1
|
Keerthy D, Spratlen MJ, Wen L, Seeram D, Park H, Calero L, Uhlemann AC, Herbstman JB. An evaluation of in utero polycyclic aromatic hydrocarbon exposure on the neonatal meconium microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120053. [PMID: 39341532 DOI: 10.1016/j.envres.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION In utero exposure to environmental polycyclic aromatic hydrocarbon (PAH) is associated with neurodevelopmental impairments[1-8], prematurity[9-12] and low birthweight[9,13-15]. The gut microbiome serves as an intermediary between self and external environment; therefore, exploring the impact of PAH on microbiota may elucidate their role in disease. Here, we evaluated the effect of in utero PAH exposure on meconium microbiome. METHODS We evaluated 49 mother-child dyads within Fair Start Birth Cohort with full term delivery and adequate meconium sampling. Prenatal PAH was measured using personal active samplers worn for 48 h during third trimester. Post-processing, 35 samples with adequate biomass were evaluated for association between tertile of PAH exposure (high (H) vs low/medium (L/M)) and microbiome diversity. RESULTS No significant differences were observed in alpha diversity metrics, Chao1 and Shannon index, between exposure groups for total PAH. However, alpha diversity metrics were negatively associated with log benzo[a]anthracene (BaA) and log chrysene (Chry) with high exposure, but positively associated with log benzo[a]pyrene (BaP) with low/medium exposure. After adjustment for birthweight and sex, alpha diversity metrics were negatively associated with log BaA, BaP, Chry, Indeno (Zhang et al., 2021; Perera et al., 2018)pyrene (IcdP) and total PAH with high exposure. Conversely, with low/medium exposure, alpha diversity metrics positively correlated with log BaP and benzo[b]fluoranthane (BbF). No significant difference in beta diversity was observed across groups using UniFrac, weighted UniFrac, or Bray-Curtis methods. Differential expression analysis showed differentially abundant taxa between exposure groups. CONCLUSION Bacterial taxa were detectable in 35/49 (71%) meconium samples. Altered alpha diversity metrics and differentially abundant taxa between groups suggest in utero PAH exposure may impede early colonization. Sample size is limited, but these findings provide supporting evidence for wider scale research. Research on long-term impact of prenatal PAH exposure on childhood health outcomes is ongoing. Differential effects of specific PAHs need further evaluation.
Collapse
Affiliation(s)
- Divya Keerthy
- Neonatal and Perinatal Medicine, Columbia University, New York, NY, United States; Neonatal and Perinatal Medicine, NewYork Presbyterian Queens, Flushing, NY, United States.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lingsheng Wen
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Lehyla Calero
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Wang Y, Wu B, Gao X, Li J, Yang J, Ye Y, Sun J, Sheng L, Gao S, Zhang Y, Ji J, Sun X. Fusarium graminearum spores disrupt gut microbiota and metabolome via the lung-gut axis in mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135573. [PMID: 39236537 DOI: 10.1016/j.jhazmat.2024.135573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024]
Abstract
Fusarium graminearum, the primary pathogen responsible for wheat Fusarium head blight, can induce pulmonary damage through its spores. However, the detailed mechanism by which these spores cause intestinal injury is not yet fully understood. This study aimed to investigate the impact of exposure to fungal spores on the intestinal microbiota using a mice model that mimics the effects of fusarium graminearum spores on the gut microbiota and its metabolic profile. The study utilized 16S rRNA sequencing and metabolomics methodologies to analyze the contents of the cecum and feces in mice. The results showed that exposure to fungal spores led to significant changes in the composition of the intestinal microbiota in mice, characterized by an increase in Akkermansia and Staphylococcus populations. A non-targeted metabolomics analysis identified 316 metabolites associated with various metabolic pathways, particularly galactose metabolism. Pre-exposure to antibiotics before fungal spore exposure resulted in a decrease in the metabolic capacity of the intestinal microbiota in mice. This research demonstrates that fusarium graminearum spores can disrupt the intestinal microbiota and metabolome via the lung-gut axis. These findings provide valuable insights into the intestinal damage caused by fungal spores and offer important support for the development of therapeutic strategies for intestinal diseases.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bing Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingxing Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinyou Li
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Yang
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, China
| |
Collapse
|
3
|
Zhou H, Hong F, Wang L, Tang X, Guo B, Luo Y, Yu H, Mao D, Liu T, Feng Y, Baima Y, Zhang J, Zhao X. Air pollution and risk of 32 health conditions: outcome-wide analyses in a population-based prospective cohort in Southwest China. BMC Med 2024; 22:370. [PMID: 39256817 PMCID: PMC11389248 DOI: 10.1186/s12916-024-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Uncertainty remains about the long-term effects of air pollutants (AP) on multiple diseases, especially subtypes of cardiovascular disease (CVD). We aimed to assess the individual and joint associations of fine particulate matter (PM2.5), along with its chemical components, nitrogen dioxide (NO2) and ozone (O3), with risks of 32 health conditions. METHODS A total of 17,566 participants in Sichuan Province, China, were included in 2018 and followed until 2022, with an average follow-up period of 4.2 years. The concentrations of AP were measured using a machine-learning approach. The Cox proportional hazards model and quantile g-computation were applied to assess the associations between AP and CVD. RESULTS Per interquartile range (IQR) increase in PM2.5 mass, NO2, O3, nitrate, ammonium, organic matter (OM), black carbon (BC), chloride, and sulfate were significantly associated with increased risks of various conditions, with hazard ratios (HRs) ranging from 1.06 to 2.48. Exposure to multiple air pollutants was associated with total cardiovascular disease (HR 1.75, 95% confidence intervals (CIs) 1.62-1.89), hypertensive diseases (1.49, 1.38-1.62), cardiac arrests (1.52, 1.30-1.77), arrhythmia (1.76, 1.44-2.15), cerebrovascular diseases (1.86, 1.65-2.10), stroke (1.77, 1.54-2.03), ischemic stroke (1.85, 1.61-2.12), atherosclerosis (1.77, 1.57-1.99), diseases of veins, lymphatic vessels, and lymph nodes (1.32, 1.15-1.51), pneumonia (1.37, 1.16-1.61), inflammatory bowel diseases (1.34, 1.16-1.55), liver diseases (1.59, 1.43-1.77), type 2 diabetes (1.48, 1.26-1.73), lipoprotein metabolism disorders (2.20, 1.96-2.47), purine metabolism disorders (1.61, 1.38-1.88), anemia (1.29, 1.15-1.45), sleep disorders (1.54, 1.33-1.78), renal failure (1.44, 1.21-1.72), kidney stone (1.27, 1.13-1.43), osteoarthritis (2.18, 2.00-2.39), osteoporosis (1.36, 1.14-1.61). OM had max weights for joint effects of AP on many conditions. CONCLUSIONS Long-term exposure to increased levels of multiple air pollutants was associated with risks of multiple health conditions. OM accounted for substantial weight for these increased risks, suggesting it may play an important role in these associations.
Collapse
Affiliation(s)
- Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuewei Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Luo
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Hui Yu
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Deqiang Mao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Ting Liu
- Chenghua District Center for Disease Control and Prevention, Chengdu, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yangji Baima
- School of Medicine, Tibet University, Tibet, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wang Y, Wang Q, Zhang G, Li Y, Guo H, Zhou J, Wang T, Jia H, Zhu L. Masks As a New Hotspot for Antibiotic Resistance Gene Spread: Reveal the Contribution of Atmospheric Pollutants and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16100-16111. [PMID: 39137285 DOI: 10.1021/acs.est.4c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The consumption of disposable surgical masks (DSMs) considerably increased during the coronavirus pandemic in 2019. Herein, we explored the spread of antibiotic resistance genes (ARGs) and the potential risks of antibiotic resistant bacteria (ARB) on DSMs. At environmentally relevant concentrations, the conjugate transfer frequency (CTF) of ARGs increased by 1.34-2.37 folds by 20 μg/m3 of atmospheric water-soluble inorganic ions (WSIIs), and it increased by 2.62-2.86 folds by 80 ng/m3 of polycyclic aromatic hydrocarbons (PAHs). Total suspended particulates (TSP) further promoted the CTF in combination with WSIIs or PAHs. Under WSII and PAH exposure, gene expression levels related to oxidative stress, cell membrane, and the adenosine triphosphate (ATP) were upregulated. WSIIs predominantly induced cellular contact, while PAHs triggered ATP formation and membrane damage. Molecular dynamics simulations showed that WSIIs and PAHs reduced membrane lipid fluidity and increased membrane permeability through interactions with the phosphatidylcholine bilayer. DSM filtering performance decreased, and the CTF of ARGs increased with the wearing time. The gut simulator test showed that ARB disrupted the human gut microbial community and increased total ARG abundance but did not change the ARG abundance carried by ARB themselves. A mathematical model showed that long-term WSII and PAH exposure accelerated ARG dissemination in DSMs.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Shao W, Pan B, Li Z, Peng R, Yang W, Xie Y, Han D, Fang X, Li J, Zhu Y, Zhao Z, Kan H, Ying Z, Xu Y. Gut microbiota mediates ambient PM 2.5 exposure-induced abnormal glucose metabolism via short-chain fatty acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135096. [PMID: 38996677 PMCID: PMC11342392 DOI: 10.1016/j.jhazmat.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
PM2.5 exposure has been found to cause gut dysbiosis and impair glucose homeostasis in human and animals, yet their underlying biological connection remain unclear. In the present study, we aim to investigate the biological significance of gut microbiota in PM2.5-induced glucose metabolic abnormalities. Our results showed that microbiota depletion by antibiotics treatment significantly alleviated PM2.5-induced glucose intolerance and insulin resistance, as indicated by the intraperitoneal glucose tolerance test, glucose-induced insulin secretion, insulin tolerance test, insulin-induced phosphorylation levels of Akt and GSK-3β in insulin sensitive tissues. In addition, faecal microbiota transplantation (FMT) from PM2.5-exposed donor mice successfully remodeled the glucose metabolism abnormalities in recipient mice, while the transplantation of autoclaved faecal materials did not. Faecal microbiota analysis demonstrated that the composition and alpha diversity of the gut bacterial community were altered by PM2.5 exposure and in FMT recipient mice. Furthermore, short-chain fatty acids levels analysis showed that the circulating acetate was significantly decreased in PM2.5-exposed donor and FMT recipient mice, and supplementation of sodium acetate for 3 months successfully improved the glucose metabolism abnormalities induced by PM2.5 exposure. These results indicate that manipulating gut microbiota or its metabolites could be a potential strategy for preventing the adverse health effects of ambient PM2.5.
Collapse
Affiliation(s)
- Wenpu Shao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Jingyu Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Liu B, Wang G, Wang L, Yan J, Zhu K, Liu Q, Zhao J, Jia B, Fang M, Rudich Y, Morawska L, Chen J. Unraveling Cross-Organ Impacts of Airborne Pollutants: A Multiomics Study on Respiratory Exposure and Gastrointestinal Health. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15511-15521. [PMID: 39145585 DOI: 10.1021/acs.est.4c06035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Poor air quality is increasingly linked to gastrointestinal diseases, suggesting a potential correlation with human intestine health. However, this relationship remains largely unexplored due to limited research. This study used a controlled mouse model exposed to cooking oil fumes (COFs) and metagenomics, transcriptomics, and metabolomics to elucidate interactions between intestine microbiota and host metabolism under environmental stress. Our findings reveal that short-term COF inhalation induces pulmonary inflammation within 3 days and leads to gastrointestinal disturbances, elucidating a pathway connecting respiratory exposure to intestinal dysfunction. The exposure intensity significantly correlates with changes in intestinal tissue integrity, microbial composition, and metabolic function. Extended exposure of 7 days disrupts intestine microbiota and alters tryptophan metabolism, with further changes observed after 14 days, highlighting an adaptive response. These results highlight the vulnerability of intestinal health to airborne pollutants and suggest a pathway through which inhaled pollutants may affect distant organ systems.
Collapse
Affiliation(s)
- Bailiang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ge Wang
- Department of Environmental Hygiene, School of Public Health, Fudan University, Shanghai 200030, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | | | - Jinzhuo Zhao
- Department of Environmental Hygiene, School of Public Health, Fudan University, Shanghai 200030, China
| | - Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane Queensland 4001, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
7
|
Li C, Chen H, Gu Y, Chen W, Liu M, Lei Q, Li Y, Liang X, Wei B, Huang D, Liu S, Su L, Zeng X, Wang L. Causal effects of PM 2.5 exposure on neuropsychiatric disorders and the mediation via gut microbiota: A Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116257. [PMID: 38564871 DOI: 10.1016/j.ecoenv.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Growing evidence has revealed the impacts of exposure to fine particulate matter (PM2.5) and dysbiosis of gut microbiota on neuropsychiatric disorders, but the causal inference remains controversial due to residual confounders in observational studies. METHODS This study aimed to examine the causal effects of exposure to PM2.5 on 4 major neuropsychiatric disorders (number of cases = 18,381 for autism spectrum disorder [ASD], 38,691 for attention deficit hyperactivity disorder [ADHD], 67,390 for schizophrenia, and 21,982 cases for Alzheimer's disease [AD]), and the mediation pathway through gut microbiota. Two-sample Mendelian randomization (MR) analyses were performed, in which genetic instruments were identified from genome-wide association studies (GWASs). The included GWASs were available from (1) MRC Integrative Epidemiology Unit (MRC-IEU) for PM2.5, PMcoarse, PM10, and NOX; (2) the Psychiatric Genomics Consortium (PGC) for ASD, ADHD, and schizophrenia; (3) MRC-IEU for AD; and (4) MiBioGen for gut microbiota. Multivariable MR analyses were conducted to adjust for exposure to NOX, PMcoarse, and PM10. We also examined the mediation effects of gut microbiota in the associations between PM2.5 exposure levels and neuropsychiatric disorders, using two-step MR analyses. RESULTS Each 1 standard deviation (1.06 ug/m3) increment in PM2.5 concentrations was associated with elevated risk of ASD (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.00-2.02), ADHD (1.51, 1.15-1.98), schizophrenia (1.47, 1.15-1.87), and AD (1.57, 1.16-2.12). For all the 4 neurodevelopmental disorders, the results were robust under various sensitivity analyses, while the MR-Egger method yielded non-significant outcomes. The associations remained significant for all the 4 neuropsychiatric disorders after adjusting for PMcoarse, while non-significant after adjusting for NOX and PM10. The effects of PM2.5 exposure on ADHD and schizophrenia were partially mediated by Lachnospiraceae and Barnesiella, with the proportions ranging from 8.31% to 15.77%. CONCLUSIONS This study suggested that exposure to PM2.5 would increase the risk of neuropsychiatric disorders, partially by influencing the profile of gut microbiota. Comprehensive regulations on air pollutants are needed to help prevent neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chanhua Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hao Chen
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ye Gu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wanling Chen
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Meiliang Liu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qinggui Lei
- The Eighth People's Hospital of Nanning, Nanning, Guangxi 530001, China
| | - Yujun Li
- Nanning Children's Rehabilitation Center, Nanning, Guangxi 530005, China
| | - Xiaomei Liang
- Nanning Children's Rehabilitation Center, Nanning, Guangxi 530005, China
| | - Binyuan Wei
- Nanning Children's Rehabilitation Center, Nanning, Guangxi 530005, China
| | - Dongping Huang
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shun Liu
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoyun Zeng
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lijun Wang
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
8
|
Zhou E, Zhang L, He L, Xiao Y, Zhang K, Luo B. Cold exposure, gut microbiota and health implications: A narrative review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170060. [PMID: 38242473 DOI: 10.1016/j.scitotenv.2024.170060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Temperature has been recognized as an important environmental factor affecting the composition and function of gut microbiota (GM). Although research on high-temperature impacts has been well studied, knowledge about the effect of cold exposure on GM remains limited. This narrative review aims to synthesize the latest scientific findings on the impact of cold exposure on mammalian GM, and its potential health implications. Chronic cold exposure could disrupt the α-diversity and the composition of GM in both experimental animals and wild-living hosts. Meanwhile, cold exposure could impact gut microbial metabolites, such as short-chain fatty acids. We also discussed plausible biological pathways and mechanisms by which cold-induced changes may impact host health, including metabolic homeostasis, fitness and thermogenesis, through the microbiota-gut-brain axis. Intriguingly, alterations in GM may provide a tool for favorably modulating the host response to the cold temperature. Finally, current challenges and future perspectives are discussed, emphasizing the need for translational research in humans. GM could be manipulated by utilizing nutritional strategies, such as probiotics and prebiotics, to deal with cold-related health issues and enhance well-being in populations living or working in cold environments.
Collapse
Affiliation(s)
- Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya Xiao
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
9
|
Recum P, Hirsch T. Graphene-based chemiresistive gas sensors. NANOSCALE ADVANCES 2023; 6:11-31. [PMID: 38125587 PMCID: PMC10729924 DOI: 10.1039/d3na00423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Gas sensors allow the monitoring of the chemical environment of humans, which is often crucial for their wellbeing or even survival. Miniaturization, reversibility, and selectivity are some of the key challenges for serial use of chemical sensors. This tutorial review describes critical aspects when using nanomaterials as sensing substrates for the application in chemiresistive gas sensors. Graphene has been shown to be a promising candidate, as it allows gas sensors to be operated at room temperature, possibly saving large amounts of energy. In this review, an overview is given on the general mechanisms for gas-sensitive semiconducting materials and the implications of doping and functionalization on the sensing parameters of chemiresistive devices. It shows in detail how different challenges, like sensitivity, response time, reversibility and selectivity have been approached by material development and operation modes. In addition, perspectives from the area of data analysis and intelligent algorithms are presented, which can further enhance these sensors' usability in the field.
Collapse
|
10
|
Qiu T, Zang T, Fang Q, Xu Z, Cao Y, Fan X, Liu J, Zeng X, Li Y, Tu Y, Li G, Bai J, Huang J, Liu Y. Cumulative and lagged effects of varying-sized particulate matter exposure associates with toddlers' gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122389. [PMID: 37595737 DOI: 10.1016/j.envpol.2023.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Particulate matter (PM) is an important component of air pollutants and is associated with various health risks. However, the impact of PM on toddlers' gut microbiota is rarely investigated. This study aimed to assess the cumulative and lagged effects of varying-sized PMs on toddlers' gut microbiota. We collected demographic information, stool samples, and exposure to PM from 36 toddlers aged 2-3 years. The toddlers were divided into warm season group and cooler season group according to the collection time of stool samples. The gut microbiota was processed and analyzed using 16S rRNA V3-V4 gene regions. The concentration of PM was calculated using China High Air Pollutants (CHAP) database. To assess the mixed effects of varying-sized PM, multiple-PM models were utilized. There were significant differences between the community composition, α- and β-diversity between two groups. In multiple-PM models, there was a significant effect of weight quantile sum (PM1, PM2.5, and PM10) on α-diversity indices. In weight quantile sum models, after adjusting for a priori confounders, we found a negative effect of weight quantile sum on Enterococcus (β = -0.134, 95% CI -0.263 to -0.006), positive effects of weight quantile sum on unclassified_f__Ruminococcaceae (β = 0.247, 95% CI 0.102 to 0.393), Ruminococcus_1 (β = 0.444, 95% CI 0.238 to 0.650), unclassified_f__Lachnospiraceae (β = 0.278, 95% CI 0.099 to 0.458), and Family_XIII_AD_3011_group (β = 0.254, 95% CI 0.086 to 0.422) in WSG and CSG. In lagged weight quantile sum models, the correlation between lag time PM levels and the gut microbiota showed seasonal trends, and weights of PM changed with lag periods. This is the first study to highlight that cumulative and lagged effects of PMs synergistically affect the diversities (α- and β-diversity) and abundance of the gut microbiota in toddlers. Further research is needed to explore the mediating mechanism of varying-sized PMs exposure on the gut microbiota in toddlers.
Collapse
Affiliation(s)
- Tianlai Qiu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Qingbo Fang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Yanan Cao
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Xueer Zeng
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yanting Li
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Yiming Tu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China; Environmental Research Group, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
11
|
Qin J, Wang J. Research progress on the effects of gut microbiome on lung damage induced by particulate matter exposure. ENVIRONMENTAL RESEARCH 2023; 233:116162. [PMID: 37348637 DOI: 10.1016/j.envres.2023.116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Air pollution is one of the top five causes of death in the world and has become a research hotspot. In the past, the health effects of particulate matter (PM), the main component of air pollutants, were mainly focused on the respiratory and cardiovascular systems. However, in recent years, the intestinal damage caused by PM and its relationship with gut microbiome (GM) homeostasis, thereby affecting the composition and function of GM and bringing disease burden to the host lung through different mechanisms, have attracted more and more attention. Therefore, this paper reviews the latest research progress in the effect of PM on GM-induced lung damage and its possible interaction pathways and explores the potential immune inflammatory mechanism with the gut-lung axis as the hub in order to understand the current research situation and existing problems, and to provide new ideas for further research on the relationship between PM pollution, GM, and lung damage.
Collapse
Affiliation(s)
- Jiali Qin
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
13
|
Brigham E, Hashimoto A, Alexis NE. Air Pollution and Diet: Potential Interacting Exposures in Asthma. Curr Allergy Asthma Rep 2023; 23:541-553. [PMID: 37440094 DOI: 10.1007/s11882-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE OF REVIEW To provide a review of emerging literature describing the impact of diet on the respiratory response to air pollution in asthma. RECENT FINDINGS Asthma phenotyping (observable characteristics) and endotyping (mechanistic pathways) have increased the specificity of diagnostic and treatment pathways and opened the doors to the identification of subphenotypes with enhanced susceptibility to exposures and interventions. Mechanisms underlying the airway immune response to air pollution are still being defined but include oxidative stress, inflammation, and activation of adaptive and innate immune responses, with genetic susceptibility highlighted. Of these, neutrophil recruitment and activation appear prominent; however, understanding neutrophil function in response to pollutant exposures is a research gap. Diet may play a role in asthma pathogenesis and morbidity; therefore, diet modification is a potential target opportunity to protect against pollutant-induced lung injury. In particular, in vivo and in vitro data suggest the potential for diet to modify the inflammatory response in the airways, including impacts on neutrophil recruitment and function. Murine models provide compelling results in regard to the potential for dietary components (including fiber, antioxidants, and omega-3 fatty acids) to buffer against the inflammatory response to air pollution in the lung. Precision lifestyle approaches to asthma management and respiratory protection in the context of air pollution exposures may evolve to include diet, pending the results of further epidemiologic and causal investigation and with neutrophil recruitment and activation as a candidate mechanism.
Collapse
Affiliation(s)
- Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, BC, Canada.
- Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
| | - Alisa Hashimoto
- Faculty of Science, University of British Columbia, BC, Vancouver, Canada
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pediatrics, Division of Allergy, Immunology, Rheumatology and Infectious Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Cao Y, Zang T, Qiu T, Xu Z, Chen X, Fan X, Zhang Q, Huang Y, Liu J, Wu N, Shen N, Bai J, Li G, Huang J, Liu Y. Does PM 1 exposure during pregnancy impact the gut microbiota of mothers and neonates? ENVIRONMENTAL RESEARCH 2023; 231:116304. [PMID: 37268213 DOI: 10.1016/j.envres.2023.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ambient air pollutant exposure can change the composition of gut microbiota at 6-months of age, but there is no epidemiological evidence on the impacts of exposure to particulate matter with an aerodynamic diameter ≤1 μm (PM1) during pregnancy on gut microbiota in mothers and neonates. We aimed to determine if gestational PM1 exposure is associated with the gut microbiota of mothers and neonates. METHODS Leveraging a mother-infant cohort from the central region of China, we estimated the exposure concentrations of PM1 during pregnancy based on residential address records. The gut microbiota of mothers and neonates was analyzed using 16 S rRNA V3-V4 gene sequences. Functional pathway analyses of 16 S rRNA V3-V4 bacterial communities were conducted using Tax4fun. The impact of PM1 exposure on α-diversity, composition, and function of gut microbiota in mothers and neonates was evaluated using multiple linear regression, controlling for nitrogen dioxide (NO2) and ozone (O3). Permutation multivariate analysis of variance (PERMANOVA) was used to analyze the interpretation degree of PM1 on the sample differences at the OTU level using the Bray-Curtis distance algorithm. RESULTS Gestational PM1 exposure was positively associated with the α-diversity of gut microbiota in neonates and explained 14.8% (adj. P = 0.026) of the differences in community composition among neonatal samples. In contrast, gestational PM1 exposure had no impact on the α- and β-diversity of gut microbiota in mothers. Gestational PM1 exposure was positively associated with phylum Actinobacteria of gut microbiota in mothers, and genera Clostridium_sensu_stricto_1, Streptococcus, Faecalibacterium of gut microbiota in neonates. At Kyoto Encyclopedia of Genes and Genomes pathway level 3, the functional analysis results showed that gestational PM1 exposure significantly down-regulated Nitrogen metabolism in mothers, as well as Two-component system and Pyruvate metabolism in neonates. While Purine metabolism, Aminoacyl-tRNA biosynthesis, Pyrimidine metabolism, and Ribosome in neonates were significantly up-regulated. CONCLUSIONS Our study provides the first evidence that exposure to PM1 has a significant impact on the gut microbiota of mothers and neonates, especially on the diversity, composition, and function of neonatal meconium microbiota, which may have important significance for maternal health management in the future.
Collapse
Affiliation(s)
- Yanan Cao
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Tianlai Qiu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Xiangxu Chen
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Qianping Zhang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Yingjuan Huang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Jun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Ni Wu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Natalie Shen
- Emory University Rollins School of Public Health, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA, 30322, USA
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, 100191, China.
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
Liu H, Wang M, Chen G, Zhou H, Dong J, Yang L, Li T, Meng Z, Gu R, Gan H, Wu Z, Liu S, Sun Y, Yuan Y, Dou G. Effects of radon exposure on gut microbiota and its metabolites short-chain fatty acids in mice. Toxicology 2023; 486:153449. [PMID: 36738820 DOI: 10.1016/j.tox.2023.153449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Radon (222Rn) is a naturally occurring radioactive gas. Forty percent of the natural radiation to which the human body is exposed comes from radon gas. Long-term exposure to high concentrations of radon induces systemic damage. However, the effect of such exposure on gut microbiota still remains unclear. We explored the effects of radon exposure on gut microbiota and its metabolites short-chain fatty acids (SCFAs) in BALB/c mice by cumulative inhalation of radon at 30, 60, and 120 working level months (WLM). The radon-exposed mice showed slow body weight gain, decreased serum triglycerides and low-density lipoproteins, decreased diversity, lower community structure, and altered abundance of the gut microbiota. Lachnospiraceae, Amaricoccus, and Enterococcus could differentiate the IR30, 60, and 120 WLM groups, respectively. Meanwhile, radon exposure affected the metabolic functions of the gut microbiota, mainly carbohydrate, amino acid, and lipid metabolic pathways. The altered abundance of microbiota and resulting reduced levels of SCFAs may aggravate the damage caused by radon exposure.
Collapse
Affiliation(s)
- Huimeng Liu
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meiyu Wang
- School of Life Sciences, Hebei University, Baoding 0710021, China
| | - Guangrui Chen
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Huiyu Zhou
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jiahui Dong
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Yang
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tong Li
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhiyun Meng
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruolan Gu
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Gan
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhuona Wu
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shuchen Liu
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yunbo Sun
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yong Yuan
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Guifang Dou
- Anti-Radiation Drug Research Laboratory, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
16
|
Okafor PN, Dahlen A, Youssef M, Olayode A, Sonu I, Neshatian L, Nguyen L, Charu V. Environmental Pollutants Are Associated With Irritable Bowel Syndrome in a Commercially Insured Cohort of California Residents. Clin Gastroenterol Hepatol 2022; 21:1617-1626.e9. [PMID: 36202347 DOI: 10.1016/j.cgh.2022.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Prior studies have linked environmental pollutants with gastrointestinal (GI) diseases. Here, we quantify the relationships between 7 pollutants and the zip code-level incidence of irritable bowel syndrome (IBS), functional dyspepsia, inflammatory bowel diseases (IBDs), and eosinophilic esophagitis (EoE) in California. METHODS Claims in Optum's Clinformatics Data Mart were linked with environmental exposures in California, derived from CalEnviroScreen 3.0. We identified adult patients with new diagnoses of each GI disease, and estimated claims-derived, zip code-level disease incidence rates. Two study periods were considered: 2009-2014 (International Classification of Diseases-Ninth Revision era) and 2016-2019 (International Classification of Diseases-Tenth Revision [ICD-10] era). Multivariable negative binomial regression models were used to test associations between 7 pollutants (ozone, particulate matter <2.5 μm [PM2.5], diesel emissions, drinking water contaminants, pesticides, toxic releases from industrial facilities, traffic density) and zip code-level incidence of the GI diseases along with a negative control outcome, adjusting for numerous potential confounders. RESULTS Zip code-level IBS incidence was associated with PM2.5 (P < .001 in both eras) and airborne toxic releases from facilities (P < .001 in both eras). An increase of 1 μg/m3 in PM2.5 or 1% in toxic releases translates to an increase in the IBS incidence rate of about 0.02 cases per 100 person-years. Traffic density and drinking water contaminant exposures were also associated with increasing IBS incidence, but these associations were not significant in both eras. Similarly, exposure to PM2.5, drinking water contaminants and airborne toxic releases from facilities were associated with functional dyspepsia incidence, though not in both eras. No significant associations were noted between pollutants and IBD or EoE incidence. CONCLUSION Exposure to PM2.5 and airborne toxic releases from facilities are associated with higher IBS incidence among a cohort of commercially insured Californians. Environmental pollutant exposure was not associated with the incidence of IBDs and EoE in this cohort.
Collapse
Affiliation(s)
- Philip N Okafor
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California.
| | - Alex Dahlen
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Michael Youssef
- Department of Internal Medicine, University of Toronto Medical School, Toronto, Ontario, Canada
| | - Adegboyega Olayode
- Division of Hospital Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Irene Sonu
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Leila Neshatian
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Linda Nguyen
- Department of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Vivek Charu
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California; Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
17
|
Filardo S, Di Pietro M, Protano C, Antonucci A, Vitali M, Sessa R. Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review. TOXICS 2022; 10:toxics10100579. [PMID: 36287859 PMCID: PMC9607944 DOI: 10.3390/toxics10100579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/04/2023]
Abstract
Recently, growing attention has focused on the impact of air pollution on gut microbiota as a possible mechanism by which air pollutant exposure increased the risk for chronic diseases, as evidenced by in vivo studies demonstrating important exposure-induced alterations in the diversity and relative abundance of gut bacterial taxa. This systematic review provides updated state-of-art findings of studies examining the impact of air pollution on the human gut microbiota. Databases PubMed, Scopus, and Web of Science were searched with the following strategy: "air poll*" AND "gut micro*" OR "intestinal micro*"; moreover, a total of 10 studies were included. Overall, there is the evidence that short-term and long-term exposure to air pollutants have the potential to alter the composition and diversity of gut microbiota; some studies also correlated air pollution exposure to adverse health effects (impaired fasting glucose, adverse pregnancy outcomes, and asthma attacks) via alterations in the composition and/or function of the gut microbiota. However, the evidence on this topic is still scarce, and large cohort studies are needed globally.
Collapse
|
18
|
Shi X, Zheng Y, Cui H, Zhang Y, Jiang M. Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113893. [PMID: 35917711 DOI: 10.1016/j.ecoenv.2022.113893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Due to the highly evolved industrialization and modernization, air quality has deteriorated in most countries. As reported by the World Health Organization (WHO), air pollution is now considered as one of the major threats to global health and a principal risk factor for noncommunicable diseases. Meanwhile, the increasing worldwide prevalence of overweight and obesity is attracting more public attentions. Recently, accumulating epidemiological studies have provided evidence that overweight and obesity may be partially attributable to environmental exposure to air pollution. This review summarizes the epidemiological evidence for the correlation between exposure to various outdoor and indoor air pollutants (mainly particulate matter (PM), nitrogen oxides (NOx), ozone (O3), and polycyclic aromatic hydrocarbons (PAHs)) and overweight and obesity outcomes in recent years. Moreover, it discusses the multiple effects of air pollution during exposure periods throughout life and sex differences in populations. This review also describes the potential mechanism underlying the increased risk of obesity caused by air pollution, including inflammation, oxidative stress, metabolic imbalance, intestinal flora disorders and epigenetic modifications. Finally, this review proposes macro- and micro-measures to prevent the negative effects of air pollution exposure on the obesity prevalence.
Collapse
Affiliation(s)
- Xiaoyi Shi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haiwen Cui
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxi Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
19
|
The Impact of Air Pollution on Gut Microbiota and Children’s Health: An Expert Consensus. CHILDREN 2022; 9:children9060765. [PMID: 35740702 PMCID: PMC9222189 DOI: 10.3390/children9060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Air pollution is an unseen threat to children’s health because it may increase the risk of respiratory infection, atopy, and asthma, and also alter gut microbiota compositions. The impact of air pollution on children’s health has not been firmly established. A literature review followed by a series of discussions among experts were performed to develop a theoretical framework on how air pollution could affect various bodily organs and functions in children. We invited experts from different backgrounds, such as paediatricians, nutritionists, environmental health experts, and occupational health experts, to provide their views on this matter. This report summarizes the discussion of multidisciplinary experts on the impact of air pollution on children’s health. The report begins with a review of air pollution’s impact on allergy and immunology, neurodevelopment, and cardiometabolic risks, and ends with the conceptualization of a theoretical framework. While the allergic and immunological pathway is one of the most significant pathways for air pollution affecting children’s health in which microbiotas also play a role, several pathways have been proposed regarding the ability to affect neurodevelopment and cardiometabolic risk. Further research is required to confirm the link between air pollution and the gut microbiota pathway.
Collapse
|
20
|
Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, Andreu-Sánchez S, Chen L, Collij V, Hu S, Dekens JAM, Lenters VC, Björk JR, Swarte JC, Swertz MA, Jansen BH, Gelderloos-Arends J, Jankipersadsing S, Hofker M, Vermeulen RCH, Sanna S, Harmsen HJM, Wijmenga C, Fu J, Zhernakova A, Weersma RK. Environmental factors shaping the gut microbiome in a Dutch population. Nature 2022; 604:732-739. [PMID: 35418674 DOI: 10.1038/s41586-022-04567-7] [Citation(s) in RCA: 318] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
Abstract
The gut microbiome is associated with diverse diseases1-3, but a universal signature of a healthy or unhealthy microbiome has not been identified, and there is a need to understand how genetics, exposome, lifestyle and diet shape the microbiome in health and disease. Here we profiled bacterial composition, function, antibiotic resistance and virulence factors in the gut microbiomes of 8,208 Dutch individuals from a three-generational cohort comprising 2,756 families. We correlated these to 241 host and environmental factors, including physical and mental health, use of medication, diet, socioeconomic factors and childhood and current exposome. We identify that the microbiome is shaped primarily by the environment and cohabitation. Only around 6.6% of taxa are heritable, whereas the variance of around 48.6% of taxa is significantly explained by cohabitation. By identifying 2,856 associations between the microbiome and health, we find that seemingly unrelated diseases share a common microbiome signature that is independent of comorbidities. Furthermore, we identify 7,519 associations between microbiome features and diet, socioeconomics and early life and current exposome, with numerous early-life and current factors being significantly associated with microbiome function and composition. Overall, this study provides a comprehensive overview of gut microbiome and the underlying impact of heritability and exposures that will facilitate future development of microbiome-targeted therapies.
Collapse
Affiliation(s)
- R Gacesa
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - A Kurilshikov
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - A Vich Vila
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - T Sinha
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M A Y Klaassen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - L A Bolte
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - S Andreu-Sánchez
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - L Chen
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - V Collij
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - S Hu
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J A M Dekens
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Center of Development and Innovation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - V C Lenters
- University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | - J R Björk
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J C Swarte
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M A Swertz
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
| | - B H Jansen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J Gelderloos-Arends
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - S Jankipersadsing
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - M Hofker
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - R C H Vermeulen
- University Medical Centre Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands.,Utrecht University, Institute for Risk Assessment Sciences (IRAS), Department of Population Health Sciences, Utrecht, The Netherlands
| | - S Sanna
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Cagliari, Italy
| | - H J M Harmsen
- Department of Medical Microbiology and Infection prevention, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - C Wijmenga
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - J Fu
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands. .,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| | - A Zhernakova
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| | - R K Weersma
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands.
| |
Collapse
|
21
|
Zhao L, Fang J, Tang S, Deng F, Liu X, Shen Y, Liu Y, Kong F, Du Y, Cui L, Shi W, Wang Y, Wang J, Zhang Y, Dong X, Gao Y, Dong L, Zhou H, Sun Q, Dong H, Peng X, Zhang Y, Cao M, Wang Y, Zhi H, Du H, Zhou J, Li T, Shi X. PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27007. [PMID: 35157499 PMCID: PMC8843086 DOI: 10.1289/ehp9688] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Insulin resistance (IR) affects the development of type 2 diabetes mellitus (T2DM), which is also influenced by accumulated fine particle air pollution [particulate matter (PM) with aerodynamic diameter of <2.5μm (PM2.5)] exposure. Previous experimental and epidemiological studies have proposed several potential mechanisms by which PM2.5 contributes to IR/T2DM, including inflammation imbalance, oxidative stress, and endothelial dysfunction. Recent evidence suggests that the imbalance of the gut microbiota affects the metabolic process and may precede IR. However, the underlying mechanisms of PM2.5, gut microbiota, and metabolic diseases are unclear. OBJECTIVES We investigated the associations between personal exposure to PM2.5 and fasting blood glucose and insulin levels, the IR index, and other related biomarkers. We also explored the potential underlying mechanisms (systemic inflammation and sphingolipid metabolism) between PM2.5 and insulin resistance and the mediating effects between PM2.5 and sphingolipid metabolism. METHODS We recruited 76 healthy seniors to participate in a repeated-measures panel study and conducted clinical examinations every month from September 2018 to January 2019. Linear mixed-effects (LME) models were used to analyze the associations between PM2.5 and health data (e.g., functional factors, the IR index, inflammation and other IR-related biomarkers, metabolites, and gut microbiota). We also performed mediation analyses to evaluate the effects of mediators (gut microbiota) on the associations between exposures (PM2.5) and featured metabolism outcomes. RESULTS Our prospective panel study illustrated that exposure to PM2.5 was associated with an increased risk of higher IR index and functional biomarkers, and our study provided mechanistic evidence suggesting that PM2.5 exposure may contribute to systemic inflammation and altered sphingolipid metabolism. DISCUSSION Our findings demonstrated that PM2.5 was associated with the genera of the gut microbiota, which partially mediated the association between PM2.5 and sphingolipid metabolism. These findings may extend our current understanding of the pathways of PM2.5 and IR. https://doi.org/10.1289/EHP9688.
Collapse
Affiliation(s)
- Liang Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center and School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Shen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fanling Kong
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingjian Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huichan Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiumiao Peng
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Zhi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingyang Zhou
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
22
|
Abstract
Purpose of Review During the past century, exposure to particulate matter (PM) air pollution < 2.5 μm in diameter (PM2.5) has emerged as an all-pervading element of modern-day society. This increased exposure has come at the cost of heightened risk for cardiovascular (CV) morbidity and mortality. Not only can short-term PM2.5 exposure trigger acute CV events in susceptible individuals, but longer-term exposure over years augments CV risk to a greater extent in comparison with short-term exposure. The purpose of this review is to examine the available evidence for how ambient air pollution exposure may precipitate events at various time frames. Recent Findings Recent epidemiological studies have demonstrated an association between ambient PM2.5 exposure and the presence and progression of atherosclerosis in humans. Multiple animal exposure experiments over two decades have provided strong corroborative evidence that chronic exposure in fact does enhance the progression and perhaps vulnerability characteristics of atherosclerotic lesions. Summary Evidence from epidemiological studies including surrogates of atherosclerosis, human translational studies, and mechanistic investigations utilizing animal studies have improved our understanding of how ambient air pollution may potentiate atherosclerosis and precipitate cardiovascular events. Even so, future research is needed to fully understand the contribution of different constituents in ambient air pollution–mediated atherosclerosis as well as how other systems may modulate the impact of exposure including adaptive immunity and the gut microbiome. Nevertheless, due to the billions of people continually exposed to PM2.5, the long-term pro-atherosclerotic effects of this ubiquitous air pollutant are likely to be of enormous and growing global public health importance. Supplementary Information The online version contains supplementary material available at 10.1007/s11883-021-00958-9.
Collapse
|
23
|
Li P, Jing J, Guo W, Guo X, Hu W, Qi X, Wei WQ, Zhuang G. The associations of air pollution and socioeconomic factors with esophageal cancer in China based on a spatiotemporal analysis. ENVIRONMENTAL RESEARCH 2021; 196:110415. [PMID: 33159927 DOI: 10.1016/j.envres.2020.110415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Rapid urbanization and industrialization in China have incurred serious air pollution and consequent health concerns. In this study, we examined the modifying effects of urbanization and socioeconomic factors on the association between PM2.5 and incidence of esophageal cancer (EC) in 2000-2015 using spatiotemporal techniques and a quasi-Poisson generalized linear model. The results showed a downward trend of EC and high-risk areas aggregated in North China and Huai River Basin. In addition, a stronger association between PM2.5 and incidence was observed in low urbanization group, and the association was stronger for females than males. When exposure time-windows were adjusted as 0, 5, 10, 15 years, the incidence risk increased by 2.48% (95% CI: 2.23%, 2.73%), 2.20% (95% CI: 1.91%, 2.49%), 2.18% (95% CI%: 1.92%, 2.43%), 1.87% (95% CI%:1.64, 2.10%) for males, respectively and 4.03% (95% CI: 3.63%, 4.43%), 2.20% (95% CI: 1.91%, 2.49%), 3.97% (95% CI: 3.54%, 4.41%), 3.06% (95% CI: 2.71%, 3.41%) for females, respectively. The findings indicated people in low urbanization group faced with a stronger EC risk caused by PM2.5, which contributes to a more comprehensive understanding of combating EC challenges related to PM2.5 pollution.
Collapse
Affiliation(s)
- Peng Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jing Jing
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi, China
| | - Wenwen Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiya Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Xin Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Wen-Qiang Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guihua Zhuang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
24
|
Vignal C, Guilloteau E, Gower-Rousseau C, Body-Malapel M. Review article: Epidemiological and animal evidence for the role of air pollution in intestinal diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143718. [PMID: 33223187 DOI: 10.1016/j.scitotenv.2020.143718] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Ambient air pollution is recognized as one of the leading causes of global burden of disease. Involvement of air pollution in respiratory and cardiovascular diseases was first recognized, and then cumulative data has indicated that the intestinal tract could be also damaged. AIM To review and discuss the current epidemiological and animal data on the effects of air pollution on intestinal homeostasis. METHODS An extensive literature search was conducted using Google Scholar and Pubmed to gather relevant human and animal studies that have reported the effects of any air pollutant on the intestine. RESULTS Exposure to several gaseous and particulate matter components of air pollution have been associated either positively or negatively with the onset of various intestinal diseases including appendicitis, gastroenteric disorders, irritable bowel syndrome, inflammatory bowel diseases, and peptic ulcers. Several atmospheric pollutants have been associated with modifications of gut microbiota in humans. Animal studies have showed that inhalation of atmospheric particulate matter can lead to modifications of gut microbiota, impairments of oxidative and inflammatory intestinal balances, and disruption of gut epithelial permeability. CONCLUSIONS Overall, the literature appears to indicate that the gut is an underestimated target of adverse health effects induced by air pollution. It is therefore important to develop additional studies that aim to better understand the link between air pollutants and gastro-intestinal diseases.
Collapse
Affiliation(s)
- Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France
| | - Eva Guilloteau
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France
| | - Corinne Gower-Rousseau
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France; Epidemiology Unit, Epimad Registry, Lille University Hospital, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for translational research in inflammation, F-59000 Lille, France.
| |
Collapse
|
25
|
Redondo-Useros N, Nova E, González-Zancada N, Díaz LE, Gómez-Martínez S, Marcos A. Microbiota and Lifestyle: A Special Focus on Diet. Nutrients 2020; 12:E1776. [PMID: 32549225 PMCID: PMC7353459 DOI: 10.3390/nu12061776] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
It is widely known that a good balance and healthy function for bacteria groups in the colon are necessary to maintain homeostasis and preserve health. However, the lack of consensus on what defines a healthy gut microbiota and the multitude of factors that influence human gut microbiota composition complicate the development of appropriate dietary recommendations for our gut microbiota. Furthermore, the varied response to the intake of probiotics and prebiotics observed in healthy adults suggests the existence of potential inter- and intra-individual factors, which might account for gut microbiota changes to a greater extent than diet. The changing dietary habits worldwide involving consumption of processed foods containing artificial ingredients, such as sweeteners; the coincident rise in emotional disorders; and the worsening of other lifestyle habits, such as smoking habits, drug consumption, and sleep, can together contribute to gut dysbiosis and health impairment, as well as the development of chronic diseases. This review summarizes the current literature on the effects of specific dietary ingredients (probiotics, prebiotics, alcohol, refined sugars and sweeteners, fats) in the gut microbiota of healthy adults and the potential inter- and intra-individual factors involved, as well as the influence of other potential lifestyle factors that are dramatically increasing nowadays.
Collapse
Affiliation(s)
| | | | | | | | | | - Ascensión Marcos
- Immunonutrition Group, Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais, St.10, 28040 Madrid, Spain; (N.R.-U.); (E.N.); (N.G.-Z.); (L.E.D.); (S.G.-M.)
| |
Collapse
|