygunge Circular Road, Kolkata, West Bengal 700 019, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, Jadavpur, Kolkata, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Ketki Y Kulkarni
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Amit Bansiwal
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pawan Labhasetwar
- Water Technology & Management Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
Signes-Pastor AJ, Martinez-Camblor P, Baker E, Madan J, Guill MF, Karagas MR. Prenatal exposure to arsenic and lung function in children from the New Hampshire Birth Cohort Study. ENVIRONMENT INTERNATIONAL 2021; 155:106673. [PMID: 34091160 PMCID: PMC8353991 DOI: 10.1016/j.envint.2021.106673] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 05/03/2023]
Abstract
Prenatal arsenic exposure is associated with an increased risk of lung cancer along with multiple non-carcinogenic outcomes, including respiratory diseases in arsenic-contaminated areas. Limited epidemiologic data exist on whether in utero arsenic exposure influences lung development and subsequent respiratory health. We investigated the association between gestational arsenic exposure and childhood lung function in the New Hampshire Birth Cohort Study. Urinary arsenic speciation including inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine was measured in maternal urine samples collected during pregnancy and spirometry was performed in offspring at a median age of 7.4 years. Forced vital capacity (FVC), forced expiratory volume in the first second of exhalation (FEV1), and forced expiratory flow between 25% and 75% of FVC (FEF25-75) standardized z-scores were assessed in linear models as dependent variables with the log2-transformed summation of urinary arsenic species (ΣAs = iAs + MMA + DMA) corrected for specific gravity as an independent variable and with adjustment for maternal smoking status, children's age, sex and height. Among the 358 children in the study, a doubling of ΣAs was associated with a -0.08 (ß) decrease in FVC z-scores (95% confidence interval (CI) from -0.14 to -0.01) and -0.10 (ß) (95% CI from -0.18 to -0.02) decrease in FEV1 z-scores. The inverse association appeared stronger among those mothers with lower secondary methylation index (urinary DMA/MMA), especially among girls. No association was observed for FEF25-75 z-scores. Our results suggest that gestation arsenic exposure at levels relevant to the general US population during the vulnerable period of lung formation may adversely affect lung function in childhood.
Collapse
Affiliation(s)
- Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Pablo Martinez-Camblor
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Emily Baker
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Juliette Madan
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States; Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Margaret F Guill
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States.
| |
Collapse
|
31
|
Signes-Pastor AJ, Punshon T, Cottingham KL, Jackson BP, Sayarath V, Gilbert-Diamond D, Korrick S, Karagas MR. Arsenic exposure in relation to apple consumption among infants in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2020; 12:561-567. [PMID: 33195875 PMCID: PMC7665059 DOI: 10.1007/s12403-020-00356-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/14/2020] [Accepted: 04/01/2020] [Indexed: 05/19/2023]
Abstract
Infants and young children commonly consume apple-based products, which may contain high concentrations of inorganic arsenic (iAs). As yet, iAs exposure from ingesting apple products has not been well-characterized in early childhood. Therefore, we investigated the association between urinary arsenic concentrations and intake of apple products in one-year-old infants participating in the New Hampshire Birth Cohort Study. A three-day food diary prior to collection of a spot urine sample was used to determine infant's consumption of apple products. The sum of urinary iAs, monomethylarsonic acid, and dimethylarsinic acid, referred to as ΣAs, was used to estimate iAs exposure. A total of 242 infants had urinary arsenic speciation analyzed without indication of fish/seafood consumption (urinary arsenobetaine < 1 μg/L) and with a completed three-day food diary. Of these, 183 (76%) infants ate apples or products containing apple. The geometric mean urinary ΣAs among the 59 infants who did not consume any type of apple product was 2.78 μg/L as compared to 2.38, 2.46, 2.28, and 2.73 μg/L among infants who exclusively consumed apple juice (n = 30), apple puree (n = 67), apples as whole fruit (n = 20) or products mixed with apples (n = 21), respectively. Differences in urinary ΣAs associated with apple consumption were not statistically significant in generalized linear models adjusted for urine dilution, rice consumption, and household water arsenic. Thus, while infants in our study frequently consumed apples and apple products, we did not find evidence that it increased iAs exposure.
Collapse
Affiliation(s)
- AJ Signes-Pastor
- Children’s Environmental Health and Disease Prevention Research Center, Dartmouth College, Hanover, NH, 03755
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 0.3756
| | - T Punshon
- Children’s Environmental Health and Disease Prevention Research Center, Dartmouth College, Hanover, NH, 03755
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - KL Cottingham
- Children’s Environmental Health and Disease Prevention Research Center, Dartmouth College, Hanover, NH, 03755
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - BP Jackson
- Children’s Environmental Health and Disease Prevention Research Center, Dartmouth College, Hanover, NH, 03755
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - V Sayarath
- Children’s Environmental Health and Disease Prevention Research Center, Dartmouth College, Hanover, NH, 03755
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 0.3756
| | - D Gilbert-Diamond
- Children’s Environmental Health and Disease Prevention Research Center, Dartmouth College, Hanover, NH, 03755
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 0.3756
| | - S Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
- Chaninng Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - MR Karagas
- Children’s Environmental Health and Disease Prevention Research Center, Dartmouth College, Hanover, NH, 03755
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 0.3756
| |
Collapse
|
32
|
Bauer JA, Fruh V, Howe CG, White RF, Henn BC. Associations of metals and neurodevelopment: a review of recent evidence on susceptibility factors. CURR EPIDEMIOL REP 2020; 7:237-262. [PMID: 33777647 PMCID: PMC7993302 DOI: 10.1007/s40471-020-00249-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic evidence exists that many metals are associated with adverse neurobehavioral effects in young children, including lead (Pb), methylmercury (meHg), manganese (Mn) and arsenic (As)5-8. Importantly, chemical insult can vary depending on host factors and exposure circumstance. This systematic review summarizes the recent literature investigating modifying factors of the associations between metals and neurodevelopment, including immutable traits (sex or genetics) or exposure conditions (timing or co-exposures). RECENT FINDINGS Of the 53 studies included in this review, the number investigating modification of exposure effects were: 30 for sex, 21 for co-exposures, 12 for timing of exposure, and six for genetic modifiers. Sex-specific effects of metal-neurobehavioral associations were inconclusive for all metals, likely due to the heterogeneity of outcome domains assessed and the exposure time points measured. Seven studies evaluated both sex and exposure timing as modifying factors using deciduous teeth or other biomarkers with repeated measures to characterize metals exposure over time. Only five studies used statistical methods for mixtures to evaluate associations of more than two metals with neurobehavioral domains. SUMMARY Despite the expansion of research on susceptibility to the neurodevelopmental effects of metals exposure, considerable gaps remain. This work remains critical, as characterizing susceptible subpopulations can aid in identifying biological mechanisms and is fundamental for the protection of public health.
Collapse
Affiliation(s)
- Julia A Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Victoria Fruh
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University Medical School, Boston, MA, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
33
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Kordas K. Executive functions in school children from Montevideo, Uruguay and their associations with concurrent low-level arsenic exposure. ENVIRONMENT INTERNATIONAL 2020; 142:105883. [PMID: 32599352 PMCID: PMC10927015 DOI: 10.1016/j.envint.2020.105883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Arsenic is a known childhood neurotoxicant, but its neurotoxicity at low exposure levels is still not well established. The aim of our cross-sectional study was to test the association between low-level arsenic exposure and executive functions (EF) among children in Montevideo. We also assessed effect modification by arsenic methylation capacity, a susceptibility factor for the health effects of arsenic, and by B-vitamin intake, which impacts arsenic methylation. METHODS Arsenic exposure was assessed as the specific gravity-adjusted sum of urinary arsenic metabolites (U-As) among 255 ~ 7 year-old children, and methylation capacity as the proportion of urinary monomethylarsonic acid (%MMA). Arsenic concentrations from kitchen water samples at participants' homes were assessed. B-vitamin intake was calculated from the average of two 24-hour dietary recalls. EF was measured using three tests from the Cambridge Neuropsychological Test Automated Battery- Stockings of Cambridge (SOC), Intra-dimensional/extra-dimensional shift task (IED), and Spatial Span (SSP). Generalized linear models assessed the association between U-As and EF measures; models were adjusted for age, sex, maternal education, possessions score, Home Observation for Measurement of the Environment Inventory score, season, and school clusters. Additional analyses were conducted to address issues of residual confounding and sample size. A "B-vitamin index" was calculated using principal component analysis. Effect modification by the index and urinary %MMA was assessed in strata split at the respective medians of these variables. RESULTS The median (range) U-As and water arsenic levels were 9.9 µg/L (2.2, 47.7) and 0.45 µg/L (0.1, 18.9) respectively, indicating that exposure originated mainly from other sources. U-As was inversely associated with the number of stages completed (β = -0.02; 95% CI: -0.03, -0.002) and pre-executive shift errors (β = -0.08; 95% CI: -0.14, -0.02) of the IED task, and span length of the SSP task (β = -0.01; 95% CI: -0.02, -0.004). There was no clear pattern of effect modification by B-vitamin intake or urinary %MMA. CONCLUSION Low-level arsenic exposure may adversely affect executive function among children but additional, including longitudinal, studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
34
|
Loredo-Portales R, Bustamante-Arce J, González-Villa HN, Moreno-Rodríguez V, Del Rio-Salas R, Molina-Freaner F, González-Méndez B, Archundia-Peralta D. Mobility and accessibility of Zn, Pb, and As in abandoned mine tailings of northwestern Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26605-26620. [PMID: 32372357 DOI: 10.1007/s11356-020-09051-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Generation, storage, and management of waste coming from industrial processes are a growing worldwide problem. One of the main contributors is the mining industry, in particular tailings generated by historical mining, which are barely maintained, especially in developing countries. Assessing the impact of a mining site to surrounding soils and ecosystems can be complex, especially when determining mobility and accessibility of the contaminants is required to perform ecological and human health risk assessment. As an effort to obtain information regarding mobility and accessibility of some potentially toxic elements (Zn, Pb, and As) from an historical mining site of northwestern Mexico, the abandoned mine tailings of San Felipe de Jesús in central Sonora and adjacent agricultural soils were investigated. Mobility and accessibility were assessed by means of sequential extraction procedures and using simulated physiological media. Additionally, an assessment of accidental oral intake was calculated considering the bioaccessible fractions. Results show that higher concentrations of contaminants were found in sulfide-rich tailings (Zn = 92,540; Pb = 21,288; As = 19,740 mg kg-1) compared with oxide-rich tailings (Zn = 43,240; Pb = 14,763; As = 13,401 mg kg-1). Concentrations in agricultural soils were on average Zn = 4755, Pb = 2840, and As = 103 mg kg-1. Zinc was mainly recovered from labile fractions in oxide-rich tailings (~ 60%) and in a lower amount from sulfide-rich tailings (~ 30%). Pb and As were mainly associated with residual fractions (80-95%) in both types of tailings. The percentage of mobile fractions (sum of water-soluble, exchangeable, and bound to carbonate fractions) in agricultural soils was as follows: Zn ~ 60%, Pb ~ 15%, and As ~ 70%. Regarding the phytoaccessible fraction, the studied elements in mine tailings and agricultural soil samples exceeded the threshold limits, except for As in agricultural soils. According to data obtained, toxic effects were also calculated. As for daily oral intake for non-carcinogenic effects in adults and children, only Pb and As exceeded reference dose values, especially in children exposed to sulfide-rich tailings and agricultural soils. Regarding carcinogenic effects of Pb and As, most of the samples were above acceptable risk values.
Collapse
Affiliation(s)
- René Loredo-Portales
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico.
| | - Jesús Bustamante-Arce
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico
| | - Héctor Ney González-Villa
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico
| | - Verónica Moreno-Rodríguez
- Ingeniería en Geociencias, Universidad Estatal de Sonora, Av. Ley Federal del Trabajo s/n, Col. Apolo, 83100, Hermosillo, Sonora, Mexico
| | - Rafael Del Rio-Salas
- Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
- Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, Mexico City, Mexico
| | - Francisco Molina-Freaner
- Instituto de Ecología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
| | - Blanca González-Méndez
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
| | - Denisse Archundia-Peralta
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
35
|
Vahter M, Skröder H, Rahman SM, Levi M, Derakhshani Hamadani J, Kippler M. Prenatal and childhood arsenic exposure through drinking water and food and cognitive abilities at 10 years of age: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2020; 139:105723. [PMID: 32298878 DOI: 10.1016/j.envint.2020.105723] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Our studies of children in a rural Bangladeshi area, with varying concentrations of arsenic in well-water, indicated modest impact on child verbal cognitive function at 5 years of age. OBJECTIVES Follow-up of arsenic exposure and children's cognitive abilities at school-age. METHODS In a nested sub-cohort of the MINIMat supplementation trial, we assessed cognitive abilities at 10 years of age (n = 1523), using Wechsler Intelligence Scale for Children (WISC-IV). Arsenic in maternal urine and erythrocytes in early pregnancy, in child urine at 5 and 10 years, and in hair at 10 years, was measured using Inductively Coupled Plasma Mass Spectrometry. RESULTS Median urinary arsenic at 10 years was 58 µg/L (range 7.3-940 µg/L). Multivariable-adjusted regression analysis showed that, compared to the first urinary arsenic quintile at 10 years (<30 µg/L), the third and fourth quintiles (30-45 and 46-73 µg/L, respectively) had 6-7 points lower Full developmental raw scores (B: -7.23, 95% CI -11.3; -3.18, and B: -6.37, 95% CI -10.5; -2.22, respectively), corresponding to ~0.2 SD. Verbal comprehension and Perceptual reasoning seemed to be affected. Models with children's hair arsenic concentrations showed similar results. Maternal urinary arsenic in early pregnancy, but not late pregnancy, showed inverse associations with Full developmental scores (quintiles 2-4: B: -4.52, 95% CI -8.61; -0.43, B: -5.91, 95% CI -10.0; -1.77, and B: -5.98, 95%CI -10.2; -1.77, respectively, compared to first quintile), as well as with Verbal comprehension, Perceptual reasoning, and Processing speed, especially in girls (p < 0.05 for interaction of sex with Full developmental scores and Perceptual reasoning). In models with all exposure time points included, both concurrent exposure at 10 years and early prenatal exposure remained associated with cognitive abilities. CONCLUSIONS Both early prenatal and childhood arsenic exposure, even at low levels (about 50 µg/L in urine), was inversely associated with cognitive abilities at school-age, although the estimates were modest.
Collapse
Affiliation(s)
- Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Skröder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh; International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jena Derakhshani Hamadani
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Combined effect of polymorphisms of MTHFR and MTR and arsenic methylation capacity on developmental delay in preschool children in Taiwan. Arch Toxicol 2020; 94:2027-2038. [DOI: 10.1007/s00204-020-02745-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
37
|
Adedara IA, Fabunmi AT, Ayenitaju FC, Atanda OE, Adebowale AA, Ajayi BO, Owoeye O, Rocha JB, Farombi EO. Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats. Neurotoxicology 2020; 76:99-110. [DOI: 10.1016/j.neuro.2019.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
|
38
|
Sharma A, Kumar S. Arsenic exposure with reference to neurological impairment: an overview. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:403-414. [PMID: 31603861 DOI: 10.1515/reveh-2019-0052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) toxicity has become a public health and environmental problem, which is a serious issue in certain parts of the world. Many people are exposed to As through contaminated drinking water, food and soil, through occupation, etc. Chronic As exposure is linked to various hostile health effects including skin problems, cancer, diabetes, cardiovascular disease, reproductive and developmental and neurological problems in exposed subjects. Experimental existing data indicate that chronic As exposure affects the nervous system by impairing the nerve and brain tissues of the exposed animals, and clinical studies indicate that As exposure leads to both central nervous system and peripheral nervous system impairments and also causes depression, memory impairment and difficulty in problem solving, affects body coordination, etc. Various prenatal and postnatal studies with respect to As exposure also suggest that developing offspring and young children are susceptible to As exposure. The only solution to this serious health problem is to stop occupational As exposure and provide As free drinking water to the affected population.
Collapse
Affiliation(s)
| | - Sunil Kumar
- A-10 Radhey Kunj Apartment, Shahibaug, Ahmedabad 380004, India
- Former Director-in-Charge, National Institute of Occupational Health (ICMR), Ahmedabad 380016, India
| |
Collapse
|
39
|
Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, Bach QV, Kamyab H, Khan SA, Yadav S, Malav LC. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. ENVIRONMENTAL RESEARCH 2019; 179:108792. [PMID: 31610391 DOI: 10.1016/j.envres.2019.108792] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 05/23/2023]
Abstract
This review emphasizes the role of toxic metal remediation approaches due to their broad sustainability and applicability. The rapid developmental processes can incorporate a large quantity of hazardous and unseen heavy metals in all the segments of the environment, including soil, water, air and plants. The released hazardous heavy metals (HHMs) entered into the food chain and biomagnified into living beings via food and vegetable consumption and originate potentially health-threatening effects. The physical and chemical remediation approaches are restricted and localized and, mainly applied to wastewater and soils and not the plant. The nanotechnological, biotechnological and genetical approaches required to more rectification and sustainability. A cellular, molecular and nano-level understanding of the pathways and reactions are responsible for potentially toxic metals (TMs) accumulation. These approaches can enable the development of crop varieties with highly reduced concentrations of TMs in their consumable foods and vegetables. As a critical analysis by authors observed that nanoparticles could provide very high adaptability for both in-situ and ex-situ remediation of hazardous heavy metals (HHMs) in the environment. These methods could be used for the improvement of the inbuilt genetic potential and phytoremediation ability of plants by developing transgenic. These biological processes involve the transfer of gene of interest, which plays a role in hazardous metal uptake, transport, stabilization, inactivation and accumulation to increased host tolerance. This review identified that use of nanoremediation and combined biotechnological and, transgenic could help to enhance phytoremediation efficiency in a sustainable way.
Collapse
Affiliation(s)
- Sandeep Kumar
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Shiv Prasad
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Krishna Kumar Yadav
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India.
| | - Manoj Shrivastava
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Kanpur Road, Jhansi 284128, India
| | - Shivani Nagar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Quang-Vu Bach
- Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam.
| | - Hesam Kamyab
- UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Malaysia
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sunita Yadav
- Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Lal Chand Malav
- National Bureau of Soil Survey and Land Use Planning, Nagpur, India
| |
Collapse
|
40
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Browne RW, Kordas K. Low level arsenic exposure, B-vitamins, and achievement among Uruguayan school children. Int J Hyg Environ Health 2019; 223:124-131. [PMID: 31588016 DOI: 10.1016/j.ijheh.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Millions of children globally, including the U.S., are exposed to low levels of arsenic from water and food. Arsenic is a known neurotoxicant at high levels but its effects at lower exposure levels are understudied. Arsenic methylation capacity, influenced by B-vitamin intake and status, potentially influences arsenic toxicity. In a cross-secitonal study of 5-8 year-old children from Montevideo, we assessed the relationship between urinary arsenic (U-As) and academic achievement, and tested for effect modification by B-vitamin intake, status, and arsenic methylation capacity. METHODS Broad math and reading scores were calculated based on six subtests (calculation, math facts fluency, applied problems, sentence reading fluency, letter word identification, passage comprehension) from the Woodcock-Muñoz Achievement Battery. B-vitamin intake was assessed from two non-consecutive 24-h dietary recalls, serum folate and vitamin B-12 levels were measured in a subset of participants. Arsenic methylation capacity was measured as the proportion of urinary monomethylarsonic acid (%MMA). Multiple imputation using chained equations was conducted to account for missing covariate and exposure data. Ordinal regressions assessed associations between U-As and achievement score tertiles in the complete case and imputed samples. A "B-vitamin index" was calculated using principal component analysis. Interactions by urinary %MMA and the B-vitamin index were assessed. RESULTS Median specific gravity adjusted U-As was 11.7 μg/L (range: 2.6, 50.1). We found no association between U-As and broad math and reading scores, nor effect modification by %MMA or B-vitamins. CONCLUSION At low-levels of exposure, U-As does not appear to affect children's academic achievement.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
41
|
Schofield K. An Important Need to Monitor from an Early Age the Neurotoxins in the Blood or by an Equivalent Biomarker. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183425. [PMID: 31527390 PMCID: PMC6766009 DOI: 10.3390/ijerph16183425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
An overwhelming amount of evidence now suggests that some people are becoming overloaded with neurotoxins. This is mainly from changes in their living environment and style, coupled with the fact that all people are different and display a broad distribution of genetic susceptibilities. It is important for individuals to know where they lie concerning their ability to either reject or retain toxins. Everyone is contaminated with a certain baseline of toxins that are alien to the body, namely aluminum, arsenic, lead, and mercury. Major societal changes have modified their intake, such as vaccines in enhanced inoculation procedures and the addition of sushi into diets, coupled with the ever-present lead, arsenic, and traces of manganese. It is now apparent that no single toxin is responsible for the current neurological epidemics, but rather a collaborative interaction with possible synergistic components. Selenium, although also a neurotoxin if in an excessive amount, is always present and is generally more present than other toxins. It performs as the body’s natural chelator. However, it is possible that the formation rates of active selenium proteins may become overburdened by other toxins. Every person is different and it now appears imperative that the medical profession establish an individual’s neurotoxicity baseline. Moreover, young women should certainly establish their baselines long before pregnancy in order to identify possible risk factors.
Collapse
Affiliation(s)
- Keith Schofield
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, USA.
| |
Collapse
|
42
|
Mochizuki H. Arsenic Neurotoxicity in Humans. Int J Mol Sci 2019; 20:ijms20143418. [PMID: 31336801 PMCID: PMC6678206 DOI: 10.3390/ijms20143418] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Arsenic (As) contamination affects hundreds of millions of people globally. Although the number of patients with chronic As exposure is large, the symptoms and long-term clinical courses of the patients remain unclear. In addition to reviewing the literature on As contamination and toxicity, we provide useful clinical information on medical care for As-exposed patients. Further, As metabolite pathways, toxicity, speculated toxicity mechanisms, and clinical neurological symptoms are documented. Several mechanisms that seem to play key roles in As-induced neurotoxicity, including oxidative stress, apoptosis, thiamine deficiency, and decreased acetyl cholinesterase activity, are described. The observed neurotoxicity predominantly affects peripheral nerves in sensory fibers, with a lesser effect on motor fibers. A sural nerve biopsy showed the axonal degeneration of peripheral nerves mainly in small myelinated and unmyelinated fibers. Exposure to high concentrations of As causes severe central nervous system impairment in infants, but no or minimal impairment in adults. The exposure dose-response relationship was observed in various organs including neurological systems. The symptoms caused by heavy metal pollution (including As) are often nonspecific. Therefore, in order to recognize patients experiencing health problems caused by As, a multifaceted approach is needed, including not only clinicians, but also specialists from multiple fields.
Collapse
Affiliation(s)
- Hitoshi Mochizuki
- Division of Neurology, Respirology, Endocrinology and Metabolism; Department of Internal Medicine; Faculty of Medicine; University of Miyazaki, Miyazaki 889-1692, Japan.
| |
Collapse
|